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TIGHTNESS OF SUMS OF INDEPENDENT
IDENTICALLY DISTRIBUTED PSEUDO-POISSON
PROCESSES IN THE SKOROKHOD SPACE

O. V. Rusakov∗ UDC 519.2

We consider a pseudo-Poisson process of the following simple type. This process is a Poissonian
subordinator for a sequence of i.i.d. random variables with finite variance. Further we consider
sums of i.i.d. copies of a pseudo-Poisson process. For a family of distributions of these random
sums, we prove the tightness (relative compactness) in the Skorokhod space. Under the conditions
of the Central Limit Theorem for vectors, we establish the weak convergence in the functional
Skorokhod space of the examined sums to the Ornstein–Uhlenbeck process. Bibliography: 3 titles.

Let us define a process of Poisson Stochastic Index ψ(s), s ≥ 0, by the following Poisson
random change of “mathematical” time for a sequence of random variables (ξ) = ξ0, ξ1, . . . :

ψ(s)
�
= ξΠ(s), (�)

where we assume that the leading Poisson process Π(s) with intensity λ > 0 is independent
of the sequence (ξ). The sequence (ξ) is said to be “forming” or “subordinated.” We use
the abbreviation PSI for the “Poisson Stochastic Index.” Let us note that processes PSI are
Poisson subordinators for sequences.

Trajectories of processes PSI are right-continuous, with left limits (RCLL), piecewise con-
stant, having jumps only at moments of jumps of the leading Poisson process, but not neces-
sarily at all these moments.

Processes PSI are studied in the classical monograph [2, Chap. X] (they are called “Pseudo-
Poisson processes” there) in the case where the forming sequence is a Markov chain. In
this case, PSI processes are called pseudo-Poisson processes. Remark that under the Markov
property for the forming sequence, the corresponding pseudo-Poisson process is Markov and
has continuous time. Thus, the Poisson subordination for sequences allows one to embed these
sequences into continuous time preserving the Markov property.

In this paper, we consider sums of independent identically distributed (i.i.d.) pseudo-Poisson
processes for which every forming sequence consists of i.i.d. random variables. In this case,
even a sum of two independent PSI processes loses the Markov property; nevertheless, the limit
of infinite sums of terms of i.i.d. pseudo-Poisson processes (under a proper normalization) gets
the Markov property again since the limit of these sums is the Ornstein–Uhlenbeck process,
which we canonically define as a stationary Gaussian Markov process. Here the convergence of
finite-dimensional distributions is a direct corollary of the Central Limit Theorem for vectors.
A difficultly in obtaining the corresponding functional limit theorem is the tightness (relative
compactness) of a family of pre-limit distributions. Thus, the main goal of the paper is a proof
of this tightness.

Let us fix a large enough N ∈ N and consider a sum of i.i.d. processes PSI (ψi) (independent
copies of the process ψ(s)) given on an interval [0,Θ],

ΨN (s) =
N∑

i=1

ψi(s), s ∈ [0,Θ]. (1)
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We denote the corresponding forming sequences of the processes (ψi) by (ξ)(i)= ξ0(i), ξ1(i), . . . ,
i = 1, . . . , N . All the random variables (ξn(i)) are assumed to be totally independent over all
combinations of indices n ≥ 0, i = 1, . . . , N , and identically distributed with zero mean
and variance 1/N . All the leading Poisson processes are totally independent and they are
independent of the forming sequences.

Theorem 1. Let us consider random broken lines constructed by values of the process ΨN (s)
as elements of the Skorokhod space D[0,Θ], Θ < ∞. The family of these broken lines is a
relatively compact set in D[0,Θ].

Proof. Let us fix points 0 ≤ v < u < s ≤ Θ of the time axis. To prove the tightness of the
family of distributions generated by these broken lines, we use the following criterion from
P. Billingsley’s monograph [1, p. 128]:

P
{|ΨN (u) − ΨN (v)| ≥ ε, |ΨN (s) − ΨN (u)| ≥ ε

} ≤ 1
ε2γ

|F (s) − F (v)|2α (2)

for some continuous function F that is nondecreasing on [0,Θ] and for parameters γ ≥ 0 and
α > 1/2 for every positive ε < 1.

The main idea is to split the set of summands which forms the random function Ψ into
special subsets on which an independence appears. Then we use this independence in our
proof (in one or another way).

We split the set of summation indices {1, . . . , N} in (1) into four random subsets taking into
account whether there are any jumps of the leading Poisson processes on the time intervals
[v, u) and [u, s] or not. As we show below, the following random set plays the main role here:

A = {i = i(ω) : Πi(u−)(ω) > Πi(v)(ω), Πi(s)(ω) > Πi(u)(ω)} . (3)

In other words, the set A is the set of indices for processes (ψi) that have replacements (with
their independent copies) of terms of the forming sequences both on the interval [v, u) and on
the interval [u, s]. The set A is measurable with respect to the direct product of σ-algebras
generated by trajectories of N independent Poisson processes up to moment s (including this

moment),
N⊗

i=1
σ{Πi(≤ s)}.

In a similar way, we define the following random subsets. B is the set of indices of processes
(ψi) that have replacements of terms of the forming sequences on the interval [v, u) and have
no replacements on the interval [u, s]; C is the set of indices of processes (ψi) that have no
replacements of terms of the forming sequences on the interval [v, u) and have replacements on
the interval [u, s]; D is the set of indices of processes (ψi) that have no replacements of terms
of the forming sequences both on the interval [v, u) and on the interval [u, s].

Formally,

B = {i : Πi(u−) > Πi(v), Πi(s) = Πi(u)} ,

C = {i : Πi(u−) = Πi(v), Πi(s) > Πi(u)} ,

and

D = {i : Πi(u−) = Πi(v), Πi(s) = Πi(u)} .

Let us note that though the sets A,B, C, and D are random, the Law of Large Numbers for
the Poisson indicators implies that the cardinalities of these sets are asymptotically degenerate,
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i.e., the following equivalences are valid as N → ∞:

#A
N

∼
(
1 − e−λ(u−v)

) (
1 − e−λ(s−u)

) �
= eA,

#B
N

∼
(
1 − e−λ(u−v)

)
e−λ(s−u) �

= eB,

#C
N

∼ e−λ(u−v)
(
1 − e−λ(s−u)

) �
= eC ,

and

#D
N

∼ e−λ(u−v) e−λ(s−u) �
= eD.

It is obvious that #A + #B + #C + #D = N (where the sign # denotes the cardinality of
a set).

These equivalences obviously imply the following equalities for the mathematical expecta-
tions of the indicators of the events that the index of the corresponding process PSI belongs
to one (and only one) random set A, B, C, or D:

E 1IA(i) = E 1I(i ∈ A) = eA, E 1IB(i) = E 1I(i ∈ B) = eB,

E 1IC(i) = E 1I(i ∈ C) = eC , E 1ID(i) = E 1I(i ∈ D) = eD,

for all i = 1, . . . , N and for each of the introduced four types of indicators.
Additionally, we need in estimations the second moments for the cardinalities of the random

sets A, B, C, and D. We easily calculate these characteristics applying the calculated above
mathematical expectations for i.i.d. indicators of type 1IA(i), i = 1, . . . , N , and for the sets B,
C, and D, respectively.

Let us consider the increments
(
ΨN (u) − ΨN (v)

)
and

(
ΨN (s) − ΨN (u)

)
from the criterion

of relative compactness. Let us also stipulate that we exclude from our considerations the case
where any leading Poisson process has a jump at level u since the corresponding probability
equals zero. Note that the given increments are dependent because they may have identical
terms (from the forming sequences) at level u. Note that on the sets B and C, one of the
considered increments is equal to zero, and on D, both given increments are equal to zero.
We also note that both considered increments are independent on all pairwise disjoint sets of
summation of the processes ψ.

Let us denote

XF
�
=

∑

i∈F

(
ψi(u) − ψi(v)

)
, F = A,B, C,D.

By the construction of the sets A,B, C, and D, the increments XC and XD take zero values;
hence, ΨN (u) − ΨN (v) = XA + XB. Analogously we introduce the notation for the interval
[u, s ]:

ZF
�
=

∑

i∈F

(
ψi(s) − ψi(u)

)
, F = A,B, C,D.

The increments ZB and ZD take zero values; thus, the equality ΨN (s) − ΨN (u) = ZA + ZC
is valid. Hence, the probability from the left-hand side of (2) satisfies the following chain of
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estimates:

P
{|ΨN (u) − ΨN (v)| ≥ ε, |ΨN (s) − ΨN (u)| ≥ ε

}

= P
{|XA + XB| ≥ ε, |ZA + ZC | ≥ ε

}

≤ P
{|XA| + |XB| ≥ ε, |ZA| + |ZC | ≥ ε

}

≤ P
{{|XA| ≥ ε/2} ∪ {|XB| ≥ ε/2}, {|ZA| ≥ ε/2} ∪ {|ZC | ≥ ε/2}}

≤ P{|XA| ≥ ε/2
}

+ P{|ZA| ≥ ε/2
}

+ P{|XB| ≥ ε/2, |ZC | ≥ ε/2}.

(4)

In this chain, the latter probability contains two dependent events. However, these dependent
events are conditionally independent under the condition of the σ-algebra which is generated
by random sets of indices B and C. Moreover, these two events contain pairs of conditionally
independent summands if the cardinalities #B and #C are fixed.

Let us first make an agreement that every sum over the empty set of indices is equal to 0
and every product over the empty set of indices is equal to 1. First we estimate the latter
probability at the end of expression (4). We use the formula of total probability (assuming
that k and m are integer and nonnegative) and next the Chebyshev inequality:

P
{
|XB| ≥ ε/2, |ZC | ≥ ε/2

}

=
∑

(k,m):k+m≤N

P
{
|XB| ≥ ε/2, |ZC | ≥ ε/2; {#B = k,#C = m}

}

=
∑

(k,m):k+m≤N

P
{∣∣∣

k∑

i=1

(
ξ1(i) − ξ0(i)

)∣∣∣ ≥ ε/2,
∣∣∣

k+m∑

j=k+1

(
ξ1(j) − ξ0(j)

)∣∣∣ ≥ ε/2; {#B = k,#C = m}
}

=
∑

(k,m):k+m≤N

P
{∣∣∣

k∑

i=1

(
ξ1(i) − ξ0(i)

)∣∣∣ ≥ ε/2
}

(5)

×P
{∣∣∣

k+m∑

j=k+1

(
ξ1(j) − ξ0(j)

)∣∣∣ ≥ ε/2;
}
P

{
#B = k,#C = m

}

≤
∑

(k,m):k+m≤N

4kD(ξ1(1) − ξ0(1))
ε2

4mD(ξ1(1) − ξ0(1))
ε2

×P
{

#B = k,#C = m
}

=
64

N2ε4

∑

(k,m):k+m≤N

kmP
{

#B = k,#C = m
}

=
64

N2 ε4
E{#B#C}.

Thus, we need to estimate the mathematical expectation of the product of the cardinalities
of the random sets B and C. This is not difficult if we calculate E (#B)2, E (#C)2, and
E (#{B ∪ C})2.

We calculate E (#B)2 using the fact that the leading Poisson processes are independent and
the event B is determined by realizations of each of the N Poisson processes and taking into
account the notation eB:

E (#B)2 = E
( N∑

i=1

1IB(i)
)2

=
N∑

i=1

E 1IB(i) +
N∑

i�=k

E {1IB(i) 1IB(k)}

=
N∑

i=1

E 1IB(i) +
N∑

i�=k

E {1IB(i)}E {1IB(k)} = N eB + N (N − 1) e2
B.
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Analogously, we calculate

E (#C)2 = N eC + N (N − 1) e2
C .

Note that the set {B ∪ C} is the set of Poisson processes that have jumps precisely on one
of the two intervals [v, u) and [u, s]; moreover, the sets B and C are disjoint. Analogously, we
calculate

E (#{B ∪ C})2 = E (#B + #C)2 = N eB∪C + N (N − 1) e2
B∪C ,

where
eB∪C =

(
1 − e−λ(u−v)

)
e−λ(s−u) + e−λ(u−v)

(
1 − e−λ(s−u)

)
.

After that, it is easy to calculate the claimed mathematical expectation of the product of the
cardinalities of the random sets B and C:

2E {#B#C} = E (#B + #C)2 −E (#B)2 −E (#C)2

= N C(v;u; s) + N (N − 1) 2
(
1 − e−λ(u−v)

)
e−λ(s−v)

(
1 − e−λ(s−u)

)
,

where the constant C(v;u; s) depends only on the time cuts (v;u; s).
Substitute the derived estimate for the mathematical expectation of the cardinalities of the

random sets B and C into (5) to obtain the following estimate of the latter probability at the
end of expression (4):

P
{|XB| ≥ ε/2, |ZC | ≥ ε/2

} ≤ 64
ε4

(
1 − e−λ(s−u)

)
e−λ(s−v)

(
1 − e−λ(u−v)

)
+

C

ε4 N
, (6)

where the constant C does not depend on ε and N . Estimate from above the value
exp{−λ (s − v)} by 1 and choose a sufficiently large N (with the aim to get rid of the
term C/(ε4 N) in the right-hand side of (6); for instance, with the help of estimation of
exp{−λ (s − v)} from above by 1). Thus, we derive the following estimate:

P
{|XB| ≥ ε/2, |ZC | ≥ ε/2

} ≤ 64
ε4

(
1 − e−λ(s−u)

)(
1 − e−λ(u−v)

)
. (7)

Finally, we estimate the probabilities P
{|XA| ≥ ε/2

}
and P

{|ZA| ≥ ε/2
}

at the end of
inequality (4). As we see below, their estimates are similar to (7).

Let us consider the following events: Ak = {ω : #A(ω) = k} for k = 0, 1, . . . , N . It is
obvious that these events (Ak), k = 0, 1, . . . , N , are pairwise disjoint and the only possible.
Thus, we apply the total probability formula (for convenience, with ε = ε/2) and then use the
conditional independence of XA to show that

P
{|XA| ≥ ε

}
=

∑

k≤N

P
{∣∣∣

k∑

i=1

(ζi − ηi)
∣∣∣ ≥ ε

}
P{Ak},

where the sequences (ηi) and (ζi), i ∈ N, are independent and each sequence is i.i.d. with
distribution similar to that of ξ0(1). Then we apply the Chebyshev inequality taking into
account that E (ξ0(1))2 = 1/N :

∑

k≤N

P
{∣∣∣

k∑

i=1

(ζi − ηi)
∣∣∣ ≥ ε

}
P{Ak} ≤ 2

ε2

∑

k≤N

kP{Ak} =
2
ε2

E {#A}. (8)

It is obvious that the same estimate is valid for P{|ZA| ≥ ε}. It remains to take into account
that E {#A} = NeA since, as was noted above, E 1IA(i) = eA, i = 1, . . . , N .

As a result, we derive the following estimate with the term in the right-hand side of the
type of eA:

P
{|XA| ≥ ε/2

}
+ P

{|ZA| ≥ ε/2
} ≤ 4

ε2

(
1 − e−λ(u−v)

) (
1 − e−λ(s−u)

)
. (9)
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Combining (9) with (7), we obtain the following estimate for 0 < ε < 1:

P
{|ΨN (u) − ΨN (v)| ≥ ε, |ΨN (s) − ΨN (u)| ≥ ε

} ≤ 68
ε4

(
1 − e−λ(u−v)

) (
1 − e−λ(s−u)

)
. (10)

Let us reduce the right-hand side to the form needed in criterion (2),

(
1−e−λ(u−v)

)(
1−e−λ(s−u)

) ≤ λ (u−v)λ (s−u) ≤ λ2
( (u − v) + (s − u)

2

)2
=

λ2

4
(s−v)2. (11)

Here we first use the inequality 1−e−x ≤ x for x ≥ 0, and then the classical inequality between
the arithmetic mean and geometric mean.

Collecting estimates (10) and (11), we get for 0 < ε < 1 the necessary inequality (2):

P
{|ΨN (u) − ΨN (v)| ≥ ε, |ΨN (s) − ΨN (u)| ≥ ε

} ≤ 17λ2

ε4
(s − v)2 (12)

with the function F (s) =
√

17 λ s, s ∈ [0,Θ], and parameters γ = 2 and α = 1. It is the main
case in criterion (2) (see the proof of this criterion in [1, p.128]).

Note that if ε ≥ 1, inequality (12) remains the same, with the only replacement of ε4 by ε2.
We also note that if one requires the existence of the fourth moment for terms of the forming
sequences, then if it possible to derive an analog of inequality (12) for all positive ε. �
Corollary 1. Let us consider random broken lines constructed by values of the process ΨN (s)
as elements of the Skorokhod space D[0,Θ], Θ < ∞. The family of these broken lines is a
relatively compact (tight) set in the Skorokhod space D[0,∞).

The proof of Corollary 1 directly follows from the construction of the space D[0,∞), which
is constructed for every finite positive Θ on the base of the spaces D[0,Θ].

Proposition 1 (Autocovariance for sums of PSI processes). Consider, according to
definition (�), the PSI process ξ′Π(s), s ≥ 0, for a forming sequence (ξ′0, ξ′1, . . .) consisting of
i.i.d. random variables with zero mean and unit variance.

For a natural N , consider the sum of i.i.d. processes PSI such that their leading Poisson
processes are i.i.d. and their i.i.d. forming sequences consist, in turn, of i.i.d. random

variables ΨN (s) =
N∑

i=1
ψi(s), where ψi(s) = ξΠi(s)(i) is the ith independent copy for ψ(s) =

ξΠ(s), and the following notation under the normalization by
√

N is adopted: ξ0 = (1/
√

N)ξ′0,
ξ1 = (1/

√
N)ξ′1, . . ..

For any natural N and for every nonnegative s and r, the following equality for covariances
is fulfilled:

cov
(
ΨN (r),ΨN (r + s)

)
= exp{−λ s}. (13)

Note that the right-hand side of equality (13) does not depend of r, which proves the
stationarity in the wide sense for the process ΨN (s) for an arbitrary natural N .

Proof. First we calculate the covariance for one term in Ψ(s). We refer to the independence
between the random variables (ξj), j ≥ 0, and the Poisson process Π(s), to the equality
E ξ2

j = 1/N , and to the property of independence and homogeneity for increments of a Poisson
process.

The following representation in the form of an infinite sum of random terms weighted with
random indicators is obvious for a process PSI:

ξΠ(s) ≡ ξΠ(s) =
∞∑

j=0

ξj 1I{Π(s) = j}. (14)
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Applying representation (14), we obtain the following chain of equalities:

cov
(
ξΠ(r), ξΠ(r+s)

)
= E

{ ∞∑

j=0

ξj 1I{Π(r) = j}
∞∑

i=0

ξi 1I{Π(r + s) = i}
}

= E
{ ∞∑

j=0

ξ2
j 1I{Π(r) = Π(r + s) = j}

}
=

∞∑

j=0

E {ξ2
j }P{Π(r) = Π(r + s) = j}

=
1
N

∞∑

j=0

P{Π(r) = Π(r + s) = j} =
1
N

P{Π(r) = Π(r + s)}

=
1
N

P{Π(0) = Π(s)} =
1
N

P{Π(s) = 0} =
1
N

exp{−λ s}.
Since the random elements ξΠi(s)(i) and ξΠj(s)(j) are identically distributed and independent
for i �= j, the final calculations are very simple, and we conclude that

cov
(
ΨN (r),ΨN (r + s)

)
= exp{−λ s}. �

Let us consider (ΨN (s)), N ∈ N, according to Proposition 1. The assumptions of Propo-
sition 1 allow us to apply the Central Limit Theorem for vectors; thus, the convergence of
finite-dimensional distributions of (ΨN (s)), s ≥ 0, takes place as N → ∞. The tightness is
proved in Theorem 1. Thus, the following functional limit theorem is valid.

Theorem 2. The sequence of piecewise random functions (ΨN (s)) defined in Proposition 1
tends, as N → ∞, to the Ornstein-Uhlenbeck process in the Skorokhod space D[0,Θ] for every
finite positive Θ as well as in the Skorokhod space D[0,∞).

The result obtained can be applied in the stochastic financial mathematics, first of all,
in stochastic models for interest rates, because since the pioneering paper [3] of O. Vasićek,
processes of Ornstein–Uhlenbeck type are the basic ones for description of dynamics of financial
instruments of that kind.

The author expresses his gratitude to Andrei Yu. Zaitsev for his attention, remarks, and
valuable advices.

Translated by O. V. Rusakov.
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