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EFFICIENT ABSOLUTE FACTORIZATION OF
POLYNOMIALS WITH PARAMETRIC COEFFICIENTS

A. L. Chistov* UDC 513.6, 518.5

Consider a polynomial with parametric coefficients. We show that the variety of parameters can be
represented as a union of strata. For values of the parameters from each stratum, the decomposition
of this polynomial into absolutely irreducible factors is given by algebraic formulas depending
only on the stratum. Fach stratum is a quasiprojective algebraic variety. This variety and the
corresponding output are given by polynomials of degrees at most D with D = d'd°") where d',d
are bounds on the degrees of the input polynomials. The number of strata is polynomial in the size
of the input data. Thus, here we avoid double exponential upper bounds for the degrees and solve
a long-standing problem. Bibliography: 4 titles.

INTRODUCTION

Let k be an arbitrary field containing at least 2d%+1 pairwise distinct elements (d is specified
below, see (1)). Let p be the characteristic exponent of the field k, i.e., p = 1 if char(k) = 0 and
p = char(k) if char(k) > 0. Let ay, ..., a, be a family of independent variables (or parameters)

over k. Denote by A”(k) the affine space of parameters with the coordinate functions aq, ..., a,

(in a more general situation, one may consider an algebraic variety of parameters V C AY(k),

but this case is easily reduced to the particular one when V = A¥(k)).
Let f € k[ay,...,a,,X1,...,X,] be a polynomial and

degXl,---7Xn f <d, degal,...,al, f < d (1)

for some integers d > 2 and d’ > 2. In the present paper, we consider the problem of
representing the space of parameters

A®) = |J We (2)

acA
as a union of a finite number (i.e., #A4 < 400) of quasiprojective algebraic varieties W,
satisfying the following properties. For every o € A, for all a* = (aj,...,a}) € W, there is a
decomposition
flaf, ah Xa, o, Xn) = A [ B (X7, XET), (3)
vl

where F, .+ € k[X1,...,X,] are polynomials irreducible over the field k, Ay« € k, 1 < e, € Z,
0<1i,€Z, #I'y < 4o0o. The decomposition (3) is given uniformly, i.e., by some algebraic
formulas (see below for details) defined everywhere on W, and depending on aj,...,a} as
parameters. Note that all the integers e,, i, and the set of indices I', do not depend on
a* € W,.

Now we are going to give a precise meaning to this uniformity. Namely, the decomposi-
tion (2) satisfies the following properties.

(i) For every a € A, the variety W, is nonempty. For all ay,as € A, if ay # a9 then

Wa, "Wy, = @, i.e., the varieties W, are pairwise disjoint; so we will call them strata
and will call the union (2) a stratification.
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(ii) One can represent W, in the form

Wa=WIN\ | Wi
2<B<pta
where each W (T/Ja 1, .. ,w&%aﬂ), 1 < B < pq, is the set of all common zeros of

the polynomials @Zja 1oee ,@Z}a map € Kla1,...,a,] in the affine space A” (k) and mg 5 > 1
is an integer.

For every a € A, denote by W, the closure with respect to the Zariski topology of the algebraic
variety W, in A¥ (k). Denote by Z,, the ideal of the affine algebraic variety W,.

(iii) There are a set of indices J,, polynomials Ay 0, Aa,1 € E[ai,...,a,], polynomials f; €
klai,...,au, X1,. .., X,], integers e; relatively prime to p, integers i; > 0 for all j € J,
such that each of the polynomials Ay o, Aa,1 does not vanish at any point of the algebraic
variety W,

1 i i
_ Aat Hf"’f (a1,...,a,, XV ... XP7) (4)
]eJa

on the algebraic variety W, (this means that

Aaof = Ao [ £7(ar, . a0, XV XE) € Ty @7 KX, ..., X0))
Jj€Ja
and Ju, N Ja, = @ for ag # ao. Besides, if p = 1 then i; = 0 for every j € J,.

(iv) For every i = —1,0 there is at most one o € A such that deg f; = i for some j € J,.
In this case, #J, =1, ¢;j = 1, and Ao 0 = Ap,;1 = 1, and if i = —1 then f; =0, if i =0
then 0 # f; = f(a1,...,a,,0,...,0) € k[ay,...,a,].

(v) For every a € A, for every j € J,, for every a* € W,,

degx, . x, filai,...,a,, Xq,..., X)) = degx, . x, fi-

If degy, . x, fi = 0, then the polynomial f;(aj,...
does not have multiple factors in k[X1, ..., X,]). For all pairwise distinct j1,j2 € Ja,
the polynomials fj (aj,...,a;,X1,...,Xy) and fj,(a},..., a),X1,...,X,) are rela-
tively prime in the ring k[X1, ..., X,].
Denote by A’ the subset of a € A such that deg f; > 1 for all j € J,. Foralla € 4’, j € J,
there is a polynomial H; € klai, ..., a,][Z] satisfying the following properties.

(vi) Let a € A’, j € J,. Denote by A; € k[ay, ... ,a,] the discriminant of the polynomial H;
with respect to Z. Then A; does not vanish at any point of the algebraic variety Wi,.

X1,...,X,) is separable (i.e.,

71/7

Under the conditions of (v ) for every a* € W, denote by Z; .« the set of all roots of
the polynomial H, ;(a},...,a}, Z) € k[Z]. Then by (vi) for every a* € W, the number of
roots #Z; 4+ is equal to deg, H; and the leading coefficient lcz H; does not vanish at any such
point a*.

(vil) Let « € A’, j € J,. Then there is a polynomial F; € kla1,...,ay, Z, X1,...,X,] such
that for every a* € W,, for every root £ € Z; 4+, the polynomial

Fj(aj{w"7QZ7£7X17”'7X71)
is irreducible in k[X1, ..., X,] (i.e., absolutely irreducible) and 0 < deg, F; < deg, H
degx, . x, Fj(al,...,a,,6,X1,...,Xy) = degx, . x, Iy
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(viii) Let « € A’, j € J,. Then

fj(aT?"'aazlew"aXn): H F’j(a;"'aaivgale"'aXn) (5)
geE]’,a*
and hence (5) is a decomposition of the separable polynomial f;(aj,...,a}, X1,...,X},)

into a product of pairwise distinct absolutely irreducible factors. Hence the degree
deg, H; = #5; 4+ is bounded from above by d.

Now we are able to formulate our main result.

Theorem 1. Let f € kl[ay,...,a,,X1,...,X,] be as above. Then there is a stratification

{Wataca of the space of parameters A¥ (k) satisfying properties (i)—(viii) and such that

(a) the number of elements #A and all the integers p,, are bounded from above by (d')”d°®)
with an absolute constant in O(v),

(b) the degrees with respect to a, ... ,a, of all the polynomials @bgﬁg, e ,@z}g’f%aﬁ, A0, A1
H;, F;, f; are bounded from above by d'd°M with an absolute constant in o(1).

The proof of this theorem is based on [1,2]. One can also consider the case of a covering
(rather than a stratification) of the space of parameters (i.e., in this case (i) does not necessarily
hold). If in the statement of Theorem 1 one replaces “(i)—(viii)” by “(ii)—(viii),” then one can
claim additionally that p,, = 2 for every a € A.

Remark 1. Let d > —1 be an integer. According to [1], we identify the set of polynomials
V™D where N(n,d) = (”:d). Denote by

from k[X1,...,X,] of degree at most d with k
V™D the subset of polynomials from k[X7, ..., X,] of degree d. In [1], we introduced
—N(n,d)

Pn,d Ck

the function RDPx,  x, : U k — |J P, 4 corresponding to some computation forest.
d>0 d>0

Namely, if g € EN(n’d), then RDPx, . x,(9) € Pna where d' = degy, x, g is the degree

of g and ¢ = RDPx,  x,(9) in k[X1,...,X,]. Throughout this paper, we sometimes apply

the function RDPx,  x, (or a similar function with other variables in place of Xi,...,X,)

without mentioning it. This will not lead to an ambiguity. The function RDPy,  x, is used

when one needs to know the exact degrees of the polynomials under consideration.

1. THE NOETHER NORMALIZATION OF A POLYNOMIAL

Let k be a field. Let f € k[Xy,..., X,] be a nonzero polynomial and degy, x, f = d for
an integer d > 0. Then one can represent f in the form

_ E i1 i
f_ fil,...,inXl 'Xnn7
Ulyeenyin 20
i1+ Fin<d

where all the coefficients f;, ;. are in k.

n

Put Ky = ko = Z if the characteristic char(k) is zero. If char(k) = p > 0, then put
ko =T, = Z/pZ to be the primitive field. Further, let us define Ky to be some ring such that
ko C Ko C k and K contains at least 2d® 41 elements. The ring K exists since #k > 2d% +1,
see the introduction. In what follows, we will need to choose finite sets with sufficiently many
elements from the field k. We will choose them from the ring Kjy.

Let Jy C Ky be a subset containing exactly d + 1 elements. We choose and fix this subset
Ja- In the case char(k) =0, put J; = {0,1,...,d} C Z. Additionally, we will assume without
loss of generality that J; is well-ordered.
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Let jo,...,0n € Jyq. Put
fU2esdn) = £(X), Xg + jo X1 ..o, Xy + jnX1) € K[X1, ..., Xl

Let us order the set of multiindices (j2,...,Jjn) Ejf_l lexicographically: (jo,...,7n) <
(4%, ..., jr) if and only if there is an integer a with 2 < av < m such that j, = j, for 2 <v < «
but j, < j,. Denote by J, 4 the set of all multiindices (jo,...,Jjn) € Jé"”_l such that j, € Jy
for 2 < o < n. Then J,, 4 is linearly ordered and #J, 4 = (d + 1)"~1.

Let f = w0+ @1+ ...+ @q where ¢; € k[Xq,...,X,] is a homogeneous polynomial of
degree 1.

Put NNy, (f; X1,...,X,) = f2t) where (1g,...,t,) is the least multiindex from Tn.d
such that

075 Spd(lab%"'al'n) €k
(here NN is an abbreviation for “Noether normalization”). Set

innx, (f; X1,...,X5) = (b2, .-y tn)-

Thus f — inny, (f; X1,...,Xy) is a function P, g — Jn—1,4-
In other words,

NNXl(faleaXn) = f(m’m’bn) and innXl(f;le"'aXn) = (['2>"'>Ln)

if and only if p4(1,t2,...,tn) # 0 and @4(1,52,...,4n) = 0 for all (j2,...,4n) € Jy 4 such that
(jg,...,jn_) < (LQ,...,Ln).
If K =k (i.e., the field k is algebraically closed), then the function

UPn,dHUPn,da fHNNXl(f,X]_,,Xn),
d>0 d>0

is an algorithm corresponding to a computation forest. Denote this forest by {T;}4>0. Each
tree Ty is of level I(Ty) = 1 and has (d + 1)"~! leaves.

Note that the composition LCx, o NNy, is defined, see Example 3 from Sec. 3 in [1], and
LCx, (NNx, (f)) = f(L, 2, - s tn).

2. THE SQUARE-FREE FACTORIZATION OF A POLYNOMIAL

First, we recall the main result of [3] in the form required for our purposes. Unless otherwise
stated, in this section A is an integral algebra over the ground field k with field of fractions L
(of course, the reader will see that some assertions are valid in the case where A is an arbitrary
integral ring). Let f,g € A[X] be two polynomials in one variable X. Let degx f =n > 0,
degy g =m > 0. Let r be an integer, 0 < r < min{n,m} —1. Let A, B € L[X] be polynomials
such that 0 <degy A<m—r—1,0<degxyB<n—r—1 Put h=Af+ Bg.

Let
F=> 5X g= > @X', h= > X
0<i<n 0<i<m 0<i<m+n—r—1
A= Y AX, B= Y BX,
0<i<m—r—1 0<i<n—r-—1

where f;, g; € A, hy, A;, B; € L. Assume that f, g, h are given. Then the equality Af +Bg =h
is equivalent to the following linear system S,:

Z Aifu_i+ Z ngl/—j =h,, 0<v<n4+m-r-—1, (6)
max{r—n,0}<i<v max{v—m,0}<j<v
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with respect to the unknowns A4;, 0 <7 <m —r —1, and Bj, 0 < j <n —r — 1. Denote by
S, the coefficient matrix of this system. It has m +n — r rows and m + n — 2r columns. Note
that S, is a submatrix of the Sylvester matrix Syl(f,g) of the polynomials f and g.

For each i, 0 < i < r, denote by S, ; the subsystem of S, consisting of the equations from
(6) withv =diand r+1 <v <n+m—r—1 (so the number of equations in S, ; is m+n —2r).
Denote by S, ; the coefficient matrix of the system S, ;. Then S,; has m 4+ n — 2r rows and
m +n — 2r columns. Let d,; = det(S, ;) be the determinant of the matrix S, ;, 0 <i <r.

Now if h = ged(f,g) € L[X] is the greatest common divisor of the polynomials f, g in the
ring of polynomials L[X] (it is uniquely defined up to a factor from L\ {0}) and degy h =7,
0 <7 <min{m,n} =1 (so hy =0forr+1<i<n+m—r—1), then there are unique
polynomials A, B € L[X] such that degxy A <m—r—1,degxy B <n—r—1,and h = Af + By.

Next, consider the case where r = min{n, m} (so the system S, is not defined). Then, by
definition, if n = r put 6,; = f; for 0 <7 <r, and if n # r put 6,;, = g; for 0 <7 <r.

Lemma 1. Under the above conditions, the following assertions hold.

(i) Assume that h = ged(f,g) € L[X] is the greatest common divisor of the polynomials
f,g in the ring of polynomials L[ X] and degx h = r < min{m,n}.
If r < min{m,n} — 1, then the system S, is equivalent to the system S,, and the
latter has a unique solution.
Therefore, for an arbitrary r with 0 < r < min{m,n}, the element 6, , is not zero,
and for all i with 0 < i <1, we have hi/h, = 6y /0.
(ii) Assume that 0 < r < min{m,n}—1, the elements h; are zero forr+1 <1i < n+m—r—1,
hy # 0, and the system S, has no solution. Then d,, =0 and degy ged(f,g) > r.

Proof. These assertions follow straightforwardly from the given definitions, and we leave to
the reader to prove them, cf. also [3]. O

Corollary 1. For given polynomials f,g € A[X]| such as above, the degree of their greatest
common divisor satisfies the inequality degx ged(f, g) = r < min{m,n} if and only if 6;; =0
for0 <3 <r—1 and ., #0. Moreover, in this case

ged(f,g) = > 6 X' € A[X]. (7)

0<ir
Proof. This follows immediately from Lemma 1. O
Obviously, there are unique polynomials A, ; € ko[Yy,...,Yn, Zo, ..., Zy] (here Y;, Z; are
new variables) such that §,; = A ;(fo,..., fn,90, -+, 9m) for 0 < i < r and all polynomials

f,g and rings A such as above. For 0 < r < min{m,n}, 0 < i < r, we have the following
bounds on the degrees with respect to all the variables Yp,...,Y,, and Zy, ..., Z:
degy, v, Ari<m—r, degy 7 Ay ;<n-—r. (8)
Recall that f,g € A[X], degy f = n > 0, degx g = m > 0. We will use the following
definition.

(xx) Let 7 be an arbitrary integer, 0 < r < min{m,n}. If A;;(fo,..., fn:90,---, gm) =0
for 0 <j <rand Ar,(fo,..., fn,90s---59m) # 0, then

GCDA,X(f7g) - Z AT,i(wa"afnang"7gm)Xi-

0<i<r

In the particular case where k = k is an algebraically closed field, the function G CDyz y :
Un.mso(Pn X Pr) — U,>o Pr is an algorithm corresponding to a computation forest. Denote
this forest by {T}, m }n,m>0. Each tree T}, ,, is of level 1 and has 1 4+ min{m,n} leaves.
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Lemma 2. Let n, m be integers, n > m > 0. There are polynomials

QZ‘Ek‘o[}/o,...,yn,ZO,...,Zm], 0<72<n—m,
R; € ko[Yo,.. -, Yn, Zoy ..., Zm], 0<i<m-—1,
satisfying the following properties. Let A be an arbitrary commutative algebra with unity

over ko. Let f,g € A[X] be two polynomials such that degyx f = n, degxg = m and
f= > fiX',g= > ¢jX? where fj,g; € A. Then

0<i<n 0<j<m
g =9 Y Qilfor s furgos - gm) X+ Y Rilfor- fan g0 s gm) X
0<i<m—n 0<i<m—1
in the ring A[X]. Besides,
degy, .y, Qi <1, degy z Qi<n-m, 0<i<n-—m, (9)
degy, vy, Ri <1, degy 5 Ri<n-m+1, 0<i<m-L1 (10)

Further, let L be the total quotient ring of A. Assume additionally that the leading co-
efficient g,, = lexg is not a zero divisor in A and g divides f in the ring L[X]|. Then
Ri(f0> N ,fn,g(], e ,gm) =0 fOT' all 1.

Proof. This is straightforward. O

For any f, g satisfying the conditions of Lemma 2, by definition put
QA,X(fag): Z Qi(f(]a"'afna.gOv"'agm)Xiv

0<i<m—n
RA,X(fag): Z Ri(fOJ"'afn7g07”'7gm)Xi-

0<i<m—1

Consider the multivariate case. Assume that n > 2.
Let f,g € k[X1,..., Xy], degy,  x, f=d1 >0,degy, x,9=ds>0.Put

fl = NNXl(f;Xla"'>Xn)> innXl(f;le"'aXn) = (i%'"ain)v
g1 = g(Xl,Xg —I—’iQXl,...,Xl —I—’Lan) Set A = k‘[XQ,,Xn] and h = GCDA7X1(f1,gl),
a:LCxl(hl),

a; = NNy, (a; Xo,..., Xpn), (t3,...,tp) =innx,(a; Xo,..., Xy),

hl = h(Xl,XQ,Xg + L3X2, . ,Xn + LnXQ), Al = k[Xl,Xg, ‘o ,Xn], q1 = QAI’Xz(hl,al) and
qo = ql(Xl,XQ,Xg — L3X2, . ,Xn — LnXg), q = QQ(Xl,XQ — iQXl, . ,Xl — ’lan) Then,
obviously, ¢ = ged(f,g) is the greatest common divisor of the polynomials f,g in the ring
k[X1,...,Xy]. If kK =k, then the function

GCDx,.x0: |J (Pudy X Pray) = | Poar (f19) — 4,

dy,d22>0 d>0
is defined. This function GCDx,  x, corresponds to a computation forest
{T4,.ds Yy ,d2>0, see the definitions in [1].
Now we proceed to the square-free factorization of polynomials. Let f € k[Xq,...,X,] be

a polynomial with degy, x, f > 1. Denote by ks the perfect closure of the field k. Then
one can represent f in the form

f=XFF}-.. . - F¢ (11)
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where 0 # Ao € k, all polynomials F; € kp¢[X7,...,X,] are separable (or, which is the same,
square-free), ged(F;,, Fy,) = 1 for 1 < iy # iz < d, and degy,  x, [5 > 0. We will see that
one can choose F; such that F! € k[Xy,...,X,], 1 <i<d.

First, assume that char(k) = 0. Then k = ky¢. Set

fl :NNXl(f;Xla"'aXn)a

(L2, ytn) = innx, (f; X1,...,Xy,). Let A =k[Xa,...,X,]. Let f| = % be the derivative of
the polynomial f;. Then put

@1 =Qax,(f1,GCDx, . x,(f1,f1) € k[X1,..., X

and G = q1 (X1, Xo —12X1,..., X5 — 1, X1). Obviously, G = \{F1 Fy-...- Fy where 0 # )\ € k.
So G is the square-free part of the polynomial f in the ring k[X7,..., X,].

Assume that char(k) = p > 0. Let i > 0 be an integer. Set B; = {jp’ : 1 < jp' <d & j € Z}
(hence B; = @ if p* > d) and ®; = [] F}. Put

JEB;
\I/i = (I)i(Xfiz s 7X£_l)/q)7;+1(X{)71’ e ’Xﬁ_l).
Now f =X ]I \I’i(Xfiaungi) and ¥; = I1 FJ’(X{WV“?X{Z.V' Note that if
0<i<log, d JEBi\Bit1
j € B; \ Biy1, then j/p' is an integer and p does not divide j/p.
Let 7 be fixed. One can represent f in the form f = > Xt X0 fiey o Where

) ) OST‘l,...,Tn<pi
firt,mm € k:[Xfl,...,Xﬁz]. We have ged{fir r = 0 <ri,....,r, < p'} = ®; in the ring
kE[X1,...,X,] (we leave the details to the reader).
Then one can compute each polynomial ®;, for example, as follows. Let Yi,...,Y, be new
variables. Put

q; = Z erl . Y;nfi,"‘l,n-mn & k‘[Yl e ’Y«r“Xl, e ,Xn]

0<ry,..., T <p°

Then ®; = GCDy,.. v, xi,..x, (¢, LCy(¢;)) up to a nonzero factor from k, and we will assume
without loss of generality that this factor is equal to 1.
Put A = k[Xo, ..., Xn],

01 =NNx, (P15 X1,..., Xp), (b1, tn) = innx, (P15 X1,..., Xp),
w2 = Qi (X1, Xo + 02 X1,..., Xy + 0, X1),

1 = Qa,x, (2, 01),
o = 1 (X1, Xo — 2 Xq,..., Xy — 10, X1),

W3 = Po(XP, L X,

Now the polynomial 3 coincides with ¥; up to a nonzero factor from k.
Further, similarly to the case of characteristic zero,

1/} = NNX1 (¢3;X17 v >Xn)> (L/2> s aL{rL) = iIlHXl (¢3;X17 s >Xn)>

a1 =@ (. GOD vy v (00 Yg—;?)) € K[X1,.... X,],
1<i<n ¢
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and G; = ¢1(X1, X2 — $Xq,..., X, — ¢, X1). Obviously, G; is the square-free part of the
polynomial ¥; in the ring k[ X1, ..., X,]. We have
Gl(Xflaanl):/j’l H 'F,jpza
jeBi\Bi+1

[[ Gt XEy =uk-... Fy

0<i<log,, d
where 0 # p1; € k, 0 # p1 € kpe. So, the family of separable polynomials G;, 0 < i < log, d,
determines the square-free part of the polynomial f.

Let us return to the case of an arbitrary characteristic of the ground field. Let j be an
arbitrary integer, 1 < j < d.

If char(k) = 0, put Go = G, By = {1,2,...,d}, By = @,i=0, p=1. If char(k) = p > 0,
assume that p’ divides j and p'*! does not divide j for an integer i, 0 < i < log,, d.

i

..., XE") up to a nonzero factor from k.
Put G, = GCDXI,,,,7XTL(G,-(XPZ, ., XE),FY), 1<« €Z Then G o coincides with

nm =~ 1 =&

jEBi\BH_l &j<api jeBi\Bi+1 &]2&])7’

Now we are going to find the polynomial F;’ i (X7

up to a nonzero factor from k. The ratio G; o/G; -1 coincides with
pi
II 7
JE€EB\Biy1 & j>ap?
up to a nonzero factor from k.

Let BZ"\ Biy1 = {a1p’, ..., a.p'} where aq,...,q, are integers and 1 < a1 < a < ... <
o, < d/p'. Then for every s, 1 < s < r, the ratio

Qs = (Gi,as /Gi,as—l)/(Gi,asH /Gi,as+1—1)

. . . 7’ . . . .
coincides with F” , up to a nonzero factor from k. The ratio G; 4, /Gj.a,_1 coincides with
. Qsp 3 5

F 5 Zpl- up to a nonzero factor from k.
Applying the Noether normalization and Lemma 2 (cf. the computation of G;), for each s,
1 <s<r—1, we find a polynomial F,, ,; coinciding with Qs up to a nonzero factor from k.

Then Fvaspi coincides with F’ 5 ipi up to a nonzero factor from k. In a similar way we compute
a polynomial ﬁarpi coinciding with Fg :pi up to a nonzero factor from k.

Thus, for every j € B;\ B;11, the polynomial E(Xfﬁi, . ,Xﬁii) € k[Xy,...,X,] coincides
with FJP ' (x? _i, . ,Xﬁ_i) up to a nonzero factor from k. In particular, we have proved that
one can choose each F} so that FJJ has coefficients from k.

Let 1 < j <d. If char(k) = 0, then set SQF, v, x, (f) = Fj. If char(k) = p > 0, then set
SQF, x,..x,(f) = F;(X?",...,X% ") if and only if j € B;\ Biy1, 0 < i < log, d. Let k = F.
Then we introduce the function

SQFx,,x, U Bua = U( U Bum )+ f o 18 x o, (Dhzgea ()
d>1 d>1 m>1

According to the described construction, the function SQFy,  y,  is an algorithm correspond-
ing to a computation forest. Denote this forest by {T);}4>1 (now n is fixed).
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3. THE ABSOLUTE FACTORIZATION OF POLYNOMIALS

Let I' € k[X1,...,X,] be a polynomial, degy,  y, F' = d > 2. In this section, we will
assume that F' is separable, i.e., deg F; = 0 for 2 < i < d in (11), see Sec. 2. Denote by Peyr g
the set of all separable polynomials from k[X71, ..., X,] of degree d.

Let ua, ..., un, ws, ..., w, be elements algebraically independent over the field k. For brevity,
denote by k[u,w] the ring kfug, ..., un, we, ..., wy,]| and by k, ,, the field of fractions of kfu, w].
If a € k[u,w], then put deg, ,a =deg,, .. ws. w,

Set Fyw = F(X1,u2 X1 + wo,...,un X1 + wy,). By the Bézout theorem, the polynomial
Fyuw € kyw/X1] has d pairwise distinct roots in the algebraic closure % of the field ky .
Hence the discriminant of the polynomial F;, ., with respect to X; does not vanish:

8Fu,w
A = Resy, <Fu,w, e ) £0.

Note that A € k[u, w] and deg,, ,, A < (2d —1)d. Let us choose and fix a set Joq2 C Ko (recall
that the notation J; and 7, 4 is introduced in Sec. 1). As in Sec. 1, we will assume that the
set Joq2 is well-ordered and [J5,,_1 o2 is ordered lexicographically.

Put
NNDx, (F; X1,...,Xp) = F(X1, Xo + 2o Xy + B2, .., Xy + @ X1 + Bn),
innXm (F7X17 cee >Xn) = (012, o aanaﬁ% s aﬁn)a (12)
where (az,...,an,B2,...,0n) € Jop_124 is the least multiindex such that

A(Oé%"'aanvﬁ?a"'aﬁn) #0

and ®4(1, g, ..., ay,) # 0 where @4 is the form of degree d such that degy,  y, (F'—®4) < d.
Set f = NNDy, (F;Xy,...,X,). Then, obviously, degy, f(X1,0, ...,0) = d and the poly-
nomial f(X1,0,...,0) € k[Xi] is separable, i.e., has d pairwise distinct roots in k. Put
¢ =LCx, f =lcx, f(X1,0). Thus c is the leading coefficient of the polynomial f with respect
to Xl.
If k = k, then the function

U Porna = U Poprna:  F = NNDx, (F; X1, ..., X,),
d>2 d>0

is an algorithm corresponding to a computation forest. Denote this forest by {7} }i>o-

Now we are going to apply the results of [2]. Let vs,...,v, be elements algebraically
independent over the field k. For brevity, denote by k[v] the ring k[vs, ..., v,] and by k, the
field of fractions of k[v] (in what follows, we will use other similar notations). If a € k[v], then
put deg, a = deg,, _,, a.

Put X = X1, T = Xo, fo = f(X,T,vsT,...,v,T) € k][ X, T]. Set p = degyp fo.

Set fo = f(X,0,...,0). Let us write fo = fo(Z) + (X — Z)go for a polynomial gy € k[Z, X].
Note that go(Z, Z) = f§(Z) = L. Put § = f§(2).

Set fu = > ;50 foi T" where f,; € k[v][X] (hence if i > p, then f,; = 0). Set ?v,i =0%72f,;
for i > 1. Put zg = Z.

For i > 1, let us define recursively polynomials g; ; € ky[Z], 0 < j <m — 2, and Z; € k,[Z].
Putg, = > 7,;X7 €klZ X]

0<j<m—2
Assume that g; and Z; are defined for 0 < j < for some ¢ > 1. Then
(X =25 - 907 =6(Foit D Tuiw)- (13)
1<w<i—1

368



Now, to find all g, ; € k(Z), 0 < j <m — 2, and —%; € k(Z), one should solve a linear system
with coeflicients from k(Z) by Cramer’s rule. It corresponds to (13). The coefficient matrix of
this system is the Sylvester matrix of the polynomials X — Z and go. Its determinant is 4.
All free terms of this system are divisible by 0. Hence, actually, g, ; € k[v][Z] and Z; € k[v][Z].
The recursive step for the definition of g; and Z; is described.

Consider the separable k-algebra k' = k[Z]/(fo(Z)). Put z = Zmod fo(Z) € k. In a
similar way we define the separable k,-algebra k], = k,[Z]/(fo(Z)). Thus k], D k.

Then fo = (X — 2)go(z, X) where go(z,X) € k[X]. Note that §(z) = go(z,2) is an
invertible element of £/, since the polynomial f is separable. Let k! [[T]] be the ring of formal
power series in T over the algebra k/. One can apply Hensel’s lifting to the decomposition
f(Xv 0) = (X - Z)QO(ZaX) and get

< ZZZ )(gg z,X) +ZgZT1) (14)
i>0

in the ring k,[[T]][X]. Here 29 = z, z; € ki, 9; € k,,[X], degx g; <m — 2 for i > 1.
For all i > 1,

__Z(3) _ gi(zX)
Fi = 3(z) %1 9i = 3(z) %1 (15)
This follows from Lemma 4 of [2].
Set D= (2d—1)p+1 and
_ _ zi T
n=6P3x — 2P 3<Z + Z 5%_1) (16)
1<i<D-1

:ﬁ“&X—@w42+ 3 %ﬂDl”’>eKUhXﬂ

1<i<D—-1

Let = € k. We will regard = as a parameter. If f(x,0) # 0, then, by definition, the
output of the described construction is (&,1,1,1,1,1), see Sec. 5 below for details. In what
follows, unless otherwise stated, we will assume that f(x,0) = 0. Hence every element of k|[x]
can be represented in the form Y a;z° with a; € k. Nonetheless, performing the algebraic

0<i<d
operations X,+,— with elements of k[z], we will not use the relation f(z,0) = 0 unless
otherwise stated. Hence we will represent elements of k[z] in the form )" a;z" where a; € k
0<i<N

and N is arbitrary, i.e., in these computations z is analogous to a transcendental element over
k (of course, such a representation with an arbitrary N is not unique, but it will arise in a
natural way from the context).
Put ‘
a; =n(x, X, T)X"! 1<i<d-1,
= TP Xxi-m d<i<2d-1.

Set By = k,[T]. We will identify the set of polynomials g € k,[X,T] such that degy g < d
with B¢. Under this identification,

g=g0+ X +...+ga 1 X" (90,91, 9a-1); (18)

here g; € By for all 4.

Hence, under the identification (18), all a; are in B{.

Put n1 = d, ng = 2d—1. Let A be the ny X ny matrix with the rows ay,...,a,_1. Then the
entries of A are in By. Denote by M the lattice in Bld generated by the rows of the matrix A.

Let g = (go,---,94-1) € M. Then put |g| = sup{degrg; : 0 <i < d—1} and degy g =
sup({i : ¢; #0&0<i<d-—-1}U{-1}).

(17)
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For any two elements g,h € M, put g < h if and only if |g| < |h| or |g| = |h| but
degy g < degx h. A minimal element of M is an arbitrary nonzero element ¢ € M such
that for every nonzero g € M it is not true that g < ¢, i.e., either ¢ < g, or |¢| = |g| and

degy q = degyx g.

Lemma 3. Assume that f(x,0) = 0 and q is a minimal element of M. Then q is an irreducible
factor of the polynomial f, in the ring k,[X,T] such that X — z divides q(X,0) in the ring
ky[X]. Further, lcxq € k,, since lex f, € k. Hence q/lcxq € k[ X, T).

Proof. This follows immediately from the proof of Lemma 6 in [1] (we leave the details to the
reader). O

Let ¢) € M be an arbitrary nonzero element such that |¢()| < D. By Lemma 1 of [1], one
can represent ¢(!) in the form
q(l) = Z )\,-a,-, (19)

1<i<2d—1
where \; € k,[T] and degp \; < (2d +1)D for 1 < i < 2d — 1. Hence \; = > Ni TV
0<j<(2d+1)D
where \; ; € ky.

For an integer «, 0 < a < D, denote by &, the following assertion: “There is a nonzero
element ¢ € M with |q| < a.” Then a homogeneous linear system S, over the field k,[x]
corresponds to &, and satisfies the following properties. It is a system in the unknowns \; ;,
1<i<2d—-1,0<j < (2d+1)D. The entries of its coefficient matrix are from k[x][v].
This system has a nonzero solution if and only if the assertion &, is true. Actually, a nonzero
solution of the system S, determines an element ¢ such that |¢(!)| < a according to (19).
One can easily construct the system S, (we leave the details to the reader).

For integers o, ap with 0 < a1 < D, 0 < ap < d, denote by &, «, the following assertion:
“There is a nonzero element ¢ € M such that |¢(V| < a; and degy ¢ < as.” Then a
homogeneous linear system Sg, q, over the field k,[z] corresponds to &, 4, and satisfies the
following properties. It is a system in the unknowns X; j, 1 <i<2d—1,0<j < (2d+1)D.
The entries of its coefficient matrix are from k[x][v]. This system has a nonzero solution if and
only if the assertion £y, o, is true. Actually, a nonzero solution of the system S, o, determines
an element ¢(!) such that |¢(V| < a; and degy ¢/ < ay according to (19). One can easily
construct the system Sy, o, (We leave the details to the reader).

Let 0 <ag < D, 1< as <d. Now an element ¢ with |q| = a1, degy ¢ = a9 is minimal if
and only if the following conditions are satisfied:

(a) the system Sy, o, has a nonzero solution,
(b) if @3 > 1, then the system S,,_1 has only the zero solution,
(c) the system Sy, q,—1 has only the zero solution.

In this case, a nonzero solution of the system S, ., determines an element ¢ according
to (19) (with ¢ in place of ¢(!)). Therefore, there is a minimal element ¢ € M such that
¢ € Klz][o][ X, ). 3

The factor ¢ irreducible over k, of the polynomial f is uniquely defined up to a nonzero
factor from k,. Hence if (a), (b), and (c) are satisfied, then the system S, o, has only one
solution linearly independent over k,[z].

The number of unknowns of the homogeneous linear systems from (a), (b), and (c) is equal
tor’ = (2d —1)((2d + 1)D + 1). Denote by Sa, ays Say—1 (if @1 > 1), Sa, ay—1 the matrices of
the homogeneous linear systems from (a), (b), and (c), respectively.
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Condition (a) is fulfilled if and only if all minors of size r’ of the matrix Sy, 4, are equal
to 0.

Condition (b) is fulfilled if and only if @; = 0 or not all minors of size 7’ of the matrix Sq, 1
are equal to 0.

Condition (c) is fulfilled if and only if not all minors of size r’ of the matrix Sq, 4,—1 are
equal to 0.

Denote by Ay, ..., Ay, all minors of size 7’ of the matrix Sq, a,. Denote by Ay, 41,..., Ay,
all minors of size r’ of the matrix Sy, —1 (if &y = 0, then my = my). Denote by Ap,i1, .-+, Ay
all minors of size 1 of the matrix S, ay—1-

Let A, V denote the logical conjunction and disjunction. Now (a) A (b) A (c) is equivalent
to the condition

(Ar=...=Apy = 0) A (Apys1 £ 0) V...V (Ap, #0))
A(Brmgi1 £0)V ooV Ay # 0)).

Applying a result of [4], one can replace the minors A; by some linear combinations of these
minors and assume that ms = d°1), but in fact it is not necessary.

Denote by Jp, mg,ms the set of all pairs (i2,43) such that m; < i < mg, mg < j < ms. Let
us order the pairs from Jp,, m, ms lexicographically, i.e., put (/,5") < (i, ) if and only if ¢/ < 4
or ¢ =1ibut j/ <j. Let (i,)) € Jmy mo,ms- Denote by Eq; as.ij the following condition:

(A =...=Ap, =0)A A\ (ApAj = 0) A (DA #0). (21)

(ilvjl)eJml,mg,mgv
(W) <)

Then condition (20) is equivalent to the disjunction \/

(20)

,5)€Jmq mg,ms 5041704271'7}

Besides, if condition (20) is fulfilled, then one can choose a solution of the system Sy, o, in
the form \; ; = A; ; where each Ag} ;18 equal, up to a sign, to some minor of size ' —1 of the mat-
rix Sq, .- A minimal element ¢ is computed by the formulag = > > AT Jay,

1<i<2d—10<j<(2d+1)D
see (19).

Note that A; € E[z][v] for 1 < i < mg3. More precisely, one can represent A; in the

form A; = 3 A, 27 where A;; € k[v] and N is bounded from above by d°() with an
0<j<N

absolute constant in O(1) (we leave to the reader to compute such a constant O(1)). Put

A= S AXT e k[p)[X], 1<i<ms.

0<j<N
If all polynomials A;, 1 < i < mg, are zero, then put () = f (X,0). Assume that not all
polynomials A;, 1 <i<mg, are zero. There is an injective function s : {1,2,...,m3 +m§} — 7"

such that if (i) = (j1,...,jn) then jo > 0 for all @ and j; + ...+ j, < N where N = d°0).
Put

p® = GCDyl,...,Yn,X,vg,...,vn< > oY YinAL f(X, 0)) € k[v][X],

1<i<my
where (j1,...,jn) = #(i) for every summand Ylj1 ... Y"A;. Further, set
¢(2) =GC DY1,...,Yn,X,U3,...,vn <¢(1)7 Z lej1 s Y'IgTLAZQAZJ) € k[v] [X]7

my<iz<mg,
mo<ig<mg

where (j1,...,7n) = #(i2 + mgig) for every summand Ylj1 e Yr{'"ﬁmﬁw. Now 93 £ (0 and
Y@ divides (V) in the ring k[v][X]. Applying the Noether normalization and Lemma 2 (cf.
Sec. 2), we compute a polynomial ¥® € k[v][X] coinciding with ™) /1)) up to a nonzero
factor from k.
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Note that lcxy® € k[v]. Further,
1/,(4) — 1/1(3)/ICX1/1(3) € k[X],

since (4 divides the polynomial f(X,0) in the ring k,[X] and f(X,0)€k[X]. Again applying
Lemma 2, we compute a polynomial 1) € k[X] coinciding with ™ up to a nonzero factor from k.
We have (z) =0, since otherwise condition (20) does not hold. Hence degy ¢ = a3 > 1 and
degyx M > degx Y@ > 0. We write ¢ in the form ¢ = 3> ;X' where 1; € k. According

0<i<asz

to the described construction, all ¥; are polynomials of degree d°() in the coefficients of f.
These polynomials have coefficients in the ring K.

Under the identification (18), we have ¢ = Y. ¢ X* where ¢; € k[z][v][T]. Note that

0<i<as

day = lecxq € k[z][v], since ¢ divides f, in the ring k,[z][X,T] and lcx f, = lex f(X,0) € k.
Further, ¢/lcxq € k[x][v][X,T], since this polynomial divides f, in the ring k,[z]|[X,T] and
lc va € k.

Applying the Noether normalization and Lemma 2 (here we leave the details to the reader),
we compute a polynomial ¢’ coinciding with ¢/lcxq up to a nonzero factor from k[z]. So,
replacing ¢ by ¢/, in what follows we will asume without loss of generality that lcxq € k[x].

According to the described construction, one can represent ¢ in the form

a= > Y Y e XIT,

0<s<degy ¢ 0<i<as 0<j<N

where ¢, ; ; € k[v], the integer N is bounded from above by d°W) and all gij,s are polynomials
in the coefficients from k[v] of f,. These polynomials have coefficients in the ring Ky. Put

g = > gsiT¢ foralli,j. Now ¢; = Y ¢ 2’ for all 4.
0<s<degrq 0<j<N

Put ¢(X,0) = ¢|r=o. Then ¢(X,0) € k[z][X], since ¢(X,0) divides f(X,0) in the ring
ky[x][X] and lexq(X,0) € k[X].

Let A = k[Z]/(1(Z)) be a separable algebra and z; = Z mod ¢ € A. Thus 1, zy,..., 208%™
is a basis of A over k. Put vy = lexvy. Let N > ag, and let all a; € k, 0 < ¢ < N, be arbitrary.

Note that the element > ;2% can be represented in the form Y b2} with b; € k
0<i<N 0<i<as

using Lemma 2. Namely, every V(]]V_O‘3+1bi is a polynomial in 9y, ..., %, and ag,...,ay with
coefficients from the ring Kj.
The element g, is invertible in k[z] for every root z of 1, since degx ¢(X,0) = az for every

root z of ). We are going to find g5;. Put ga, = Y. 0,02 Where qoq,,; € k[z]. Then
0<j<N

Qo is invertible in A. Let g} = > bz} where b; € k. Then
0<i<as

Z 90,0057 Z bz} | = 1.

0<i<N 0<i<as
From here, applying Lemma 2, we get the relation
i o N+
E E Lijbjzy = vy ™,
0<i<as 0<j<as

where all L; ; are polynomials in g, ..., %3, Gas,0s-- - as,N With coefficients from the ring
Ky. Hence we obtain a linear system for finding by, ..., bq;—1. We solve it by Cramer’s rule.
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Put vy = det({L; ;}o<ij<as). Thus, one can write

oy = Y @) at /i, (22)
0<i<as
where all a;, 11 are polynomials in 9o, ...,%as, Gas,0,---,Gas,n With coefficients from the
ring K.
Put ¢" = (V1/qay)q. Let

n__ " 1,078
=D D Y dy X
0<s<degy q"" 0<i<an 0<j<as3

t:; € k. Then, by (22) and Lemma 2, we have lcxg” € k and all g ; j are polynomials

in o, ,Yas, €0, - qn With coefficients from the ring Ko. One can compute all g/’ ; using
(22) and Lemma 2. Now, replacing (N, ¢, {gs,i,j}vij) by (s —1,4",{q5; ;}vi ), in what follows

we will assume without loss of generality that lcxqg € K and N = a3 — 1.

where ¢

4. COMPLETING THE CONSTRUCTION OF THE ABSOLUTE FACTORIZATION OF POLYNOMIALS

In this section, we will construct primitive elements of the fields generated by the coefficients
of the absolute irreducible factors of a polynomial f. Here, as in the previous section, we need
a detailed description, in order to obtain an algorithm corresponding to a computation forest
in the next section.

Let ¢(X,0) = > QX" where Qo; € k[z]. Then Qo.a, = qa, € k. Further, for every 1,

0<i<az

0 <i < ag, a representation Qp; = > qo,i,jxj is computed with gg; ; € k. Let Y be a new
0<j<as
variable. Put

0= Y quijzl €A 0<i<a,

0<j<as

0= > 6;Y' cAY]

0<i<ao

Hence for every root x of the polynomial ¥, we have 6;|,,—; = gos, 0 < i < g, and 0|;,—, =
> QoiY'=q(Y,0).
0<i<as
For an integer oy with 0 < a4 < as, denote by & the following assertion: “The ele-
ments 1,6,...,0% € A ®y k(Y) are linearly dependent over the field k(Y").” Let us write
12 . .
u((]as DiHlgi — S>> 6;;z] where 0;; € k[Y] and, by Lemma 2, they are polynomials in
0<j<as
Y, 90,...,%a; and all qo;; with coefficients from the ring Ky. Denote by S, the following
homogeneous linear system over the field k(Y") in the unknowns Z;, 0 < i < ay:

Z Zﬂm =0, 0<j5<as. (23)

0<i<ag

Then the condition &, is fulfilled if and only if the system S/, has a nonzero solution. Denote
by S, the matrix of this system; its entries are in k[Y].

Denote by H € k(Y)[Z] the minimal polynomial of the element 6 € Ay, k(Y') over the field
E(Y) such that H € k[Y, Z]. Let degy H = au, and hence H = ) H;Z" € k[Y, Z] where

0<i<au

H; € k[Y]. Then H(Y,6) = 0.

The degree deg, H is equal to a4 if and only if the following two conditions are satisfied:

(c) the homogeneous linear system S/, has a nonzero solution,
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(d) the homogeneous linear system S;,, ; has only the zero solution.

If (c) and (d) are fulfilled, then any nonzero solution from k[Y]**1 of the system S}, gives the
coefficients (Hy, ..., H,,) of a minimal polynomial H (such a polynomial is uniquely defined
up to a nonzero factor from k[Y]).

Condition (c) is fulfilled if and only if all minors of size ay 4 1 of the matrix Sj,, are equal
to 0. Condition (d) is fulfilled if and only if not all minors of size ay of the matrix S}, _; are
equal to 0.

Denote by Ays41, ..., Ay, all minors of size ay 4+ 1 of S(/M- Denote by Ayyt1,..., Ay all
minors of size ay of S}, ;. Note that A; € k[Y] for m3 < i < ms.

Now the conjunction (c) A (d) is equivalent to the condition

(Apg1 = oo = Ay = 0) A (A1 2 0) V..V (A # 0)). (24)

Besides, if condition (24) is fulfilled, then one can choose a solution of the system S/, in the
form Z; = A} where each A/ is equal, up to a sign, to some minor of size oy — 1 of the matrix
S;,, and A, is a nonzero minor of the matrix S7,, ;. The minors A}, 0 < i < oy, are taken
from the same rows with indices 0 < ¢y < ... < 4,1 < a3 of the matrix 5&4

Put H; = A}, 0 < i < ay, o = A],,. Note that degy A],, < asoy < d2.

For every root x of the polynomial ¢, the element ¢(Y,0) is integral over k[Y']. Hence there
is a minimal polynomial H, € k(Y)[Z] of the element q(Y,0) over the field k(Y') such that
H € kY, Z] and lc ZH € k. Note that each polynomial H is separable with respect to Z.

Denote by H the product of all pairwise distinct polynomials H where 2 runs over all roots
of the polynomial 1, i.e., H is the square-free part of the polynomial II H,. Then H

{z:¢p(2)=0}
coincides with H/H,, up to a nonzero factor from k. Therefore, H/H,, € k[Y,Z]. Applying
Lemma 2, we compute a polynomial H' € k[Y, Z] such that H/H,, and H' coincide up to a
nonzero factor from k. Replacing H by H’, in what follows we will assume without loss of
generality that lczH € k.

Further, for every root = of the polynomial ¢, the field k(Y )[goo,- . ,q0,a,] contains the
primitive element ¢(Y,0). Hence, by the Chinese remainder theorem, the separable algebra
E(Y)[0o, ..., 04,] (it is a subalgebra of A®j k(Y)) contains the primitive element §. Therefore,
there is a unique representation

0; = Z i, 0<i<ay,
0<j<a4

where ¢; ; € E(Y).
To find the coefficients ¢; ;, note that

b= D it = > ) Cis0;.55vy QDL

0<j<a4 0<s<a3 0<j<ay
3—1)2+1 .
and 0; = > qois%. Hence > ¢ 0= q07,-7sy(()a3 L for all 1,8.
0<s<as 0<j<a4
Now consider the linear system
(a3 1) —+1 . .
E Zjejs q0,i,sVy 3 S=10,-++ylas—1, (25)
0<j<a4

for 0 <i < ap. Then Zj = ¢; 5, 0 < j < a4, is the unique solution of the system (25). It can
be found by Cramer’s rule. Hence one can write ¢; ; = a; ;/v2 where a;; € k[Y| and compute
all Qj,j-
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Enumerating the elements from the set Jp_;, we find y* € J;2_; such that v(y*) # 0. Put
g == 9|Y:y*-

Let us show that £ is a primitive element of the separable algebra k[0y,...,04,] (it is a
subalgebra of A) over the field k. Indeed, the elements 1,¢, ..., %! are linearly independent
over k, since v2(y*) # 0. The polynomial H(y*, Z) is a minimal polynomial of the element &,
since H(y*,£) =0, 0# lczH € k, and degy; H(y*, Z) = ay. Finally, 0, = > 07, - & where

0<j<as
07 ; = ai; (y*)/va2(y*) for all i,j. The required assertion is proved.l
Every element of k[¢] can be represented in the form > a;&" where a; € k. Nonetheless,
0<i<au
performing the algebraic operations x, 4+, — with elements of k[¢], we will not use the relation
H(y*,§) = 0 unless otherwise stated. Hence we will represent elements of k[¢] in the form

> a;§" where a; € k and N is arbitrary, i.e., in these computations ¢ is analogous to a
0<i<N
transcendental element over k (of course, such a representation with an arbitrary N is not
unique, but it will arise in a natural way from the context).

Put Qo = q(X,0)va2(y*). So Qo € k[¢][X] and lexQp € k. Applying Lemma 2, we find a
polynomial Uy € k[¢][X] such that QoUp coincides with f(X,0) up to a nonzero factor from k.
More precisely, QoUy = Ao f(X,0) where 0 # \g = (lexQo)?4~2%! € k.

Let Aof, = Y. ®T% where ®; € k[v][X] for all i and &9 = Aof(X,0) (here ®; = 0
i>0
if i« > degy f,). Now we are going to use Hensel’s lifting. Namely, we will construct the

decomposition
<Q0+ZQiTi)<UO+ZUjTj> =0+ Y &1, (26)
i>1 j>1 i>1

where @Q;,U; € E[¢][v][X]. More precisely, let Ry = Resx(Qo,Up) € k be the resultant of the
polynomials Qo and Uy. Let Ry (respectively, Ra, R3) be the discriminant of the polynomial
Mo f(X,0) (respectively, Qo, Up). Therefore,

Ry = RyR3Ry. (27)

The elements Ry, Ra, R3 are not zero divisors in k[{], since 0 # Ry € k.
Put Q, = Rgz_lQi, U, = RgZ_IUZ', P, = R32_2<I>i for i,5 > 1. We will prove that one can
represent these elements in the form Q; = @m-Xj ,U; = > U, j X7 where all

0<j<az—1 0<j<d—az—1
Q; ;> Uij are in k[&][v].
Assume that for some ¢ > 1, the elements @j and U; are already defined for 0 < j < i and
Q;,U;j € k[¢][v][X]. Then
UoQ; + QoU; = Ry ((I)i + Z Qin_w). (28)
1<w<i—1
Now, to find all @m, 0<j<a—1, and Um-, 0 <j<d-ay—1, one should solve the
linear system with coefficients from k[¢][v] corresponding to (28). It has the unique solution,
which can be obtained by Cramer’s rule. The coefficient matrix of this system is the Sylvester
matrix of the polynomials @y and Uy. Its determinant +Ry is not a zero divisor in k[¢][v].
All free terms of this system are divisible by Ro. Hence Q; ; € k[¢][v], U;; € k[¢][v] for all
i, j, and, actually, they are polynomials in the coefficients from k[£][v] of Qq, Uy, Ao f,. The
recursive step for the definition and construction of @, and U; is described.
Recall that degrq = a1. Put ¢ = qua(y*)R]* € k[¢][v][T, X]. Now (27) implies that
q" € k[€][v][T, X]. We have lcxq” € k, and, according to the described construction of
Hensel’s lifting, all coefficients from k[€] of ¢ are polynomials in the coefficients from k[£][v]
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of gop and A\of,. The degrees of these polynomials are bounded from above by d°) with an
absolute constant in O(...).
We have ¢ = ¢"(vs,...,vn, T, X) € k[¢][vs,...,v,, T, X]. Put

Q/// _ qm(Xg/X2, o ’Xn/X2,X2,X1).
Then Q" € k[¢][X1, ..., X,] by the Gauss lemma (we leave the details to the reader). Put
Q(4) — Q///(X17X2 — O£2X1 — ﬁg, N ,Xn - anXl - ﬁn)v

see (12) at the beginning of Sec. 3.
According to the described construction, one can write

QW= S QW X X

0<i<NY i1,..0v0n

where Q(4) ;€ k and Ny is the minimum possible such that N1 > a4 — 1. The integer Ny

2,01 5eeyl
is bounded from above by d°(!) with an absolute constant in O(...). Moreover, all QE?IZ”

are polynomials in the coefficients of f. These polynomials have coefficients from the ring K.
Put Q = H Ojé\il_a”lQ(‘l). Then, by Lemma 2, one can find a representation

Q= Z Z Qijinyyin X1 oo X0E
0<i<g i1 ,eemin

where Q;,....i, € k. Moreover, all Q;;, . ;. are polynomials in the coefficients of f. These
polynomials have coefficients from the ring K.

Set

€ = qayva(y") RV HG L (29)

Then ¢ = HY1 = ey ¢” (X, 0).

For every root Z = £* of the polynomial H(y*,7), put Q* = Q|¢=¢+. Then the polynomial
Q* is irreducible in the ring k[ X1, ..., X,] and Q* divides F in the ring k[¢*][X1,..., X,] (we
leave the details to the reader). Thus Q* is an absolutely irreducible factor of the polynomial F'.

5. COMPUTATION TREES, COVERINGS, AND STRATIFICATIONS

In this section, we will obtain the required decomposition of the polynomial f into absolutely
irreducible factors. _

In what follows, we will not assume that necessarily f(z,0) = 0. Let k = k. Set P, 4 =

U  Pud, d >0 (we assume here that degy, y, 0= —1). By definition, put ]Sg,d = {o}
—1<d’'<d
(it is a one-element set). Denote by P 4, 4, the set of all polynomials ® from k[Y, Z] such that
deg; ® = da, degy © = ds.

The construction described in the previous sections defines the function

_ ~ —4
t: | (Paprna x k) — U (P X Pygyay ¥ K)
d>2 d1>0, dy>0, d3>0
given by the formula
t(F,x) = ((Qos -+, Qay—1), HY, Z),€,qay,¢,y") if f(z,0)=0,
’ (®7 1? 17 1? 17 1) if f(a’:’O) #07
where Q = Y Qi¢' and Q; € k[X1,...,X,] for all i. Recall that ¢ = lex f(X,0), qa, =

0<i<ay
lexq(X,0), y* € Jp_; and € is defined by (29), see Secs. 3, 4. We leave to the reader to

prove that this function is an algorithm corresponding to a computation forest (this follows
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straightforwardly from the construction described in two preceding sections). Denote this
forest by {T"}4>2 (now we assume that n is fixed).

Remark 2. One can omit % in the definition of t. Indeed, assume that

((Q07 o 7QO¢4—1)7 H(Y7 Z))

are computed at the output corresponding to a leaf w of a computation tree. This computation
tree is obtained from the construction described in the two preceding sections. Then all
elements ¢, qq,, ¢, y* are also computed at some vertices vy, va, v3,v4 which are ancestors of w

. . . . -4 . .. .
in this computation tree. So, we introduce k in the definition of t only for convenience.

Denote by b, ...,b,, Z the coordinate functions of the space of parameters Py, p, g ¥ k. Here
0= (":d) and Z is the coordinate function of k.

Recall that in the notation of [1], a condition A,, corresponds to each vertex w of the
tree T))'. For the reader’s convenience and better understanding, here we observe that, for
example, for all possible a1, a2, (4,7) € Jm, ms,ms, there is a vertex w of the tree T}/ such that
Aw = Eay,a0,i,5 (mow all A; in (21) are polynomials with coefficients in k[bq,...,b,]).

Let L(T)') be the set of leaves of the tree T)". In the notation of [1], a condition A,
corresponds to each leaf w € L(T)") (one should not confuse this w with that from the
preceding sections). It follows from the construction described in Secs. 3, 4 that each A, is
equivalent to

(‘Pw,l = = Puppr — 0) A ((Spw,uw,1+1 #0) V...V (‘Pw,uw,Q #0),

where there is exactly one index jo with 1 < jo < 2 such that
Puw.jo € k[b1,... by, Z)\ k[b1,...,b,].

Moreover, jo = 1 or jo = pw,1 + 1. All other polynomials ¢, j, 1 < j < py2, j # Jjo, are
in k[bi,...,b,]. Actually, if jo = 1 then the polynomial ¢, j, corresponds to ¥(Z), and if
Jo = fw,1 + 1 then ¢, j, corresponds to f(Z,0), see Sec. 3.

If jo # pw, + 1, then, by definition, w is a leaf of the first kind, otherwise w is a leaf of the
second kind.

In the notation of [1], we have the quasiprojective algebraic variety

Wy = Z(‘Pw,l» S »‘Pw,uw,l) \ Z(‘Pw,uw,1+la . a@w,uw,g) C Biprn,d X k.
Let w be a leaf of the first kind. Then, by definition, we have the quasiprojective algebraic
variety
W{u = Z(Spw,% e a‘Pw,uw,1) \ Z(Spw,uw,l—i-l» s a@w,uw,g) C Pspron,d-
The degrees of all polynomials ¢,, ; with respect to b1, ...,b,, Z are bounded from above by

d°®) with an absolute constant in O(...) (the reader may compute such a constant). Further,
the tree L(T"") has level [(T/") bounded from above by d°(!)| again with an absolute constant

in O(...).
The output corresponding to a leaf w € L(T") of the first kind has the form
((Qw,(]a sy Qw,d2—1)> Hwa Ewy Cwy Cws yw)
where
Hy € kb1, ..., b][Y,Z], degy H=ds >1, degy Hy=ds > 1,

Qw,z S k[bla 7bu][X17 7Xn]7 Oflig%l);—l degXl,...,Xn Qw,z dl el 17

0 # €w, €w, Cw € k[b1,..., b4, yw € k.
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Here 1 <dy <d, 1<dy <d,1<ds<d? The degrees degy, .. p, Qu,i for all ¢, degy, 5 Hu,
degy, ..b, €w, degy,  p, Ew, degy 4y, Cw are bounded from above by d°M) with an absolute
constant in O(...).

Besides, ey, ¢y, lczHy, do not have zeros on W, and W,,, i.e., Wy, N Z(ewewcylez Hy)=2
and W., N Z(eyeycylez Hy) = @. This follows immediately from the construction described
in Secs. 3, 4.

The output corresponding to a leaf w € L(T}/’) of the second kind has the form

(2,1,1,1,1,1).

~d',2 4 . . .
Put Pi g, 1.d;0.dis = P,y X Podinidis X k5 1 <1 < d. Now consider the function

1

T U (PSpr,n,d X Ed) - U U H Pi,di,1,di,2,di,3

d>2 d>1 d;1>0, d; >0, 1<i<d
di 3>0V1<i<d

given by the formula
T(F, (z1,...,2q)) = (F,21),...,(F,xq)).

The function ¥ is an algorithm corresponding to a computation forest {7 54)}@2. For every

d, the tree TC§4) is obtained from the trees T/ similarly to the construction of a d-tuple of
computation trees, see [1, Sec. 2| (here we leave the details to the reader). We will assume

. . -—d
that the coordinate functions on Py, g X b are by,..., by, Z1,...,Z,.

Actually, we will use only the following properties of the tree T’ 554)' The set of leaves L(T 54))
can be identified with L(T})¢ where L(T}") is the set of leaves of the tree T/'. Let w =

(w,...,wq) € L(TC§4)) where w; € L(T}"). Assume that the algebraic variety of parameters
Wi, corresponds to w;, 1 < ¢ < d, see above and the definitions in [1]. So, W,,, C Piprn,a X k.
Then the variety of parameters W,, corresponding to w is equal to

{(Z> (xl)- .- axn)) : (val) € me 1<:< d}
Hence if all leaves wi,...,wq € L(T)’) are of the first kind, then

Ww = Z(d’w,h v 7ww,uw,1) \ Z(T/’w,uwg-i-l? s 7ww,uw,2) (30)

for some integers fiy 2, fhw,1, Where fiy 2 > fly,1 > d, and polynomials v, ; such that

Ywi € k[br, ... by, Zi) \ k[b1,...,b), 1<i<d,

Vi € Kby, .. by, A1 1<0< o (81)

For all 7, the degrees degy, 4, 7.z, Yw, are bounded from above by d°M with an absolute
constant in O(...). The level I(T 54)) is also bounded from above by d°().
Further, if all leaves w1, ...,wqg € L(T)") are of the first kind, then MNi<i<d W, coincides

with the set of z such that there is (x1,...,24) with (2, (21,...,24)) € Wy.

Let U C [I Pidiydinds Pe a Zariski open subset of all elements
1<i<d

QD HD @ @) o) 4@y .,
such that QW e ﬁ:j[’iil, H® e k[y,z], HY ¢ Pod;pdis 0 F @ e® ¢ ek, y® ek, and

chH(i) € k for 1 < i < d. Then U depends on d and di; 1 <j<3,1<i<d Sowe wil
write U = U(d,d;;) for brevity. Put P g, 4,, = Pl Py g, , ¥ 5

n,d; 1
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Now we introduce the function

s:y U ueasn-J U IT Pidirai

d>1 d;1>0, d; 20, d>1 d;1>0, d; >0, 1<i<d
di 3>0V1<i<d di 3>0V1<i<d

given by the formula
6((Q(i), H® ) €(i),y(i))1gigd) — (@(i)7 GO 0 C(i))1§z'§d,
where @(i) € ﬁﬁile, G e P o, g0 ek, a; 1,042 > 0, are computed in the following way.
If deg, H® = 0 for at least one i, 1 < i < d, then put i1 = a;o = 0, @(i) = @ and
G =1, 80 = ¢ for all i (actually, we are not intrested in this case).

Assume that deg, H) > 1 for 1 < i < d. Then we compute the polynomial
EO = GCDYZ<H@ (v,e®2)), T] HY ))

1<5<4

and, using Lemma 2, a polynomial H® coinciding with H® /E(i) up to a nonzero factor
from k. _ _ _ _ _
Put o2 = degy HO  1f aj2 = 0, then put o;; = 0 and GW = HO QW) = & ¢ P(?,
g = (@, , .
Assume that a; 5 > 0. Let HO(y®) 7) = > 0<i<ai 5 H](.Z)Zj where H](-Z) € k. Then put
GO = 3 AW (Wyma-igi,
0<j<ai2
Let v; 0 = lczé(i) (note that lczé(i) = I?,SQ = lczﬁ(i) € k). Then, using Lemma 2, we write
for every i, 0 < i < d — 1, the representation
V5i2,2—ai,2+1 Z Qgi)Zj — AO G —l—B(i),
0<j<d; 2
where AW, B® € k[X;,..., X,][Z] and deg; B®) < ;5. Let

BY= N BYWzi, BY eklXiy,....X,] forall ij.

0<j<a,2
Put Q) = (B(()i)a"‘>B£z?,2—1) and og) = Maxi<jca,,degy, . x, B](-i). Finally, set &%) =
Vldlf 2t () Thus, the element (@(i), ﬁ(i),gi),c(i)hgigd is defined.

According to the described construction, the function & is an algorithm corresponding to a
computation forest. Denote this forest by T®) = {T( }Vd di s

Now the composition T o T™ of the computation forests T®) and TW is defined, see [1].
Recall that TG o TW corresponds to the function & o €. Put T = 76G) o T Thus

= {T }d>2 where each T( Vis a computation tree.
The output corresponding to any leaf w € L(T) 76 )) of the tree T( ) has the form
(QW, Gl cwhiziza

where 4 4
GW e klby,. .. ,bu] 2], degy G = a0 >0,

if a2 > 0 then Qg) = (Qwo, - ,Qw iz 1) where Qg?j € klbr,...,b,)[X1,...,X,] and

(@)
Dpil = max deg Q .
w,t,1 1<j<any sa—1 X1, Xn w50
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if cupi2 = 0 then ay, ;1 = 0 and Qg) = &. We have 0 # 553), cw € k[b1,...,b,] (here ¢, does
not depend on 7).

The degrees with respect to by, ..., b, of all polynomials Gq(ﬂ),&(ﬂ), Cy and Q (1f Q2 > 0)
are bounded from above by d®() Wlth an absolute constant in O(...).

The algebraic variety W, corresponding to any leaf w € L(T 56)) has the form (30) where
each 1, ; is a polynomial from k[by,...,b,] or k[by, ..., by, Z;] for some j, 1 < j < d. Actually,
all polynomials 4, ; have coeflicients in Ko. For all ¢, the degrees degy, 4, 7.z, Yw, are

bounded from above by d°(!) with an absolute constant in O(...). The level I(T 56)) is also

bounded from above by d°().
(4)

Besides, all polynomials &y, ¢y, chGq(,f) do not have zeros on W,, i.e.,
Wan 2(cw [T D1e260)) = 2.
1<i<d
This follows immediately from our construction.

Denote by L’ (TCEG)) the set of leaves w of the tree TCEG) satisfying the following properties:

e there are leaves wi,...,wq € L(T)") of the first kind such that w is a descendant of

the leaf (wy,...,wy) € L(TW),
i Zlgz’gd Qi1 .2 = d.

The algebraic variety W,, corresponding to any leaf w € L'(T 56)) has the form (30) for some
integers fup, 1, tw,1 With fty 2 > py1 > d and polynomials 1y, ; satisfying (31). Put

W{U = Z(ww,d-i-la s aﬂ)w,uw,l) \ Z(@Z)w,,uw,l—i-la s a'@bw,,uw,Q) - Pspr,n,d-

For every w € L'(T) (6 )) denote by I, the set of all integers ¢ such that 1 < ¢ < d and
Qi1 i2 7 0. For every ¢ € I, put

Fuoi= Y QU7 eklbr,....04, 2, X1,..., Xnl.

0<j<aw,s,2

For every point (b7, ... ,b;) € W), denote by E,,; the set of roots of the polynomial

GO(bs,....b;, Z) € K[Z].
Thus #Ew,i_: Oéw7z'72.
Let F' € k[by,...,bu, X1,..., Xy] be a generic polynomial of degree degy,  y, F'=d > 2.
As a polynomial in Xj,...,X,, it has all coeflicients in the family b,...,b,.

Lemma 4. The following assertions hold.

(a) The union UweL’(Té‘”)W{U is Paprn.d, i-e., {W{U}weL’(Tf)) is a covering of the space
Pspr,n,d-

(b) For every w € L’(Tf;)), for every point (b1, ...,by,) € W,,, for every root € € Zy, 4, the
polynomial

Fw,i( T,..., M’é Xl,...,Xn) EE[Xl,...,Xn]

1s irreducible in the latter ring, i.e., it is absolutely irreducible.
(c) The family {Fy(b7,...,b},¢&, Xla--an)}geEw,i icl, contains Y u,;o polynomials
€1y
pairwise relatively prime in the ring k[X1, ..., Xy].
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(d) We have
cw®, ) [T T Fua®is - 05,6 X0, Xa)

1€l EEEw
= (T 01 b2 POt Xy X, (32)
1€y
Hence (32) is a decomposition of the polynomial F (b, ..., b, X1,...,Xy,) into abso-

lutely irreducible factors up to a nonzero factor from k.

Proof. Note that any root of the polynomial H(Y,q.,Z) € k(Y)[Z] has the form
q(Y,0)/qa, € k[z][Y] for some root z of the polynomial f(X,0). Therefore,

leyq(Y,0)/qa, = 1.

On the other hand, there is a unique absolutely irreducible factor ¢ of the polynomial f
such that lex, ¢ = 1 and ¢(Y,0,...,0) = ¢(Y,0)/qqa,. Conversely, according to the described
construction, for every absolutely irreducible factor ¢ of the polynomial f such that lcx, ¢ =1
there is a root x of the polynomial f(X,0) such that ¢(Y,0,...,0) = ¢(¥,0)/qa,. From here
one can easily deduce all the assertions of the lemma (we leave the details to the reader). O

6. LEMMA ON A COVERING AND A STRATIFICATION

In the next general lemma, we show how to obtain a stratification of some variety if a
covering of this variety is known. But first we need some definitions, cf. [1].

Let A¥(k) have coordinate functions by, ..., b,. Let V C A*(k) be a quasiprojective algebraic
variety and V be the closure of V with respect to the Zariski topology in the affine space A* (k).

Assume that V = |J V, is a decomposition of V into the union of equidimensional affine
0<a<

algebraic varieties V, i.ue., for every integer a, 0 < a < pu, the dimension of every irreducible

component F of the algebraic variety V, is equal to ¢ and E is an irreducible component

of V. Let degV, = D, (the degree of an affine algebraic variety is the degree of its closure

with respect to the Zariski topology in the corresponding projective space). By definition, set

D, (V) = D,. For every integer D > 2, put

degV = Y D,,
0<a<p

00(V)=D,(V) where a=dim(V),

51(V,D) = Y Du(V)D",
0<a<p

S(V,D)= > Do(V)(D*""' —1)/(D - 1).
0<a<p

Let us fix an integer D > 2. Let Vj,V, C A¥(k) be two quasiprojective algebraic varieties.
We will say that V4 < V5 if and only if V4 C V5 and dimV; < dimVs or Vi C V5 and
dim V; = dim V5 but §p(V1) < dp(V2). Hence < is a partial order on the set of all quasiprojective

algebraic varieties in A#(k).

Lemma 5. Let V be a quasiprojective algebraic variety in A*(k). Let {W,Y}yer‘ be a family of

quasiprojective algebraic varieties in A*(k). Assume that for every v € T’

W’y = Z(@Z"y,h ce aﬂ’%uw) \ Z(wv,uy,1+1a ce a@b'y,un,,g) C A#(E)
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for some polynomials 1. ; € kfby, ... ,by] such that degy, b, ¥y <D for all © for an integer
D > 2. Assume that UweF W, D V. Then there is a family of quasiprojective algebraic
varieties {Wg}gep satisfying the following properties.

(a) For every 8 € B,

. (1) ) T
Ws = Z(ig 1, Mﬂ N 2w ,...,%MJ)CA“(I@)
2<j<mg
for an integer mg > 2 and some polynomials @b(j). € k[by,...,b,] such that
B B.i W

degy,,.p, Y3 < D

foralli,j.

(b) For every B € B, the integer mg is bounded from above by 61(V, D).

(c) {VNWglgen is a stratification of the algebraic variety V', i.e., Ugeg(V N Wg) =V
and (VN Wpg,) N (VNWg,) =@ for all pairwise distinct By, (.

(d) For every 8 € B there is v € I' such that Wg C W,.

(e) #B < 4(V, D).

Proof. The proof uses recursion on V. Namely, we will assume that the lemma is proved for
all quasiprojective algebraic varieties V' such that V/ < V. The base of the recursion V = &
is obvious, since in this case §(V, D) = 0 and one can take B = &.

For every v € T', put

W = Z(4y 1,y )y WD = Z(y g 41 Py )-

Denote by Vy(l) the union of all irreducible components E of V such that £ C Wél) and
Eg¢w?

Denote by Vy( ) the union of all irreducible components F of V' such that E C W(l) N W(2).

Denote by V’ the union of all irreducible components F of V such that £ ¢ ng .

Put V' = (V(l) W uv®.

Let us describe the step of the recursion. There is 79 € I' such that dim VW(OI) =dimV. Let
us choose and fix such an index 9. Now VJ < V and V)| < V. Let us apply the recursive
assumption to the algebraic varieties V) and Vi{. We get a family {Wj}sep: (respectively,
{W5}sepr) satisfying properties (a)-(d) with (Vvlm B') (respectively, (V/,B")) in place of
(W, B).

We may assume without loss of generality that v € B’ U B” and B'N B" = @. Put
B=B'UB"U{y} and

W’YO if /3 = "0,
Ws =14 Ws\ W) if geb,
Wsn W AW i ge B

Obviously, now properties (a), (c), and (d) are satisfied. We have 01(V,/, D) < 61(V, D) by

the Bézout theorem and, obviously, 61(V; , D) < 61(V, D). From here, using the recursive
assumption, we get (b).
Let E C A*(k) be a quasiprojective algebraic variety irreducible over k and
g EE[Xl,...,Xn]
be a polynomial of degree at most D. Then, by the Bézout theorem, 6(ENZ(g), D) < 6(E, D),
and if EN Z(g) # E thendeg E+ §(ENZ(g),D) < 4(E, D).
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Hence, repeatedly applying the latter assertion, we deduce that
L+ 6(V) N, D) < deg Vi) + 6(Vi) n W), D) < 6(V((), D),

70 Y0’ Y0

cf. the proof of Lemma 1 in [1] (here we leave the details to the reader).
Therefore, using the recursive assumption, we deduce that

#B <1+ #B' +#B" <1+ §(V',D)+ (V" D)
<146V W2 D)+ 6V D)+ 6V, , D)

70 70 Yo Yo’
<5(V.\D, D)+ 6(V?, D) + 6V, D) = 6(V, D).
This proves (e). The lemma is proved. O

For example, applying Lemma 5 to the covering {W,,} of the space Pypyp 4 from

weL/(T{Y)
Lemma 4 (i), one can obtain a stratification {Ws}wep of the space Py p, 4.

7. THE GENERAL CASE

Recall that in Sec. 2, the function SQFy,  y  corresponding to the computation forest
{T;}a>o is defined. We have SQFx, v = {SQF; x, _ x, }1<i<a, see the end of Sec. 2.

Let d be an integer, d > 2, let F € k[X1,...,X,] be an arbitrary polynomial of degree
degy, x, F'<d,andletx; = (z;1,...,2;q) € Ed, 1 <i<d. Thenput F' = RDPx,  x,(F),
see Remark 1. Let degy,  x, F' =dy. If dy <0, put D(F, (21,...,24)) = F.

Assume that dy > 1. Then put F' = SQF;y, x,(F'), 1 < i < dy. Let dj1 =
degx, x, F{. Ifdiy <1, put G; = F/ for every i, 1 < i < d;y. If djy > 2, put G; =
(G o T)(F, (w1, 2ia,,)) for every i, 1 <i <d;y. Set D(F, (21,...,2q4)) = (G1,...,Gaq,).

— 2
Now ® is a function with the domain of definition |J dZQ(k‘N(n’d) B ). We leave to the

reader to define the range of values of the function ®. The function © corresponds to a
computation forest T(7) = {Tf) Fa>2-
The following assertions on the computation trees Ty) are similar to those from Sec. 5

related to T 656). Their poofs are only sligtly more complicated than the proofs of the analogous
assertions from Sec. 5. So we leave the details to the reader.

The level l(Ty)) of the tree Ty) is bounded from above by d°(1). For every leaf w € L(Ty)),
the degrees with respect to by, ..., b, of all polynomials from the output corresponding to w are
bounded from above by d°(). The quasiprojective algebraic variety W,, can be represented
in the form (30) where ty,, € k[b1,...,bu,{Z;;}1<ij<d] and for every (i,j) there is at most
one polynomial v, , such that degzm Ywr > 0. We will write 7 = r; ; in this case. Besides,
if degy, . hwyr > 0, then ¢y, € k[bi,...,bu, Z;j]. The degrees of all polynomials v, are
bounded from above by d°().

Let w € L(Ty)). Assume that for all (4,7) we have 1 <7 ; < 1 if 755 is defined. In this
case, by definition, w is a leaf of the first kind. For every leaf of the first kind, by definition,

the quasiprojective algebraic variety W,, is the projection of W,, to A¥(k) (this affine space
has the coordinate functions by, ...,b,).

Proof of Theorem 1. First, consider the case where ((a1,...,ay), f) = ((b1,...,b,), F) with I/
a generic polynomial of degree d (i.e., the family of its coefficients is {b;}1<j<,). Now the
analog of Lemma 4 is exactly Theorem 1 (note only that a slightly different notation is used

)

in the statement of the theorem). The tree Ty) now is similar to T 56 .
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One can define the subset L’ (Ty)) C L(TC§7)) of leaves w of the first kind such that for

every point (b’f,...,b;) € W/, the output corresponding to w determines a decomposition
of the polynomial F(b7,... ,bZ,Xl, ..., X,,) into absolutely irreducible factors. The family

)

. . +N(n,d . . .
Wi, }weL’(Tm) is a covering of the space k (m for every d > 2. One can obtain a stratification
d

{Ws}sen, of this space applying Lemma 5 to the covering under consideration.

Further, as in the proof of Lemma 4, combining the results of the preceding sections one can
easily establish all the required assertions in the case of a generic polynomial F'. In particular,
one can compute the exact values of A, ¢ and A, 1 in the terms from the constructions described
in Secs. 2—4, cf. the statement of Lemma 4.

Now, to prove the theorem for the initial input data ((ai,...,a,), f), it is sufficient to

consider the tree Ty)( f), see the definition in [1] (roughly speaking, to obtain Ty)( f), one
should substitute the coefficients from k[a1,...,a,] of the polynomial f in place of by,...,b,

(

everywhere in the objects of Td7)). The leaves L(Ty)( f)) are in a one-to-one correspondence
with L(Tf)). We have l(Ty) (f) = l(Ty)) + 1. For every leaf w € L(Tf)(f)), the degrees
with respect to aq,...,a, of all polynomials from the output corresponding to w are bounded
from above by d’d°)). The quasiprojective algebraic variety W,, can be represented in the
form (30) where vy, € Elai,...,a,,{Zij}1<ij<a]. The degrees of all polynomials v, , are
bounded from above by d’d°M).

For every leaf w € L(T 57)( f)) corresponding to a leaf of the first kind from L(Ty)), by
definition, the quasiprojective algebraic variety W/, is the projection of W, to A¥(k) (here
this affine space has the coordinate functions ay,...,a,).

Denote by L’ (Ty) (f)) the set of leaves w from L(Ty) (f)) such that w corresponds to a leaf
from L’(TC§7)). For every leaf w € L’(Ty) (f)), for every point (ai,...,a;) € W, the ouput
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corresponding to w determines a decomposition of the polynomial f(aj,...,a},X1,...,Xn)

into absolutely irreducible factors.

Finally, we replace the tree T 57)( f) by the irredundant tree IRD(T 57)( f)), see [1]. The
number of leaves of the tree IRD(T 57) (f)) is bounded from above by (d')*d°®") by Theorem 1
of [1]. Put Ty” = IRD(Ty" (f)) and L'(T}”) = LARD(TS" (£))) 0 L'(T" (£)).

: /

The family {Ww}weL'(Tf))
cation {Wg}gep, of this space applying Lemma 5 to the covering under consideration. By
Lemma 5 (e), the number of elements # By is bounded from above by (d')*d°®*). Now one
can take A to be the subset of all 5 € By such that Wj # @ (here the notation (3, Wg) corre-

sponds to (o, W,) from the statement of Theorem 1). Thus, the initial case ((a1,...,a,), f)
is reduced to the generic case ((bi,...,b,), F'). The theorem is proved. O

is a covering of the space A”(k). One can obtain a stratifi-

Translator A. L. Chistov.

REFERENCES

1. A. L. Chistov, “Computations with parameters: a theoretical background,” J. Math. Sci.,
215, No. 6, 769-781 (2016).

2. A. L. Chistov, “A bound for the degree of a system of equations determining the variety of
reducible polynomials,” St.Petersburg Math. J., 24, No. 3, 513-528 (2013).

3. G. E. Collins, “Subresultants and reduced polynomial remainder sequences,” J. ACM, 14,
No. 1, 128-142 (1967).

4. A. Chistov, H. Fournier, L. Gurvits, and P. Koiran, “Vandermonde matrices, NP-
completeness, and transversal subspaces,” Found. Comput. Math., 3, No. 4, 421-427 (2003).

384



	Abstract
	Introduction
	1. The noether normalization of a polynomial
	2. The square-free factorization of a polynomial
	3. The absolute factorization of polynomials
	4. Completing the construction of the absolute factorization of polynomials
	5. Computation trees, coverings, and stratifications
	6. Lemma on a covering and a stratification
	7. The general case
	REFERENCES

