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Exact constants in Jackson-type inequalities for the best mean
square approximation in L2(R) and exact values
of mean ν-widths of the classes of functions
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Abstract. On the classes of functions Lr
2(R), where r ∈ Z+, for the characteristics of smoothness

Λk(f, t) = {(1/t)
∫ t

0
∥∆k

h(f)∥2dh}1/2, t ∈ (0,∞), k ∈ N, the exact constants in the Jackson-type inequalities
have been obtained in the case of the best mean square approximation by entire functions of the exponential
type in the space L2(R). The exact values of mean ν-widths of the classes of functions defined by Λk(f)
and the majorants Ψ satisfying some conditions are calculated.

Keywords. Entire function, best mean square approximation, characteristic of smoothness of a function,
majorant, mean ν-width.

1. Introduction

The theory of approximation of functions by various aggregates such as polynomials, splines, entire
functions, splashes, linear operators, etc. is one of the most succefully developed trends of modern
mathematics and is of significant importance for its various fields. As for the approximation of func-
tions given on the whole real axis, we note that the start of studies in this direction was given by
S. N. Bernshtein in [1]. In this case, the entire functions of the finite exponential type serve as a tool
of approximation. The indicated space was established by S.N. Bernshtein with the help of a definite
limiting process involving the algebraic polynomials. In what follows, the various aspects of the theory
of approximation of functions on the real axis by entire functions of the exponential type were ana-
lyzed by N. I. Achiezer, A. F. Timan, M. F. Timan, S. M. Nikol’skii, I. I. Ibragimov, F. G. Nasibov,
V. Yu. Popov, A. G. Babenko, V. V. Arestov, A. I. Stepanets, S. Ya. Yanchenko, and others (see,
e.g., [2]– [17]). The list of some final results related to the calculation of exact constants in the Jackson
inequalities in the mean square approximation by entire functions of the exponential type can be found,
for example, in [10, 14, 17]. As for the solution of an analogous problem for other characteristics of
smoothness distinct from the classical modulus of continuity, it is worth to note the results obtained
in works [12–14,16]. In this case, the Jackson-type inequalities were considered.

The present work continues the indicated direction for the characteristics of smoothness that were
got by means of the averaging of the squared norms of finite differences of functions. Recall that the
similar characteristics of smoothness were considered by L. Leindler, R. M. Trigub, K. V. Runovskii,
N. P. Pustovoitov and others (see, e.g., [18]– [24]) in the 2π-periodic case, while solving a number of
problems of the theory of approximation of functions.

Let L2(R), where R := {x : −∞ < x < ∞}, be a space of all functions f measurable on the
real axis. Their squared modulus is integrable by Lebesgue on any finite segment, and the norm
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∥f∥ := {
∞∫

−∞
|f(x)|2dx}1/2 <∞. For any function f ∈ L2(R), there exists a finite difference of the k-th

order ∆k
h(f, x) :=

k∑
j=0

(−1)k−j
(
k
j

)
f(x + jh) almost everywhere on R, where h ∈ R, k ∈ N. Consider

the following characteristic of smoothness:

Λk(f, t) :=
{1

t

t∫
0

∥∆k
h(f)∥2dh

}1/2
, (1.1)

where t > 0. The comparison of quantity (1.1) with the customary modulus of continuity of the k-th
order ωk(f, t) := sup{∥∆k

h(f)∥ : |h| 6 t} implies that Λk(f, t) 6 ωk(f, t) for any t > 0. We note that,
in the 2π-periodic case, the properties of Λk(f) were analyzed in work [24].

The characteristic of smoothness (1.1) arises naturally, if we consider the τ -moduli of smoothness
of the k-th order in L2(R) that were introduced by K. Ivanov in [25, 26], while solving a number of
problems of the theory of approximation of functions in the weight spaces Lp,w[a, b]. By setting that
the weight function w ≡ 1 and p = p′ = 2 in L2(R) [25,26], we have τk(f, 1;λ(x))2,2 = ∥ωk(f, ·;λ(·))2∥,
where λ(x) is any positive function, and

ωk(f, x;λ(x))2 =
{ 1

2λ(x)

λ(x)∫
−λ(x)

|∆k
h(f, x)|2dh

}1/2
.

Taking λ(x) ≡ t, where t is any positive constant, we have

τ2k (f, 1; t)2,2 =
1

2t

∞∫
−∞

dx

t∫
−t

|∆k
h(f, x)|2dh =

1

2t

t∫
−t

∥∆k
h(f)∥2dh. (1.2)

Since

∥∆k
h(f)∥2 = 2k

∞∫
−∞

(1− cos(hu))k|F(f, u)|2du, (1.3)

where F(f) is the Fourier transform of the function f ∈ L2(R) (see, e.g., [17]), we have ∥∆k
h(f)∥ =

∥∆k
−h(f)∥, h > 0. With regard for this result and relations (1.1)–(1.2), we get τk(f, 1; t)2,2 = Λk(f, t),

where t > 0.
The characteristic of smoothness (1.1) for functions from L2(R) can be also obtained on the basis

of a different reasoning. Let D := (a, b), where a and b can take not only finite, but also infinite values
−∞ and ∞, respectively, i.e., the interval (a, b) can be finite or infinite. For the functions f ∈ Lp(D),
1 6 p <∞, the following characteristic of smoothness was considered in [27, p. 26]:

ω∗k
φ (f, t)p =

{1

t

t∫
0

∫
D

|∆k
hφ(x)f(x)|pdxdh

}1/p
. (1.4)

Here, t > 0. The function φ defined on the set D is positive and satisfies a number of requirements
presented in item 1.2 in [27]; ∆k

hφ(x)f(x) is the direct or inverse finite difference of the k-th order for
the function f such that it exists almost everywhere on D, i.e.,

∆
k
hφ(x)f(x) :=

−→
∆k

hφ(x)f(x) =

k∑
j=0

(−1)j
(k
j

)
f(x+ (k − j)hφ(x))
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or

∆
k
hφ(x)f(x) :=

←−
∆k

hφ(x)f(x) =

k∑
j=0

(−1)j
(k
j

)
f(x− jhφ(x)).

In this case, we set
−→
∆k

hφ(x)f(x) = 0 or
←−
∆k

hφ(x)f(x) = 0, if the segment [x, x+khφ(x)] or [x−khφ(x), x],
respectively, does not belong to the set D. Let, for example, D = (−∞,∞), φ̃(x) ≡ 1, p = 2,
∆

k
hφ̃(x)f(x) =

−→
∆k

hφ̃(x)f(x) = ∆k
h(f, x) in formula (1.4). Then relations (1.1) and (1.4) for f ∈ L2(R)

yield ω∗k
φ̃ (f, t)2 = Λk(f, t), t > 0.

From our viewpoint, the above results confirm the self-sufficiency of the characteristic of smoothness
(1.1), which can be used in the study of the behavior of exact constants in the Jackson-type inequalities.
On this basis in the subsequent sections, we will get exact Jackson-type inequalities in the space L2(R)
and will calculate the exact values of a number of mean ν-widths of the classes of functions defined by
means of Λk(f).

2. The best mean square approximation by entire functions of the exponential
type on the whole real axis

By the symbol Bσ,2, where 0 < σ <∞, we denote the set of restrictions of all entire functions of the
exponential type σ which belong to the space L2(R) on R. For any function f ∈ L2(R), the quantity
Aσ(f) := inf{∥f − g∥ : g ∈ Bσ,2} is called the best approximation of f by elements of the subspace
Bσ,2 in the metric of L2(R). For any class M ⊂ L2(R), we set Aσ(M) := sup{Aσ(f) : f ∈ M}. We
introduce the notation

ηk(t;u) :=
1

t

t∫
0

(1− cos(hu))kdh, (2.1)

where k ∈ N, t ∈ (0,∞), and u ∈ R. We note that lim
t→0+

ηk(t;u) = 0, and ηk(t; 1), as a function of the

variable t varying on the set (0, π], increases, because

dηk(t; 1)

dt
=

d

dt

{1

t

t∫
0

(1− cosh)kdh
}
=

1

t

{
(1− cos t)k − 1

t

t∫
0

(1− cosh)kdh
}

>
1

t

{
(1− cos t)k − (1− cos t)k

}
= 0.

Since (see, e.g., [28, item 1.320, formula 1])

2k(1− cos(hu))k =
(
2 sin

(hu
2

))k

=
(2k
k

)
+ 2

k−1∑
j=0

(−1)k−j
(2k
j

)
cos((k − j)hu)

=
(2k
k

)
− 2

k∑
j=1

(−1)j+1
( 2k

k − j

)
cos(jhu),
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we set sinc (t) is equal to sin(t)/t for t ̸= 0 and to 1 for t = 0. We consider also that u := 1. By virtue
of formula (2.1) and the last inequality, we have

2kηk(t; 1) =
(2k
k

)
− 2

k∑
j=1

(−1)j+1
( 2k

k − j

)
sinc (jt). (2.2)

Theorem 1. Let 0 < t 6 3π/4 and 0 < σ <∞. Then the equality

sup
f∈L2(R)

Aσ(f)

Λ1(f, t/σ)
=

1√
2(1− sinc (t))

(2.3)

holds. Here, the upper bound on the left-hand side of relation (2.3) is calculated over all functions f
from L2(R) that are not equivalent to zero.

Proof. It is well known [7] that, for any function f ∈ L2(R), there exists a unique function Lσ(f) ∈ Bσ,2

that has the least deviation from f in the metric of the space L2(R) and takes the form

Lσ(f, x) :=
1√
2π

σ∫
−σ

F(f, u)eixudu, (2.4)

where F(f) is the Fourier transform of the function f in L2(R). In this case,

A2
σ(f) = ∥f − Lσ(f)∥2 =

∫
|u|>σ

|F(f, u)|2du. (2.5)

By formulas (1.1), (1.3), and (2.1), we get

Λ2
1(f, τ) = 2

∞∫
−∞

η1(τ ;u)|F(f, u)|2du = 2

∞∫
−∞

(1− sinc (τu))|F(f, u)|2du. (2.6)

Consider the function that is defined as (1 − sinc (x))0 := {1 − sinc (x), if 0 < x 6 3π/4, and
1 − 2

√
2/(3π), if 3π/4 6 x < ∞}. In view of the geometric reasoning related to the behavior of

sinc (x), this function satisfies the inequality

(1− sinc (ax))0 > (1− sinc (bx))0, (2.7)

where |b| 6 |a| <∞ and x ∈ R. With regard for relations (2.5)–(2.7), we have

Λ2
1(f, τ) > 2

∫
|u|>σ

(1− sinc (τu))|F(f, u)|2du

> 2

∫
|u|>σ

(1− sinc (τu))0|F(f, u)|2du > 2

∫
|u|>σ

(1− sinc (τσ))0|F(f, u)|2du

= 2(1− sinc (τσ))0A2
σ(f). (2.8)

Let τ = t/σ, where 0 < t 6 3π/4. Then formula (2.8) yields the inequality

sup
f∈L2(R)

Aσ(f)

Λ1(f, t/σ)
6 1√

2(1− sinc (t))
. (2.9)
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In order to get the lower bound of the extreme characteristic on the left-hand side of inequality
(2.9), we consider, like in works [12]– [17], the entire function λε(x) :=

√
2/π(qσ+ε(x)− qσ(x)) of the

exponential type σ + ε, where qa(x) := a sinc (ax), a > 0; ε > 0. In this case, the Fourier transform
of the function qa takes the form F(qa, x) = {

√
π/2, if |x| < a,

√
π/8, if |x| = a, and 0, if |x| > a}.

Then F(λε, x) = {1, if σ < |x| < σ+ ε, 1/2, if |x| = σ+ ε or |x| = σ, and 0, if |x| > σ+ ε or |x| < σ},
i.e., λε ∈ L2(R). By virtue of formula (2.4), we get

Aσ(λε) =
√
2ε. (2.10)

Let

η∗k(t;u) :=
1

t

t∫
0

(1− cos(hu))k∗dh, (2.11)

where (1− cosu)∗ := {1− cosu, if 0 6 u 6 π; 2, if u > π}, k ∈ N.
Relation (1.3) implies that ∥∆1

h(λε)∥2 6 4ε(1− cos((σ + ε)h))∗. From whence and formulas (1.1)
and (2.11), we have

Λ1(λε, t/σ) 6 2
√
εη∗1(t/σ;σ + ε). (2.12)

With regard for (2.10) and (2.12), we get

sup
f∈L2(R)

Aσ(f)

Λ1(f, t/σ)
> Aσ(λε)

Λ1(λε, t/σ)
=

1√
2η∗1(t/σ;σ + ε)

. (2.13)

Relation (2.11) implies that the quantity η∗1(t/σ;σ+ε) does not increase as ε→ 0+ for constant values
of t and σ. We note that lim

ε→0+
η∗1(t/σ;σ + ε) = η1(t/σ;σ) = 1− sinc (t), where 0 < t 6 π. Therefore,

for any arbitrarily small number δ > 0, we can indicate such value of ε̃ = ε̃(δ) ∈ (0, δ) for which

1

η∗1(t/σ;σ + ε̃)
>

1

1− sinc (t)
− δ.

Using the definition of the upper bound of a number set, we get

sup
ε∈(0,σ̃)

1

η∗1(t/σ;σ + ε̃)
=

1

1− sinc (t)
, (2.14)

where σ̃ := min(σ, 1/σ). We note that the left-hand side of relation (2.13) is independent of ε.
Calculating the upper bound in ε ∈ (0, σ̃) for its right-hand side and considering equality (2.14), we
have

sup
f∈L2(R)

Aσ(f)

Λ1(f, t/σ)
> 1√

2(1− sinc (t))
. (2.15)

The required relation (2.3) follows from inequalities (2.9) and (2.15) for 0 < t 6 3π/4. Theorem 1 is
proved.

By Lr
2(R), where r ∈ N, we denote the class of functions f ∈ L2(R) for which the derivatives of the

(r−1)-th order f (r−1) (f (0) ≡ f) are locally absolutely continuous, and the derivatives of the r-th order
f (r) belong to the space L2(R). We note that Lr

2(R) is a Banach space with the norm ∥f∥+ ∥f (r)∥.
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Theorem 2. Let σ ∈ (0,∞); r, k ∈ N; t ∈ (0, π]. Then the equality

sup
f∈Lr

2(R)

σrAσ(f)

Λk(f (r), t/σ)
=

{(2k
k

)
− 2

k∑
j=1

(−1)j+1
( 2k

k − j

)
sinc (jt)

}−1/2
(2.16)

holds.

Proof. Let f be any function from the class Lr
2(R). Since, almost everywhere on R,

F(f (r), x) = (ix)rF(f, x), (2.17)

we can write

∥∆k
h(f

(r))∥2 = 2k
∞∫

−∞

(1− cos(hu))ku2r|F(f, u)|2du

in view of formulas (1.3) and (2.17). From whence with the use of relation (1.1) and notation (2.1),
we have

Λ2
k(f

(r), τ) =
2k

τ

τ∫
0

dh

∞∫
−∞

(1− cos(hu))ku2r|F(f, u)|2du

> 2k
∫

|u|>σ

u2rηk(τ ;u)|F(f, u)|2du. (2.18)

Starting from (2.18), we consider the auxiliary function

Gk(τ, u) := u2rηk(τ ;u) =
u2r−1

τ

uτ∫
0

(1− cosh)kdh, (2.19)

where u ∈ R, τ ∈ (0,∞). Formulas (2.1) and (2.19) imply that, for any fixed τ, the function Gk, as a
function of the variable u, is nonnegative and even on the real axis R and increases monotonically on
the semiaxis R+ := {x : 0 6 x <∞}. Hence,

inf{Gk(τ, u) : |u| > σ} = Gk(τ, σ), (2.20)

where τ ∈ (0,∞) is any constant. Using relations (2.18)–(2.20) and (2.5), we have

Λ2
k(f

(r), τ) > 2k
∫

|u|>σ

Gk(τ, u)|F(f, u)|2du > 2kGk(τ, σ)A2
σ(f)

= 2kσ2rηk(τ ;σ)A2
σ(f).

From whence, by setting τ = t/σ, where t ∈ (0, π], we get

sup
f∈Lr

2(R)

σrAσ(f)

Λk(f (r), t/σ)
6 1√

2kηk(t/σ;σ)
=

1√
2kηk(t; 1)

. (2.21)
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In order to calculate the lower bound of the extreme characteristic on the left-hand side of relation
(2.21), we consider again the function λε ∈ Lr

2(R), where ε > 0, which was introduced in the proof of
Theorem 1. Using formula (2.17), we have

∥∆k
h(λ

r
ε)∥2 = 2k+1

σ+ε∫
σ

u2r(1− cos(hu))kdu

6 2k+1ε(σ + ε)2r(1− cos(h(σ + ε)))k∗.

Integrating the given relation over the variable h in the limits from 0 to t/σ and multiplying the
obtained result by σ/t, we get

Λk(λ
(r)
ε , t/σ) 6

√
2ε(σ + ε)r

√
2kη∗k(t/σ;σ + ε)

by virtue of (1.1) and (2.11). Hence,

sup
f∈Lr

2(R)

σrAσ(f)

Λk(f (r), t/σ)
> σrAσ(λε)

Λk(λ
(r)
ε , t/σ)

> 1

(1 + ε/σ)r
√

2kη∗k(t/σ;σ + ε)
. (2.22)

In view of (2.11), the denominator of the right-hand side of inequality (2.22) is a positive monotonically
decreasing function of ε > 0 for constant values of σ, k, t. Using the definition of the upper bound of
a number set, as in the proof of Theorem 1, and formula (2.1), we have

sup
ε∈(0,σ̃)

1

(1 + ε/σ)r
√

2kη∗k(t/σ;σ + ε)
=

1√
2kηk(t; 1)

, (2.23)

where σ̃ = min(σ, 1/σ). We note that the left-hand side of relation (2.22) is independent of ε.
Therefore, by calculating the upper bound in ε ∈ (0, σ̃) for its right-hand side and using equality
(2.23), we get

sup
f∈Lr

2(R)

σrAσ(f)

Λk(f (r), t/σ)
> 1√

2kηk(t; 1)
. (2.24)

The required equality (2.16) follows from inequalities (2.21) and (2.24) and relation (2.2), which
completes the proof of Theorem 2.

Let us set

γk,r,p,x(φ, u) := u2r
{ x∫

0

η
p/2
k (t;u)φ(t)dt

}2/p
. (2.25)

Relations (2.1) and (2.25) imply that γk,r,p,x(φ, u), as a function of u for fixed values of the remaining
parameters, is positive and even.

The following proposition is valid.

Theorem 3. Let k ∈ N; r ∈ Z+; p ∈ (0, 2]; σ ∈ (0,∞); x be a finite positive number, and let φ
be a nonnegative function summable on the segment [0, x], which is not equivalent to zero. Then the
equality

sup
f∈Lr

2(R)

Aσ(f)

{
∫ x
0 Λp

k(f
(r), t)φ(t)dt}1/p

= 2−k/2{ inf
u>σ

γk,r,p,x(φ, u)}−1/2 (2.26)

holds. In the case r = 0, we set L0
2(R) ≡ L2(R) and calculate the upper bound in relation (2.26) over

all functions f ∈ L2(R), which are not equivalent to zero.
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Proof. Setting

H(f ; t, u) := 2kp/2 urp η
p/2
k (t;u) |F(f, u)|p φ(t),

using relations (2.18) and (2.5) and the generalized Minkowski inequality (see, e.g., [5, Chapt. 1, i.
1.3]), and considering notation (2.25), we get

{ x∫
0

Λp
k(f

(r), t)φ(t)dt
}1/p

>
{ x∫

0

[
2k

∫
|u|>σ

u2rηk(t;u)|F(f, u)|2du
]p/2

φ(t)dt
}1/p

=
{ x∫

0

[ ∫
|u|>σ

H2/p(f ; t, u)du
]p/2

dt
}1/p

>
{ ∫
|u|>σ

[ x∫
0

H(f ; t, u)dt
]2/p

du
} p

2
· 1
p

= 2k/2
{ ∫
|u|>σ

|F(f, u)|2
[
urp

x∫
0

η
p/2
k (t, u)φ(t)dt

]2/p
du

}1/2

= 2k/2
{ ∫
|u|>σ

|F(f, u)|2γk,r,p,x(φ, u)du
}1/2

> 2k/2Aσ(f)
{
inf
u>σ

γk,r,p,x(φ, u)
}1/2

.

Hence,

sup
f∈Lr

2(R)

Aσ(f){ ∫ x
0 Λp

k(f
(r), t)φ(t)dt

}1/p
6 2−k/2

{
inf
u>σ

γk,r,p,x(φ, u)
}−1/2

. (2.27)

We now get the lower bound of the extreme characteristic on the left-hand side of inequality
(2.27). Let u ∈ R be any number satisfying the condition |u| > σ. Consider the function λ̃ε,u(x) :=√

2/π
(
q|u|+ε(x) − q|u|(x)

)
, where ε ∈ (0, ũ), ũ := min(|u|, 1/|u|); qa(x) := a sinc (ax), a > 0, that is

an entire function of the exponential type, |u|+ ε. For the Fourier transform of the function λ̃ε,u, we

have F(λ̃ε,u;x) = {1, if |u| < |x| < |u| + ε; 1/2, if |x| = |u| or |x| = |u| + ε; and 0, if |x| < |u| or
|x| > |u| + ε}. Therefore, by virtue of formula (2.17) and the equality ∥λ̃(r)ε,u(·)∥ = ∥(·)rF(λ̃ε,u; ·)∥ we
get λ̃ε,u ∈ Lr

2(R) for any u ∈ R and |u| > σ. We note that

∥∆k
h(λ̃

(r)
ε,u)∥2 = 2k+1

|u|+ε∫
|u|

(1−cos(hv))kv2rdv 6 2k+1ε(|u|+ε)2r
(
1−cos(h(|u|+ε))

)k
∗.

Integrating the given relation over h in the limits from 0 to t, multiplying the obtained inequality by
1/t, and using formulas (1.1) and (2.11), we have

Λk

(
λ̃(r)ε,u; t

)
6 2k/2

√
2ε (|u|+ ε)r

√
η∗k(t; |u|+ ε). (2.28)
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Raising both sides of inequality (2.28) to the power p ∈ (0, 2], multiplying then by the function φ(t),
integrating over the variable t in the limits from 0 to x, and taking into account that, by virtue of
(2.5), Aσ(λ̃ε,u) =

√
2ε, we get

x∫
0

Λp
k

(
λ̃(r)ε,u; t

)
φ(t)dt 6 2pk/2Ap

σ(λ̃ε,u)(|u|+ ε)pr
x∫

0

(
η∗k(t; |u|+ ε)

)p/2
φ(t)dt. (2.29)

Using (2.29), we have

sup
f∈Lr

2(R)

Aσ(f){ ∫ x
0 Λp

k(f
(r), t)φ(t)dt

}1/p
> Aσ(λ̃ε,u){ ∫ x

0 Λp
k(λ̃

(r)
ε,u; t)φ(t)dt

}1/p

> 2−k/2(|u|+ ε)−r
{ x∫

0

(
η∗k(t; |u|+ ε)

)p/2
φ(t)dt

}−1/p
. (2.30)

We note that

sup
ε∈(0,ũ)

(|u|+ ε)−r
{ x∫

0

(
η∗k(t; |u|+ ε)

)p/2
φ(t)dt

}−1/p
=

{
γk,r,p,x(φ, u)

}−1/2
.

Calculating the upper bound in ε ∈ (0, ũ) for the right-hand side of relation (2.30), we have

sup
f∈Lr

2(R)

Aσ(f){ ∫ x
0 Λp

k(f
(r), t)φ(t)dt

}1/p
> 2−k/2

{
γk,r,p,x(φ, u)

}−1/2
,

where u > σ. Using the definitions and properties of exact upper and lower bounds of a number set,
we get

sup
f∈Lr

2(R)

Aσ(f){ ∫ x
0 Λp

k(f
(r), t)φ(t)dt

}1/p

> 2−k/2 sup
u>σ

{
γk,r,p,x(φ, u)

}−1/2 > 2−k/2
{
inf
u>σ

γk,r,p,x(φ, u)
}−1/2

. (2.31)

The required equality (2.26) follows from relations (2.27) and (2.31). Theorem 3 is proved.

Let us set, for example, k = 1 in the conditions of Theorem 3. Then equality (2.26) yields

sup
f∈Lr

2(R)

Aσ(f){ ∫ x
0 Λp

1(f
(r), t)φ(t)dt

}1/p

=
1

√
2
{
inf
u>σ

ur
[ ∫ x

0 (1− sinc (ut))p/2φ(t)dt
]1/p} . (2.32)
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3. Some corollaries of Theorem 3

In the first turn, we consider the conditions under which the lower bound for the right-hand side
of equality (2.32) can be calculated.

Corollary 1. Let σ ∈ (0,∞); r ∈ Z+; p ∈ (0, 2]; x ∈ (0, 3π/(4σ)]; φ be a nonnegative function
summable on the segment [0, x], which is not equivalent to zero. Then the equality

sup
f∈Lr

2(R)

σrAσ(f){ ∫ x
0 Λp

1(f
(r), t)φ(t)dt

}1/p
=

1
√
2
{∫ x

0 (1−sinc (σt))p/2φ(t)dt
}1/p

(3.1)

holds. In the case r = 0, the upper bound in (3.1) is calculated over all functions f ∈ L2(R), which
are not equivalent to zero.

Proof. In view of the behavior of the function sinc (t) (see, e.g., [29, pp. 129, 132]), we have sinc (z) >
sinc (vz) for arbitrary values of v ∈ [1,∞) and z ∈ (0, 3π/4]. Hence, the inequality

vν(1− sinc (vz))α > (1− sinc (z))α (3.2)

holds. Here, ν, α ∈ [0,∞) are any numbers. Let us set v := u/σ, where u ∈ [σ,∞); z := σt, where
t ∈ (0, x]; ν := rp; α := p/2. Then relation (3.2) yields

urp(1− sinc (ut))p/2 > σrp(1− sinc (σt))p/2.

Multiplying both sides of the given inequality by the function φ(t) and integrating them over the
variable t in the limits from 0 to x, we have

urp
x∫

0

(1− sinc (ut))p/2φ(t)dt > σrp
x∫

0

(1− sinc (σt))p/2φ(t)dt, (3.3)

where u ∈ [σ,∞) is any number. We note that relation (3.3) yields

inf
u>σ

ur
{ x∫

0

(1− sinc (ut))p/2φ(t)dt
}1/p

= σr
{ x∫

0

(1− sinc (σt))p/2φ(t)dt
}1/p

.

From whence with regard for formula (2.32), we get the required equality (3.1). Corollary 1 is proved.

Let us set, for example, p = 2, φ(t) ≡ 1, and h = σx, where h ∈ (0, 3π/4]. Then equality (3.1)
yields

sup
f∈Lr

2(R)

σr−1/2Aσ(f){ ∫ h/σ
0 Λ2

1(f
(r), t)dt

}1/2
=

1√
2(h− Si(h))

, (3.4)

where Si(x) :=
∫ x
0 sinc (t)dt is the integral sine. In the case r = 0, relation (3.4) yields, in particular,

sup
f∈L2(R)

Aσ(f){
σ
∫ h/σ
0 Λ2

1(f, t)dt
}1/2

=
1√

2(h− Si(h))
.
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Corollary 2. Let σ ∈ (0,∞), r, k ∈ N, p ∈ [1/r, 2], let x be a finite positive number; and let φ be a
nonnegative function differentiable almost everywhere on the interval (0, x), which is not equivalent to
zero and, almost for all t ∈ (0, x), satisfies the condition

φ(t)(pr − 1)− tφ′(t) > 0. (3.5)

Then the equality

sup
f∈Lr

2(R)

σrAσ(f){ ∫ x
0 Λp

k(f
(r), t)φ(t)dt

}1/p

=
{ x∫

0

[(2k
k

)
− 2

k∑
j=1

(−1)j+1
( 2k

k−j

)
sinc (jσt)

]p/2
φ(t)dt

}−1/p
(3.6)

holds.

Proof. Consider the auxiliary function

Z(u) := γ
p/2
k,r,p,x(φ, u) = upr

x∫
0

η
p/2
k (t;u)φ(t)dt, (3.7)

where u > σ, and calculate its derivative of the first order

Z ′(u) = prupr−1

x∫
0

η
p/2
k (t;u)φ(t)dt+ upr

x∫
0

φ(t)
∂

∂u

(
η
p/2
k (t;u)

)
dt. (3.8)

We note that relation (2.1) yields
ηk(t;u) = ηk(tu; 1). (3.9)

Therefore, setting λ(x) := η
p/2
k (x; 1), we can verify that

1

t

∂

∂u
(λ(tu)) =

1

u

∂

∂t
(λ(tu)),

where t and u take nonzero values. From whence with regard for (3.9), we have

1

t

∂

∂u
(η

p/2
k (t;u)) =

1

u

∂

∂t
(η

p/2
k (t;u)). (3.10)

Using relation (3.10) in the course of the integration by parts of the second integral in formula
(3.8), we get

Z ′(u) = upr−1
{
pr

x∫
0

η
p/2
k (t;u)φ(t)dt+

x∫
0

tφ(t)
∂

∂t

(
η
p/2
k (t;u)

)
dt
}

= upr−1
{
xφ(x)η

p/2
k (x;u) +

x∫
0

η
p/2
k (t;u)

[
φ(t)(pr − 1)− tφ′(t)

]
dt
}
. (3.11)

With regard for formula (3.5) relation (3.11) yields Z ′(u) > 0 for all u > σ. Hence, the function Z is
nondecreasing on the set [σ,∞). In view of (3.7), (3.9), and (2.25), we get

inf
σ6u<∞

γk,r,p,x(φ, u) = γk,r,p,x(φ, σ) = σ2r
{ x∫

0

η
p/2
k (tσ; 1)φ(t)dt

}2/p
. (3.12)

The required equality (3.6) follows from relations (2.26), (3.12), and (2.2). Corollary 2 is proved.
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Let us compare the results of Corollaries 1 and 2 in the case where k = 1. We note that relation
(3.6) from Corollary 2 holds, if r ∈ N, p ∈ [1/r, 2], and the function φ satisfies limitation (3.5). In
this case, x is any positive number. As for Corollary 1, the value of r can take also the zero value for
p ∈ (0, 2] (as distinct from Corollary 2), and the function φ satisfies weaker conditions. However, the
positive number x is already bounded from above by the number 3π/(4σ).

Let us set, for example, p = 2 and φ(t) ≡ 1. In this case, inequality (3.5) is automatically satisfied.
Then formula (3.6) yields

sup
f∈Lr

2(R)

σrAσ(f){ ∫ x
0 Λ2

k(f
(r), t)dt

}1/2
=

{
x
[(2k

k

)
− 2

k∑
j=1

(−1)j+1
( 2k

k − j

)Si(jσx)
jσx

]}−1/2
. (3.13)

We note that, for k = 1 and r ∈ N, the right- and left-hand sides of equalities (3.4) and (3.13) coincide,
if we set x = h/σ, where 0 < h 6 3π/4, in (3.13).

Let now φ(t) := tm, where m ∈ (0,∞) is any number. Then relation (3.5) takes the form p >
(1+m)/r. By the condition of Corollary 3, we have p ∈ (0, 2]. Therefore, we get the double inequality
(1 +m)/r 6 p 6 2, which should be satisfied by p. In this case, the numbers r ∈ N must satisfy the
limitation from below r > (1 +m)/2. If p and r satisfy the indicated limitations, formula (3.6) yields

sup
f∈Lr

2(R)

σrAσ(f){ ∫ x
0 Λp

k(f
(r), t)tmdt

}1/p

=
{ x∫

0

[(2k
k

)
− 2

k∑
j=1

(−1)j+1
( 2k

k − j

)
sinc (jσt)

]p/2
tmdt

}−1/p
.

In the given formula, let us set, for example, k = 1, m = 1, and p = 2. Then, for any r ∈ N, we have

sup
f∈Lr

2(R)

σrAσ(f){ ∫ x
0 Λ2

1(f
(r), t)tdt

}1/2
=

1

x
√

1− sinc 2(σx/2)
,

where x ∈ (0,∞) is any number.
In formula (2.26), let x := x∗ = α/σ, where α ∈ (0,∞) and φ(t) := φ∗(t) = ψ(σt). Setting

θk,r,p,α(ψ, v) := v2r
{ α∫

0

η
p/2
k (vt; 1)ψ(t)dt

}2/p
(3.14)

and considering relation (3.9), we get

γk,r,p,x∗(φ∗, u) =
{
urp

α/σ∫
0

η
p/2
k (ut; 1)ψ(σt)dt

}2/p

= σ2(r−1/p)
{(u

σ

)rp
α∫

0

η
p/2
k

(
ut/σ; 1

)
ψ(t)dt

}2/p
,

where u > σ. Using notation (3.14), we get

σ2(r−1/p) inf
16v<∞

θk,r,p,α(ψ, v) 6 inf
σ6u<∞

γk,r,p,x∗(φ∗, u)

6 γk,r,p,x∗(φ∗, σ) = σ2(r−1/p) θk,r,p,α(ψ, 1). (3.15)

Then Theorem 3 and relation (3.15) yield the following proposition.
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Corollary 3. Let k, r ∈ N, p ∈ (0, 2], σ, α ∈ (0,∞), and let ψ be a nonnegative function summable
on the segment [0, α], which is not equivalent to zero. Then the following double inequality holds:

2−k/2
{
θk,r,p,α(ψ, 1)

}−1/2 6 sup
f∈Lr

2(R)

σrAσ(f){ ∫ α
0 Λp

k(f
(r), t/σ)ψ(t)dt

}1/p

6 2−k/2
{

inf
16v<∞

θk,r,p,α(ψ, v)
}−1/2

.

But if the function ψ satisfies the condition

inf
16v<∞

θk,r,p,α(ψ, v) = θk,r,p,α(ψ, 1), (3.16)

then the equality

sup
f∈Lr

2(R)

σrAσ(f){ ∫ α
0 Λp

k(f
(r), t/σ)ψ(t)dt

}1/p
= 2−k/2

{
θk,r,p,α(ψ, 1)

}−1/2
. (3.17)

holds.

The following proposition is devoted to the study of the conditions necessary for equality (3.16) to
be held.

Corollary 4. Let all conditions of Corollary 3 be satisfied, and let the function ψ(t) := ψ̃(t) =
trp−1ψ̃1(t), where ψ̃1 is a nonnegative nonincreasing function defined and summable on the segment
[0, α], which is not equivalent to zero. Then the function ψ defined in such way satisfies equality (3.16),
and, hence, relation (3.17) is valid.

Proof. Consider the auxiliary function ψ̃∗(t) := {ψ̃1(t), if 0 6 t 6 α, and ψ̃1(α), if α 6 t <∞}. Then,
on the basis of (3.14), we get

θk,r,p,α(ψ̃, v) = v2r
{ α∫

0

η
p/2
k (vt; 1)trp−1ψ̃1(t)dt

}2/p

=
{ αv∫

0

η
p/2
k (t; 1)trp−1ψ̃∗(t/σ)dt

}2/p
>

{ αv∫
0

η
p/2
k (t; 1)trp−1ψ̃∗(t)dt

}2/p

>
{ α∫

0

η
p/2
k (t; 1)trp−1ψ̃1(t)dt

}2/p
= θk,r,p,α(ψ̃, 1)

for any value of v ∈ [1,∞). Hence, condition (3.16) is satisfied. This means the validity of equality
(3.17) for the function ψ̃ by virtue of Corollary 3. Then, with regard for formulas (3.14) and (2.2), we
get

sup
f∈Lr

2(R)

σrAσ(f){ ∫ α
0 Λp

k(f
(r), t/σ)trp−1ψ̃1(t)dt

}1/p
= 2−k/2

{
θk,r,p,α(ψ̃, 1)

}−1/2

=
{ α∫

0

[(2k
k

)
− 2

k∑
j=1

(−1)j+1
( 2k

k−j

)
sinc (jt)

]p/2
trp−1ψ̃1(t)dt

}−1/2
.

Corollary 4 is proved.
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4. Exact values of mean ν-widths of the classes of functions defined by means of
the characteristic of smoothness Λk in the space L2(R)

In works [30, 31], the definition of mean dimension, being some modification of the corresponding
notion given in [32], was introduced. This allowed one to define asymptotic extreme characteristics
similar to the widths, where the role of dimension was played by the mean dimension. As a result,
we can compare the approximative properties of the subspaces Bσ,2, where σ ∈ (0,∞), with analogous
properties of other subspaces from L2(R) that have the same mean dimension, and solve a number of
extreme optimization problems of the theory of approximation of functions in L2(R).

Recall the necessary notions and definitions from [30,31]. Let BL2(R) be a unit ball in L2(R), let
Lin(L2(R)) be a collection of all linear subspaces in L2(R), and let

Linn(L2(R)) := {L ∈ Lin(L2(R)) : dimL 6 n}, n ∈ Z+,

d(M, A, L2(R)) := sup{inf{∥x− y∥ : y ∈ A} : x ∈M}

be the best approximation of the set M ⊂ L2(R) by the set A ⊂ L2(R). The symbol AT , where
T > 0, stands for a restriction of the set A ⊂ L2(R) on the segment [−T, T ], and LinCL2(R) denotes a
collection of subspaces L ∈ Lin(L2(R)) such that the set (L∩BL2(R))T is precompact in L2([−T, T ])
for any T > 0.

If L ∈ LinC(L2(R)) and T, ε > 0, then there exist n ∈ Z+ and M ∈ Linn(L2(R)) such that
d((L ∩BL2(R))T ,M, L2([−T, T ])) < ε. Let

Dε(T,L, L2(R)) := min{n ∈ Z+ : ∃M ∈ Linn(L2([−T, T ])),

d((L ∩BL2(R))T ,M, L2([−T, T ])) < ε}.

This quantity does not decrease in T and does not increase in ε. The quantity

dim(L, L2(R)) := lim{lim inf{Dε(T,L, L2(R))/(2T ) : T →∞} : ε→ 0},

where L ∈ LinC(L2(R)), is called the mean dimension of a subspace L in L2(R). It was shown [30]
that

dim(Bσ,2;L2(R)) = σ/π. (4.1)

Let M be a centrally symmetric subset from L2(R), and let ν > 0 be any finite number. Then the
Kolmogorov mean ν-width of a set M in L2(R) is the quantity

dν(M, L2(R)) := inf{sup{inf{∥f − φ∥ : φ ∈ L} : f ∈M} : L ∈ LinC(L2(R)), dim(L, L2(R)) 6 ν}.

The subspace on which the external lower bound is attained is called extreme.
The mean linear ν-width of of a set M in L2(R) is

δν(M, L2(R)) := inf{sup{∥f − V (f)∥ : f ∈M} : (X,V )},

where the lower bound is taken over all pairs (X,V ) such that X is a normed space immediately em-
bedded in L2(R), and V : X → L2(R) is a continuous linear operator for which ImV ⊂ LinC(L2(R)),
and the inequality dim(ImV,L2(R)) 6 ν; M ⊂ X holds. Here, ImV is the image of the operator V.
The pair on which the lower bound is attained is called extreme.

The quantity

bν(M, L2(R)) := sup{sup{ρ > 0 : L ∩ ρBL2(R) ⊂M}
: L ∈ LinC(L2(R)), dim(L, L2(R)) > ν, dν(L ∩BL2(R), L2(R)) = 1}
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is called the Bernshtein mean ν-width of a set M in L2(R). The last condition imposed onto L in the
calculation of the external upper bound means that only those subspaces, for which an analog of the
Tikhomirov theorem on the width of a ball is true, are considered. This requirement is satisfied, for
example, by the subspace Bσ,2, if σ > νπ, i.e., dν(Bσ,2 ∩BL2(R), L2(R)) = 1.

For the set M ⊂ L2(R), the inequalities

bν(M, L2(R)) 6 dν(M, L2(R)) 6 δν(M, L2(R)) (4.2)

hold between its above-presented extreme characteristics.
We note that the exact values of mean ν-widths of some classes of functions were first obtained

in [30, 31]. Then this theme was developed by other researchers (see, e.g., [12, 13, 15–17]). The short
review concerning the calculation of exact values of the indicated extreme characteristics can be found
in [33].

We now use the characteristic of smoothness (1.1) to define the classes of functions в L2(R).
Let Ψ(t), where t ∈ [0,∞), be a continuous increasing function such that Ψ(0) = 0. We call it
a majorant. By W(Λ1,Ψ), we denote the class of functions f ∈ L2(R) such that every function
satisfies the inequality Λ1(f, t) 6 Ψ(t) for any t ∈ (0,∞). By t∗, we denote the value of argument
of the function sinc (t), at which it attains the least value on the set 0 < t < ∞. We note (see,
e.g., [12, 13, 33]) that t∗ is the least positive root of the equation t = tg t and 4.49 < t∗ < 4.51. Then
we set (1− sinc (t))∗ := {1− sinc (t), if 0 < t 6 t∗, and 1− sinc (t∗), if t∗ 6 t <∞}.

Theorem 4. Let ν ∈ (0,∞) be any number, and let Ψ be a majorant that satisfies the condition

Ψ2(t)

Ψ2(π/(2σ))
> π

π − 2

(
1− sinc (σt)

)
∗ (4.3)

for any t ∈ (0,∞) and σ ∈ (νπ,∞). Then the equalities

Πν(W(Λ1,Ψ);L2(R)) = Aνπ(W(Λ1,Ψ)) = sup{∥f − Lνπ(f)∥ : f ∈ W(Λ1,Ψ)}

=

√
π

2(π − 2)
Ψ
( 1

2ν

)
(4.4)

hold. Here, Πν(·) is any of the above-considered mean ν-widths, and the operator Lνπ is defined by
formula (2.3) for σ = νπ. In this case, the pair [4] (L2(R),Lνπ) is extreme for the mean linear
ν-width δν(W(Λ1,Ψ);L2(R)), and the subspace Bνπ,2 is extreme for the Kolmogorov mean ν-width
dν(W(Λ1,Ψ);L2(R)). The set of majorants satisfying condition (4.3) is not empty.

Proof. Using relation (2.3), where we set t = π/2, for any function f ∈ L2(R), we get

Aσ(f) 6
√

π

2(π − 2)
Λ1

(
f,

π

2σ

)
. (4.5)

Let σ = νπ. Then, by virtue of formula (4.1), the mean dimension of the subspace Bνπ,2 reads
dim Bνπ,2 = ν. In view of this fact and the definition of the class of functions W(Λ1,Ψ), we get the
following upper bounds from relations (2.4)–(2.5), (4.2) and (4.5):

Πν(W(Λ1,Ψ);L2(R)) 6 δν(W(Λ1,Ψ);L2(R)) 6 sup{∥f−Lνπ(f)∥ :f ∈W(Λ1,Ψ)} = Aνπ(W(Λ1,Ψ))

6
√

π

2(π − 2)
Ψ
( 1

2ν

)
. (4.6)
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To obtain the lower bounds for the studied mean ν-widths, it is necessary to find the lower bound
of the mean Bernshtein ν-width bν(W(Λ1,Ψ);L2(R)) by formula (4.2). For this purpose, we set
σ̂ := νπ(1 + ε), where ε ∈ (0, ν̃) is any number, and ν̃ := min(ν, 1/ν). By (4.1), dim Bσ̂,2 = ν(1 + ε)
and dν(Bσ̂,2∩BL2(R);L2(R)) = 1, since σ̂ > νπ. Therefore, we can consider the subspace Bσ̂,2 as one of
the realizations of the subspace L ∈ LinC(L2(R)) entering the definition of the quantity bν(·). In this
connection, we consider the set of entire functions Bσ̂(ρε) := Bσ̂,2∩ρεBL2(R) = {g ∈ Bσ̂,2 : ∥g∥ 6 ρε},
where

ρε :=

√
π

2(π − 2)
Ψ
( 1

2ν(1 + ε)

)
. (4.7)

We now show that Bσ̂(ρε) ⊂ W(Λ1,Ψ). Recall that, by the Wiener–Paley fundamental theorem
(see, e.g., [3, Chapt. 4, Sect. 4.6]), any element g ∈ Bσ̂,2 can be represent as follows:

g(x) =
1√
2π

σ̂∫
−σ̂

eixuµ(u)du. (4.8)

Here, µ is some function with the squared modulus integrable by Lebesgue on the segment [−σ̂, σ̂].
We note that, for the Fourier transform of the function g, we have F(g, x) = {µ(x), if |x| 6 σ̂, and 0,
if |x| > σ̂}, as well as

∞∫
−∞

|g(x)|2dx =

σ̂∫
−σ̂

|µ(u)|2du. (4.9)

Based on formula (2.6), we can write

Λ2
1(g, t) = 2

σ̂∫
−σ̂

(1− sinc (tu))|µ(u)|2du 6 (1− sinc (tσ̂))∗∥g∥2. (4.10)

We now use relations (4.7)–(4.10) and condition (4.3) for the majorant Ψ, where we set σ := σ̂. Then,
for any function g ∈ Bσ̂(ρε) and any t ∈ (0,∞), we get

Λ1(g, t) 6
√

π

π − 2
(1− sinc (tσ̂))∗ Ψ

( 1

2ν(1 + ε)

)
6 Ψ(t).

Hence, Bσ̂(ρε) ⊂ W(Λ1,Ψ). Considering this fact and the definition of Bernshtein mean ν-width, we
get

bν(W(Λ1,Ψ);L2(R)) > bν(Bσ̂(ρε);L2(R)) > ρε.

This relation and formulas (4.2) and (4.7) yield

Πν(W(Λ1,Ψ);L2(R)) >
√

π

2(π − 2)
Ψ
( 1

2ν(1 + ε)

)
. (4.11)

We note that the left-hand side of inequality (4.11) is independent of ε. By calculating the upper
bound in ε ∈ (0, ν̃) for its right-hand side, we have

Πν(W(Λ1,Ψ);L2(R)) >
√

π

2(π − 2)
Ψ
( 1

2ν

)
. (4.12)
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The required equalities (4.4) follow from relations (4.6) and (4.12). Further, we can verify that the
set of majorants satisfying condition (4.3) is not empty. For this purpose, we consider the majorant
Ψ̃(t) := tβ/2 for which relation (4.3) takes the form

(tσ)β > π1+β

2β(π − 2)
(1− sinc (tσ))∗, (4.13)

where t ∈ (0,∞). Using the course of reasonings used in the proof of the main theorem in [34], we
can verify that inequality (4.13) holds for β = 2/(π−2). Hence, the majorant Ψ̃(t) = t1/(π−2) satisfies
condition (4.3). Theorem 4 is proved.

By Wr(Λk,Ψ), where r, k ∈ N, and the function Ψ is a majorant, we denote a class of functions
f ∈ Lr

2(R) such that every function satisfies the inequality Λk(f
(r), t) 6 Ψ(t) for any t ∈ (0,∞).

Theorem 5. Let r, k ∈ N, let ν ∈ (0,∞) be any number, and Ψ be a majorant satisfying the condition

Ψ2(t)

Ψ2(π/σ)
> 2k

Ck
2kσt

σt∫
0

(1− cosh)kdh (4.14)

for any values of t ∈ (0,∞) and σ ∈ (νπ,∞). Then the following equalities are valid:

Πν(Wr(Λk,Ψ);L2(R))=Aνπ(Wr(Λk,Ψ))=sup{∥f−Lνπ(f)∥ :f ∈Wr(Λk,Ψ)} = 1√
Ck
2k π

rνr
Ψ
(1
ν

)
,

(4.15)
where Πν(·) is any of the mean ν-widths considered above. In this case, the pair (Lr

2(R),Lνπ) is extreme
for a mean linear ν-width δν(Wr(Λk,Ψ), L2(R)), the subspace Bνπ,2 is extreme for the Kolmogorov
mean ν-width dν(Wr(Λk,Ψ);L2(R)). The set of majorants satisfying condition (4.14) is not empty.

Proof. Using formula (2.16), where we set σ = νπ and t = π, we have

Aνπ(f) 6
1√

Ck
2k π

rνr
Λk

(
f (r),

1

ν

)
(4.16)

for any function f ∈ Lr
2(R). From relations (4.2) and (4.16) and by virtue of the definition of the class

Wr(Λk,Ψ), we get the following upper bounds:

Πν(Wr(Λk,Ψ);L2(R)) 6 δν(Wr(Λk,Ψ);L2(R))

6 sup{∥f − Lνπ(f)∥ : f ∈ Wr(Λk,Ψ)} = Aνπ(Wr(Λk,Ψ)) 6 1√
Ck
2k π

rνr
Ψ
(1
ν

)
. (4.17)

To obtain the lower bounds for the considered extreme characteristics of the class Wr(Λk,Ψ),
we set σ̂ := νπ(1 + ε), where ε ∈ (0, ν̃), ν̃ := min(ν, 1/ν). Consider the set of functions Bσ̂(ρ̃ε) :=
Bσ̂,2 ∩ ρ̃εBL2(R) = {g ∈ Bσ̂,2 : ∥g∥ 6 ρ̃ε}. Here,

ρ̃ε :=
1√

Ck
2k (σ̂)r

Ψ
( 1

ν(1 + ε)

)
. (4.18)
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Using formulas (2.18)–(2.19) and (4.8) for any element g ∈ Bσ̂,2, we get

Λ2
k(g

(r), t) =
2k

t

t∫
0

dh

σ̂∫
−σ̂

(1− cos(hu))ku2r|µ(u)|2du

= 2k
σ̂∫

−σ̂

|µ(u)|2
{u2r−1

t

ut∫
0

(1− cosh)kdh
}
du = 2k

σ̂∫
−σ̂

|µ(u)|2Gk(t, u)du. (4.19)

As was mentioned in the proof of Theorem 2, the function Gk, as a function of u, is even and
nonnegative on R for any fixed t ∈ (0,∞) and is monotonically increasing on the set R+. Therefore,
from (4.19) with regard for formula (4.9), we get

Λ2
k(g

(r), t) 6 2kGk(t, σ̂)∥g∥2. (4.20)

We now use formula (2.19) for the function Gk and condition (4.14) for the majorant Ψ. For any
element g ∈ Bσ̂(ρ̃ε), inequality (4.20) yields

Λ2
k(g

(r), t) 6 2k(σ̂)2r
∥g∥2

σ̂t

σ̂t∫
0

(1− cosh)kdh

6 2k

Ck
2kσ̂t

{ σ̂t∫
0

(1− cosh)kdh
}
Ψ2

(π
σ̂

)
6 Ψ2(t),

where t ∈ (0,∞). Hence, Bσ̂(ρ̃ε) ⊂ Wr(Λk,Ψ). Since

bν(Wr(Λk,Ψ), L2(R)) > bν(Bσ̂(ρ̃ε), L2(R)) > ρ̃ε,

with regard for formulas (4.18) and (4.2), we get

Πν(Wr(Λk,Ψ);L2(R)) >
1√

Ck
2k(πν(1 + ε))r

Ψ
( 1

ν(1 + ε)

)
. (4.21)

We note that the left-hand side of inequality (4.21) is independent of ε. Calculating the upper bound
in ε ∈ (0, ν̃) for its right-hand side, we have

Πν(Wr(Λk,Ψ);L2(R)) >
1√

Ck
2k π

rνr
Ψ
(1
ν

)
. (4.22)

The required equalities (4.15) follow from relations (4.17) and (4.22). In conclusion, we will verify
that the set of majorants satisfying condition (4.14) is not empty. Using the reasoning in the end of the
proof of Theorem 5 in work [24], we can show that relation (4.14) holds for the majorant Ψ̂(t) := tξ,
where ξ = 22k/Ck

2k − 1. Theorem 5 is proved.

By Ŵr
p(Λ1,Ψ), where r ∈ N, and p ∈ (0, 2]; Ψ is a majorant, we denote the class of functions

f ∈ Lr
2(R) whose derivatives of the r-th order f (r) satisfy the condition

∫ x
0 Λp

1(f
(r), t)dt 6 Ψp(x) for

any x ∈ (0,∞).
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Theorem 6. Let r ∈ N, let ν ∈ (0,∞) be any number, p ∈ [1/r, 2], and let Ψ be a majorant satisfying
the condition

Ψp(x)

Ψp(π/σ)
>

∫ σx
0 (1− sinc (t))p/2dt∫ π
0 (1− sinc (t))p/2dt

(4.23)

for arbitrary values of x ∈ (0,∞) and σ ∈ (νπ,∞). Then the following equalities hold:

Πν(Ŵr
p(Λ1,Ψ);L2(R)) = Aνπ(Ŵr

p(Λ1,Ψ))

= sup{∥f − Lνπ(f)∥ : f ∈ Ŵr
p(Λ1,Ψ)}

=
(νπ)1/p−r

√
2

{ π∫
0

(1− sinc (t))p/2dt
}−1/p

Ψ
(1
ν

)
, (4.24)

where Πν(·) is any of the above-considered mean ν-widths. In this case, the pair (Lr
2(R),Lνπ) is

extreme for δν(Ŵr
p(Λ1,Ψ), L2(R)), the subspace Bνπ,2 is extreme for dν(Ŵr

p(Λ1,Ψ), L2(R)), and the
set of majorants satisfying condition (4.23) is not empty.

Proof. Like in two previous theorems, we set σ = νπ. Using Corollary 2, in which we set φ ≡ 1,
x = 1/ν, and k = 1, we get

Aνπ(f) 6
(νπ)1/p−r

√
2

{ π∫
0

(1− sinc (t))p/2dt
}−1/p{ 1/ν∫

0

Λp
1(f

(r), t)dt
}1/p

.

This inequality, the definition of the class Ŵr
p(Λ1,Ψ), and relation (4.2) yield the following upper

bounds:

Πν(Ŵr
p(Λ1,Ψ);L2(R)) 6 δν(Ŵr

p(Λ1,Ψ);L2(R))

6 sup{∥f − Lνπ(f)∥ : f ∈ Ŵr
p(Λ1,Ψ)} = Aνπ(Ŵr

p(Λ1,Ψ))

6 (νπ)1/p−r

√
2

{ π∫
0

(1− sinc (t))p/2dt
}−1/p

Ψ
(1
ν

)
. (4.25)

We now get the lower bounds for the extreme characteristics of the class Ŵr
p(Λ1,Ψ) by analogy

with the reasoning in the proof of Theorems 4 and 5. Let us consider the set of entire functions [4]
Bσ̂(ρ∗ε) := Bσ̂,2 ∩ ρ∗εBL2(R) = {g ∈ Bσ̂,2 : ∥g∥ 6 ρ∗ε}, where σ̂ := νπ(1 + ε),

ρ∗ε :=
(σ̂)1/p−r

√
2

{ π∫
0

(1− sinc (t))p/2dt
}−1/p

Ψ
( 1

ν(1 + ε)

)
, (4.26)

ε ∈ (0, ν̃); ν̃ := min(ν, 1/ν). Considering the form of the function Gk given in formula (2.19) for k = 1
and raising both sides of inequality (4.20) to the power p/2, we have

Λp
1(g

(r), t) 6 2p/2(σ̂)rp(1− sinc (σ̂t)p/2∥g∥p
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for any function g ∈ Bσ̂,2. Let us integrate both sides of the last inequality over the variable t in the
limits from 0 to x, where x ∈ (0,∞) is any number. For any element g ∈ Bσ̂(ρ∗ε) by virtue of limitation
(4.23) and relation (4.26), we get

x∫
0

Λp
1(g

(r), t)dt 6
∫ σ̂x
0 (1− sinc (t))p/2dt∫ π
0 (1− sinc (t))p/2dt

Ψp
(π
σ̂

)
6 Ψp(x).

Hence, Bσ̂(ρ∗ε) ⊂ Ŵr
p(Λ1,Ψ). Using the definition of Bernshtein mean ν-width, we write

bν(Ŵr
p(Λ1,Ψ);L2(R)) > bν(Bσ̂(ρ∗ε), L2(R)) > ρ∗ε. Using formulas (4.2) and (4.26), we have

Πν(Ŵr
p(Λ1,Ψ), L2(R)) >

(νπ(1+ε))1/p−r

√
2

{ π∫
0

(1− sinc (t))p/2dt
}−1/p

Ψ
( 1

ν(1+ε)

)
. (4.27)

Calculating the upper bound in ε ∈ (0, ν̃) for the right-hand side of inequality (4.27), we get

Πν(Ŵr
p(Λ1,Ψ);L2(R))>

(νπ)1/p−r

√
2

{ π∫
0

(1− sinc (t))p/2dt
}−1/p

Ψ
(1
ν

)
. (4.28)

The required equalities (4.24) follow from relations (4.25) and (4.28).

Practically analogously to the proof of Theorem 6 in [24], we can show that the majorant Ψ∗(x) :=
xξ, where ξ = π

/
(p

∫ π
0 (1 − sinc (t))p/2dt), satisfies condition (4.23). This completes the proof of

Theorem 6.

In conclusion, we note that the results of Theorems 2, 3, 5, and 6 were announced without proofs
in the Proceedings of the International Stechkin summer mathematical school-conference [35].
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