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REALIZATION OF THE SPLINE-WAVELET
DECOMPOSITION OF THE FIRST ORDER

Yu. K. Dem’yanovich∗ and A. S. Ponomarev† UDC 517.5, 519.6

The aim of the paper is to present an orthogonal basis for the discrete wavelets in the general
structure of the spline-wavelet decomposition. Decomposition of an original numerical flow with-
out embedding in the standard functional spaces is discussed. It makes it possible to concentrate
on simplification of the realization formulas: here, the simple formulas of decomposition and re-
construction are presented, an orthogonal wavelet basis is constructed, and an illustrative example
is given. Finally, some estimates of the complexity of the method discussed for different software
environments are provided. Bibliography: 6 titles.

Wavelet decompositions are widely used in treating numerical information flows; the volumes
of flows constantly increase, which strongly stimulates further development of wavelet theory
(see [1, 2]). The approach to the construction of wavelets used in the present paper is based
on approximation relations (for example, see [3]), which ensures an efficient approximation
automatically (most frequently, it is asymptotically optimal in the N -width of the standard
compact sets).

Contrary to classical wavelet decompositions (see [1]), the approach proposed allows us to use
irregular grids (both finite and infinite) without complicated investigations; this is very useful
for saving computer resources in the case where singular variations of the flows considered
occur. Besides, the well-known finite element approximations of R. Courant, M. Zlamal, and
others can be applied in constructing wavelet decompositions in multivariate cases (and even
on an arbitrary differentiable manifold, see [4]), which gives new opportunities of applying
wavelets.

In the classical case, the construction of a wavelet basis in a certain functional space (fre-
quently, in L2(R1)) is (as a rule) quite complicated. The approach used in this paper does
not require a preliminary construction of a wavelet basis (if desired, such a basis can be con-
structed after carrying out the main investigations). On the other hand, the knowledge of a
wavelet basis allows one to save computer and network resources significantly.

In this connection, we note that we do not need the wavelet basis in a space of functions
with a continual domain of definition. It is sufficient to have a suitable basis for the linear
space of numerical wavelet flows. Hence it is only necessary to use functions with a discrete
domain of definition (i.e., grid functions).

The aim of the present paper is to discuss the discrete spline-wavelet decomposition of the
first order and to obtain some estimates of computer resources required for implementing the
algorithms suggested.

Here, all the proofs are given for grid functions (i.e., for functions defined on a certain grid,
which are frequently referred to in what follows as numerical information flows), and do not
use mappings into function spaces with a continuous domain.

Now we will introduce some specific definitions, in particular, a finite dimensional space of
original flows, a space of wavelet flows, and a space of main flows, which are associated with
an original grid and with a coarsened grid, respectively. It has been proven that the discrete
wavelet basis is the simplest set of unit coordinate vectors in the Euclidean space. As a result,
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simple formulas of decomposition and reconstruction are obtained. Computer resources needed
for implementing the algorithms proposed for different software environments are evaluated.
An illustrative example of the spline-wavelet decomposition is presented.

The paper is organized as follows. It consists of twelve sections. The first one presents the
main idea of the general approach to the spline-wavelet decomposition on a one-dimensional
model example. Here, for simplicity, the domain of definition of the functions considered is a
continuous interval of the real axis. The second section introduces the original grid, which is
the domain of definition for the grid function (specifically, for the original numerical flow).

In Sec. 3, we consider a coarsening of the original grid, the new grid being the domain of
definition for the main flow. Section 4 is devoted to the calibration relations, connecting the
discrete basis splines on the coarse grid with the discrete basis splines on the original grid.

Sections 5 and 6 discuss the discrete spline-wavelet decomposition. Here, the decomposition
formulas in the general form are obtained. These formulas are specified for the situation con-
sidered in Secs. 7 and 8, where the coefficients of the above-mentioned formulas are computed
based on representations of discrete splines. An illustrative example of a discrete wavelet
decomposition is provided in Sec. 9.

The continuous image of the decomposition discussed is examined in Sec. 10. Section 11 is
devoted to different variants of algorithms for an adaptive coarsening of the original grid. In
Sec. 12, the time of computing the spline-wavelet decomposition with account for the software
environment is evaluated.

1. The main idea of spline-wavelet decomposition (a nonclassical approach)

For the reader’s convenience, the general idea of spline-wavelet decomposition (see [5]) is
considered on a one-dimensional example. Here, for simplicity, the function domain is an
interval of the real axis.

Let L be a linear function space defined on an interval (α, β) ⊂ R
1. Consider a grid

X : . . . < x−2 < x−1 < x0 < x1 < x2 < . . . , (1.1)

lim
j→−∞

xj = α, lim
j→−∞

xj = β, (1.2)

and let ϕ(t) def== (ϕ0(t), ϕ1(t), . . . , ϕm(t)), t ∈ (α, β), be a vector function with components
from the space L: ϕi ∈ L, i ∈ {0, 1, . . . ,m}.

Consider a set G, G
def== {g(s)}s∈Z, of linear functionals g(s) ∈ L

∗ such that

supp g(s) ⊂ (xs, xs+1), s ∈ Z. (1.3)

Let 〈g(s), u〉 denote the result of the action of the functional g(s) on a function u ∈ L. We set

〈g(s), ϕ〉 def== (〈g(s), ϕ0〉, 〈g(s), ϕ1〉, . . . , 〈g(s), ϕm〉)T .

Assume that
det(〈g(s), ϕ〉, 〈g(s+1), ϕ〉, . . . , 〈g(s+m), ϕ〉) �= 0, s ∈ Z. (1.4)

Let
as

def== 〈g(s), ϕ〉. (1.5)
From (1.4) it follows that the vectors as,as+1, . . . ,as+m+1 are linearly independent.

Consider the approximation relations
k∑

i=k−m

aiωi(t) = ϕ(t), t ∈ (xk, xk+1), k ∈ Z, (1.6)

suppωs ⊂ [xs, xs+m+1], s ∈ Z. (1.7)
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Relations (1.6)–(1.7) define the functions ωi(t) uniquely.
Assume that ωs ∈ L. By virtue of (1.3)–(1.7), we have

〈g(j), ωs〉 = δj,s, j, s ∈ Z.

Consider the linear space S = S(X,ϕ) def== L{ωs}s∈Z, where L is the linear hull of the functions
in the braces.

If X̃ is a subset of the grid X such that

X̃ : . . . < x̃−2 < x̃−1 < x̃0 < x̃1 < x̃2 < . . . ,

lim
j→−∞

x̃j = α, lim
j→−∞

x̃j = β, X̃ ⊂ X,

then we can define the functions ω̃i, connected with the new grid X̃ , as above and consider the
linear space S̃ = S(X̃, ϕ), which (under certain conditions) is a subspace of the space S(X,ϕ).

Consider the operator P , which projects the space S onto the space S̃:

Pu
def==

∑

s∈Z

〈g̃(s), u〉ωs, u ∈ S(X,ϕ), (1.8)

where {g̃(s)}s∈Z is the fixed system of functionals biorthogonal to the system {ω̃i}i∈Z.
Obviously, if a point t ∈ (x̃k, x̃k+1) is fixed, then the right-hand side of (1.8) involves at

most m + 1 terms,

Pu(t) def==
k∑

s=k−m

〈g̃(s), u〉ωs(t), t ∈ (x̃k, x̃k+1). (1.9)

The projection operator P specifies the wavelet decomposition

S = S̃
.
+W. (1.10)

Let c = (. . . , c−2, c−1, c0, c1, c2, . . .) be an original numerical flow. Consider the function

u(t) def==
∑

j

cjωj(t); (1.11)

its projection ũ
def== Pu onto the space S̃ can be written in the form

ũ =
∑

i

aiω̃i. (1.12)

Thus, we have the main numerical flow

a def== (. . . , a−2, a−1, a0, a1, a2, . . .),

which corresponds to the coarsening X̃ of the grid X, and also the wavelet flow

b def== (. . . , b−2, b−1, b0, b1, b2, . . .),

which is defined by the expansion of the difference w
def== u − ũ in the basis of the space S:

w =
∑
s

bsωs (see (1.9)–(1.12)).

The passage from the original flow c to the flows a and b is called decomposition, and the
backward passage is referred to as the reconstruction of the original flow.

The decomposition and reconstruction formulas can be represented in matrix form as a =
Qc, b = c −PTQc, and c = b + PTa, where P and Q are the restriction and prolongation
matrices, respectively.

835



In particular, for m = 1, ϕ(t) = (1, t)T , and X \ X̃ = {xk+1}, the decomposition formulas
are as follows:

ai = ci for i ≤ k − 1, ai = ci+1 for i ≥ k,

bj = 0 for j �= k, bk = −xk+2 − xk+1

xk+2 − xk
· ck−1 + ck − xk+1 − xk

xk+2 − xk
· ck+1,

whereas the reconstruction formulas can be written as

cj = aj + bj for j ≤ k − 1,

ck =
xk+2 − xk+1

xk+2 − xk
· ak−1 +

xk+1 − xk

xk+2 − xk
· ak + bk,

cj = aj−1 + bj for j ≥ k + 1.
Note that if the closed interval [a, b] is contained in the interval (α, β), then all the previous

constructions hold for the restrictions of the functions considered to [a, b]. In this case, the
grids, as well as the original, main, and wavelet flows, are finite.

This completes the description of the main idea of constructing spline-wavelet decompo-
sitions, and we pass to the realization of the idea, assuming that only grid functions are
considered.

2. Notation

In contrast to the previous section, everywhere in what follows (except for Sec. 11) we
consider grid functions with grid domains of the form (1.1)–(1.2). This is convenient in treating
numerical flows, which are number sequences and can be regarded as functions defined on a
grid (for example, on the set of integers).

On an interval (α, β), consider a grid

Ξ : . . . < ξ−2 < ξ−1 < ξ0 < ξ1 < ξ2 . . . , (2.1)

lim
i→−∞

ξi = α, lim
i→+∞

ξi = β. (2.2)

Let C(Ξ) be the set of functions u(t) defined on the grid Ξ. Obviously, C(Ξ) is a linear space.
Below, we assume that

a, b ∈ Ξ, a+ < b−, (2.3)

i.e., the equalities a = ξi and b = ξj hold for some i, j ∈ Z, i + 2 < j. Set 〚a, b〛def== {ξs | a ≤
ξs ≤ b, s ∈ Z}, i.e., 〚a, b〛= {ξs | i ≤ s ≤ j, s ∈ Z}. The set 〚a, b〛 is called a grid segment.

Let C〚a, b〛 be the linear normed space of functions u(t) defined on a grid segment 〚a, b〛,
where the norm is defined by

‖u‖
C〚a, b〛

def== max
t∈〚a, b〛

|u(t)|. (2.4)

Obviously, the space C〚a, b〛 has finite dimension.

3. Grid coarsening

Let m be a positive integer. Consider the sets

Jm
def== {0, 1, . . . ,m}, J ′

m
def== {−1, 0, 1, . . . ,m}.

Let 〚a, b〛 , a = ξ0 < ξ1 < . . . < ξM−1 < ξM = b, be a grid segment, let {ωj(t)}j∈J ′
M−1

be
the functions from the space C〚a, b〛 (see (2.3)–(2.4)) defined by

ωj(ξs) = δs,j+1, s ∈ JM , (3.1)
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and let the linear functionals g(i), i ∈ J ′
M−1, be defined by the relations

〈g(i), u〉 def== u(ξi+1), u ∈ C〚a, b〛. (3.2)

The system {ωj}j∈J ′
M−1

is a basis of the space C〚a, b〛, which is called the discrete basis.

Lemma 1. The functionals {g(i)}i∈J ′
M−1

are biorthogonal to the discrete basis {ωj}j∈J ′
M−1

,
i.e.,

〈g(i), ωj〉 = δi,j , i, j ∈ J ′
M−1. (3.3)

Proof. Relations (3.3) readily follow from (3.1)–(3.2). �
In the sequel, we adopt the convention that if c > d, then the set 〚c, d〛 is empty.
Consider an integer K such that 5 ≤ K < M . Let κ be an injective map of the set JK into

JM such that
κ(0) = 0, κ(i) < κ(i + 1), κ(K) = M. (3.4)

Introduce the set J∗ ⊂ JM ,
J∗ def== κJK . (3.5)

Obviously, on this set the univalent inverse map κ
−1 : r −→ s, r ∈ J∗, s ∈ JK , JK = κ

−1J∗
is defined.

Consider the new grid
X̂ : a = x̂0 < x̂1 < . . . < x̂K = b, (3.6)

where x̂i
def== ξκ(i), i ∈ JK .

Remark 1. In the sequel, we sometimes consider the virtual nodes ξ−1 and x̂−1 of the grids
〚a, b〛 and X̃ such that ξ−1 = x̂−1 < a; the above-mentioned nodes are virtual in the sense that
they appear in formulas but do not affect the final results.

Let ω̂j(t), j ∈ J ′
K−1, be the functions defined in accordance with the formulas

ω̂−1(t) = (x̂1 − t)(x̂1 − x̂0)−1, t ∈ 〚x̂0, x̂
−
1 〛, (3.7)

ω̂−1(t) = 0, t ∈ 〚a, b〛 \ 〚x̂0, x̂
−
1 〛, (3.8)

ω̂i(t) = (t − x̂i)(x̂i+1 − x̂i)−1, t ∈ 〚x̂ +
i , x̂ −

i+1〛, (3.9)

ω̂i(t) = (x̂i+2 − t)(x̂i+2 − x̂i+1)−1, t ∈ 〚x̂i+1, x̂
−
i+2〛, (3.10)

ω̂i(t) = 0, t ∈ 〚a, b〛\〚x̂ +
i , x̂ −

i+2〛, i ∈ JK−2, (3.11)

ω̂K−1(t) = (t − x̂K−1)(x̂K − x̂K−1)−1, t ∈ 〚x̂ +
K−1, x̂K〛, (3.12)

ω̂K−1(t) = 0, t ∈ 〚a, b〛\〚x̂ +
K−1, x̂K〛. (3.13)

In terms of the nodes of the original grid, formulas (3.7)–(3.13) can be written as follows:

ω̂−1(t) = (ξκ(1) − t)(ξκ(1) − ξκ(0))
−1, t ∈ 〚ξκ(0), ξ

−
κ(1)〛, (3.14)

ω̂−1(t) = 0, t ∈ 〚a, b〛\〚ξκ(0), ξ
−
κ(1)〛, (3.15)

ω̂i(t) = (t − ξκ(i))(ξκ(i+1) − ξκ(i))
−1, t ∈ 〚ξ +

κ(i), ξκ(i+1)〛, (3.16)

ω̂i(t) = (ξκ(i+2) − t)(ξκ(i+2) − ξκ(i+1))
−1, t ∈ 〚ξ +

κ(i+1), ξ
−
κ(i+2)〛, (3.17)

ω̂i(t) = 0, t ∈ 〚a, b〛\〚ξ +
κ(i), ξ

−
κ(i+2)〛, i ∈ JK−2, (3.18)

ω̂K−1(t) = (t − ξκ(K−1))(ξκ(K) − ξκ(K−1))
−1, t ∈ 〚ξ +

κ(K−1), ξκ(K)〛, (3.19)

ω̂K−1(t) = 0, t ∈ 〚a, b〛\〚ξ +
κ(K−1), ξκ(K)〛. (3.20)
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If t ∈ 〚a, b〛, then

ω̂i(t) = (t − ξκ(i))(ξκ(i+1) − ξκ(i))
−1, t ∈ 〚ξ +

κ(i), ξκ(i+1)〛, i ∈ JK−1, (3.21)

ω̂i(t) = (ξκ(i+2) − t)(ξκ(i+2) − ξκ(i+1))
−1, t ∈ 〚ξκ(i+1), ξ

−
κ(i+2)〛, i ∈ J ′

K−2; (3.22)

ω̂i(t) = 0, t ∈ 〚a, b〛\〚ξ +
κ(i), ξ

−
κ(i+2)〛. (3.23)

Obviously, we have
ω̂i(ξκ(i+1)) = 1, i ∈ J ′

K−1. (3.24)

Remark 2. The set of nodes t ∈ X at which a function f ∈ C(X) is nonvanishing is called
the support of the function f : suppf

def== {t | f(t) �= 0}. The number of functions ω̂i in the
set {ω̂i | t ∈ suppω̂i} is called the multiplicity of the covering of the point t by the supports of
the functions ω̂i and is denoted by κ(t). By virtue of (3.21)–(3.24), we have 1 ≤ κ(t) ≤ 2 and
κ(t) = 2 for any t ∈ X \ X̂, i.e.,

κ(ξs) = 2, s ∈ JM \ J∗. (3.25)

In what follows, we use the notation

supp ω̂i = 〚x̂+
i , x̂ −

i+2〛. (3.26)

4. Calibration relations

The splines ω̂i can be represented as linear combinations of the splines ωj,

ω̂i(t) =
∑

j∈J ′
M−1

pi,jωj(t), t ∈ 〚a, b〛, i ∈ J ′
K−1. (4.1)

Relations (4.1) are called the calibration relations.
If t ∈ X is fixed, then in the sum (4.1) there is an only one nonzero term. This sum can

be considered an expansion of the vector ω̂i in the vector system {ωj}, orthogonal in the
Euclidean space R

M+1.

Lemma 2. The values pi,j satisfy the relations

p−1,j = ω̂−1(ξj+1), j ∈ {κ(0) − 1, κ(0), . . . , κ(1) − 2}, (4.2)

pi,j = ω̂i(ξj+1), j ∈ {κ(i), κ(i) + 1, . . . , κ(i + 2) − 2}, i ∈ JK−2, (4.3)

pK−1,j = ω̂K−1(ξj+1), j ∈ {κ(K − 1), κ(K − 1) + 1, . . . , κ(K) − 1}; (4.4)

the values pr,s (r ∈ J ′
K−1, s ∈ J ′

M−1) not occurring in (4.2)–(4.4) are equal to zero.

Proof. By applying the functionals g(j) to (4.1) and taking into account relations (3.2)–(3.3),
we obtain

ω̂−1(t) =
κ(1)−2∑

j=κ(0)−1

ω̂−1(ξj+1)ωj(t), t ∈ 〚ξκ(0), ξ
+
κ(1)〛, (4.5)

ω̂−1(t) = 0, t ∈ 〚a, b〛\〚ξκ(0), ξ
+
κ(1)〛, (4.6)

ω̂i(t) =
κ(i+2)−2∑

j=κ(i)

ω̂i(ξj+1)ωj(t), t ∈ 〚ξ +
κ(i), ξ

−
κ(i+2)〛, (4.7)

ω̂i(t) = 0, t ∈ 〚a, b〛\〚ξ +
κ(i), ξ

−
κ(i+2)〛, i ∈ JK−2, (4.8)
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ω̂K−1(t) =
κ(K)−1∑

j=κ(K−1)

ω̂K−1(ξj+1)ωj(t), t ∈ 〚ξ +
κ(K−1), ξκ(K)〛, (4.9)

ω̂K−1(t) = 0, t ∈ 〚a, b〛\〚ξ +
κ(K−1), ξκ(K)〛. (4.10)

Relations (4.2)–(4.4) follow from (4.5)–(4.10). �

Lemma 3. The values pi,j can be written in the following form:

p−1,j = (ξκ(1) − ξκ(0))
−1(ξκ(1) − ξj+1),

j ∈ {κ(0) − 1, κ(0), . . . , κ(1) − 2}, (4.11)

pi,j = (ξκ(i+1) − ξκ(i))
−1(ξj+1 − ξκ(i)),

j ∈ {κ(i), κ(i) + 1, . . . , κ(i + 1) − 1}, i ∈ JK−2,
(4.12)

pi,j = (ξκ(i+2) − ξκ(i+1))
−1(ξκ(i+2)−ξj+1),

j ∈ {κ(i + 1), κ(i) + 1, . . . , κ(i + 2) − 2}, i ∈ JK−2,
(4.13)

pK−1,j = (ξκ(K) − ξκ(K−1))
−1(ξj+1 − ξκ(K−1)),

j ∈ {κ(K − 1), κ(K − 1) + 1, . . . , κ(K) − 1}; (4.14)

the values pr,s, r ∈ J ′
K−1, s ∈ J ′

M−1, which are not indicated in (4.11)–(4.14), equal zero.

Proof. With account for relations (3.14)–(3.20), identities (4.5)–(4.10) can be written in the
form

ω̂−1(t) = (ξκ(1) − ξκ(0))
−1

κ(1)−2∑

j=κ(0)−1

(ξκ(1) − ξj+1) · ωj(t), t ∈ 〚ξκ(0), ξ
+
κ(1)〛, (4.15)

ω̂−1(t) = 0, t ∈ 〚a, b〛\〚ξκ(0), ξ
+
κ(1)〛, (4.16)

ω̂i(t) = (ξκ(i+1) − ξκ(i))
−1

κ(i+1)−1∑

j=κ(i)

(ξj+1 − ξκ(i)) · ωj(t),

t ∈ 〚ξ +
κ(i), ξκ(i+1)〛,

(4.17)

ω̂i(t) = (ξκ(i+2) − ξκ(i+1))
−1

κ(i+2)−2∑

j=κ(i+1)

(ξκ(i+2) − ξj+1) · ωj(t),

t ∈ 〚ξ +
κ(i+1), ξ

−
κ(i+2)〛,

(4.18)

ω̂i(t) = 0, t ∈ 〚a, b〛 \ 〚ξ +
κ(i), ξ

−
κ(i+2)〛, i ∈ JK−2, (4.19)

ω̂K−1(t) = (ξκ(K) − ξκ(K−1))
−1

κ(K)−1∑

j=κ(K−1)

(ξj+1 − ξκ(K−1)) · ωj(t),

t ∈ 〚ξ +
κ(K−1), ξκ(K)〛,

(4.20)

ω̂K−1(t) = 0, t ∈ 〚a, b〛\〚ξ +
κ(K−1), ξκ(K)〛. (4.21)

Relations (4.11)–(4.14) follow from (4.15)–(4.21). �

Consider the functionals

〈ĝ(i), u〉 def== u(x̂i+1), u ∈ C〚a, b〛, i ∈ J ′
K−1. (4.22)
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Lemma 4. The system of functionals (4.22) is biorthogonal to the spline system {ω̂j}j∈J ′
K−1

,
i.e.,

〈ĝ(i), ω̂j〉 = δi,j , i, j ∈ J ′
K−1. (4.23)

Proof. Relations (4.23) are readily obtained from (3.7)–(3.13) by applying the functionals
(4.22). �

Lemma 5. We have

ĝ(i) = g(κ(i+1)−1), i ∈ J ′
K−1. (4.24)

Proof. In view of relations (3.2), (3.4)–(3.6), and (4.22), in the case where u ∈ C〚a, b〛 and
i ∈ J ′

K−1 we have

〈ĝ(i), u〉 = u(x̂i+1) = u(ξκ(i+1)) = 〈gκ(i+1)−1, u〉,
which amounts to equalities (4.24). �

Corollary 1. We have

ĝ(κ−1(j+1)−1) = g(j), j + 1 ∈ J∗. (4.25)

Proof. Substitute κ(i+1)− 1 for j in (4.24). Since i ∈ J ′
K−1, we have i+1 ∈ JK , and, by the

definition of J∗ (see (3.5)), we have κ(i + 1) ∈ J∗. Thus, j + 1 ∈ J∗ and i = κ
−1(j + 1) − 1.

Substituting the expression obtained into (4.24), we arrive at (4.25). �

5. The restriction matrix and its properties

The matrix P
def== (pi,j), i ∈ J ′

K−1, j ∈ J ′
M−1, is called the restriction matrix; here, as above,

pi,j = 〈g(j), ω̂i〉. (5.1)

Introduce the ascendingly ordered subsets J0, J1(r), J2(r), J(r) of Z defined by the formulas

J0 def== {−1, . . . , κ(1) − 2}, (5.2)

J1(r) def== {κ(r), . . . , κ(r + 1) − 1}, r ∈ JK−1, (5.3)

J2(r) def== {κ(r + 1), . . . , κ(r + 2) − 2}, r ∈ JK−2, (5.4)

J(r) def== J1(r) ∪ J2(r), r ∈ JK−2, J(K − 1) def== J1(K − 1). (5.5)

By convention, an ordered set is empty if the first number in the braces exceeds the last one.

Remark 3. In accordance with the above convention, the equality J2(r) = ∅ is equivalent to
κ(r+2)−κ(r+1) < 2. As κ(s) is an increasing integer function (whence κ(r+2)−κ(r+1) ≥ 1),
the set J2(r) can be empty only in the case where κ(r + 2) = κ(r + 1) + 1. The set J1(r)
cannot be empty because the inequality κ(r + 1) − κ(r) < 1 is impossible for the function
κ(s). As is readily seen, the sets J0 and J(K − 1) neither can be empty.

Theorem 1. The following calibration relations hold:

ω̂r(t) =
∑

q∈J ′
M−1

pr,qωq(t), t ∈ 〚a, b〛, r ∈ J ′
K−1. (5.6)
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Here,

p−1,q =
ξκ(1) − ξq+1

ξκ(1) − ξκ(0)
, q ∈ J0; (5.7)

pr,q =
ξq+1 − ξκ(r)

ξκ(r+1) − ξκ(r)
, q ∈ J1(r), r ∈ JK−1; (5.8)

pr,q =
ξκ(r+2) − ξq+1

ξκ(r+2) − ξκ(r+1)
, q ∈ J2(r), r ∈ JK−2, (5.9)

and the remaining entries of the matrix P, not indicated in (5.7)–(5.9), are zero.

Proof. We observe that relations (5.8) and (5.9) are not contradictory because for a fixed r,
the sets J1(r) and J2(r) are disjoint. It is obvious that relations (5.6)–(5.9) are relations
(4.15)–(4.21) written in a different form. �

Corollary 2. For an arbitrary t ∈ 〚a, b〛, the calibration relations (5.6)–(5.9) can be represented
in the form

ω̂−1(t) =
∑

j∈J0

p−1,jωj(t); (5.10)

ω̂i(t) =
∑

j∈J(i)

pi,jωj(t), i ∈ J ′
K−2; (5.11)

ω̂K−1(t) =
∑

j∈J1(K−1)

pK−1,jωj(t), t ∈ 〚a, b〛, (5.12)

and also in the form

ω̂−1(t) =
∑

j∈J0

ξκ(1) − ξj+1

ξκ(1) − ξκ(0)
ωj(t); (5.13)

ω̂i(t) =
∑

j∈J1(i)

ξj+1 − ξκ(i)

ξκ(i+1) − ξκ(i)
ωj(t) +

∑

j∈J2(i)

ξκ(i+2) − ξj+1

ξκ(i+2) − ξκ(i+1)
ωj(t), i ∈ JK−2; (5.14)

ω̂K−1(t) =
∑

j∈J1(K−1)

ξj+1 − ξκ(K−1)

ξκ(K) − ξκ(K−1)
ωj(t), t ∈ 〚a, b〛. (5.15)

Proof. Representations (5.10)–(5.15) follow from Theorem 1 (they are equivalent to relations
(5.6)–(5.9)). �

Corollary 3. The relations

pi,κ(i+1)−1 = 1, i ∈ J ′
K−1, (5.16)

are valid. If i ∈ JK−2 is fixed and

κ(i + 1) = κ(i) + 1, κ(i + 2) = κ(i + 1) + 1, (5.17)

then all the other entries of the ith row, except for the unit entry indicated in (5.16), are zero.
Therefore,

pi,s = δκ(i+1)−1, s, s ∈ J ′
M−1. (5.18)

If the condition κ(1) = 1 is fulfilled, then (5.18) holds for i = −1, and if κ(K − 1) = M − 1,
then (5.18) holds for i = K − 1.
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Proof. If i = −1, then (5.16) is obtained from (5.7) by setting q = −1. If i ∈ JK−1, then (5.16)
follows from (5.8) with q = κ(i + 1) − 1.

If i ∈ JK−2, then under condition (5.17) the index set J1(i) consists of a single element,
J1(i) = {κ(i)}, and the set J2(i) is empty. Taking into account Theorem 1, we see that the
entries pi,q of the matrix P with q �= κ(i + 1) − 1 are equal to zero, and therefore relation
(5.18) is valid.

If κ(1) = 1, then J0 = {−1}, whence, by Theorem 1, (5.18) holds for i = −1, and if
κ(K − 1) = M − 1, then J1(K − 1) = {M − 1}, and, by using Theorem 1 once again, we
obtain (5.18) for i = K − 1. �
Corollary 4. If j + 1 ∈ J∗, then the ith entry in the jth column of the matrix P, where
i = κ

−1(j + 1) − 1, is unity; the remaining entries of the jth column are zero; thus,

pr,j = δr,κ−1(j+1)−1, r ∈ J ′
K−1. (5.19)

Proof. We use (4.23), (4.25), and (5.1). For an arbitrary r ∈ J ′
K−1, we have

pr,j = 〈g(j), ω̂r〉 = 〈ĝ(κ−1(j+1)−1), ω̂r〉, r ∈ J ′
K−1,

and relation (5.19) follows. �

6. Discrete spline-wavelet decomposition

By S(X̂) we denote the linear hull of the functions ω̂j,

S(X̂) def== L{ω̂i(t) | t ∈ 〚a, b〛, i ∈ J ′
K−1}.

The linear space S(X̂) is called the space of discrete splines of the first degree on the grid X̂.
In this connection, we note that the constructions suggested earlier in the continuous case

(cf. [3]) are also applicable in the case of discrete numerical flows. Here, we present these
constructions for the reader’s convenience.

Since S(X̂) ⊂ C〚a, b〛, we can consider the operator P projecting the space C〚a, b〛 onto the
space S(X̂),

Pu
def==

∑

i∈J ′
K−1

〈ĝ(i), u〉 ω̂i, u ∈ C〚a, b〛. (6.1)

We set Q = I − P , where I is the identity operator in C〚a, b〛.
Thus, in accordance with (6.1), we obtain the direct decomposition

C〚a, b〛 = S(X̂) .
+W, (6.2)

where W
def== QC〚a, b〛. The space S(X̂) is called the main space, and W is called the wavelet

space in the wavelet decomposition (6.2) of the space C〚a, b〛.
If u ∈ C〚a, b〛, then, by using relation (6.2), we obtain two representations of the element u:

u =
∑

s∈J ′
M−1

csωs (6.3)

and also
u = û + w, (6.4)

where
û

def==
∑

i∈J ′
K−1

aiω̂i, w
def==

∑

j∈J ′
M−1

bjωj,

ai
def== 〈ĝ(i), u〉, i ∈ J ′

K−1; bj , cs ∈ R
1, j, s ∈ J ′

M−1. (6.5)
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It is obvious that relation (6.4) is the wavelet decomposition of the element u ∈ C〚a, b〛,
where û ∈ S(X̂), w ∈ W.

By (6.3)–(6.4), we have
∑

j∈J ′
M−1

cjωj =
∑

i∈J ′
K−1

ai

∑

j∈J ′
M−1

pi,jωj +
∑

j∈J ′
M−1

bjωj,

and, by taking into account the linear independence of the system {ωj}j∈J ′
M−1

, we obtain the
formulas of reconstruction

cj =
∑

i∈J ′
K−1

aipi,j + bj , j ∈ J ′
M−1. (6.6)

Using representation (6.5), we can write (6.6) in the form

cj =
∑

i∈J ′
K−1

〈ĝ(i), u〉pi,j + bj, j ∈ J ′
M−1.

Substituting the expression for u from relation (6.3), we have

cj =
∑

i∈J ′
K−1

∑

s∈J ′
M−1

cs〈ĝ(i), ωs〉pi,j + bj, j ∈ J ′
M−1,

implying that

bj = cj −
∑

i∈J ′
K−1

∑

s∈J ′
M−1

cs〈ĝ(i), ωs〉pi,j , j ∈ J ′
M−1. (6.7)

On substituting (6.3) into (6.5), we obtain

ai = 〈ĝ(i),
∑

s∈J ′
M−1

csωs〉, i ∈ J ′
K−1,

whence
ai =

∑

s∈J ′
M−1

cs〈ĝ(i), ωs〉, i ∈ J ′
K−1. (6.8)

Relations (6.7) and (6.8) are called the formulas of decomposition.

7. Prolongation matrix

Set
qs,j

def== 〈ĝ(s), ωj〉 (7.1)

and consider the matrix Q
def== (qs,j)s∈J ′

K−1, j∈J ′
M−1

; this matrix is called the prolongation
matrix.

Lemma 6. The following relations hold:

qs,j = δκ(s+1)−1, j , s ∈ J ′
K−1, j ∈ J ′

M−1. (7.2)

Proof. By (3.3), (4.22), (4.24), (6.8), and (7.1), we have

qs,j = 〈ĝ(s), ωj〉 = 〈gκ(s+1)−1, ωj〉 = δκ(s+1)−1, j ,

which proves (7.2). �
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Corollary 5. The following assertions are valid:
1) the columns q(j) def== (qsj)s∈J ′

K−1
of the matrix Q whose numbers j satisfy j + 1 /∈ J∗ are

zero;
2) the remaining columns have unit entry in position s0, where κ(s0 + 1) = j + 1 ∈ J∗, and

zero entries elsewhere.

Proof. By (7.2), we have qs,j = δκ(s+1), j+1. Since κ(s + 1) ∈ J∗ and j + 1 /∈ J∗, we conclude
that κ(s + 1) �= j + 1. Therefore, qs,j = 0, which proves the first assertion.

If j + 1 ∈ J∗, then there exists a unique s0 such that s0 + 1 ∈ JK and j + 1 = κ(s0 + 1).
From (7.2) we have qs0,j = 1 and qs,j = 0 if s �= s0. This proves the second assertion. �

Corollary 6. The matrix Q is the left inverse to the matrix PT , i.e.,

QPT = I, (7.3)

where I is the identity matrix of order K + 1.

Proof. Consider an entry [QPT ]i,j of the matrix QPT . We have

[QPT ]i,j =
∑

s∈J ′
M−1

qispjs, i, j ∈ J ′
K−1.

By (7.2), we obtain

[QPT ]i,j =
∑

s∈J ′
M−1

δκ(i+1)−1,spjs = pj,κ(i+1)−1. (7.4)

Using representation (4.22) and formula (4.23), we derive

pj,κ(i+1)−1 = 〈gκ(i+1)−1, ω̂j〉 = 〈ĝ(i), ω̂j〉 = δi,j, i, j ∈ J ′
K−1. (7.5)

Relations (7.4) and (7.5) prove (7.3). �

8. Flows. Formulas of decomposition

Introduce into consideration the three vectors

a def== (a−1, a0, a1, a2, . . . , aK−1),

b def== (b−1, b0, b1, b2, . . . , bM−1),

c def== (c−1, c0, c1, c2, . . . , cM−1).

These vectors are called the main, wavelet, and original numerical flows, respectively. By A,
B, C the linear spaces of these flows are denoted.

The relations

ũ =
∑

i∈J ′
K−1

aiω̃i, w =
∑

i∈J ′
N−1

biωi, u =
∑

i∈J ′
N−1

ciωi (8.1)

establish linear isomorphisms of the spaces just introduced and the spaces S(X̂), W, C〚a, b〛:

A ∼ S(X̂), B ∼ W, C ∼ C〚a, b〛. (8.2)

In view of these isomorphisms, we have

C = A
.
+B.
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Using the vectors a,b, c and the matrices P, Q, we write formulas (6.6)–(6.8) in the form

c = b + PTa, (8.3)

a = Qc, b = c−PTQc. (8.4)

Lemma 7. The entries [PTQ]i,j, i, j ∈ J ′
M−1, of the matrix product PTQ are computed by

the formulas

[PTQ]i,j = 0, i ∈ J ′
M−1, j + 1 ∈ JM\J∗; (8.5)

[PTQ]i,j, = pκ−1(j+1)−1,i, i ∈ J ′
M−1, j + 1 ∈ J∗. (8.6)

Proof. If j + 1 ∈ J∗, then, by (7.2), we have

qs,j = δκ(s+1)−1,j = δκ(s+1),j+1 = δs+1,κ−1(j+1) = δs,κ−1(j+1)−1, (8.7)

s ∈ J ′
K−1, j + 1 ∈ J∗. (8.8)

If j + 1 ∈ JM \ J∗, then we obtain

qs,j = δκ(s+1),j+1 = 0, s ∈ J ′
K−1, j + 1 ∈ JM \ J∗. (8.9)

If j + 1 ∈ J∗, then from (8.7)–(8.8) it follows that

[PTQ]i,j =
∑

s∈J ′
K−1

ps,iqs,j = pκ−1(j+1)−1,i, i ∈ J ′
M−1.

If j + 1 ∈ JM \ J∗, then, using (8.9), we find

[PTQ]i,j = 0, i ∈ J ′
M−1, j + 1 ∈ JM \ J∗.

This completes the proof of (8.5)–(8.6). �

Corollary 7. If i + 1, j + 1 ∈ J∗, then

[PTQ]i,j = δi,j. (8.10)

Proof. Taking into account that j + 1 ∈ J∗, we set

r = κ
−1(j + 1) − 1. (8.11)

Obviously, r ∈ J ′
K−1 and j = κ(r + 1) − 1. In accordance with (8.6), we have

[PTQ]i,j = pκ−1(j+1)−1,i = pr,i, i ∈ J ′
M−1, j + 1 ∈ J∗. (8.12)

Since i + 1 ∈ J∗, the assumptions of Corollary 4 (with j = i) are satisfied. Therefore, by
(5.19), we obtain

pr,i = δr,κ−1(i+1)−1. (8.13)

Taking into account (8.13), from (8.12) we derive

[PTQ]i,j = δr,κ−1(i+1)−1. (8.14)

Taking r from (8.11) and substituting it into relation (8.14), we deduce

[PTQ]i,j = δκ−1(j+1)−1,κ−1(i+1)−1 = δi,j.

This proves (8.10). �
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Theorem 2. The formulas of decomposition can be written in the form

ai = cκ(i+1)−1, i ∈ J ′
K−1, (8.15)

bq = 0, q + 1 ∈ J∗, (8.16)

bq = cq −
∑

j∈J ′
K−1

〈g(q), ω̂j〉cκ(j+1)−1, q + 1 ∈ JM \ J∗. (8.17)

Proof. By (6.8) and (7.1)–(7.2), for i ∈ J ′
K−1 we have

ai =
∑

j∈J ′
M−1

qijcj =
∑

j∈J ′
M−1

δκ(i+1)−1cj = cκ(i+1)−1,

which proves (8.15).
By the second relation in (8.4), we have

bq = cq − [PTQc]q, q ∈ J ′
M−1,

whence
bq = cq −

∑

s∈J ′
M−1

[PTQ]q,s cs.

By taking into account that, by (8.5),

[PTQ]q,s = 0, s + 1 /∈ J∗, q ∈ J ′
M−1,

we obtain
bq = cq −

∑

s+1∈J∗
[PTQ]q,s cs.

From (8.6) it follows that

bq = cq −
∑

s+1∈J∗
pκ−1(s+1)−1,q cs. (8.18)

From (5.19) with q + 1 ∈ J∗ we have

pκ−1(s+1)−1,q = δs,q,

implying that
bq = cq −

∑

s+1∈J∗
δs,q cs = 0, q + 1 ∈ J∗.

This completes the proof of (8.16).
Now consider the case q + 1 ∈ JM \ J∗.
Using the bijective map κ : JK −→ J∗ (see (3.4)–(3.5)), we change the index of summation

in (8.18):
j = κ

−1(s + 1) − 1 ⇐⇒ s = κ(j + 1) − 1.
It is clear that j ∈ J ′

K−1. As a result, we obtain

bq = cq −
∑

j∈J ′
K−1

pj, q cκ(j+1)−1.

Applying (5.1), we deduce relation (8.17). �
Theorem 3. If q + 1 ∈ JM \ J∗, then the wavelet flow satisfies the relation

bq = cq − (x̂s+1 − x̂s)−1
[
(x̂s+1 − ξq+1)cκ(s)−1 + (ξq+1 − x̂s)cκ(s+1)−1

]
, (8.19)

where
x̂s < ξq+1 < x̂s+1. (8.20)
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Proof. First we note that the nonzero terms in relation (8.17) necessarily satisfy the condition
〈g(q), ω̂j〉 �= 0. By virtue of definition (3.2), the latter inequality is equivalent to the relation
ω̂j(ξq+1) �= 0.

Since q+1 ∈ JM \J∗, there exists a unique s ∈ JK such that inequality (8.20) holds. Taking
into account that supp ω̂j = 〚x̂ +

j , x̂ −
j+2〛 (see (3.26)), we see that the sum in (8.17) involves at

most two terms, which correspond to j = s − 1 and j = s. Thus,

bq = cq − 〈g(q), ω̂s−1〉cκ(s)−1 − 〈g(q), ω̂s〉cκ(s+1)−1, (8.21)

and, in order to complete the proof, it only remains to use (3.7)–(3.13) and (8.21). �
Corollary 8. Formula (8.17) can be written in the form

bq = cq − ps−1,qcκ(s)−1 − ps,qcκ(s+1)−1, (8.22)

where s satisfies relation (8.20).

Corollary 9. The space B of wavelet flows can be represented as

B = {b | b = (b−1, b0, . . . , bM−1), bj−1 ∈ R
1, j ∈ JM \ J∗; b i−1 = 0, i ∈ J∗}, (8.23)

and it is the linear hull of the orthonormal1 system

ej
def== ([ej]−1, [ej]0, . . . , [ej]M−1),

where [ej]i = δi,j, i, j ∈ J ′
M−1.

Proof. It is known (see [5]) that the space of wavelet flows is the kernel of the operator Q.
Since

Qb = 0 ⇐⇒
∑

j∈J ′
M−1

qij bj = 0, i ∈ J ′
K−1,

by virtue of relation (7.2), we have
∑

j∈J ′
M−1

δκ(i+1)−1,j qij bj = 0, i ∈ J ′
K−1 ⇐⇒ bκ(i+1)−1 = 0, i ∈ J ′

K−1.

Therefore (also see (8.16)), we conclude that

bj−1 = 0, j ∈ J∗.

The remaining components of the wavelet flow are arbitrary; they define the space B of wavelet
flows in representation (8.2). Thus, (8.23) holds. �

9. An illustrative example of the spline-wavelet decomposition

In this section, we give an illustrative example.
Set M = 10 and, on the grid segment 〚a, b〛, consider the grid

a = ξ0 < ξ1 < . . . < ξ9 < ξ10 = b.

Choose the discrete basis (3.1) of the space C〚a, b〛,

ωj(ξs) = δs,j+1, s ∈ J10. (9.1)

Consider the linear functionals g(i), i ∈ J ′
9, defined by the formula

〈g(i), u〉 def== u(ξi+1), u ∈ C〚a, b〛, (9.2)

where
J10 = {0, 1, 2, . . . , 9, 10}, J ′

9 = {−1, 0, 1, 2, . . . , 9}.
1In the Euclidean space R

M+1 with the standard inner product.

847



Consider the new grid
X̂ : a = x̂0 < x̂1 < . . . < x̂8 = b, (9.3)

where x̂i
def== ξκ(i), i ∈ J8. The map κ(i) is defined by the relations

κ(0) = 0, κ(1) = 1, . . . , κ(5) = 5, κ(6) = 8, κ(7) = 9, κ(8) = 10.

Thus, in the case considered, we have K = 8 and

J∗ = {0, 1, 2, 3, 4, 5, 8, 9, 10},
whence J10 \ J∗ = {6, 7}.

From (5.2) we obtain J0 = {−1}, and from (5.3) we have J1(s) = {s} for s ∈ {0, 1, 2, 3, 4},
J1(5) = {5, 6, 7}, J1(6) = {8}.

Applying (5.4), we find that J2(s) = ∅ for s ∈ {0, 1, 2, 3, 5, 6}, J2(4) = {5, 6}; the second
formula in (5.5) yields J1(7) = {9}.

Finally, in accordance with the first formula in (5.5), we have J(s) = {s} for s ∈ {0, 1, 2, 3},
J(4) = {4, 5, 6}, J(5) = {5, 6, 7}, and J(s) = {s + 2} for s ∈ {6, 7}.

Let ω̂j(t), j ∈ J ′
7, be the functions defined by (3.7)–(3.13) and consider the vectors

ω̂(t) def== (ω̂−1(t), ω̂0(t), . . . , ω̂7(t))T ,

ω(t) def== (ω−1(t), ω0(t), . . . , ω9(t))T .

From Theorem 1 (see (5.7)–(5.9)) it follows that the calibration relations ω̂(t) = Pω(t) are
defined by the matrix

P
def==

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 1 2 3 4 5 6 7 8 9
−1̂ 1 0 0 0 0 0 0 0 0 0 0
0̂ 0 1 0 0 0 0 0 0 0 0 0
1̂ 0 0 1 0 0 0 0 0 0 0 0
2̂ 0 0 0 1 0 0 0 0 0 0 0
3̂ 0 0 0 0 1 0 0 0 0 0 0
4̂ 0 0 0 0 0 1 ξ8−ξ6

ξ8−ξ5
ξ8−ξ7
ξ8−ξ5

0 0 0

5̂ 0 0 0 0 0 0 ξ6−ξ5
ξ8−ξ5

ξ7−ξ5
ξ8−ξ5

1 0 0
6̂ 0 0 0 0 0 0 0 0 0 1 0
7̂ 0 0 0 0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus,

ω̂i(t) = ωi(t) for i ∈ {−1, 0, 1, 2, 3}, (9.4)

ω̂4(t) = ω4(t) +
ξ8 − ξ6

ξ8 − ξ5
· ω5(t) +

ξ7 − ξ6

ξ8 − ξ5
· ω6(t), (9.5)

ω̂5(t) =
ξ6 − ξ5

ξ8 − ξ5
· ω5(t) +

ξ7 − ξ5

ξ8 − ξ5
· ω6(t) + ω7(t), (9.6)

ω̂i(t) = ωi+2(t) for i ∈ {6, 7}. (9.7)

Formulas (9.4)–(9.7) are an illustration of (4.15)–(4.21).
Now we illustrate Corollary 3. It is clear that conditions (5.17) are fulfilled for i ∈

{0, 1, 2, 3, 6}, and relations (5.18) hold for s ∈ J ′
9. Since κ(1) = 1, (5.18) holds for i = −1,

whence p−1,s = δ−1,s for s ∈ J ′
9. As K = 8, we have κ(K − 1) = κ(7) = 9, and the condition

κ(− 1) = M − 1 is fulfilled. Therefore, (5.18) is valid for i = K − 1 = 7. Thus, p7,s = δ9,s for
s ∈ J ′

9.
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It is even easier to illustrate Corollary 4. In the case considered, the condition j + 1 ∈ J∗
amounts to the condition

j ∈ {−1, 0, 1, 2, 3, 4, 7, 8, 9}.

In what follows, we will need the transposed matrix

PT def==

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1̂ 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂
−1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0 0
3 0 0 0 0 1 0 0 0 0
4 0 0 0 0 0 1 0 0 0
5 0 0 0 0 0 ξ8−ξ6

ξ8−ξ5
ξ6−ξ5
ξ8−ξ5

0 0

6 0 0 0 0 0 ξ8−ξ7
ξ8−ξ5

ξ7−ξ5
ξ8−ξ5

0 0
7 0 0 0 0 0 0 1 0 0
8 0 0 0 0 0 0 0 1 0
9 0 0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The projection of the space C〚a, b〛 of the original flows W onto the space S(X̂) of the main
flows is defined by the method of prolongation of the system of functionals {g(j)

j∈J ′
7
} biorthogonal

to the system of coordinate splines {ω̂j}j∈J ′
7

onto the space C〚a, b〛 (see (6.1), (6.8), and (8.2)).
Ultimately, the projection is equivalent to applying the matrix of prolongation Q to the original
flow c ∈ C: a = Qc. In accordance with (7.2), the matrix Q can be written as

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 1 2 3 4 5 6 7 8 9
−1̂ 1 0 0 0 0 0 0 0 0 0 0
0̂ 0 1 0 0 0 0 0 0 0 0 0
1̂ 0 0 1 0 0 0 0 0 0 0 0
2̂ 0 0 0 1 0 0 0 0 0 0 0
3̂ 0 0 0 0 1 0 0 0 0 0 0
4̂ 0 0 0 0 0 1 0 0 0 0 0
5̂ 0 0 0 0 0 0 0 0 1 0 0
6̂ 0 0 0 0 0 0 0 0 0 1 0
7̂ 0 0 0 0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

whence

ai = ci for i ∈ {−1, 0, 1, 2, 3, 4} (9.8)

and

ai = ci+2 for i ∈ {7, 8}. (9.9)

It is nondifficult to see that QPT = I, where I is the identity matrix of order 9. From
(8.5)–(8.6) it follows that PTQ is a square matrix of order 11 of the form
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PTQ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 1 2 3 4 5 6 7 8 9
−1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0 0 0 0
3 0 0 0 0 1 0 0 0 0 0 0
4 0 0 0 0 0 1 0 0 0 0 0
5 0 0 0 0 0 ξ8−ξ6

ξ8−ξ5
0 0 ξ6−ξ5

ξ8−ξ5
0 0

6 0 0 0 0 0 ξ8−ξ7
ξ8−ξ5

0 0 ξ7−ξ5
ξ8−ξ5

0 0
7 0 0 0 0 0 0 0 0 1 0 0
8 0 0 0 0 0 0 0 0 0 1 0
9 0 0 0 0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Certainly, the components of the wavelet flow b = c − PTQc with numbers j such that
j + 1 ∈ J∗ are zero (see (8.19)). In the case considered, we obtain

bj = 0, j ∈ {−1, 0, 1, 2, 3, 4, 7, 8, 9}, (9.10)

b5 = −ξ8 − ξ6

ξ8 − ξ5
c4 + c5 − ξ6 − ξ5

ξ8 − ξ5
c7, (9.11)

b6 = −ξ8 − ξ7

ξ8 − ξ5
c4 + c6 − ξ7 − ξ5

ξ8 − ξ5
c7. (9.12)

Thus, (9.8)–(9.12) are the formulas of decomposition.
Using (8.3), we obtain the following reconstruction formulas for the original flow c:

cj = aj + bj , j ∈ {−1, 0, 1, 2, 3, 4}, (9.13)

c5 =
ξ8 − ξ6

ξ8 − ξ5
· a4 +

ξ6 − ξ5

ξ8 − ξ5
· a5 + b5, (9.14)

c6 =
ξ8 − ξ7

ξ8 − ξ5
· a4 +

ξ7 − ξ5

ξ8 − ξ5
· a5 + b6, (9.15)

cj = aj−2 + bj, j ∈ {7, 8, 9}. (9.16)

Formulas (9.13)–(9.16) illustrate relations (8.3).

10. Continual image of the discrete wavelet decomposition

In this paper, as was mentioned in the introduction, in contrast with most approaches to
wavelet decompositions (see [1–2]), the standard function spaces (such as C[a, b], L2, etc.) are
not used. Here, we only consider finite-dimensional flow spaces. The approach used permits
one to support the algorithmic structure at all steps of the tracing. However, in some situations
it is necessary to apply the infinite-dimensional function spaces mentioned above (for example,
in the case where the original flow is obtained by discretization and digitization of a continuous
signal arriving from a device of the analog type). In this case, the notions and results discussed
above remain valid for an adjusted domain of definition of relevant functions. This situation
will be referred to as the continual case.

Consider the continual case in more detail. The domain of variation of the argument t
becomes either the entire real axis R

1 or an interval [a, b] ⊂ R
1, and the set 〚a, b〛 is a grid on

the interval [a, b]. Some notions and symbols are redefined in such a way that the functions
introduced can be regarded as the results of extending the domain of the mappings considered
above, and the designations of these mappings are transferred to the functions mentioned
above.
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The discrete basis (3.1) is replaced with the following system of piecewise-linear functions:

ω−1(t) = (ξ1 − t)(ξ1 − ξ0)−1, t ∈ (ξ0, ξ1), (10.1)

ω−1(t) = 0, t ∈ [a, b] \ (ξ0, ξ1), (10.2)

ωi(t) = (t − ξi)(ξi+1 − ξi)−1, t ∈ (ξi, ξi+1), (10.3)

ωi(t) = (ξi+2 − t)(ξi+2 − ξi+1)−1, t ∈ (ξi+1, ξi+2), (10.4)

ωi(t) = 0, t ∈ [a, b] \ (ξi, ξi+2), i ∈ JM−2, (10.5)

ωM−1(t) = (t − ξM−1)(ξM − ξM−1)−1, t ∈ (ξM−1, ξM ), (10.6)

ωM−1(t) = 0, t ∈ [a, b ] \ (ξM−1, ξM ). (10.7)

The functions ω̂j(t) defined by (3.7)–(3.13) as functions of the discrete argument t ∈〚a, b〛 are
redefined by extending their domains to the interval [a, b] as follows :

ω̂−1(t) = (x̂1 − t)(x̂1 − x̂0)−1, t ∈ (x̂0, x̂1), (10.8)

ω̂−1(t) = 0, t ∈ [a, b] \ (x̂0, x̂1), (10.9)

ω̂i(t) = (t − x̂i)(x̂i+1 − x̂i)−1, t ∈ (x̂i, x̂i+1), (10.10)

ω̂i(t) = (x̂i+2 − t)(x̂i+2 − x̂i+1)−1, t ∈ (x̂i+1, x̂i+2), (10.11)

ω̂i(t) = 0, t ∈ [a, b] \ (x̂i, x̂i+2), i ∈ JK−2, (10.12)

ω̂K−1(t) = (t − x̂K−1)(x̂K − x̂K−1)−1, t ∈ (x̂K−1, x̂K), (10.13)

ω̂K−1(t) = 0, t ∈ [a, b] \ (x̂K−1, x̂K). (10.14)

The passage to the enlarged domain of definition does not affect the statements of the lemmas
and theorems presented in Secs. 1–8.

Considering the situation from the above-mentioned viewpoint, we recall that

S(X̂) = L{ω̂i(t) | t ∈ 〚a, b〛, i ∈ J ′
K−1}

and introduce the following notation:

X
def== 〚a, b〛, S(X) def== C〚a, b〛,

S̃(X) def== L{ωj(t) | t ∈ [a, b], j ∈ J ′
M−1},

S̃(X̂) def== L{ω̂i(t) | t ∈ [a, b], i ∈ J ′
K−1},

where the functions ωj(t) and ω̂i(t) are defined by relations (10.1)–(10.7) and (10.8)–(10.14),
respectively.

Obviously, we have the isomorphisms

C ∼ S̃(X) ∼ S(X), A ∼ S̃(X̂) ∼ S(X̂)

and also the embedding
S̃(X̂) ⊂ S̃(X).

In the continual case, by taking into account (6.2)–(6.4) and the isomorphisms indicated above,
we obtain the wavelet decomposition

S̃(X) = S̃(X̂) .
+W̃,

where
W̃

def== L{ωj−1(t) | t ∈ [a, b], j ∈ JM\J∗}.
It is clear that the spaces B, W, and W̃ are linearly isomorphic: B ∼ W ∼ W̃.
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11. On the algorithm of grid coarsening

11.1. Preliminary remarks. In this paper, the coarsening of a grid is considered as given a
priory and defined by a map κ. In [6], some variants of adaptive grid coarsening are proposed.
They provide for an a priori estimate of the deviation of the main flow from the original one
and for an evaluation of volumes for the data used in the case of different irregularity properties
of the original flow, and also limit characterizations of the latter volumes in the case where
the original flow is generated by a differentiable function. For completeness, we recall the
statements of the main results established in [6].

One of the central results of [6] is as follows. If the original flow is generated by a function u ∈
C1[a, b], then (under the condition of equal deviations) the limit of the ratio of the data volume
for the main flow associated with an irregular adaptive grid to the data volume associated with
the analogous flow corresponding to an equidistant grid equals 1

b−a

∫ b
a |u ′(t)|dt/‖u ′‖C[a,b]. If

u ∈ C2[a, b], then the corresponding limit is equal to 1
b−a

∫ b
a

√|u ′′(t)|dt/‖√u ′′‖C[a,b].

11.2. A grid of the adaptive type. Consider a function f ∈ C(Ξ) that satisfies the
inequality

f(t) ≥ c, t ∈ Ξ, (11.1)
where c is a positive constant.

Assume that
ε ∈ (ε∗, ε∗∗), (11.2)

where
ε∗ def== max

ξ∈〚a, b−〛
max

t∈{ξ,ξ+}
f(t)(ξ+ − ξ), ε∗∗ def== (b − a)‖f‖

C〚a, b〛. (11.3)

Lemma 8. If conditions (11.1)–(11.3) are fulfilled, then there exist a unique positive integer
K = K(f, ε,Ξ) and a unique grid

X̃ = X̃(f, ε,Ξ) : a = x̃0 < x̃1 < . . . < x̃K ≤ x̃K+1 = b (11.4)

such that

max
t∈〚x̃s, x̃s+1〛

f(t)(x̃s+1 − x̃s)≤ε< max
t∈〚x̃s, x̃+

s+1〛
f(t)(x̃+

s+1 − x̃s), s ∈ {0, 1, . . . ,K − 1}, (11.5)

and
max

t∈〚x̃K , b〛
f(t)(b − x̃K) ≤ ε, X̃ ⊂ Ξ. (11.6)

Lemma 8 is proved by induction passage from the nodes x̃1, . . . , x̃s to the nodes x̃1, . . . , x̃s+1.
The grid (11.4) with the properties (11.5)–(11.6) is referred to as a grid of the adaptive type

for the discrete function f with the property (1.1).
The integer-valued function K(f, ε,Ξ) is monotonic, i.e., if ε ′ ≤ ε ′′, then K(f, ε ′,Ξ) ≥

K(f, ε ′′,Ξ).

11.3. A pseudo-equidistant grid. Assume that

ε ∈ (ε∗, ε∗∗), (11.7)

where
ε∗ def== max

ξ∈〚a, b−〛
(ξ+ − ξ)‖f‖

C〚a, b〛, ε∗∗ def== (b − a)‖f‖
C〚a, b〛. (11.8)

For this ε, we find the values

N = N(f, ε,Ξ) def== �ε∗∗/ε� (11.9)
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and

h = h(f, ε,Ξ) def==
b − a

N + 1
; (11.10)

here, if r is a real, then �r� is the integer defined by the conditions 0 ≤ �r� − r < 1.
On the grid section 〚a, b〛, consider a grid

X = X(f, ε,Ξ) : a = x0 < x1 < . . . < xN = b, X ⊂ Ξ, (11.11)

where
xs+1 − xs ≤ h < x+

s+1 − xs, s ∈ {0, 1, . . . , N − 1}, (11.12)

xN+1 − xN ≤ h. (11.13)

The grid (11.11) possessing the properties (11.12)–(11.13) is called a pseudo-equidistant grid
with step size h. By (11.9), we have

(b − a)‖f‖
C〚a, b〛 − ε < Nε ≤ (b − a)‖f‖

C〚a, b〛, (11.14)

max
t∈〚xs, xs+1〛

f(t) (xs+1 − xs) ≤ ε, s ∈ {0, 1, . . . , N}. (11.15)

Lemma 9. If ε satisfies conditions (11.7)–(11.8), then the grid (11.11) with the properties
(11.12)–(11.13) is defined uniquely, and relations (11.14)–(11.15) are satisfied.

The existence and uniqueness of the grid (11.11) are proved by induction, the proof being
similar to that of Lemma 8.

11.4. Limit relations. Assume that a function f(t) is continuous on [a, b] and satisfies the
condition

f(t) ≥ c > 0, t ∈ [a, b]. (11.16)

Consider a sequence of grids Ξ(λ) of the form (2.1)–(2.2),

Ξ(λ) : . . . < ξ−2(λ) < ξ−1(λ) < ξ0(λ) < ξ1(λ) < ξ2(λ) . . . , (11.17)

dependent on a parameter λ > 0 and such that a, b ∈ Ξ(λ).
Introduce the notation

〚a, b〛λ
def== Ξ(λ) ∩ [a, b], hλ

def== max
ξ∈〚a, b− 〛

λ

(ξ+ − ξ).

Theorem 4. If a function f(t) ∈ C[a, b] satisfies condition (11.16) and the grid sequence
(11.17) is such that limλ→+0 hλ = 0, then

lim
ε→+0

lim
λ→+0

K

N
=

1
b−a

∫ b
a f(t)dt

‖f‖C[a,b]
. (11.18)

11.5. Variants of approximation for the discrete flow. Let X̂ be a subset of the grid Ξ,

X̂ : a = x̂0 < x̂1 < x̂2 < . . . < x̂
K̂

< x̂
K̂+1

= b, X̂ ⊂ Ξ, (11.19)

and let u(t) be a discrete function defined on 〚a, b〛. Consider the piecewise-linear interpolation
of the function u,

ũ(t) def== u(x̂j) +
u(x̂j+1) − u(x̂j)

x̂j+1 − x̂j
(t − x̂j), t ∈ [x̂j , x̂j+1), j ∈ {0, 1, . . . , K̂}. (11.20)
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For u ∈ C〚a, b〛 and ξ ∈ 〚a+, b−〛, consider the difference ratios

DΞu(ξ) def==
u(ξ+) − u(ξ)

ξ+ − ξ
,

D2
Ξu(ξ) def==

DΞu(ξ) − DΞu(ξ−)
ξ − ξ−

.

Theorem 5. For the piecewise-linear interpolation (11.19)–(11.20) and t ∈ 〚x̂j , x̂j+1〛 the
following inequalities hold:

|u(t) − ũ(t)| ≤ (x̂j+1 − x̂j) max
ξ∈〚x̂j , x̂

−
j+1 〛

|DΞu(ξ)|, (11.21)

|u(t) − ũ(t)| ≤ (x̂j+1 − x̂j)2 max
ξ∈〚x̂+

j , x̂−
j+1 〛

|D2
Ξu(ξ)|. (11.22)

If u ∈ C1[a, b], then, by (11.21), we have

|u(t) − ũ(t)| ≤ max
ξ∈[x̂j ,x̂j+1]

|u ′(ξ)|(x̂j+1 − x̂j),

and if u ∈ C2[a, b], then, by (11.22), we obtain

|u(t) − ũ(t)| ≤ max
ζ∈[x̂j,x̂j+1]

|u ′′(ζ)|(x̂j+1 − x̂j)2, t ∈ (x̂j , x̂j+1).

11.6. On the number of nodes for a grid of the adaptive type

Theorem 6. Assume that

|DΞu(t)| ≥ c > 0, t ∈ 〚y, z〛. (11.23)

If η > 0 and the grid X̂ coincides with the grid X̃(|DΞu(t)|, η,Ξ), then the following assertions
are valid:

1) the number of nodes K ′
u,Ξ(η) def== K(|DΞu(t)|, η,Ξ) of the grid satisfies the relations

K−1∑

s=0

max
t∈〚x̃s, x̃s+1〛

|DΞu(t)|(x̃s+1 − x̃s)/η ≤ K ′
u,Ξ(η)

<

K−1∑

s=0

max
t∈〚x̃s, x̃+

s+1〛
|DΞu(t)|(x̃+

s+1 − x̃s)/η;

(11.24)

2)
|u(t) − ũ(t)| ≤ η, t ∈ [a, b];

3) if u ∈ C1[a, b], |u ′(t)| ≥ c > 0 for all t ∈ [a, b], and a grid sequence of the form (11.17)
with the property limλ→+0 hλ = 0 is considered, then

lim
η ′→+0

lim
λ→+0

K ′
u,Ξ(λ)(η

′)η ′ =

b∫

a

|u ′(t)| dt.

Theorem 7. Assume that

|D2
Ξu(t)| ≥ c > 0, t ∈ 〚y, z〛.

If η > 0 and the grids X̂ and X̃(
√

|D2
Ξu(t)|, η,Ξ) coincide, then the following assertions hold:
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1) the number of nodes K ′′
u,Ξ(η) def== K(

√
|D2

Ξu(t)|, η,Ξ) of the grid satisfies the relations

K−1∑

s=0

max
t∈〚x̃s, x̃s+1〛

√
|D2

Ξu(t)|(x̃s+1−x̃s)/η≤K ′′
u,Ξ(η)<

K−1∑

s=0

max
t∈〚x̃s, x̃+

s+1〛

√
|D2

Ξu(t)|(x̃+
s+1 − x̃s)/η;

2)

|u(t) − ũ(t)| ≤ η2, t ∈ [a, b];

3) if u ∈ C2[a, b], |u ′′(t)| ≥ c > 0 for all t ∈ [a, b], and a sequence of grids of the form
(11.17) with the property limλ→+0 hλ = 0 is considered, then

lim
η ′→+0

lim
λ→+0

K ′′
u,Ξ(λ)(η

′)η ′ =

b∫

a

√
|u ′′(t)| dt.

The proof follows from (11.24).

11.7. On the number of nodes for a pseudo-equidistant grid

Theorem 8. If the grids X̂ and X(|DΞu|, η,Ξ) coincide, then
1) the number N ′

u,Ξ(η) def== N(|DΞu|, η,Ξ) of interior nodes of the grid satisfies the relations

(b − a)‖DΞu‖
C〚a, b〛/η − 1 < N ′

u,Ξ(η) ≤ (b − a)‖DΞu‖
C〚a, b〛/η, (11.25)

and
2)

|u(t) − ũ(t)| ≤ η, t ∈ 〚a, b〛. (11.26)

Proof. Setting X̂
def== X(|DΞu|, η,Ξ) and applying (11.14), we come to relation (11.25). In-

equality (11.26) is obtained by using relation (11.15) with f = |DΞu| and ε = η. �

Theorem 9. If the grid X̂ coincides with the grid X(
√

|D2
Ξu|, η,Ξ), then the following asser-

tions hold:
1) the number N ′′

u,Ξ(η) def== N(
√

|D2
Ξu|, η,Ξ) of interior nodes of the grid satisfies the rela-

tions

(b − a)‖ |D2
Ξu|1/2‖

C〚a, b〛/η − 1 < N ′′
u,Ξ(η) ≤ (b − a)‖ |D2

Ξu|1/2‖
C〚a, b 〛/η, (11.27)

and
2)

|u(t) − ũ(t)| ≤ η2, t ∈ 〚a, b〛. (11.28)

Proof. By using (11.14) for X̂
def== X(

√
|D2

Ξu|, η,Ξ), we obtain relation (11.27). Inequality

(11.28) is obtained by applying (11.25) with f =
√

|D2
Ξu| and ε = η. �

11.8. Comparison of the numbers of nodes for the same approximation. A compar-
ison of the numbers of nodes for an adaptive irregular grid and for a pseudo-equidistant grid
reduces to applying Theorems 7–9 to one and the same function f for suitable approximations
on different grids.
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Theorem 10. Assume that the assumptions of Theorem 7 are satisfied. Consider a discrete
function u(t), t ∈〚a, b〛, approximated by ũ(t) for two choices of the grid, namely,

X̂
def== X(|DΞu|, η,Ξ) and X̂

def== X̃(|DΞu|, η,Ξ).

Then the following inequalities are valid:

(b − a)‖DΞu‖
C〚a, b〛 − η

K−1∑
s=0

max
t∈〚x̃s, x̃+

s+1〛
|DΞu(t)|(x̃+

s+1 − x̃s)
<

N ′
u,Ξ(η)

K ′
u,Ξ(η)

≤
(b − a)‖DΞu‖

C〚a, b〛
K−1∑
s=0

max
t∈〚x̃s, x̃s+1〛 |DΞu(t)|(x̃s+1 − x̃s)

. (11.29)

Theorem 11. Let u ∈ C1[a, b],
‖u ′‖C[a,b] �= 0, (11.30)

and let a system of grids of the form (11.17) satisfy the condition limλ→+0 hλ = 0. Then

lim
η→+0

lim
λ→+0

N ′
u,Ξ(η)

K ′
u,Ξ(η)

=
1

b−a

∫ b
a |u ′(t)|dt

‖u ′‖C[a,b]
. (11.31)

Proof. In order to prove (11.31), consider relation (11.29) and pass to the limit as λ → +0
and then η → +0. By (10.30), there exists a constant c > 0 such that (11.23) holds. This
completes the proof of (11.31). �

Theorem 12. Let a discrete function u(t) be approximated by ũ(t), |ũ(t) − u(t)| ≤ η2, using

two choices of the grid, namely, the pseudo-equidistant grid of the form X̂
def== X(

√
|D2

Ξu|, η,Ξ)

and the grid X̂
def== X̃(

√
|D2

Ξu|, η,Ξ). Then

(b − a)‖ |D2
Ξu|1/2‖

C〚a, b〛 − η

K−1∑
s=0

max
t∈〚x̃s, x̃+

s+1〛
√

|D2
Ξu(t)|(x̃+

s+1 − x̃s)
<

N ′′
u,Ξ(η)

K ′′
u,Ξ(η)

≤
(b − a)‖ |D2

Ξu|1/2‖
C〚a, b〛

K−1∑
s=0

max
t∈〚x̃s, x̃s+1〛

√
|D2

Ξu(t)|(x̃s+1 − x̃s)
. (11.32)

Theorem 13. Consider a grid family of the form (11.17) such that limλ→+∞ hλ = 0 and a
function u ∈ C2[a, b] with the property

‖u ′′‖C[a,b] �= 0.

Then

lim
η→+0

lim
λ→+0

N ′′
u,Ξ(η)

K ′′
u,Ξ(η)

=
1

b−a

∫ b
a

√|u ′′(t)|dt

‖√|u ′′|‖C[a,b]

. (11.33)

Proof. Relation (11.33) is obtained from inequalities (11.32) by passing to the limit as in the
proof of (11.31). �
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12. Computation of the spline-wavelet decomposition

Problem statement. Computation of the spline-wavelet decomposition consists of two steps.
The first step realizes the decomposition formulas, and the second one realizes the reconstruc-
tion formulas.

The computations related to the decomposition formulas involve the two problems of finding
the main and wavelet flows. As a rule, the first problem is more important than the second
one because, in most cases, the original flow is characterized by the main flow.

In computing the spline-wavelet decomposition, one needs to construct an embedded grid
X̂ given on an original grid X. Usually, the structure of X̂ is defined by the original flow c
(see Sec. 11) and can require considerable computer resources. Note that the algorithm used
here is optimal (in a certain sense). A drawback of this algorithm is that it is an essentially
sequential process, whence the use of a single-processor computer system is more efficient. On
the other hand, it is possible to split the original flow into a few parts, which can be processed
concurrently. But this leads to a certain loss of efficiency. It is preferable to use a successive
algorithm (or a parallel algorithm of small width) in the case where the flow is processed in
the real time frame, in which case the flow has not been received completely. If the entire
flow has already been received, then its processing on a parallel computer system can be very
efficient.

In what follows, we assume that the computer system considered is a successive or a parallel
computer of discrete operation with synchronous cycles. Instead of the usual time, the discrete
time, measured in computer cycles, is considered. Thus, the time unit is the cycle, and the
run time for an operation is a positive integer (see [7]).

In implementing the above algorithms, one needs to extract elements from arrays (i.e., to
assign their values to auxiliary variables), to immerse elements into arrays (i.e., to assign the
value of an auxiliary variable to an element of an array), and also to perform arithmetic and
logical operations.

Introduce an additional notation. Let A be an array with elements Ai of a type fA (for
simplicity, we may assume that fA = f , where f is the type real; specific representations of
the types fA and f are not discussed here).

Let T̆A be the time (i.e., the length of the time interval2) for extracting an element Ai of
the array A into a simple (auxiliary) variable. By T̂A we denote the time needed to immerse
the value of a simple variable into an element Ai of the array A 3.

For brevity, below we use the same symbols both for the objects considered and for the
arrays in which they are stored in the computer memory (this concerns the number flows a,
b, c and their elements, and also X, X̂ , Js, J∗, etc.). All the arrays considered are assumed
to be dynamic (i.e., the length of an array is not fixed beforehand and can be changed).

First consider the formulas of decomposition (8.15)–(8.16):

ai = cκ(i+1)−1, i ∈ J ′
K−1, (12.1)

bq = 0, q + 1 ∈ J∗. (12.2)
If q + 1 ∈ JM \ J∗, then relations (8.19)–(8.20) can be written in the form

bq = cq − (ξκ(i+1) − ξκ(i))
−1

[
(ξκ(i+1) − ξq+1)cκ(i)−1 + (ξq+1 − ξκ(i))cκ(i+1)−1

]
, (12.3)

where
κ(i) + 1 ≤ q + 1 ≤ κ(i + 1) − 1. (12.4)

2Recall that we discuss the discrete time, and the unit of time is equal to the cycle of the computer system.
3We assume that T̂A is independent of the number i of the element Ai, but it may depend on the type of

elements and the length of the array.
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Such formulas can be computed in a number of ways. We discuss one of them, assuming that

a = 0, b = M, ξi = i. (12.5)

Thus,

X
def== {a = 0, 1, 2, . . . ,M − 1,M = b}.

In this case, x̂i = κ(i), i ∈ {0, 1, . . . ,K},
X̂ = {a = κ(0), κ(1), κ(2), . . . , κ(K − 1), κ(K) = b}.

Obviously, X = JM and X̂ = J∗.
Under condition (12.5), relations (12.3)–(12.4) can be written as

bq = cq − (κ(i + 1) − κ(i))−1
[
(κ(i + 1) − q − 1)cκ(i)−1 + ((q + 1 − κ(i))cκ(i+1)−1

]
, (12.6)

where
κ(i) + 1 ≤ q + 1 ≤ κ(i + 1) − 1. (12.7)

Assume that the realization of the algorithm for searching for j = κ(i) requires τi cycles, an
additive operation requires ta cycles, and a multiplicative operation requires tm cycles.

As a rule, we do not indicate the names of intermediate variables, though their presence is
implied (for instance, instead of the assignment j := κ(i + 1), where j is a simple variable
used later, we simply “compute” κ(i + 1)).

The realization of the decomposition process is represented as a sequence of steps. Consider
the (i + 1)st step of this process. We use the subscript i to denote the state of an array at the
ith step of the process.

Before the beginning of the (i + 1)st step, the state of arrays is described by the following
characteristics:

a/ the value of κ(i) has been calculated (and has been saved in a simple auxiliary variable);
b/ the array Xi has been represented in the form

Xi = {0, 1, 2, . . . , i − 1, i};
c/ the array J∗

i = X̂i has been written in the form

X̂i = {a = κ(0), κ(1), κ(2), . . . , κ(i)};
d/ the array a has been filled up to the element aκ(i−1), i.e.,

ai = {aκ(0), aκ(1), . . . , aκ(i−1)};
e/ the array b has been filled up to the element bκ(i−1)−1, i.e.,

bi = {bκ(i0+1), . . . , bκ(i1)−1},
where i0 = min{i | i ∈ X \ X̂}, i1 = max{i | i ∈ X \ X̂};

f/ the value cκ(i)−1 has been computed.
The (i + 1)st step consists of the following operations:
1. First, the element κ(i + 1) is computed, which requires τi + ta cycles.
2. The array X̂i is extended with the subsequent element κ(i+1), which requires T̂X̂ cycles;

then the array takes the form

X̂i+1 = {a = κ(0), κ(1), κ(2), . . . , κ(i), κ(i + 1)}.
3.The value κ(i + 1) − 1 is computed, and then the element cκ(i+1)−1 is computed and

extracted from the array c, which requires ta + T̆c cycles.
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4. The element ai = cκ(i+1)−1 is added to the array a, which requires T̂a cycles (recall that
the value κ(i+ 1)− 1 has already been computed and assigned to a simple variable, the name
of which is not indicated in accordance with the above agreement).

5. For every
q ∈ {κ(i), κ(i) + 1, . . . , κ(i + 1) − 2}, (12.8)

the element bq is computed by formulas (12.6)–(12.7) (note that the set (12.8) is nonempty
because q + 1 ∈ JM \ J∗). Since the elements κ(i), κ(i + 1), and cκ(i)−1 have already been
computed, it is only necessary to extract the element cκ(i+1)−1 from the array c and to compute
the difference κ(i + 1) − κ(i); this requires T̆c + ta cycles.

In order to compute bq, we put q = κ(i) + j, so that

bκ(i)+j = cκ(i)+j −(κ(i+1)−κ(i))−1
[
(κ(i+1)−κ(i)+j−1)cκ(i)−1 +(j+1)cκ(i+1)−1

]
; (12.9)

then we organize a loop over j ∈ {0, 1, . . . , κ(i + 1) − κ(i) − 2}.
At the jth iteration of the loop one needs
5.1) to extract cκ(i)+j from the array c, which requires ta + T̆c cycles;
5.2) to perform the four additive and two multiplicative operations in the square brackets

of relation (12.9) (here, the operations performed earlier are not taken into account); this
requires 4ta + 2tm cycles;

5.3) to perform one multiplicative and one additive operations outside of the square brackets;
this requires ta + tm cycles;

5.4) to immerse the value bq = bκ(i)+j into the array b, which requires T̂b cycles.
Thus, the realization of one loop iteration requires 6ta+3tm+T̆c cycles. The number of such

iterations is equal to κ(i+ 1)−κ(i)− 1 (obviously, the iterations are absent in the case where
κ(i + 1) = κ(i) + 1). With account for the preparatory operations, the computation of all the
necessary values bq at the (i+1)st step requires T̆c+ta+(6ta+3tm+T̆c+T̂b)(κ(i+1)−κ(i)−1)
time units.

Now it is clear that the realization of the entire (i + 1)st step requires

τi + 3ta + T̂
X̂

+ T̆c + T̂a + T̆c + (6ta + 3tm + T̆c + T̂b)(κ(i + 1) − κ(i) − 1) (12.10)

cycles.

Theorem 14. The discrete time T ∗ required to realize the decomposition algorithm is given
by the formula

T ∗ =
K−1∑

i=0

τi + K(3ta + T̂
X̂

+ 2T̆c + T̂a) + (6ta + 3tm + T̆c + T̂b)(M − K). (12.11)

Proof. The number of steps is equal to the number K of segments 〚κ(i), κ(i + 1)〛. Taking
into account (12.1)–(12.2) and using (12.10), we have

T ∗ def==
K−1∑

i=0

(
τi + 3ta + T̂

X̂
+ 2T̆c + T̂a + (6ta + 3tm + T̆c + T̂b)(κ(i + 1) − κ(i) − 1)

)
.

It is clear that
K−1∑

i=0

(κ(i + 1) − κ(i) − 1) = κ(K) − κ(0) − K = M − K,

and (12.11) follows. �
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The time for the realization of the reconstruction algorithm can be evaluated similarly. This
will be a done in a forthcoming publication.

This research was supported by the RFBR (project No. 15-01-08847).

Translated by Yu. K. Dem’yanovich.
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