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Completion and extension of operators in Krĕın spaces

Dmytro Baidiuk

Presented by M. M. Malamud

Abstract. A generalization of the well-known results of M.G. Krĕın on the description of the self-adjoint
contractive extension of a Hermitian contraction is obtained. This generalization concerns the situation
where the self-adjoint operator A and extensions Ã belong to a Krĕın space or a Pontryagin space, and their
defect operators are allowed to have a fixed number of negative eigenvalues. A result of Yu. L. Shmul’yan
on completions of nonnegative block operators is generalized for block operators with a fixed number of
negative eigenvalues in a Krĕın space.

This paper is a natural continuation of S. Hassi’s and author’s recent paper [7].
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1. Introduction

Let A be a densely defined lower semibounded operator in a separable Hilbert space H, A ≥ mAI.
The problem of existence of self-adjoint extensions preserving the lower bound mA of A was formulated
by J. von Neumann [4]. He solved it for the case of an operator with finite deficiency indices. A solution
to this problem for operators with arbitrary deficiency indices was obtained by M. Stone, H. Freudental,
and K. Friedrichs [4]. M. G. Krĕın in his seminal paper [19] (see also [1]) described the set ExtA(0,∞)
of all nonnegative self-adjoint extensions Ã of A ≥ 0 as follows:

(AF + a)−1 ≤ (Ã+ a)−1 ≤ (AK + a)−1, a > 0, Ã ∈ ExtA(0,∞).

Here, AF and AK are the Friedrichs (hard) and Krĕın (soft) extensions of A, respectively.
To obtain such description, he used a special form of the Cayley transform

T1 = (I −A)(I +A)−1, T = (I − Ã)(I + Ã)−1,

to reduce the study of unbounded operators to the study of contractive self-adjoint extensions T of
a Hermitian nondensely defined contraction T1 ∈ [H1,H], where H1 = ran (I + A). The set of all
self-adjoint contractive extensions of T1 is denoted by Ext T1(−1, 1). M.G. Krĕın proved that the set
Ext T1(−1, 1) forms an operator interval with minimal and maximal entries Tm and TM , respectively,

Tm ≤ T ≤ TM , T ∈ Ext T1(−1, 1).

T. Ando and K. Nishio [2] extended main results of the Krĕın theory to the case of nondensely
defined symmetric operators A. For the case of linear relations (multivalued linear operators) A ≥ 0,
it was done by E.A. Coddington and H.S.V. de Snoo [9].
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With respect to the orthogonal decomposition H = H1 ⊕ H2, a contraction T1 ∈ [H1,H] admits a

block-matrix representation T1 =

(
T11
T21

)
. Block matrix representations of the operators Tm and TM

were obtained in [6, 18] and [16] (see also [4, 12,13,27]. Namely, it is shown that

Tm =

(
T11 DT11V

∗

V DT11 −I + V (I − T11)V
∗

)
,

TM =

(
T11 DT11V

∗

V DT11 I − V (I + T11)V
∗

)
,

(1.1)

whereDT11 := (I−T 2
11)

1/2, and V is given by V := clos (T21D
[−1]
T11

). Based on these formulas, a complete
parametrization of the set Ext T1(−1, 1) and the main results of the Krĕın theory have also been
obtained there. In turn, the proof of formulas for Tm and TM was based on a result of Yu. L. Shmul’yan
[26] (see also [27]) on nonnegative completions of a nonnegative block operator.

Recently, S. Hassi and the author [7] extended the main result of [16] to the case of “quasicontractive”
symmetric operators T1. Recall that the “quasicontractivity” means that ν−(I − T ∗T ) <∞, where

ν−(K) = dim (EK(−∞, 0)H).

For this purpose, the above-mentioned result of Shmul’yan was generalized there. In addition, an
analog of block matrix formulas for the operators Tm and TM was established. The formulas for Tm
and TM look, in this case, similar to (1.1), but the entries V (I±T11)V ∗ are replaced by V (I±T11)JV ∗,
where J = sign (I − T 2

11) and DT11 := |I − T 2
11|1/2.

The first result of the present paper is a further generalization of Shmul’yan’s result [26] to the
case of block operators acting in a Krĕın space and having a fixed number of negative eigenvalues.

In Section 4, a first Krĕın space analog of the completion problem is formulated, and a description
of its solutions is found. Namely, we consider classes of “quasicontractive” symmetric operators T1 in
a Krĕın space with ν−(I − T ∗

1 T1) <∞ and describe all possible self-adjoint (in the Krĕın space sense)
extensions T of T1 that preserve the given negative index ν−(I − T ∗T ) = ν−(I − T ∗

1 T1). This problem
is close to the completion problem studied in [7] and has a similar description for its solutions (for
related problems, see also [3–5,10–16,18,20,22–25,27]).

The main result of the present paper is Theorem 5.7. Namely, we consider the classes of “quasicon-
tractive” symmetric operators T1 in a Pontryagin space (H, J) with

ν−[I − T
[∗]
1 T1] := ν−(J(I − T

[∗]
1 T1)) <∞, (1.2)

and we establish a solvability criterion and describe all possible self-adjoint extensions T of T1 (in
the Pontryagin space sense) that preserve the given negative index ν−[I − T [∗]T ] = ν−[I − T

[∗]
1 T1].

The formulas for Tm and TM are also extended in an appropriate manner (see (5.16)). It should be
emphasized that, in this more general setting, formulas (5.16) involve the so-called link operator LT

which was introduced by Arsene, Constantintscu, and Gheondea in [5] (see also [4, 10,11,21]).

2. The completion problem for block operators in Krĕın spaces

By definition, the modulus |C| of a closed operator C is the nonnegative self-adjoint operator
|C| = (C∗C)1/2. Every closed operator admits a polar decomposition C = U |C|, where U is a (unique)
partial isometry with the initial space ran |C| and the final space ranC, cf. [17]. For a self-adjoint
operator H =

∫
R t dEt in a Hilbert space H, the partial isometry U can be identified with the signature
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operator which can be taken to be unitary: J = sign (H) =
∫
R sign (t) dEt. In this case, one should

define sign (t) = 1, if t ≥ 0, and sign (t) = −1 otherwise.
Let H be a Hilbert space, and let JH be a signature operator in it, i.e., JH = J∗

H = J−1
H . We

interpret the space H as a Krĕın space (H, JH) (see [6, 8]) in which the indefinite scalar product is
defined by the equality

[φ,ψ]H = (JHφ,ψ)H.

Let us introduce a partial ordering for self-adjoint Krĕın space operators. For self-adjoint operators
A and B with the same domains, A ≥J B iff [(A − B)f, f ] ≥ 0 for all f ∈ domA. If not otherwise
indicated, the word “smallest” means the smallest operator in the sense of this partial ordering.

Consider the bounded incomplete block operator

A0 =

(
A11 A12

A21 ∗

)(
(H1, J1)
(H2, J2)

)
→
(
(H1, J1)
(H2, J2)

)
(2.1)

in the Krĕın space H = (H1 ⊕ H2, J), where (H1, J1) and (H2, J2) are Krĕın spaces with fundamental

symmetries J1 and J2, and J =

(
J1 0
0 J2

)
.

Theorem 2.1. Let H = (H1 ⊕ H2, J) be an orthogonal decomposition of the Krĕın space H, and let

A0 be an incomplete block operator of the form (2.1). Assume that A11 = A
[∗]
11 and A21 = A

[∗]
12 are

bounded, the numbers of negative squares of the quadratic form [A11f, f ] (f ∈ domA11) ν−[A11] :=
ν−(J1A11) = κ < ∞, where κ ∈ Z+, and let us introduce J11 := sign (J1A11) that is the (unitary)
signature operator of J1A11. Then

(i) There exists a completion A ∈ [(H, J)] of A0 with some operator A22 = A
[∗]
22 ∈ [(H2, J2)] such

that ν−[A] = ν−[A11] = κ, iff
ranJ1A12 ⊂ ran |A11|1/2.

(ii) In this case, the operator S = |A11|[−1/2]J1A12, where |A11|[−1/2] denotes the (generalized)
Moore–Penrose inverse of |A11|1/2, is well defined, and S ∈ [(H2, J2), (H1, J1)]. Moreover,
S[∗]J1J11S is the “smallest” operator in the solution set

A :=
{
A22 = A

[∗]
22 ∈ [(H2, J2)] : A = (Aij)

2
i,j=1 : ν−[A] = κ,

}
and this solution set admits the description

A =
{
A22 ∈ [(H2, J2)] : A22 = J2(S

∗J11S + Y ) = S[∗]J1J11S + J2Y,

where Y = Y ∗ ≥ 0
}
.

Proof. Let us introduce a block operator

Ã0 =

(
Ã11 Ã12

Ã21 ∗

)
=

(
J1A11 J1A12

J2A21 ∗

)
.

The blocks of this operator satisfy the identities Ã11 = Ã∗
11, Ã

∗
21 = Ã12 and

ranJ1A11 = ran Ã11 ⊂ ran |Ã11|1/2 = ran (Ã∗
11Ã11)

1/4

= ran (A∗
11A11)

1/4 = ran |A11|1/2.
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Then, due to [7, Theorem 1], the description of all self-adjoint operator completions of Ã0 admits

the representation Ã =

(
Ã11 Ã12

Ã21 Ã22

)
with Ã22 = S̃∗J11S̃+Y , where S̃ = |Ã11|[−1/2]Ã12 and Y = Y ∗ ≥

0.
This yields the description for the solutions of the completion problem. The set of completions

has the form A =

(
A11 A12

A21 A22

)
, where

A22 = J2Ã22 = J2A21J1|A11|[−1/2]J11|A11|[−1/2]J1A12 + J2Y

= J2S
∗J11S + J2Y = S[∗]J1J11S + J2Y.

3. Some inertia formulas

Some simple inertia formulas are now recalled. The factorization H = B[∗]EB clearly implies that
ν±[H] ≤ ν±[E], cf. (1.2). If H1 and H2 are self-adjoint operators in a Krĕın space, then

H1 +H2 =

(
I
I

)[∗](
H1 0
0 H2

)(
I
I

)
shows that ν±[H1 +H2] ≤ ν±[H1] + ν±[H2]. Consider the self-adjoint block operator H ∈ [(H1, J1)⊕
(H2, J2)], where Ji = J∗

i = J−1
i , (i = 1, 2), of the form

H = H [∗] =

(
A B[∗]

B I

)
,

By applying the above-mentioned inequalities, we see that

ν±[A] ≤ ν±[A−B[∗]B] + ν±(J2). (3.1)

Assuming that ν−[A−B∗J2B] and ν−(J2) are finite, the question about when ν−[A] attains its maxi-
mum in (3.1) or, equivalently, ν−[A−B∗J2B] ≥ ν−[A]−ν−(J2) attains its minimum, turns out to be of
particular interest. The next result characterizes this situation as an application of Theorem 2.1. Re-
call that if J1A = JA|A| is the polar decomposition of J1A, then one can interpret HA = (ranJ1A, JA)
as a Krĕın space generated on ranJ1A by the fundamental symmetry JA = sign (J1A).

Theorem 3.1. Let A ∈ [(H1, J1)] be self-adjoint, B ∈ [(H1, J1), (H2, J2)], Ji = J∗
i = J−1

i ∈ [Hi], (i =
1, 2), and let us assume that ν−[A], ν−(J2) <∞. If the equality

ν−[A] = ν−[A−B[∗]B] + ν−(J2)

holds, then ranJ1B
[∗] ⊂ ran |A|1/2 and J1B

[∗] = |A|1/2K for a unique operator K ∈ [(H2, J2),HA]
which is J-contractive: J2 −K∗JAK ≥ 0.

Conversely, if B[∗] = |A|1/2K for some J-contractive operator K ∈ [(H2, J2),HA], then equality
(3.1) is satisfied.

Proof. Assume that (3.1) is satisfied. The factorization

H =

(
A B[∗]

B I

)
=

(
I B[∗]

0 I

)(
A−B[∗]B 0

0 I

)(
I 0
B I

)
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shows that ν−[H] = ν−[A−B[∗]B]+ν−(J2). This relation combined with equality (3.1) gives ν−[H] =
ν−[A]. Therefore, by Theorem 2.1, one has ranJ1B

[∗] ⊂ ran |A|1/2, and this is equivalent to the
existence of a unique operator K ∈ [(H2, J2),HA] such that J1B

[∗] = |A|1/2K; i.e., K = |A|[−1/2]J1B
[∗].

Furthermore, K [∗]J1JAK ≤J2 I by the minimality property of K [∗]J1JAK in Theorem 2.1. In other
words, K is a J-contraction.

Conversely, if J1B
[∗] = |A|1/2K for some J-contractive operator K ∈ [(H2, J2),HA], then, clearly,

ranJ1B
[∗] ⊂ ran |A|1/2. By Theorem 2.1, the completion problem for H0 has solutions with the

minimal solution S[∗]J1JAS, where

S = |A|[−1/2]J1B
[∗] = |A|[−1/2]|A|1/2K = K.

Furthermore, by J-contractivity of K, one has K [∗]J1JAK ≤J2 I, i.e., I is also a solution, and, thus,
ν−[H] = ν−[A] or, equivalently, equality (3.1) is satisfied.

4. A pair of completion problems in a Krĕın space

In this section, we introduce and describe the solutions of a Krĕın space version of a completion
problem that was treated in [7].

Let (Hi, (Ji·, ·)) and (H, (J ·, ·)) be Krĕın spaces, where H = H1 ⊕ H2,J =

(
J1 0
0 J2

)
, let Ji

be fundamental symmetries (i = 1, 2), and let T11 = T
[∗]
11 ∈ [(H1, J1)] be an operator such that

ν−(I − T ∗
11T11) = κ < ∞. Denote T̃11 = J1T11. Then T̃11 = T̃ ∗

11 in the Hilbert space H1. Rewrite
ν−(I − T ∗

11T11) = ν−(I − T̃ 2
11). Denote

J+ = sign (I − T̃11), J− = sign (I + T̃11), and J11 = sign (I − T̃ 2
11),

and let κ+ = ν−(J+) and κ− = ν−(J−). It is easy to get that J11 = J−J+ = J+J−. Moreover,
we have the equality κ = κ− + κ+ (see [7, Lemma 5.1]). We recall the results for the operator T̃11
from work [7] and then reformulate them for the operator T11. We recall the completion problem
and its solutions that were investigated in a Hilbert space in [7]. The problem concerns the existence
and the description of the self-adjoint operators T̃ such that Ã+ = I + T̃ and Ã− = I − T̃ solve the
corresponding completion problems

Ã0
± =

(
I ± T̃11 ±T̃ ∗

21

±T̃21 ∗

)
, (4.1)

under minimal index conditions ν−(I + T̃ ) = ν−(I + T̃11), ν−(I − T̃ ) = ν−(I − T̃11), respectively. The
solution set is denoted by Ext

T̃1,κ
(−1, 1).

The next theorem gives a general solvability criterion for the completion problem (4.1) and describes
all solutions to this problem.

Theorem 4.1. ( [7, Theorem 5]) Let T̃1 =

(
T̃11
T̃21

)
: H1 →

(
H1

H2

)
be a symmetric operator with

T̃11 = T̃ ∗
11 ∈ [H1] and ν−(I − T̃ 2

11) = κ <∞, and let J11 = sign (I − T̃ 2
11). Then the completion problem

for Ã0
± in (4.1) has a solution I ± T̃ for some T̃ = T̃ ∗ with ν−(I − T̃ 2) = κ, iff the following condition

is satisfied:
ν−(I − T̃ 2

11) = ν−(I − T̃ ∗
1 T̃1). (4.2)

If this condition is satisfied, then the following facts hold:
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(i) The completion problems for Ã0
± in (4.1) have minimal solutions Ã±.

(ii) The operators T̃m := Ã+ − I and T̃M := I − Ã− ∈ Ext
T̃1,κ

(−1, 1).

(iii) The operators T̃m and T̃M have the block form

T̃m =

(
T̃11 D

T̃11
V ∗

V D
T̃11

−I + V (I − T̃11)J11V
∗

)
,

T̃M =

(
T̃11 D

T̃11
V ∗

V D
T̃11

I − V (I + T̃11)J11V
∗

)
,

(4.3)

where D
T̃11

:= |I − T̃ 2
11|1/2, and V is given by V := clos (T̃21D

[−1]

T̃11
).

(iv) The operators T̃m and T̃M are extremal extensions of T̃1:

T̃ ∈ Ext
T̃1,κ

(−1, 1) iff T̃ = T̃ ∗ ∈ [H], T̃m ≤ T̃ ≤ T̃M .

(v) The operators T̃m and T̃M are connected via

(−T̃ )m = −T̃M , (−T̃ )M = −T̃m.

In what follows, it is convenient to reformulate the above theorem in the statement with a Krĕın
space. Consider the Krĕın space (H, J) and a self-adjoint operator T in this space. Now, the problem
concerns the self-adjoint operators A+ = I + T and A− = I − T in the Krĕın space (H, J) that solve
the completion problems

A0
± =

(
I ± T11 ±T [∗]

21

±T21 ∗

)
, (4.4)

under minimal index conditions ν−(I + JT ) = ν−(I + J1T11) and ν−(I − JT ) = ν−(I − J1T11),
respectively. The set of solutions T to problem (4.4) will be denoted by Ext J2T1,κ(−1, 1).

Denote

T1 =

(
T11
T21

)
: (H1, J1) →

(
(H1, J1)
(H2, J2)

)
, (4.5)

so that T1 is a symmetric (nondensely defined) operator in the Krĕın space [(H1, J1)], i.e., T11 = T
[∗]
11 .

Theorem 4.2. Let T1 be a symmetric operator in the Krĕın space sense as in (4.5) with T11 = T
[∗]
11 ∈

[(H1, J1)] and ν−(I − T ∗
11T11) = κ < ∞, and let J = sign (I − T ∗

11T11). Then the completion problems
for A0

± in (4.4) have a solution I ± T for some T = T [∗] with ν−(I − T ∗T ) = κ, iff the following
condition is satisfied:

ν−(I − T ∗
11T11) = ν−(I − T ∗

1 T1). (4.6)

If this condition is satisfied, then the following facts hold:

(i) The completion problems for A0
± in (4.4) have “minimal” (J2-minimal) solutions A±.

(ii) The operators Tm := A+ − J and TM := J −A− ∈ Ext J2T1,κ(−1, 1).
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(iii) The operators Tm and TM have the block form

Tm =

(
T11 J1DT11V

∗

J2V DT11 −J2 + J2V (I − J1T11)J11V
∗

)
,

TM =

(
T11 J1DT11V

∗

J2V DT11 J2 − J2V (I + J1T11)J11V
∗

)
,

(4.7)

where DT11 := |I − T ∗
11T11|1/2, and V is given by V := clos (J2T21D

[−1]
T11

).

(iv) The operators Tm and TM are J2-extremal extensions of T1:

T ∈ Ext J2T1,κ(−1, 1) iff T = T [∗] ∈ [(H, J)], Tm ≤J2 T ≤J2 TM .

(v) The operators Tm and TM are connected via

(−T )m = −TM , (−T )M = −Tm.

Proof. The proof is obtained by the systematic use of the equivalence that T is a self-adjoint operator
in a Krĕın space, iff T̃ is self-adjoint in a Hilbert space. In particular, T gives solutions to the
completion problems (4.4), iff T̃ solves the completion problems (4.4). In view of

I − T ∗
11T11 = I − T ∗

11JJT11 = I − T̃ 2
11,

we get formula (4.6) from (4.2). Then formula (4.7) can be obtained by multiplying the operators in
(4.3) ij view of the fundamental symmetry.

5. Completion problem in a Pontryagin space

5.1. Defect operators and link operators

Let (H, (·, ·)) be a Hilbert space, and let J be a symmetry in H, i.e., J = J∗ = J−1, so that
(H, (J ·, ·)) becomes a Pontryagin space. Then we associate the following corresponding defect and
signature operators with T ∈ [H]:

DT = |J − T ∗JT |1/2, JT = sign (J − T ∗JT ), DT = ranDT ,

where the so-called defect subspace DT can be considered as a Pontryagin space with the fundamental
symmetry JT . Similar notations are used with T ∗:

DT ∗ = |J − TJT ∗|1/2, JT ∗ = sign (J − TJT ∗), DT ∗ = ranDT ∗ .

By definition, JTD2
T = J − T ∗JT and JTDT = DTJT with analogous identities for DT ∗ and JT ∗ . In

addition,
(J − T ∗JT )JT ∗ = T ∗J(J − TJT ∗), (J − TJT ∗)JT = TJ(J − T ∗JT ).

Recall that T ∈ [H] is said to be a J-contraction, if J − T ∗JT ≥ 0, i.e., ν−(J − T ∗JT ) = 0. If, in
addition, T ∗ is a J-contraction, T is termed as a J-bicontraction.

For the following consideration, an indefinite version of the commutation relation of the form
TDT = DT ∗T is needed; it involves the so-called link operators introduced in [5, Section 4] (see
also [7]).
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Definition 5.1. There exist the unique operators LT ∈ [DT ,DT ∗ ] and LT ∗ ∈ [DT ∗ ,DT ] such that

DT ∗LT = TJDT �DT , DTLT ∗ = T ∗JDT ∗�DT ∗ ; (5.1)

in fact, LT = D
[−1]
T ∗ TJDT �DT and LT ∗ = D

[−1]
T T ∗JDT ∗�DT ∗.

The following identities can be obtained by direct calculations (see [5, Section 4]):

L∗
TJT ∗�DT ∗ = JTLT ∗ ;

(JT −DTJDT )�DT = L∗
TJT ∗LT ;

(JT ∗ −DT ∗JDT ∗)�DT ∗ = L∗
T ∗JTLT ∗ .

(5.2)

Now, let T be self-adjoint in the Pontryagin space (H, J), i.e., T ∗ = JTJ . Then connections
between DT ∗ and DT , JT ∗ and JT , and LT ∗ and LT can be established.

Lemma 5.1. Assume that T ∗ = JTJ . Then DT = |I − T 2|1/2, and the following equalities hold:

DT ∗ = JDTJ, (5.3)

in particular,
DT ∗ = JDT and DT = JDT ∗ ;

JT ∗ = JJTJ ; (5.4)

LT ∗ = JLTJ. (5.5)

Proof. The defect operator of T can be calculated by the formula

DT =
((
I − (T ∗)2

)
JJ(I − T 2)

)1/4
=
((
I − (T ∗)2

)
(I − T 2)

)1/4
.

Then

DT ∗ =
(
J
(
I − (T ∗)2

)
(I − T 2)J

)1/4
= J

((
I − (T ∗)2

)
(I − T 2)

)1/4
J

= JDTJ,

i.e., (5.3) holds. This yields
JDT ∗ ⊂ DT and JDT ⊂ DT ∗ .

Hence, from two last formulas, we get

DT ∗ = J(JDT ∗) ⊂ JDT ⊂ DT ∗

and, similarly,
DT = J(JDT ) ⊂ JDT ∗ ⊂ DT .

The formula

JTD
2
T = J − T ∗JT = J(J − TJT ∗)J = JJT ∗D2

T ∗J = JJT ∗JD2
TJJ

= JJT ∗JD2
T

yields relation (5.4).
Relation (5.5) follows from

DTLT ∗ = T ∗JDT ∗�DT ∗ = JTJDTJ�DT ∗ = JDT ∗LTJ = DTJLTJ.
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5.2. Lemmas on negative indices of certain block operators

Two first lemmas are of preparatory nature for two last lemmas, which are used in the proof of the
main theorem.

Lemma 5.2. Let

(
J T
T J

)
:

(
H
H

)
→
(
H
H

)
be a self-adjoint operator in the Hilbert space H2 = H⊕H.

Then ∣∣∣∣(J T
T J

)∣∣∣∣1/2 = U

(
|J + T |1/2 0

0 |J − T |1/2

)
U∗,

where U = 1√
2

(
I I
I −I

)
is a unitary operator.

Proof. It is easy to check that (
J T
T J

)
= U

(
J + T 0

0 J − T

)
U∗. (5.6)

Then, by taking the modulus, we get∣∣∣∣(J T
T J

)∣∣∣∣2 = ((J T
T J

)∗(
J T
T J

))
= U

(
|J + T |2 0

0 |J − T |2
)
U∗.

The last step is to extract the square roots (twice) from the both sides of the relation:∣∣∣∣(J T
T J

)∣∣∣∣1/2 = U

(
|J + T |1/2 0

0 |J − T |1/2

)
U∗.

The right-hand side can be written in this form, because U is unitary.

Lemma 5.3. Let T = T ∗ ∈ H be a self-adjoint operator in a Hilbert space H, and let J = J∗ = J−1

be a fundamental symmetry in H with ν−(J) <∞. Then

ν−(J − TJT ) + ν−(J) = ν−(J − T ) + ν−(J + T ). (5.7)

In particular, ν−(J − TJT ) <∞, iff ν−(J ± T ) <∞.

Proof. Consider the block operators

(
J T
T J

)
and

(
J + T 0

0 J − T

)
. Equality (5.6) yields

ν−

(
J T
T J

)
= ν−

(
J + T 0

0 J − T

)
. The negative index of

(
J + T 0

0 J − T

)
equals ν−(J − T ) +

ν−(J + T ), and the negative index of

(
J T
T J

)
can be easily found, by using the equality

(
J T
T J

)
=

(
I 0
TJ I

)(
J 0
0 J − TJT

)(
I JT
0 I

)
. (5.8)

Then we get (5.7).
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Let (Hi, (Ji·, ·)) (i = 1, 2) and (H, (J ·, ·)) be Pontryagin spaces, where H = H1 ⊕ H2 and J =(
J1 0
0 J2

)
. Consider the operator T11 = T

[∗]
11 ∈ [(H1, J1)] such that ν−[I − T 2

11] = κ < ∞ (see (1.2)).

Denote T̃11 = J1T11. Then T̃11 = T̃ ∗
11 in the Hilbert space H1. Rewrite

ν−[I − T 2
11] = ν−(J1(I − T 2

11)) = ν−(J1 − T̃11J1T̃11)

= ν−((J1 − T̃11)J1(J1 + T̃11)).

Furthermore, we denote

J+ = sign (J1(I − T11)) = sign (J1 − T̃11),

J− = sign (J1(I + T11)) = sign (J1 + T̃11),

J11 = sign (J1(I − T 2
11))

(5.9)

Let κ+ = ν−[I − T11] and κ− = ν−[I + T11]. Note that |I ∓ T11| = |J1 ∓ T̃11|. Then we have the polar
decompositions

I ∓ T11 = J1J±|I ∓ T11|. (5.10)

Lemma 5.4. Let T11 = T
[∗]
11 ∈ [(H1, J1)], and let T =

(
T11 T12
T21 T22

)
∈ [(H, J)] be a self-adjoint extension

of the operator T11 with ν−[I ± T11] <∞ and ν−(J) <∞. Then the statements

(i) ν−[I ± T11] = ν−[I ± T ];

(ii) ν−[I − T 2] = ν−[I − T 2
11]− ν−(J2);

(iii) ranJ1T
[∗]
21 ⊂ ran |I ± T11|1/2

are connected by the implications (i) ⇔ (ii) ⇒ (iii).

Proof. The Lemma can be formulated in an equivalent way for the Hilbert space operators: the block

operator T̃ = JT =

(
T̃11 T̃12
T̃21 T̃22

)
is a self-adjoint extension of T̃11 = T̃ ∗

11 ∈ [H1]. Then the statements

(i’) ν−(J1 ± T̃11) = ν−(J ± T̃ )

(ii’) ν−(J − T̃ JT̃ ) = ν−(J1 − T̃11J1T̃11)− ν−(J2);

(iii’) ran T̃12 ⊂ ran |J1 ± T̃11|1/2

are connected by the implications (i′) ⇔ (ii′) ⇒ (iii′).
Hence, it is sufficient to prove this form of the Lemma.
Let us prove the equivalence (i′) ⇔ (ii′). Condition (ii’) is equivalent to

ν−

(
J1 T̃11
T̃11 J1

)
= ν−

(
J T̃

T̃ J

)
. (5.11)

Indeed, in view of (5.8),

ν−

(
J1 T̃11
T̃11 J1

)
= ν−(J1) + ν−(J1 − T̃11J1T̃11)
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and

ν−

(
J T̃

T̃ J

)
= ν−(J) + ν−(J − T̃ JT̃ )

= ν−(J1) + ν−(J2) + ν−(J − T̃ JT̃ ).

By using Lemma 5.3, equality (5.11) is equivalent to

ν−(J1 − T̃11) + ν−(J1 + T̃11) = ν−(J − T̃ ) + ν−(J + T̃ ). (5.12)

Hence, (i′) ⇒ (ii′).
Because ν−(J1 ± T̃11) ≤ ν−(J ± T̃ ), relation (5.12) shows that (ii′) ⇒ (i′).
Now, we prove implication (ii′) ⇒ (iii′); the arguments will be useful also in the proof of Lemma

5.5 below. Let us use a permutation to transform the matrix on the right-hand side of (5.11):

ν−

(
J T̃

T̃ J

)
= ν−


J1 0 T̃11 T̃12
0 J2 T̃21 T̃22
T̃11 T̃12 J1 0

T̃21 T̃22 0 J2

 = ν−


J1 T̃11 0 T̃12
T̃11 J1 T̃12 0

0 T̃21 J2 T̃22
T̃21 0 T̃22 J2

 .

Then condition (5.11) yields the condition

ran

(
0 T̃12
T̃12 0

)
⊂ ran

∣∣∣∣∣
(
J1 T̃11
T̃11 J1

)∣∣∣∣∣
1/2

(see Theorem 2.1). By Lemma 5.2, the last inclusion can be rewritten as

ran

(
0 T̃12
T̃12 0

)
⊂ ranU

(
|J1 + T̃11|1/2 0

0 |J1 − T̃11|1/2

)
U∗,

where U = 1√
2

(
I I
I −I

)
is a unitary operator. This inclusion is equivalent to

ranU∗

(
0 T̃12
T̃12 0

)
U = ran

(
T̃12 0

0 −T̃12

)

⊂ ran

(
|J1 + T̃11|1/2 0

0 |J1 − T̃11|1/2

) .

This is clearly equivalent to condition (iii’).
Note that if T̃11 has a self-adjoint extension T̃ satisfying (i’). Then, by applying Theorem 2.1

(or [7, Theorem 1]), it yields (iii’).

Lemma 5.5. Let T11 = T
[∗]
11 ∈ [(H1, J1)] be an operator, and let

T1 =

(
T11
T21

)
: (H1, J1) →

(
(H1, J1)
(H2, J2)

)
be an extension of T11 with ν−[I − T 2

11] < ∞, ν−(J1) < ∞, and ν−(J2) < ∞. Then, under the
conditions
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(i) ν−[I1 − T 2
11] = ν−[I1 − T

[∗]
1 T1] + ν−(J2);

(ii) ranJ1T
[∗]
21 ⊂ ran |I − T 2

11|1/2;

(iii) ranJ1T
[∗]
21 ⊂ ran |I ± T11|1/2,

implications (i) ⇒ (ii) and (i) ⇒ (iii) hold.

Proof. First, we prove that (i)⇒(ii). In fact, this follows from Theorem 3.1, by taking A = I − T 2
11

and B = T21.

The proof of (i)⇒(iii) is quite similar to the proof used in Lemma 5.4. Statement (i) is equivalent
to the following relation:

ν−

(
J1 T̃11
T̃11 J1

)
= ν−

(
J T̃1
T̃ ∗
1 J1

)
.

Indeed,

ν−

(
J1 T̃11
T̃11 J1

)
= ν−

(
J1 0

0 J1 − T̃11J1T̃11

)
= ν−(J1 − T̃11J1T̃11) + ν−(J1) <∞

and

ν−

(
J T̃1
T̃ ∗
1 J1

)
= ν−

(
J 0

0 J1 − T̃ ∗
1 JT̃1

)
= ν−(J1 − T̃11J1T̃11 − T̃ ∗

21J2T̃21) + ν−(J1) + ν−(J2).

Due to (i), the right-hand sides coincide. Then the left-hand sides coincide as well.

Now, let us rearrange the matrix in the latter relation:

ν−

(
J T̃1
T̃ ∗
1 J1

)
= ν−

 J1 0 T̃11
0 J2 T̃21
T̃11 T̃ ∗

21 J1

 = ν−

 J1 T̃11 0

T̃11 J1 T̃ ∗
21

0 T̃21 J2

 .

It follows from [7, Theorem 1] that condition (i) yields the condition

ran

(
0

T̃ ∗
21

)
⊂ ran

∣∣∣∣∣
(
J1 T̃11
T̃11 J1

)∣∣∣∣∣
1/2

= ranU

(
|J1 + T̃11|1/2 0

0 |J1 − T̃11|1/2

)
U∗,

where U = 1√
2

(
I I
I −I

)
is a unitary operator (see Lemma 5.2). Then, equivalently,

ran T̃ ∗
21 ⊂ ran |J1 ± T̃11|1/2.
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5.3. Contractive extensions of contractions with minimal negative indices

Following [7, 16, 18], we consider the problem of existence and description of the self-adjoint op-

erators T in the Pontryagin space
(
(H1, J1)
(H2, J2)

)
such that A+ = I + T and A− = I − T solve the

corresponding completion problems

A0
± =

(
I ± T11 ±T [∗]

21

±T21 ∗

)
, (5.13)

under minimal index conditions ν−[I+T ] = ν−[I+T11], ν−[I−T ] = ν−[I−T11], respectively. Observe
that, by Lemma 5.4, the two minimal index conditions above are equivalent to the single condition
ν−[I − T 2] = ν−[I − T 2

11]− ν−(J2).
It is clear from Theorem 2.1 that the conditions ranJ1T

[∗]
21 ⊂ ran |I − T11|1/2 and ranJ1T

[∗]
21 ⊂

ran |I + T11|1/2 are necessary for the existence of solutions; however, as noted already in [7], they are
not sufficient even in the statement with a Hilbert space.

The next theorem gives a general solvability criterion for the completion problem (5.13) and de-
scribes all solutions to this problem. As in the definite case, there are minimal solutions A+ and A−
which are connected to two extreme self-adjoint extensions T of

T1 =

(
T11
T21

)
: (H1, J1) →

(
(H1, J1)
(H2, J2)

)
, (5.14)

now with finite negative index ν−[I−T 2] = ν−[I−T 2
11]−ν−(J2) > 0. The set of solutions T to problem

(5.13) will be denoted by Ext T1,κ(−1, 1)J2 .

Theorem 5.1. Let T1 be a symmetric operator, as in (5.14), with T11 = T
[∗]
11 ∈ [(H1, J1)] and

ν−[I − T 2
11] = κ < ∞, and let JT11 = sign (J1(I − T 2

11)). Then the completion problem for A0
± in

(5.13) has a solution I ±T for some T = T [∗] with ν−[I −T 2] = κ− ν−(J2), iff the following condition
is satisfied:

ν−[I − T 2
11] = ν−[I − T

[∗]
1 T1] + ν−(J2). (5.15)

If this condition is satisfied, then the following facts hold:

(i) The completion problems for A0
± in (5.13) have “minimal” solutions A± (for the partial ordering

introduced in the first section).

(ii) The operators Tm := A+ − I and TM := I −A− ∈ Ext T1,κ(−1, 1)J2.

(iii) The operators Tm and TM have the block form

Tm =

(
T11 J1DT11V

∗

J2V DT11 −I + J2V (I − L∗
TJ1)J11V

∗

)
,

TM =

(
T11 J1DT11V

∗

J2V DT11 I − J2V (I + L∗
TJ1)J11V

∗

)
,

(5.16)

where DT11 := |I − T 2
11|1/2, and V is given by V := clos (J2T21D

[−1]
T11

).

(iv) The operators Tm and TM are “extremal” extensions of T1:

T ∈ Ext T1,κ(−1, 1)J2 iff T = T [∗] ∈ [(H, J)], Tm ≤J2 T ≤J2 TM . (5.17)
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(v) The operators Tm and TM are connected via

(−T )m = −TM , (−T )M = −Tm. (5.18)

Proof. It is easy to see by (3.1) that κ = ν−[I − T 2
11] ≤ ν−[I − T

[∗]
1 T1] + ν−(J2) ≤ ν−[I − T 2] + ν−(J2).

Hence, the condition ν−[I−T 2] = κ−ν−(J2) yields (5.15). The sufficiency of this condition is obtained,
when proving assertions (i)–(iii) below.

(i) If condition (5.15) is satisfied, then, by using Lemma 5.5, we get the inclusions ranJ1T
[∗]
21 ⊂

ran |I ± T11|1/2, which means, by Theorem 2.1, that each of the completion problems, A0
± in (5.13), is

solvable. It follows that the operators

S− = |I + T11|[−1/2]J1T
[∗]
21 , S+ = |I − T11|[−1/2]J1T

[∗]
21 (5.19)

are well defined and provide the minimal solutions A± to the completion problems for A0
± in (5.13).

(ii) & (iii) By Lemma 5.5, the inclusion ranJ1T
[∗]
21 ⊂ ran |I − T 2

11|1/2 holds. This inclusion is

equivalent to the existence of a (unique) bounded operator V ∗ = D
[−1]
T11

J1T
[∗]
21 with ker V ⊃ ker DT11 ,

such that J1T
[∗]
21 = DT11V

∗. By using (5.1), (5.2), and 5.1, the operators Tm := A+ − I and TM :=
I − A− (see the proof of (i)) can be now rewritten as in (5.16). Indeed, observe that (see Theorem
2.1, (5.9), and (5.10))

J2S
∗
−J−S− = J2V DT11 |I + T11|[−1/2]J−|I + T11|[−1/2]DT11V

∗

= J2V DT11(J1(I + T11))
[−1]DT11V

∗

= J2V DT11D
[−1]
T11

(I + L∗
T11
J1)

[−1]DT11J1DT11V
∗

= J2V (I + L∗
T11
J1)

[−1](J11 − L∗
T11
JT ∗

11
LT11)V

∗

= J2V (I + L∗
T11
J1)

[−1](J11 − (L∗
T11
J1)

2J11)V
∗

= J2V (I + L∗
T11
J1)

[−1](I + L∗
T11
J1)(I − L∗

T11
J1)J11V

∗

= J2V (I − L∗
T11
J1)J11V

∗,

where the third equality follows from (5.1) and the fourth from (5.2).

Similarly,

J2S
∗
+J+S+ = J2V DT11 |I − T11|[−1/2]J+|I − T11|[−1/2]DT11V

∗

= J2V DT11(J1(I − T11))
[−1]DT11V

∗

= J2V DT11D
[−1]
T11

(I − L∗
T11
J1)

[−1]DT11J1DT11V
∗

= J2V (I − L∗
T11
J1)

[−1](J11 − L∗
T11
JT ∗

11
LT11)V

∗

= J2V (I − L∗
T11
J1)

[−1](J11 − (L∗
T11
J1)

2J11)V
∗

= J2V (I − L∗
T11
J1)

[−1](I − L∗
T11
J1)(I + L∗

T11
J1)J11V

∗

= J2V (I + L∗
T11
J1)J11V

∗,

which implies the representations for Tm and TM in (5.16). Clearly, Tm and TM are self-adjoint
extensions of T1, which satisfy the equalities

ν−[I + Tm] = κ−, ν−[I − TM ] = κ+.
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Moreover, it follows from (5.16) that

TM − Tm =

(
0 0
0 2(I − J2V J11V

∗)

)
. (5.20)

Now, assumption (5.15) will be used again. Since ν−[I − T
[∗]
1 T1] = ν−[I − T 2

11] − ν−(J2) and
T21 = J2V DT11 , it follows from Theorem 3.1 that V ∗ ∈ [H2,DT11 ] is J-contractive: J2 − V J11V

∗ ≥ 0.
Therefore, (5.20) shows that TM ≥J2 Tm and I + TM ≥J2 I + Tm. Hence, in addition to I + Tm,
I + TM is also a solution to the problem A0

+. In particular, ν−[I + TM ] = κ− = ν−[I + Tm]. Similarly,
I − TM ≤J2 I − Tm, which implies that I − Tm is also a solution to the problem A0

−. In particular,
ν−[I − Tm] = κ+ = ν−[I − TM ]. Now, by applying Lemma 5.4, we get

ν−[I − T 2
m] = κ− ν−(J2),

ν−[I − T 2
M ] = κ− ν−(J2).

Therefore, Tm, TM ∈ Ext T1,κ(−1, 1)J2 , which proves, in particular, that condition (5.15) is sufficient
for the solvability of the completion problem (5.13).

(iv) Observe that T ∈ Ext T1,κ(−1, 1)J2 , iff T = T [∗] ⊃ T1 and ν−[I ± T ] = κ∓. By Theorem 2.1,
this is equivalent to

J2S
∗
−J−S− − I ≤J2 T22 ≤J2 I − J2S

∗
+J+S+. (5.21)

Inequalities (5.21) are equivalent to (5.17).
(v) Relations (5.18) follow from (5.19) and (5.16).

Remark 5.1. This result coincides with the main result of [16] in the case of a contraction operator
T1 and with the result of [7, Theorem 5] in the case of a “quasicontraction” operator T1 with finite
negative index.
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