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We obtain a formula for the spherical transformation of generalized shift of a function

depending on multiple-axial spherical symmetry. This formula shows that the generalized

shift order depends on the dimension of the spherically symmetric part of the Euclidean

space. The formula can be used for reducing some problems in weighted function spaces

to the case of function spaces without weight. For an example we prove the global

continuity with respect to shift and show that functions of class C∞
ev, 0 are dense in the

weighted Lebesgue classes. Bibliography: 6 titles.

1 The Main Notions and Notation

Introduce the notation x′ ∈ Rn, x′′ ∈ RN−n, RN = Rn × RN−n, R
+
N is the Euclidean n-

dimensional half-space of RN defined by x1 > 0, . . . , xn > 0, γk are fixed positive numbers,

k = 1, n, n � N , and S+
r (N) = {x : |x| = r}+ = {x : |x| = r} ∩ R

+
N . The area of the weighted

n-dimensional half-sphere S+
r (N) is defined by formula (1.2.5) in [1]

|S+
r (N)|γ =

∫

S+
r (N)

(x′)γdS = rn+|γ|−1

π
N−n

2

n∏
k=1

Γ
(
γk+1
2

)

2n−1Γ
(
N+|γ|

2

) (1.1)
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where (x′)γ =
n∏

k=1

xγkk . We consider the singular Bessel differential operator

Bγk =
∂2

∂x2k
+

γk
xk

∂

∂xk
,

k = 1, n . Denote Bα′
x′ = Bα1

γ1 . . . Bαn
γn and Dα′′

x′′ = D
αn+1
xn+1 . . . DαN

xN
, Dxj = ∂

∂xj
. The mixed

BD-derivative of order |α| = 2|β′|+ |β′′| of a function f is defined by Bβ′
x′D

β′′
x′′ f(x′, x′′). We say

that a function is x′-even if it is even with respect to each component of the vector x′. The

set C∞
ev of infinitely differentiable x′-even functions is invariant under taking the BD-derivative.

The set of infinitely differentiable x′-even compactly supported functions is denoted by C∞
ev,0.

We introduce the multi-dimensional mixed generalized shift of order γ = (γ1, . . . γn) by

(γT yf)(x) = (γT y′
x′ f)(x

′ x′′ − y′′) =
n∏

k=1

(γkT yk
xk
f)(x′ x′′ − y′′)

where the generalized Poisson shift acts on each weight variable xk (k = 1, n)

(γkT yk
xk
f)(xk, x

k) =
Γ
(
γk+1
2

)

Γ(1/2)Γ(γk/2)

π∫

0

f(
√

x2k + y2k − 2xkyk cos θk xk) sinγk−1 θkdθk

and xk = (x1, . . . xk−1, xk+1, . . . xN ), k = 1, n (cf. [2, 3]). In particular, the shift commutes

with the singular Bessel differential operator: Bγk(
γkT yk

xk f)(xk, x
k) = ( γkT yk

xk Bγf)(xk, x
k) . Con-

volutions of the form

(u ∗ v)γ =

∫

R
+
N

(γT yu)(x)v(y)(y′)γ dy

are called mixed generalized convolutions generated by the mixed generalized shift of order γ.

2 Spherical Transformation of Generalized Shift

Denote by (γT xf(y) � g(y)) one or several arithmetical operations for functions (γT xf) (y)

and g(y). We begin with the case n = 1 (γ is a fixed positive number), i.e., the generalized shift

acts only on one variable

(γT xf)(y) = (γT x1
y1 f)(y1, y

′−x′) =
Γ(γ + 1/2)

Γ(γ2 )Γ(
1
2)

π∫

0

f(
√

x21+y21−2x1y1 cosα, x
′ − y′) sinαdα,

where x, y ∈ R
+
m, R+

m = {x = (x1, x
′) = (x1, x2, . . . xm), x1 > 0} .

Theorem 2.1. Assume that γ>0, γ = [γ] + {γ}, where [γ] and {γ} are the integer and

fractional parts of γ, [γ] = m− 1, m � 1, and {γ} = μ. Let f = f(|x|) and g = g(|x|) be radial

functions in R
+
m = {x : x1 > 0}, and let the weighted Lebesgue integral of the operation ( � )

[f � g]μ =

∫

R
+
m

(μT x1
y1 f(

√
y21 + |x′ − y′|2 ) � g(|y|) ) yμ1 dy < ∞.
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Then

[f � g]μ = |S+
1 (m)|μ [f(r) � g(r)]γ = |S+

1 (m)|μ
∞∫

0

( γT ρf(r) � g(r)) rγ dr, (2.1)

where ρ = |x|, S+
1 (m) = {|y| = 1}+ = {y : |y| = 1, y1 > 0},

|S+
1 (m)|μ =

∫

S+
1 (m)

yμ1 dS =
πm−1/2 Γ (μ+ 1/2)

Γ (m+ μ/2)
. (2.2)

Proof. For [γ] = 0 (i.e., m = 1 and μ = {γ} �= 0) the equality (2.1) becomes identity since it

connects two one-dimensional integrals and |S+
1 (1)|μ = 1 (cf. (2.2)). Therefore, we consider the

case [γ] = m− 1, m � 2. In this case, the generalized shift acts on the first variable. Introduce

the normalizing constant

C(μ) =
Γ(μ+ 1/2)

Γ(μ/2) Γ(1/2)
.

We have

[f � g]μ =

∫

R
+
m

( μT x1
y1 f(

√
y21+|x′−y′|2) � g(|y|)) yμ1 dy

= C(μ)

∫

R
+
m

( π∫

0

f(
√

y21+x21−2x1y1 cosα+|x′−y′|2 ) sinμ−1 αdα � g(|y|)
)
yμ1 dy

= C(μ)

∫

R
+
m

π∫

0

(f(
√

(y1 cosα−x1)2+y21 sin
2 α+|x′−y′|2 ) sinμ−1 α dα � g(|y|)) yμ1 dy.

We recall that y ∈ R
+
m and, consequently, y1 > 0. Therefore, the pair (y1, α) can be regarded as

the polar coordinates of the point (z1, z2) on the half-plane z2 > 0:

z1 = y1 cosα, z2 = y1 sinα (0 � α � π). (2.3)

Taking into account that sinμ−1 αdα yμ1 dy = zμ−1
2 dz1dz2, we write

[f � g]μ = C(μ)

∫

R
+
m+1

(
f(
√

(z1−x1)2+z22+|x′−y′|2 ) � g(|z|)
)

zμ−1
2 dz ,

where z = (z1, z2, y
′) ∈ R

+
m+1 = {z : z2 > 0} . We simplify the obtained relation by rotation

about the Oz2-axis in such a way that the direction of the Oz1–axis coincides with the direction

of the radius-vector of the point x̃ = (x1, 0, x
′):

[f � g]μ = C(μ)

∫

R
+
m+1

(f(
√

(z1−|x|)2 + z22 + |y′|2 ) � g(|z|)) zμ−1
2 dz .
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We introduce the spherical coordinates z = rθ, |θ| = 1 in R
+
m+1:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z1 = r cosϕ1,

y2 = r sinϕ1 cosϕ2

. . . . . . . . . . . .

ym = r sinϕ1 sinϕ2 . . . sinϕm−1 cosϕm,

z2 = r sinϕ1 sinϕ2 . . . sinϕm−1 sinϕm,

∣∣∣∣∣∣∣∣∣∣
0 � ϕi � π, i = 1,m .

It is clear that z2 > 0 under this change of variables. A formula for an element of the unit sphere

in an Euclidean space of an arbitrary dimension is well known. In Rm+1, we have

dS = sinm−1 ϕ1dϕ1 sin
m−2 ϕ2 dϕ2 . . . sinϕm−1 dϕm−1 dϕm .

Hence

|S+
1 (m+ 1)|μ−1 =

∫

S+
1 (m+1)

zμ−1
2 dS

=

π∫

0

sinm+μ−2 ϕ1dϕ1

π∫

0

sinm−2 ϕ2 dϕ2 . . .

π∫

0

sinϕm−1 dϕm−1

π∫

0

dϕm .

Therefore,

(f � g)μ =
C(μ) |S+

1 |μ
π∫

0

(sinϕ1)
m+μ−2 dϕ1

0

∞∫

0

π∫

0

(f(
√

r2θ21+ρ2−2rρ cosϕ+r2(θ ′)2+r2θ2m )

× sinm+μ−2 ϕ dϕ � g(r)) rm+μ−1dr =
C(μ) |S+

1 |μ
π∫

0

(sinϕ1)
m+μ−2 dϕ1

×
∞∫

0

( π∫

0

f(
√

r2θ21+ρ2−2rρ cosϕ+r2(θ ′)2+r2θ2m ) sinm+μ−2 ϕ dϕ � g(r)

)
rm+μ−1 dr .

We note that r2θ21+ρ2−2rρ cosϕ+r2(θ ′)2+r2θ2m = r2 + ρ2 − 2rρ cosα. By the formula for the

Euler β-function, we have

π∫

0

(sinϕ1)
m+μ−2 dϕ1 = 2

π/2∫

0

(sinϕ)2m+μ−1/2−1 dϕ =
Γ(m+ μ− 1/2)Γ(1/2)

Γ(m+ μ/2)
.

The obtained coefficient is the normalizing constant of the generalized shift of orderm−1+μ = γ.

Consequently,

(f � g)μ = C(μ)|S+
1 (m+ 1)|μ−1

∞∫

0

γT ρf(r) � g(r)rγ dr .
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It remains to compute the coefficient. According to formula (2.2) (or formula (1.1) applied to

one weight variable), we have

|S+
1 (m+ 1)|μ−1 = πm/2 Γ(μ/2)

Γ(m+ μ/2)
.

Hence

C(μ)|S+
1 (m+ 1)|μ−1 =

Γ(μ+ 1/2)

Γ(μ/2) Γ(1/2)
.πm/2 Γ(μ/2)

Γ(m+ μ/2)

= πm−1/2 Γ(μ+ 1/2)

Γ(m+ μ/2)
= |S1(m)|μ,

where the last equality follows from (2.2).

Remark 2.1. In the case μ = {γ} = 0, the relation (2.1) should be understood in the

following sense: a usual shift acts on the left-hand side, whereas the operation [�]γ on the right-

hand side is satisfied by one-dimensional functions with the generalized Poisson shift of integer

order [γ] = m − 1. The corresponding equality for generalized convolutions is known (cf., for

example, [3, formula (2.1)]).

We need the following assertion about extension of Euclidean spaces, based on spherical

symmetry. Let γ = (γ1, . . . γn) be a multiindex consisting of positive numbers. We represent

γ = [γ] + {γ}, where [γ] and {γ} are multi-indices of integer and fractional parts of numbers

γi (some of them can vanish, but they cannot vanish simultaneously). Let f(x′, x′′) be defined

in the n-dimensional half-space R
+
N . We consider the function f̃(ξ, x′′) = f(|ξ(1)|, . . . |ξ(n)|, x′′),

where xi = |ξ(k)|, ξ(k) = (ξ
(k)
1 , . . . ξ

(k)
mk) ∈ R

+
mk

, (ξ, x′′) ∈ R
+
m × RN−n = R

+
N−n+m, m =

n∑
k=1

mk,

mk = [γk] + 1. Since this function is even with respect to ξ
(k)
i , we can assume that all the

components of ξ are positive. We set R+
N−n+m = {(ξ, x′′) : ξ(k)1 > 0, k = 1, n} .

Theorem 2.2. Let γT y be the mixed generalized shift corresponding to the multiindex γ,

and let f and g be summable functions in R
+
N for which there exists a weighted integral of the

operation ( � ) generated by this shift. Then

[f � g]γ =

∫

R
+
N

((γT xf)(y) � g(y))(y′)γ dy =

(
n∏

k=1

|S+
1 (mk)|{γk}

)−1

×
∫

R
+
N−n+m

(( {γ}T ξ
η f̃)(η, x

′′ − y′′) � g̃(η, y′′))η{γ} dη dy′′ , (2.4)

where {γ}T ξ
η is the mixed generalized shift (acting only on the first coordinate η

(k)
1 of the vector

η(k) ∈ Rmk
, whereas usual shifts act on the remaining variables)

|S+
1 (mk)|{γ} =

∫

S+
1 (mk)

(ξ
(k)
1 ){γk} dS =

πmk−1/2 Γ({γk}+ 1/2)

Γ(mk + {γk}/2) .
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Proof. We have∫

R
+
N−n+m

(( {γ}T ξ
η f̃)(η, x

′′ − y′′) � g̃(η, y′′))η{γ} dη dy′′

=

∫

RN−n

dy′′
∫

R
+
m1

. . .

∫

R
+
mn

( {γ}T ξ
η f̃(η, x

′′ − y′′) � g̃(η, y′′))
n∏

k=1

(η
(k)
1 ){γk} dη(1) . . . dη(n) .

Applying formula (2.1) to each integral over R+
mk

, we obtain (2.4).

3 Properties of Weighted Lebesgue Classes of Functions

Connected with Generalized Shift

We consider functions defined in R
+
N and assume that n is fixed, 1 � n � N (the case

n = 0 corresponds to the classical theory). We denote by Ω+ a bounded domain adjacent to the

coordinate hyperplanes x1 = 0, . . . , xn = 0. The boundary of Ω+ consists of two parts: Γ+ in

R
+
n and Γ0 in the hyperplane x1 = 0, . . . , xn = 0. Since we will consider x′-even functions, Γ0 is

the symmetry surface. Therefore, Ω+ is understood as a partially closed domain Ω+ = Ω ∪ Γ0.

An interior subdomain of Ω+ adjacent to the symmetry surface is called s-interior. We denote

by Ω+
δ an s-interior subdomain of Ω+ at distance at least δ from Γ+. We denote by Lγ

p(Ω+)

(p � 1) the closure of the set of measurable x′-even functions in the norm

‖f‖Lγ
p(Ω+) =

[ ∫

Ω+

|f(x)|p (x′)γ dx

]1/p

. (3.1)

Definition 3.1. A function f ∈ Lγ
p(Ω+) is globally continuous in Lγ

p(Ω+) for a mixed

generalized shift of order γ if for any ε > 0 there is δ(ε) > 0 such that

‖ γT hf(x)− f(x)‖Lγ
p (Ω

+
δ ) < ε ∀ |h| < δ . (3.2)

By (3.1), the function |f |p can have singularity on Γ0 that is controlled by the weight (x′)γ .
We use the approach due to Kipriyanov (cf., for example, [4]). For x ∈ R

+
N we introduce the

spherical coordinates x = (r, θ), |θ| = 1 and set f(x) = 0, x /∈ Ω+. Then (3.1) takes the form

‖f‖Lγ
p(Ω+) =

⎡
⎢⎣

∞∫

0

∫

S+
1 (N)

|f(rθ)|p rN−1+|γ| (θ′)γ dSdr

⎤
⎥⎦
1/p

.

Hence such a function can have singularity at r = 0 controlled by the weight connected with the

dimension of the Euclidean space corresponding to the domain Ω. Further we use the fact that

the integrability of functions with singularity is improved with increasing the dimension of the

integration domain, which allows us to use Theorems 2.1 and 2.2.

Let us consider (3.2). It is clear that if the singularity is caused by the weight xγ1 , then

it is located on the hyperplane x1 = 0. The generalized shift sends such a singularity to the
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hyperplane x1 = y1, but this singularity is not controlled by the weight since this weight is

left “unshifted.” The same phenomenon is observed in the classical theory. In th case under

consideration, it is expected that the singularity as well as the weight degree can have an

arbitrarily large order. Nevertheless, the following assertion is valid.

Theorem 3.1. Any function f ∈ Lγ
p(Ω

+
N ) is globally continuous for a mixed generalized shift

of order γ.

Proof. For functions of class Lp, p � 1, this theorem is well known. Therefore, we consider

only the case of the power weight xγii . Assume that the function under consideration is continuous

outside Γ0. We first assume that the multiindex γ consists of natural numbers. We use Theorem

2.2, where for the operation ( � ) we take the difference

( γT h
x f � g) = ( γT h

x f)(x)− f(x) = ( γT x
h f)(h)− f(x) = ( γT h

x (f(h)− f(x) ) p � 1 .

By the obvious symmetry of the generalized shift, T h
x f(x) = T x

h f(h)., we have

‖( γT h
x f)(x)− f(x)‖Lγ

p
= ‖ γT x

h (f(h)− f(x))‖Lγ
p
.

As was proved in [5], ‖ γT hf(x)‖Lγ
p
� ‖f(x)‖Lγ

p
. Moreover,

‖ γT hϕ(x)‖Lγ
p
� C(γ)

⎡
⎢⎣

π∫

0

sinγ−1 αdα

∫

R
+
m

∣∣∣∣ϕ(
√

x21 + h21 − 2x1h1 cosαx′ − h′)
∣∣∣∣
p

xγ1 dx

⎤
⎥⎦
1/p

.

(3.3)

Using (3.3) and (2.3), we get

‖T hf(x)− f(x)‖Lγ
p (Ω

+
δ,N ) � ‖f̃(ξ + η x′′ + h′′)− f̃(ξ, x′′)‖Lp(Ω

+
δ,N+m),

where the domain Ω+
δ,N+m ∈ RN+m is obtained by rotation of Ω+

δ,N about the coordinate hyper-

plane xk = 0, k = 1, n, |η(k)| = hk, and the function f̃ is radial with respect to each group of

variables η(k) ∈ Rmk
. However, since any function in the Lebesgue class is globally continuous

for any ε > 0, there is δ = δ(ε) > 0 such that

‖f̃(ξ + η, x′′ + h′′)− f̃(ξ, x′′)‖Lp(Ω
+
δ,N+m) < ε ∀ |(η, h′′)| < δ .

Taking into account that |(η, h′′)| = |h| in this case, we find (3.2).

Let {γk} �= 0. We assume that f ∈ L
[γ]
p (Ω+), [γ] = m − 1, m � 2. Taking into account the

inequalities

xk − hk �
√

x2k + h2k − 2xkhk cosαk � xk + hk, (3.4)

and the first mean-value theorem, for continuous functions f(xk, x
k) with respect to xk we get

Cμk

π∫

o

f̃(
√

x2k + h2k − 2xkhk cosαk x
k) sin{γk} αk dαk

= C({γk})f̃(xk + ĥk, x
k)

π∫

0

sin{γk} αk dαk = f(xk + ĥk, x
k)
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where xk + ĥk is the middle point between xk and xk + hk, and, consequently, ĥk < hk. Hence

‖T hf(x)−f(x)‖Lγ
p (Ω

+
δ,N ) =

∫

RN−n

dy′′
∫

R
+
m1

. . .

∫

R
+
mn

| {γ}T h′
ξ f̃(ξ, x′′ + h′′)− g̃(ξ, x′′) |p

n∏
k=1

(ξ
(k)
1 ){γk} dηdx′′ .

Using (3.3) and (2.3), we find

‖T hf(x)− f(x)‖Lγ
p (Ω

+
δ,N )

� C({γ})
∫

RN−n

dy′′
∫

R
+
m1

. . .

∫

R
+
mn

| f̃(ξ + ĥ, x′′ + h′′)− f̃(ξ, x′′) |p
n∏

k=1

(ξ
(k)
1 ){γk} dξdx′′ .

Here, powers of the weight are small and, consequently, we can assert that f̃ ∈ Lp(Ω
+
N+m).

Since Ω+(N) is bounded, there exists R such that ξ
(k)
1 � R for all k = 1, n. Consequently,

‖T hf(x)− f(x)‖Lγ
p (Ω

+
δ,N ) � C({γ})R|γ|

∫

RN−n

dy′′
∫

R
+
m

|f̃(ξ + ĥ, x′′ + h′′)− f̃(ξ, x′′) |p dξdx′′ .

Thus, the proof of (3.2) is reduced to the theorem on global continuity of functions in the

Lebesgue classes without weight for 1 � p < ∞.

It remains to consider the case where one or several natural numbers mk are equal to 1.

The case of one weight variable is principal. Assume that x1 ∈ (0,∞), f(x1, x
′′) ∈ Lγ

p(Ω+(N)),

γ = {γ} < 1. Applying (3.3) and (2.3), we obtain the inequality

∫

R
+
N

|(γT hf)(x1, x
′′ + h′′)− f(x)|p xγ dx

� C(γ)

∫

R
+
N+1

|f(
√

(z1 − x)2 + z22 x
′′ + h′′)− f(

√
z21 + z22 x

′′ + h′′)|p zγ−1
2 dz1dz2 dx

′′ .

We see that the weight has negative degree, the singularity of the integrable expressions caused

by the weight is concentrated on the hyperplane z2 = 0 and should be weak relative to one-

dimensional integration. One can assume (for example, based on the mean-value theorem) that

the function is continuous. Introducing the spherical coordinates, we write

∫

R
+
N

|(γT hf)(x1, x
′′ + h′′)− f(x)|p xγ dx � C(γ)

∞∫

0

rm+|γ|dr

×
∫

S+
1 (m+1)

∣∣f(
√

(rΘ1+ρΘ1)2+r2θ22 rθ
′′ + ρΘ′′)− f(

√
r2θ21 + r2Θ2

2 rθ
′′)|p θγ−1

2 dS(θ) dr

= C(γ)

∞∫

0

rm+|γ|dr
∫

S+
1 (m+1)

|f̃((rθ̂ + ρΘ̂)− f̃(rθ̂)|p θγ−1
2 dS(θ̂)
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� C(γ)Rm+|γ|
∞∫

0

r max
̂θ, ̂Θ

|f̃((rΘ̂ + ρΘ̂)− f̃(rθ̂|)|p
∫

S+
1 (m+1)

θ̂γ−1
2 dS(θ̂)

� C(γ)Rm+|γ| |S+
1 (m+ 1)|γ−1

∞∫

0

max
̂θ, ̂Θ

|f̃((rθ̂ + ρΘ̂)− f̃(rθ̂)|p dr .

By the theorem on global continuity of functions in Lp(Ω), we arrive at (3.2).

We formulate a result about the density of the space of x′-even infinitely differentiable

compactly supported functions in the space Lγ
p(Ω+). The Sobolev–Kipriyanov averages in the

case n = 1 were introduced in [6]. In the general case, the average kernel is an infinitely

differentiable x′-even function ψ(t) on R
+
N that vanishes for |t| � 1 and satisfies the condition

∫

R
+
N

ψ(x) (x′)γ dx = 1.

We set

ωε(x) =
1

εN+|γ| ψ
(x
ε

)
.

It is easy to verify that ∫

R
+
N

ωε(x) (x
′)γ dx = 1 .

For an example of ωε we can take the same function as in the classical case:

ωε(x) =

⎧⎪⎨
⎪⎩

1

λ
e

|x|2
|x|2−ε2 , |x| < ε,

0, |x| � ε,

where

λ = εN+|γ| |S+
1 (N)|γ

1∫

0

e
t2

t2−1 t|γ| dt |S+
1 (N)|γ =

∫

S+
1 (N)

(x′)γ dS.

Assume that f ∈ Lγ
p(Ω+) is extended by zero outside Ω+. The function

fε(x) = (f ∗ ωε)γ(x) (3.5)

is called the Sobolev–Kipriyanov ε-average of f . By ( γT yf, g)γ = (f, γT yg)γ (cf. [2]), we have

fε(x)− f(x) =
1

εN+γ

∫

R+
N

( γT u
x ψ)

( |x|
ε

)
(f(u)− f(x))(u′)γ du

=

∫

R+
N

ψ(|y|)(T yε
x f(x)− f(x))(y′)γ dy.
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Using the Minkowsky inequality, we get

‖fε − f‖Lγ
p(Ω+) =

( ∫

R+
N,x

∣∣∣∣∣
∫

R+
N,y

ψ(|y|)(( γT yε
x f)(x)− f(x))(y′)γ dy

∣∣∣∣∣
p

(x′)γ dx

) 1
p

�
∫

R+
N,y

ψ(|y|)‖( γT yε
x f)(x)− f(x)‖Lγ

p (R
+
N,x)

(y′)γ dy � sup
|y|� ε

‖( γT yε
x f)(x)− f(x)‖Lγ

p (R
+
N,x)

.

By the global continuity of generalized shift, we have

lim
ε→0

‖fε − f‖Lγ
p(Ω+) = 0. (3.6)

Thus, we proved the following assertion.

Theorem 3.2. The averaged functions fε generated by a mixed generalized shift of order γ

strongly converge to a function f in the weighted Lebesgue class Lγ
p .

Corollary 3.1. The set C∞
ev,0(R

+
N ) of functions of the form (3.5) is everywhere dense in

Lγ
p(Ω+), 1 � p < ∞, γ > 0.

Thus, Lγ
p(Ω+) can be regarded as the closure of C∞

ev, 0 in the norm (3.1).

In the case p = +∞, the equality (3.6) fails. However, if Ω+ = R
+
N and f(x) is x′-even and

uniformly continuous on R
+
N , then

‖fε − f‖Lγ
∞(R+

N ) � sup
|y|<ε

|T yf(x)− f(x)| → 0 (ε → 0).
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