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EFFICIENT ABSOLUTE FACTORIZATION OF
POLYNOMIALS WITH PARAMETRIC COEFFICIENTS

A. L. Chistov∗ UDC 513.6, 518.5

Consider a polynomial with parametric coefficients. We show that the variety of parameters can be
represented as a union of strata. For values of the parameters from each stratum, the decomposition
of this polynomial into absolutely irreducible factors is given by algebraic formulas depending
only on the stratum. Each stratum is a quasiprojective algebraic variety. This variety and the
corresponding output are given by polynomials of degrees at most D with D = d′dO(1) where d′, d
are bounds on the degrees of the input polynomials. The number of strata is polynomial in the size
of the input data. Thus, here we avoid double exponential upper bounds for the degrees and solve
a long-standing problem. Bibliography: 4 titles.

Introduction

Let k be an arbitrary field containing at least 2d2+1 pairwise distinct elements (d is specified
below, see (1)). Let p be the characteristic exponent of the field k, i.e., p = 1 if char(k) = 0 and
p = char(k) if char(k) > 0. Let a1, . . . , aν be a family of independent variables (or parameters)
over k. Denote by A

ν(k) the affine space of parameters with the coordinate functions a1, . . . , aν

(in a more general situation, one may consider an algebraic variety of parameters V ⊂ A
ν(k),

but this case is easily reduced to the particular one when V = A
ν(k)).

Let f ∈ k[a1, . . . , aν ,X1, . . . ,Xn] be a polynomial and

degX1,...,Xn
f ≤ d, dega1,...,aν

f ≤ d′ (1)

for some integers d ≥ 2 and d′ ≥ 2. In the present paper, we consider the problem of
representing the space of parameters

A
ν(k) =

⋃

α∈A

Wα (2)

as a union of a finite number (i.e., #A < +∞) of quasiprojective algebraic varieties Wα

satisfying the following properties. For every α ∈ A, for all a∗ = (a∗1, . . . , a∗ν) ∈ Wα there is a
decomposition

f(a∗1, . . . , a
∗
ν ,X1, . . . ,Xn) = λa∗

∏

γ∈Γα

F
eγ

γ,a∗(Xpiγ

1 , . . . ,Xpiγ

n ), (3)

where Fγ,a∗ ∈ k[X1, . . . ,Xn] are polynomials irreducible over the field k, λa∗ ∈ k, 1 ≤ eγ ∈ Z,
0 ≤ iγ ∈ Z, #Γα < +∞. The decomposition (3) is given uniformly, i.e., by some algebraic
formulas (see below for details) defined everywhere on Wα and depending on a∗1, . . . , a∗ν as
parameters. Note that all the integers eγ , iγ and the set of indices Γα do not depend on
a∗ ∈ Wα.

Now we are going to give a precise meaning to this uniformity. Namely, the decomposi-
tion (2) satisfies the following properties.

(i) For every α ∈ A, the variety Wα is nonempty. For all α1, α2 ∈ A, if α1 �= α2 then
Wα1 ∩Wα2 = ∅, i.e., the varieties Wα are pairwise disjoint; so we will call them strata
and will call the union (2) a stratification.
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(ii) One can represent Wα in the form

Wα = W(1)
α \

⋃

2≤β≤μα

W(β)
α

where each W(β)
α = Z(ψ(β)

α,1, . . . , ψ
(β)
α,mα,β ), 1 ≤ β ≤ μα, is the set of all common zeros of

the polynomials ψ
(β)
α,1, . . . , ψ

(β)
α,mα,β ∈ k[a1, . . . , aν ] in the affine space A

ν(k) and mα,β ≥ 1
is an integer.

For every α ∈ A, denote by Wα the closure with respect to the Zariski topology of the algebraic
variety Wα in A

ν(k). Denote by Iα the ideal of the affine algebraic variety Wα.
(iii) There are a set of indices Jα, polynomials λα,0, λα,1 ∈ k[a1, . . . , aν ], polynomials fj ∈

k[a1, . . . , aν ,X1, . . . ,Xn], integers ej relatively prime to p, integers ij ≥ 0 for all j ∈ Jα

such that each of the polynomials λα,0, λα,1 does not vanish at any point of the algebraic
variety Wα,

f =
λα,1

λα,0

∏

j∈Jα

f
ej

j (a1, . . . , aν ,Xpij

1 , . . . ,Xpij

n ) (4)

on the algebraic variety Wα (this means that

λα,0f − λα,1

∏

j∈Jα

f
ej

j (a1, . . . , aν ,Xpij

1 , . . . ,Xpij

n ) ∈ Iα ⊗k k[X1, . . . ,Xn])

and Jα1 ∩ Jα2 = ∅ for α1 �= α2. Besides, if p = 1 then ij = 0 for every j ∈ Jα.
(iv) For every i = −1, 0 there is at most one α ∈ A such that deg fj = i for some j ∈ Jα.

In this case, #Jα = 1, ej = 1, and λα,0 = λα,1 = 1, and if i = −1 then fj = 0, if i = 0
then 0 �= fj = f(a1, . . . , aν , 0, . . . , 0) ∈ k[a1, . . . , aν ].

(v) For every α ∈ A, for every j ∈ Jα, for every a∗ ∈ Wα,

degX1,...,Xn
fj(a∗1, . . . , a

∗
ν ,X1, . . . ,Xn) = degX1,...,Xn

fj.

If degX1,...,Xn
fj ≥ 0, then the polynomial fj(a∗1, . . . , a∗ν ,X1, . . . ,Xn) is separable (i.e.,

does not have multiple factors in k[X1, . . . ,Xn]). For all pairwise distinct j1, j2 ∈ Jα,
the polynomials fj1(a

∗
1, . . . , a

∗
ν ,X1, . . . ,Xn) and fj2(a

∗
1, . . . , a∗ν ,X1, . . . ,Xn) are rela-

tively prime in the ring k[X1, . . . ,Xn].

Denote by A′ the subset of α ∈ A such that deg fj ≥ 1 for all j ∈ Jα. For all α ∈ A′, j ∈ Jα

there is a polynomial Hj ∈ k[a1, . . . , aν ][Z] satisfying the following properties.
(vi) Let α ∈ A′, j ∈ Jα. Denote by Δj ∈ k[a1, . . . , aν ] the discriminant of the polynomial Hj

with respect to Z. Then Δj does not vanish at any point of the algebraic variety Wα.
Under the conditions of (vi), for every a∗ ∈ Wα denote by Ξj,a∗ the set of all roots of

the polynomial Hα,j(a∗1, . . . , a
∗
ν , Z) ∈ k[Z]. Then by (vi) for every a∗ ∈ Wα the number of

roots #Ξj,a∗ is equal to degZ Hj and the leading coefficient lcZHj does not vanish at any such
point a∗.

(vii) Let α ∈ A′, j ∈ Jα. Then there is a polynomial Fj ∈ k[a1, . . . , aν , Z, X1, . . . ,Xn] such
that for every a∗ ∈ Wα, for every root ξ ∈ Ξj,a∗ , the polynomial

Fj(a∗1, . . . , a
∗
ν , ξ,X1, . . . ,Xn)

is irreducible in k[X1, . . . ,Xn] (i.e., absolutely irreducible) and 0 ≤ degZ Fj < degZ Hj,

degX1,...,Xn
Fj(a∗1, . . . , a

∗
ν , ξ,X1, . . . ,Xn) = degX1,...,Xn

Fj .
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(viii) Let α ∈ A′, j ∈ Jα. Then

fj(a∗1, . . . , a
∗
ν ,X1, . . . ,Xn) =

∏

ξ∈Ξj,a∗

Fj(a∗1, . . . , a
∗
ν , ξ,X1, . . . ,Xn) (5)

and hence (5) is a decomposition of the separable polynomial fj(a∗1, . . . , a∗ν , X1, . . . ,Xn)
into a product of pairwise distinct absolutely irreducible factors. Hence the degree
degZ Hj = #Ξj,a∗ is bounded from above by d.

Now we are able to formulate our main result.

Theorem 1. Let f ∈ k[a1, . . . , aν ,X1, . . . ,Xn] be as above. Then there is a stratification
{Wα}α∈A of the space of parameters A

ν(k) satisfying properties (i)–(viii) and such that
(a) the number of elements #A and all the integers μα are bounded from above by (d′)νdO(ν)

with an absolute constant in O(ν),
(b) the degrees with respect to a1, . . . , aν of all the polynomials ψ

(β)
α,1, . . . , ψ

(β)
α,mα,β , λα,0, λα,1,

Hj, Fj , fj are bounded from above by d′dO(1) with an absolute constant in O(1).

The proof of this theorem is based on [1, 2]. One can also consider the case of a covering
(rather than a stratification) of the space of parameters (i.e., in this case (i) does not necessarily
hold). If in the statement of Theorem 1 one replaces “(i)–(viii)” by “(ii)–(viii),” then one can
claim additionally that μα = 2 for every α ∈ A.
Remark 1. Let d ≥ −1 be an integer. According to [1], we identify the set of polynomials
from k[X1, . . . ,Xn] of degree at most d with k

N(n,d) where N(n, d) =
(n+d

n

)
. Denote by

Pn,d ⊂ k
N(n,d) the subset of polynomials from k[X1, . . . ,Xn] of degree d. In [1], we introduced

the function RDPX1,...,Xn :
⋃

d≥0

k
N(n,d) → ⋃

d≥0

Pn,d corresponding to some computation forest.

Namely, if g ∈ k
N(n,d), then RDPX1,...,Xn(g) ∈ Pn,d′ where d′ = degX1,...,Xn

g is the degree
of g and g = RDPX1,...,Xn(g) in k[X1, . . . ,Xn]. Throughout this paper, we sometimes apply
the function RDPX1,...,Xn (or a similar function with other variables in place of X1, . . . ,Xn)
without mentioning it. This will not lead to an ambiguity. The function RDPX1,...,Xn is used
when one needs to know the exact degrees of the polynomials under consideration.

1. The noether normalization of a polynomial

Let k be a field. Let f ∈ k[X1, . . . ,Xn] be a nonzero polynomial and degX1,...,Xn
f = d for

an integer d ≥ 0. Then one can represent f in the form

f =
∑

i1,...,in≥0
i1+...+in≤d

fi1,...,inXi1
1 · . . . · Xin

n ,

where all the coefficients fi1,...,in are in k.

Put K0 = k0 = Z if the characteristic char(k) is zero. If char(k) = p > 0, then put
k0 = Fp = Z/pZ to be the primitive field. Further, let us define K0 to be some ring such that
k0 ⊂ K0 ⊂ k and K0 contains at least 2d2 +1 elements. The ring K0 exists since #k ≥ 2d2 +1,
see the introduction. In what follows, we will need to choose finite sets with sufficiently many
elements from the field k. We will choose them from the ring K0.

Let Jd ⊂ K0 be a subset containing exactly d + 1 elements. We choose and fix this subset
Jd. In the case char(k) = 0, put Jd = {0, 1, . . . , d} ⊂ Z. Additionally, we will assume without
loss of generality that Jd is well-ordered.
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Let j2, . . . , jn ∈ Jd. Put

f (j2,...,jn) = f(X1,X2 + j2X1 . . . ,Xn + jnX1) ∈ k[X1, . . . ,Xn].

Let us order the set of multiindices (j2, . . . , jn)∈J n−1
d lexicographically: (j2, . . . , jn) <

(j′2, . . . , j′n) if and only if there is an integer α with 2 ≤ α ≤ n such that jv = j′v for 2 ≤ v < α

but jα < j′α. Denote by Jn,d the set of all multiindices (j2, . . . , jn) ∈ J n−1
d such that jα ∈ Jd

for 2 ≤ α ≤ n. Then Jn,d is linearly ordered and #Jn,d = (d + 1)n−1.
Let f = ϕ0 + ϕ1 + . . . + ϕd where ϕi ∈ k[X1, . . . ,Xn] is a homogeneous polynomial of

degree i.
Put NNX1(f ;X1, . . . ,Xn) = f (ι2,...,ιn) where (ι2, . . . , ιn) is the least multiindex from Jn,d

such that
0 �= ϕd(1, ι2, . . . , ιn) ∈ k

(here NN is an abbreviation for “Noether normalization”). Set

innX1(f ;X1, . . . ,Xn) = (ι2, . . . , ιn).

Thus f �→ innX1(f ;X1, . . . ,Xn) is a function Pn,d → Jn−1,d.
In other words,

NNX1(f ;X1, . . . ,Xn) = f (ι2,...,ιn) and innX1(f ;X1, . . . ,Xn) = (ι2, . . . , ιn)

if and only if ϕd(1, ι2, . . . , ιn) �= 0 and ϕd(1, j2, . . . , jn) = 0 for all (j2, . . . , jn) ∈ Jn,d such that
(j2, . . . , jn) < (ι2, . . . , ιn).

If k = k (i.e., the field k is algebraically closed), then the function
⋃

d≥0

Pn,d →
⋃

d≥0

Pn,d, f �→ NNX1(f ;X1, . . . ,Xn),

is an algorithm corresponding to a computation forest. Denote this forest by {Td}d≥0. Each
tree Td is of level l(Td) = 1 and has (d + 1)n−1 leaves.

Note that the composition LCX1 ◦ NNX1 is defined, see Example 3 from Sec. 3 in [1], and
LCX1(NNX1(f)) = f(1, ι2, . . . , ιn).

2. The square-free factorization of a polynomial

First, we recall the main result of [3] in the form required for our purposes. Unless otherwise
stated, in this section Λ is an integral algebra over the ground field k with field of fractions L
(of course, the reader will see that some assertions are valid in the case where Λ is an arbitrary
integral ring). Let f, g ∈ Λ[X] be two polynomials in one variable X. Let degX f = n ≥ 0,
degX g = m ≥ 0. Let r be an integer, 0 ≤ r ≤ min{n,m}−1. Let A,B ∈ L[X] be polynomials
such that 0 ≤ degX A ≤ m − r − 1, 0 ≤ degX B ≤ n − r − 1. Put h = Af + Bg.

Let

f =
∑

0≤i≤n

fiX
i, g =

∑

0≤i≤m

giX
i, h =

∑

0≤i≤m+n−r−1

hiX
i,

A =
∑

0≤i≤m−r−1

AiX
i, B =

∑

0≤i≤n−r−1

BiX
i,

where fi, gi ∈ Λ, hi, Ai, Bi ∈ L. Assume that f , g, h are given. Then the equality Af +Bg = h
is equivalent to the following linear system Sr:

∑

max{ν−n,0}≤i≤ν

Aifν−i +
∑

max{ν−m,0}≤j≤ν

Bjgν−j = hν , 0 ≤ ν ≤ n + m − r − 1, (6)
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with respect to the unknowns Ai, 0 ≤ i ≤ m − r − 1, and Bj , 0 ≤ j ≤ n − r − 1. Denote by
Sr the coefficient matrix of this system. It has m + n− r rows and m + n− 2r columns. Note
that Sr is a submatrix of the Sylvester matrix Syl(f, g) of the polynomials f and g.

For each i, 0 ≤ i ≤ r, denote by Sr,i the subsystem of Sr consisting of the equations from
(6) with ν = i and r+1 ≤ ν ≤ n+m−r−1 (so the number of equations in Sr,i is m+n−2r).
Denote by Sr,i the coefficient matrix of the system Sr,i. Then Sr,i has m + n − 2r rows and
m + n − 2r columns. Let δr,i = det(Sr,i) be the determinant of the matrix Sr,i, 0 ≤ i ≤ r.

Now if h = gcd(f, g) ∈ L[X] is the greatest common divisor of the polynomials f, g in the
ring of polynomials L[X] (it is uniquely defined up to a factor from L \ {0}) and degX h = r,
0 ≤ r ≤ min{m,n} − 1 (so hi = 0 for r + 1 ≤ i ≤ n + m − r − 1), then there are unique
polynomials A,B ∈ L[X] such that degX A ≤ m−r−1, degX B ≤ n−r−1, and h = Af +Bg.

Next, consider the case where r = min{n,m} (so the system Sr is not defined). Then, by
definition, if n = r put δr,i = fi for 0 ≤ i ≤ r, and if n �= r put δr,i = gi for 0 ≤ i ≤ r.

Lemma 1. Under the above conditions, the following assertions hold.
(i) Assume that h = gcd(f, g) ∈ L[X] is the greatest common divisor of the polynomials

f, g in the ring of polynomials L[X] and degX h = r ≤ min{m,n}.
If r ≤ min{m,n} − 1, then the system Sr is equivalent to the system Sr,r and the

latter has a unique solution.
Therefore, for an arbitrary r with 0 ≤ r ≤ min{m,n}, the element δr,r is not zero,

and for all i with 0 ≤ i ≤ r, we have hi/hr = δr,i/δr,r.
(ii) Assume that 0 ≤ r ≤ min{m,n}−1, the elements hi are zero for r+1 ≤ i ≤ n+m−r−1,

hr �= 0, and the system Sr,r has no solution. Then δr,r = 0 and degX gcd(f, g) > r.

Proof. These assertions follow straightforwardly from the given definitions, and we leave to
the reader to prove them, cf. also [3]. �
Corollary 1. For given polynomials f, g ∈ Λ[X] such as above, the degree of their greatest
common divisor satisfies the inequality degX gcd(f, g) = r ≤ min{m,n} if and only if δj,j = 0
for 0 ≤ j ≤ r − 1 and δr,r �= 0. Moreover, in this case

gcd(f, g) =
∑

0≤i≤r

δr,iX
i ∈ Λ[X]. (7)

Proof. This follows immediately from Lemma 1. �
Obviously, there are unique polynomials Δr,i ∈ k0[Y0, . . . , Yn, Z0, . . . , Zm] (here Yi, Zj are

new variables) such that δr,i = Δr,i(f0, . . . , fn, g0, . . . , gm) for 0 ≤ i ≤ r and all polynomials
f, g and rings Λ such as above. For 0 ≤ r ≤ min{m,n}, 0 ≤ i ≤ r, we have the following
bounds on the degrees with respect to all the variables Y0, . . . , Yn, and Z0, . . . , Zm:

degY0,...,Yn
Δr,i ≤ m − r, degZ0,...,Zm

Δr,i ≤ n − r. (8)

Recall that f, g ∈ Λ[X], degX f = n ≥ 0, degX g = m ≥ 0. We will use the following
definition.

(∗∗) Let r be an arbitrary integer, 0 ≤ r ≤ min{m,n}. If Δj,j(f0, . . . , fn, g0, . . . , gm) = 0
for 0 ≤ j < r and Δr,r(f0, . . . , fn, g0, . . . , gm) �= 0, then

GC D Λ,X(f, g) =
∑

0≤i≤r

Δr,i(f0, . . . , fn, g0, . . . , gm)Xi.

In the particular case where k = k is an algebraically closed field, the function G C D k,X :⋃
n,m≥0(Pn × Pm) → ⋃

r≥0 Pr is an algorithm corresponding to a computation forest. Denote
this forest by {Tn,m}n,m≥0. Each tree Tn,m is of level 1 and has 1 + min{m,n} leaves.
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Lemma 2. Let n, m be integers, n ≥ m ≥ 0. There are polynomials

Qi ∈ k0[Y0, . . . , Yn, Z0, . . . , Zm], 0 ≤ i ≤ n − m,

Ri ∈ k0[Y0, . . . , Yn, Z0, . . . , Zm], 0 ≤ i ≤ m − 1,

satisfying the following properties. Let Λ be an arbitrary commutative algebra with unity
over k0. Let f, g ∈ Λ[X] be two polynomials such that degX f = n, degX g = m and
f =

∑
0≤i≤n

fiX
i, g =

∑
0≤j≤m

gjX
j where fi, gj ∈ Λ. Then

gn−m+1
m f = g

∑

0≤i≤m−n

Qi(f0, . . . , fn, g0, . . . , gm)Xi +
∑

0≤i≤m−1

Ri(f0, . . . , fn, g0, . . . , gm)Xi

in the ring Λ[X]. Besides,

degY0,...,Yn
Qi ≤ 1, degZ0,...,Zm

Qi ≤ n − m, 0 ≤ i ≤ n − m, (9)

degY0,...,Yn
Ri ≤ 1, degZ0,...,Zm

Ri ≤ n − m + 1, 0 ≤ i ≤ m − 1. (10)

Further, let L be the total quotient ring of Λ. Assume additionally that the leading co-
efficient gm = lcXg is not a zero divisor in Λ and g divides f in the ring L[X]. Then
Ri(f0, . . . , fn, g0, . . . , gm) = 0 for all i.

Proof. This is straightforward. �

For any f, g satisfying the conditions of Lemma 2, by definition put

QΛ,X(f, g) =
∑

0≤i≤m−n

Qi(f0, . . . , fn, g0, . . . , gm)Xi,

RΛ,X(f, g) =
∑

0≤i≤m−1

Ri(f0, . . . , fn, g0, . . . , gm)Xi.

Consider the multivariate case. Assume that n ≥ 2.
Let f, g ∈ k[X1, . . . ,Xn], degX1,...,Xn

f = d1 ≥ 0, degX1,...,Xn
g = d2 ≥ 0. Put

f1 = NNX1(f ;X1, . . . ,Xn), innX1(f ;X1, . . . ,Xn) = (i2, . . . , in),

g1 = g(X1,X2 + i2X1, . . . ,X1 + inXn). Set Λ = k[X2, . . . ,Xn] and h = G CD Λ,X1(f1, g1),
a = LCX1(h1),

a1 = NNX2(a;X2, . . . ,Xn), (ι3, . . . , ιn) = innX2(a;X2, . . . ,Xn),

h1 = h(X1,X2,X3 + ι3X2, . . . ,Xn + ιnX2), Λ1 = k[X1,X3, . . . ,Xn], q1 = QΛ1,X2(h1, a1) and
q2 = q1(X1,X2,X3 − ι3X2, . . . ,Xn − ιnX2), q = q2(X1,X2 − i2X1, . . . ,X1 − inXn). Then,
obviously, q = gcd(f, g) is the greatest common divisor of the polynomials f, g in the ring
k[X1, . . . ,Xn]. If k = k, then the function

G C D X1,...,Xn :
⋃

d1,d2≥0

(Pn,d1 × Pn,d2) →
⋃

d≥0

Pn,d, (f, g) �→ q,

is defined. This function GC D X1,...,Xn corresponds to a computation forest
{Td1,d2}d1,d2≥0, see the definitions in [1].

Now we proceed to the square-free factorization of polynomials. Let f ∈ k[X1, . . . ,Xn] be
a polynomial with degX1,...,Xn

f ≥ 1. Denote by kpf the perfect closure of the field k. Then
one can represent f in the form

f = λ0F1F
2
2 · . . . · F d

d (11)
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where 0 �= λ0 ∈ k, all polynomials Fi ∈ kpf [X1, . . . ,Xn] are separable (or, which is the same,
square-free), gcd(Fi1 , Fi2) = 1 for 1 ≤ i1 �= i2 ≤ d, and degX1,...,Xn

Fi ≥ 0. We will see that
one can choose Fi such that F i

i ∈ k[X1, . . . ,Xn], 1 ≤ i ≤ d.
First, assume that char(k) = 0. Then k = kpf . Set

f1 = NNX1(f ;X1, . . . ,Xn),

(ι2, . . . , ιn) = innX1(f ;X1, . . . ,Xn). Let Λ = k[X2, . . . ,Xn]. Let f ′
1 = df1

dX be the derivative of
the polynomial f1. Then put

q1 = QΛ,X1(f1,GC D X1,...,Xn(f1, f
′
1)) ∈ k[X1, . . . ,Xn]

and G = q1(X1,X2 − ι2X1, . . . ,Xn − ιnX1). Obviously, G = λ1F1F2 · . . . ·Fd where 0 �= λ1 ∈ k.
So G is the square-free part of the polynomial f in the ring k[X1, . . . ,Xn].

Assume that char(k) = p > 0. Let i ≥ 0 be an integer. Set Bi = {jpi : 1 ≤ jpi ≤ d & j ∈ Z}
(hence Bi = ∅ if pi > d) and Φi =

∏
j∈Bi

F j
j . Put

Ψi = Φi(X
p−i

1 , . . . ,Xp−i

n )/Φi+1(X
p−i

1 , . . . ,Xp−i

n ).

Now f = λ0
∏

0≤i≤logp d

Ψi(X
pi

1 , . . . ,Xpi

n ) and Ψi =
∏

j∈Bi\Bi+1

Fj(X
p−i

1 , . . . ,Xp−i

n )j . Note that if

j ∈ Bi \ Bi+1, then j/pi is an integer and p does not divide j/pi.
Let i be fixed. One can represent f in the form f =

∑
0≤r1,...,rn<pi

Xr1
1 · . . . ·Xrn

n fi,r1,...,rn where

fi,r1,...,rn ∈ k[Xpi

1 , . . . ,Xpi

n ]. We have gcd{fi,r1,...,rn : 0 ≤ r1, . . . , rn < pi} = Φi in the ring
k[X1, . . . ,Xn] (we leave the details to the reader).

Then one can compute each polynomial Φi, for example, as follows. Let Y1, . . . , Yn be new
variables. Put

qi =
∑

0≤r1,...,rn<pi

Y r1
1 . . . Y rn

n fi,r1,...,rn ∈ k[Y1 . . . , Yn,X1, . . . ,Xn].

Then Φi = G CD Y1...,Yn,X1,...,Xn(qi,LCY (qi)) up to a nonzero factor from k, and we will assume
without loss of generality that this factor is equal to 1.

Put Λ = k[X2, . . . ,Xn],

ϕ1 = NNX1(Φi+1;X1, . . . ,Xn), (ι1, . . . , ιn) = innX1(Φi+1;X1, . . . ,Xn),

ϕ2 = Φi(X1,X2 + ι2X1, . . . ,Xn + ιnX1),

ψ1 = QΛ,X1(ϕ2, ϕ1),

ψ2 = ψ1(X1,X2 − ι2X1, . . . ,Xn − ιnX1),

ψ3 = ψ2(X
p−i

1 , . . . ,Xp−i

n ).

Now the polynomial ψ3 coincides with Ψi up to a nonzero factor from k.
Further, similarly to the case of characteristic zero,

ψ = NNX1(ψ3;X1, . . . ,Xn), (ι′2, . . . , ι
′
n) = innX1(ψ3;X1, . . . ,Xn),

q1 = QΛ,X1

(
ψ,G C D Y1...,Yn,X1,...,Xn

(
ψ,

∑

1≤i≤n

Yi
∂ψ

∂Xi

))
∈ k[X1, . . . ,Xn],
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and Gi = q1(X1,X2 − ι′2X1, . . . ,Xn − ι′nX1). Obviously, Gi is the square-free part of the
polynomial Ψi in the ring k[X1, . . . ,Xn]. We have

Gi(X
pi

1 , . . . ,Xpi

n ) = μi

∏

j∈Bi\Bi+1

F pi

j ,

∏

0≤i≤logp d

Gi(X
pi

1 , . . . ,Xpi

n )p
−i

= μ F1 · . . . · Fd,

where 0 �= μi ∈ k, 0 �= μ ∈ kpf . So, the family of separable polynomials Gi, 0 ≤ i ≤ logp d,
determines the square-free part of the polynomial f .

Let us return to the case of an arbitrary characteristic of the ground field. Let j be an
arbitrary integer, 1 ≤ j ≤ d.

If char(k) = 0, put G0 = G, B0 = {1, 2, . . . , d}, B1 = ∅, i = 0, p = 1. If char(k) = p > 0,
assume that pi divides j and pi+1 does not divide j for an integer i, 0 ≤ i ≤ logp d.

Now we are going to find the polynomial F pi

j (Xp−i

1 , . . . ,Xp−i

n ) up to a nonzero factor from k.

Put Gi,α = GC D X1,...,Xn(Gi(X
pi

1 , . . . ,Xpi

n ), Fα), 1 ≤ α ∈ Z. Then Gi,α coincides with
∏

j∈Bi\Bi+1 & j<αpi

F j
j ×

∏

j∈Bi\Bi+1 & j≥αpi

Fαpi

j

up to a nonzero factor from k. The ratio Gi,α/Gi,α−1 coincides with
∏

j∈Bi\Bi+1 & j≥αpi

F pi

j

up to a nonzero factor from k.
Let Bi \ Bi+1 = {α1p

i, . . . , αrp
i} where α1, . . . , αr are integers and 1 ≤ α1 < α2 < . . . <

αr ≤ d/pi. Then for every s, 1 ≤ s < r, the ratio

Qs = (Gi,αs/Gi,αs−1)/(Gi,αs+1/Gi,αs+1−1)

coincides with F pi

αspi up to a nonzero factor from k. The ratio Gi,αr/Gi,αr−1 coincides with

F pi

αrpi up to a nonzero factor from k.
Applying the Noether normalization and Lemma 2 (cf. the computation of Gi), for each s,

1 ≤ s ≤ r − 1, we find a polynomial F̃αspi coinciding with Qs up to a nonzero factor from k.

Then F̃αspi coincides with F pi

αspi up to a nonzero factor from k. In a similar way we compute

a polynomial F̃αrpi coinciding with F pi

αrpi up to a nonzero factor from k.

Thus, for every j ∈ Bi \Bi+1, the polynomial F̃j(X
p−i

1 , . . . ,Xp−i

n ) ∈ k[X1, . . . ,Xn] coincides
with F pi

j (Xp−i

1 , . . . ,Xp−i

n ) up to a nonzero factor from k. In particular, we have proved that
one can choose each Fj so that F j

j has coefficients from k.
Let 1 ≤ j ≤ d. If char(k) = 0, then set SQFj,X1,...,Xn

(f) = F̃j . If char(k) = p > 0, then set

SQFj,X1,...,Xn
(f) = F̃j(X

p−i

1 , . . . ,Xp−i

n ) if and only if j ∈ Bi \ Bi+1, 0 ≤ i ≤ logp d. Let k = k.
Then we introduce the function

SQFX1,...,Xn
:

⋃

d≥1

Pn,d →
⋃

d≥1

( ⋃

m≥1

Pn,m

)d
, f �→ {SQFj,X1,...,Xn

(f)}1≤j≤d. (1)

According to the described construction, the function SQFX1,...,Xn
is an algorithm correspond-

ing to a computation forest. Denote this forest by {T ′
d}d≥1 (now n is fixed).
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3. The absolute factorization of polynomials

Let F ∈ k[X1, . . . ,Xn] be a polynomial, degX1,...,Xn
F = d ≥ 2. In this section, we will

assume that F is separable, i.e., deg Fi = 0 for 2 ≤ i ≤ d in (11), see Sec. 2. Denote by Pspr,n,d

the set of all separable polynomials from k[X1, . . . ,Xn] of degree d.
Let u2, . . . , un, w2, . . . , wn be elements algebraically independent over the field k. For brevity,

denote by k[u,w] the ring k[u2, . . . , un, w2, . . . , wn] and by ku,w the field of fractions of k[u,w].
If a ∈ k[u,w], then put degu,w a = degu2,...,un,w2,...,wn

a.
Set Fu,w = F (X1, u2X1 + w2, . . . , unX1 + wn). By the Bézout theorem, the polynomial

Fu,w ∈ ku,w[X1] has d pairwise distinct roots in the algebraic closure ku,w of the field ku,w.
Hence the discriminant of the polynomial Fu,w with respect to X1 does not vanish:

Δ = ResX1

(
Fu,w,

∂Fu,w

∂X1

)
�= 0.

Note that Δ ∈ k[u,w] and degu,w Δ ≤ (2d− 1)d. Let us choose and fix a set J2d2 ⊂ K0 (recall
that the notation Jd and Jn,d is introduced in Sec. 1). As in Sec. 1, we will assume that the
set J2d2 is well-ordered and J2n−1,2d2 is ordered lexicographically.

Put

NNDX1(F ;X1, . . . ,Xn) = F (X1,X2 + α2X1 + β2, . . . ,Xn + αnX1 + βn),
inndX1(F ;X1, . . . ,Xn) = (α2, . . . , αn, β2, . . . , βn), (12)

where (α2, . . . , αn, β2, . . . , βn) ∈ J2n−1,2d2 is the least multiindex such that

Δ(α2, . . . , αn, β2, . . . , βn) �= 0

and Φd(1, α2, . . . , αn) �= 0 where Φd is the form of degree d such that degX1,...,Xn
(F −Φd) < d.

Set f = NNDX1(F ;X1, . . . ,Xn). Then, obviously, degX1
f(X1, 0, . . . , 0) = d and the poly-

nomial f(X1, 0, . . . , 0) ∈ k[X1] is separable, i.e., has d pairwise distinct roots in k. Put
c = LCX1f = lcX1f(X1, 0). Thus c is the leading coefficient of the polynomial f with respect
to X1.

If k = k, then the function
⋃

d≥2

Pspr,n,d →
⋃

d≥0

Pspr,n,d, F �→ NNDX1(F ;X1, . . . ,Xn),

is an algorithm corresponding to a computation forest. Denote this forest by {T ′′
d }d≥0.

Now we are going to apply the results of [2]. Let v3, . . . , vn be elements algebraically
independent over the field k. For brevity, denote by k[v] the ring k[v3, . . . , vn] and by kv the
field of fractions of k[v] (in what follows, we will use other similar notations). If a ∈ k[v], then
put degv a = degv3,...,vn

a.
Put X = X1, T = X2, fv = f(X,T, v3T, . . . , vnT ) ∈ k[v][X,T ]. Set ρ = degT fv.
Set f0 = f(X, 0, . . . , 0). Let us write f0 = f0(Z)+ (X −Z)g0 for a polynomial g0 ∈ k[Z,X].

Note that g0(Z,Z) = f ′
0(Z) = d f0

dZ . Put δ = f ′
0(Z).

Set fv =
∑

i≥0 fv,i T
i where fv,i ∈ k[v][X] (hence if i > ρ, then fv,i = 0). Set fv,i = δ2i−2fv,i

for i ≥ 1. Put z0 = Z.
For i ≥ 1, let us define recursively polynomials gi,j ∈ kv[Z], 0 ≤ j ≤ m − 2, and zi ∈ kv[Z].

Put gi =
∑

0≤j≤m−2
gi,jX

j ∈ kv[Z,X].

Assume that gj and zj are defined for 0 ≤ j < i for some i ≥ 1. Then

(X − Z)gi − g0zi = δ
(
fv,i +

∑

1≤w≤i−1

gwzi−w

)
. (13)
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Now, to find all gi,j ∈ k(Z), 0 ≤ j ≤ m − 2, and −zi ∈ k(Z), one should solve a linear system
with coefficients from k(Z) by Cramer’s rule. It corresponds to (13). The coefficient matrix of
this system is the Sylvester matrix of the polynomials X − Z and g0. Its determinant is ±δ.
All free terms of this system are divisible by δ. Hence, actually, gi,j ∈ k[v][Z] and zi ∈ k[v][Z].
The recursive step for the definition of gi and zi is described.

Consider the separable k-algebra k′ = k[Z]/(f0(Z)). Put z = Z mod f0(Z) ∈ k′. In a
similar way we define the separable kv-algebra k′

v = kv[Z]/(f0(Z)). Thus k′
u ⊃ k′.

Then f0 = (X − z)g0(z,X) where g0(z,X) ∈ k′
v [X]. Note that δ(z) = g0(z, z) is an

invertible element of k′, since the polynomial f0 is separable. Let k′
v[[T ]] be the ring of formal

power series in T over the algebra k′
v. One can apply Hensel’s lifting to the decomposition

f(X, 0) = (X − z)g0(z,X) and get

f =
(
X −

∑

i≥0

zi T i
)(

g0(z,X) +
∑

i≥1

gi T
i
)

(14)

in the ring k′
v[[T ]][X]. Here z0 = z, zi ∈ k′

v, gi ∈ k′
v[X], degX gi ≤ m − 2 for i ≥ 1.

For all i ≥ 1,

zi =
zi(z)

δ(z)2i−1
, gi =

gi(z,X)
δ(z)2i−1

. (15)

This follows from Lemma 4 of [2].

Set D = (2d − 1)ρ + 1 and

η = δ2D−3X − δ2D−3
(
Z +

∑

1≤i≤D−1

zi T
i

δ2i−1

)
(16)

= δ2D−3X −
(
δ2D−3Z +

∑

1≤i≤D−1

ziδ
2(D−1−i)T i

)
∈ K[Z,X, T ].

Let x ∈ k. We will regard x as a parameter. If f(x, 0) �= 0, then, by definition, the
output of the described construction is (∅, 1, 1, 1, 1, 1), see Sec. 5 below for details. In what
follows, unless otherwise stated, we will assume that f(x, 0) = 0. Hence every element of k[x]
can be represented in the form

∑
0≤i<d

aix
i with ai ∈ k. Nonetheless, performing the algebraic

operations ×,+,− with elements of k[x], we will not use the relation f(x, 0) = 0 unless
otherwise stated. Hence we will represent elements of k[x] in the form

∑
0≤i≤N

aix
i where ai ∈ k

and N is arbitrary, i.e., in these computations x is analogous to a transcendental element over
k (of course, such a representation with an arbitrary N is not unique, but it will arise in a
natural way from the context).

Put
ai = η(x,X, T )Xi−1, 1 ≤ i ≤ d − 1,
ai = TDXi−m, d ≤ i ≤ 2d − 1. (17)

Set B1 = kv[T ]. We will identify the set of polynomials g ∈ kv [X,T ] such that degX g < d
with Bd

1 . Under this identification,

g = g0 + g1X + . . . + gd−1X
d−1 �→ (g0, g1, . . . , gd−1); (18)

here gi ∈ B1 for all i.
Hence, under the identification (18), all ai are in Bd

1 .
Put n1 = d, n2 = 2d−1. Let A be the n1×n2 matrix with the rows a1, . . . , a2m−1. Then the

entries of A are in B1. Denote by M the lattice in Bd
1 generated by the rows of the matrix A.

Let g = (g0, . . . , gd−1) ∈ M . Then put |g| = sup{degT gi : 0 ≤ i ≤ d − 1} and degX g =
sup({i : gi �= 0& 0 ≤ i ≤ d − 1} ∪ {−1}).
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For any two elements g, h ∈ M , put g < h if and only if |g| < |h| or |g| = |h| but
degX g < degX h. A minimal element of M is an arbitrary nonzero element q ∈ M such
that for every nonzero g ∈ M it is not true that g < q, i.e., either q < g, or |q| = |g| and
degX q = degX g.

Lemma 3. Assume that f(x, 0) = 0 and q is a minimal element of M . Then q is an irreducible
factor of the polynomial fv in the ring kv[X,T ] such that X − x divides q(X, 0) in the ring
kv[X]. Further, lcXq ∈ kv, since lcXfv ∈ k. Hence q/lcXq ∈ kv [X,T ].

Proof. This follows immediately from the proof of Lemma 6 in [1] (we leave the details to the
reader). �

Let q(1) ∈ M be an arbitrary nonzero element such that |q(1)| ≤ D. By Lemma 1 of [1], one
can represent q(1) in the form

q(1) =
∑

1≤i≤2d−1

λiai, (19)

where λi ∈ kv[T ] and degT λi ≤ (2d + 1)D for 1 ≤ i ≤ 2d − 1. Hence λi =
∑

0≤j≤(2d+1)D

λi,jT
j

where λi,j ∈ kv.
For an integer α, 0 ≤ α ≤ D, denote by Eα the following assertion: “There is a nonzero

element q(1) ∈ M with |q| ≤ α.” Then a homogeneous linear system Sα over the field kv[x]
corresponds to Eα and satisfies the following properties. It is a system in the unknowns λi,j,
1 ≤ i ≤ 2d − 1, 0 ≤ j ≤ (2d + 1)D. The entries of its coefficient matrix are from k[x][v].
This system has a nonzero solution if and only if the assertion Eα is true. Actually, a nonzero
solution of the system Sα determines an element q(1) such that |q(1)| ≤ α according to (19).
One can easily construct the system Sα (we leave the details to the reader).

For integers α1, α2 with 0 ≤ α1 ≤ D, 0 ≤ α2 ≤ d, denote by Eα1,α2 the following assertion:
“There is a nonzero element q(1) ∈ M such that |q(1)| ≤ α1 and degX q(1) ≤ α2.” Then a
homogeneous linear system Sα1,α2 over the field kv [x] corresponds to Eα1,α2 and satisfies the
following properties. It is a system in the unknowns λi,j, 1 ≤ i ≤ 2d − 1, 0 ≤ j ≤ (2d + 1)D.
The entries of its coefficient matrix are from k[x][v]. This system has a nonzero solution if and
only if the assertion Eα1,α2 is true. Actually, a nonzero solution of the system Sα1,α2 determines
an element q(1) such that |q(1)| ≤ α1 and degX q(1) ≤ α2 according to (19). One can easily
construct the system Sα1,α2 (we leave the details to the reader).

Let 0 ≤ α1 ≤ D, 1 ≤ α2 ≤ d. Now an element q with |q| = α1, degX q = α2 is minimal if
and only if the following conditions are satisfied:

(a) the system Sα1,α2 has a nonzero solution,
(b) if α1 ≥ 1, then the system Sα1−1 has only the zero solution,
(c) the system Sα1,α2−1 has only the zero solution.

In this case, a nonzero solution of the system Sα1,α2 determines an element q according
to (19) (with q in place of q(1)). Therefore, there is a minimal element q ∈ M such that
q ∈ k[x][v][X,T ].

The factor q irreducible over kv of the polynomial f is uniquely defined up to a nonzero
factor from kv . Hence if (a), (b), and (c) are satisfied, then the system Sα1,α2 has only one
solution linearly independent over kv[x].

The number of unknowns of the homogeneous linear systems from (a), (b), and (c) is equal
to r′ = (2d− 1)((2d + 1)D + 1). Denote by Sα1,α2 , Sα1−1 (if α1 ≥ 1), Sα1,α2−1 the matrices of
the homogeneous linear systems from (a), (b), and (c), respectively.
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Condition (a) is fulfilled if and only if all minors of size r′ of the matrix Sα1,α2 are equal
to 0.

Condition (b) is fulfilled if and only if α1 = 0 or not all minors of size r′ of the matrix Sα1−1

are equal to 0.
Condition (c) is fulfilled if and only if not all minors of size r′ of the matrix Sα1,α2−1 are

equal to 0.
Denote by Δ1, . . . ,Δm1 all minors of size r′ of the matrix Sα1,α2 . Denote by Δm1+1, . . . ,Δm2

all minors of size r′ of the matrix Sα1−1 (if α1 = 0, then m1 = m2). Denote by Δm2+1, . . . ,Δm3

all minors of size r′ of the matrix Sα1,α2−1.
Let ∧, ∨ denote the logical conjunction and disjunction. Now (a) ∧ (b) ∧ (c) is equivalent

to the condition
(Δ1 = . . . = Δm1 = 0) ∧ ((Δm1+1 �= 0) ∨ . . . ∨ (Δm2 �= 0))
∧((Δm2+1 �= 0) ∨ . . . ∨ (Δm3 �= 0)). (20)

Applying a result of [4], one can replace the minors Δi by some linear combinations of these
minors and assume that m3 = dO(1), but in fact it is not necessary.

Denote by Jm1,m2,m3 the set of all pairs (i2, i3) such that m1 < i ≤ m2, m2 < j ≤ m3. Let
us order the pairs from Jm1,m2,m3 lexicographically, i.e., put (i′, j′) < (i, j) if and only if i′ < i
or i′ = i but j′ < j. Let (i, j) ∈ Jm1,m2,m3 . Denote by Eα1,α2,i,j the following condition:

(Δ1 = . . . = Δm1 = 0) ∧
∧

(i′,j′)∈Jm1,m2,m3 ,
(i′,j′)<(i,j)

(Δi′Δj′ = 0) ∧ (ΔiΔj �= 0). (21)

Then condition (20) is equivalent to the disjunction
∨

(i,j)∈Jm1,m2,m3
Eα1,α2,i,j.

Besides, if condition (20) is fulfilled, then one can choose a solution of the system Sα1,α2 in
the form λi,j = Δ′

i,j where each Δ′
i,j is equal, up to a sign, to some minor of size r′−1 of the mat-

rix Sα1,α2 . A minimal element q is computed by the formula q =
∑

1≤i≤2d−1

∑
0≤j≤(2d+1)D

Δ′
i,jT

jai,

see (19).
Note that Δi ∈ k[x][v] for 1 ≤ i ≤ m3. More precisely, one can represent Δi in the

form Δi =
∑

0≤j≤N

Δi,jx
j where Δi,j ∈ k[v] and N is bounded from above by dO(1) with an

absolute constant in O(1) (we leave to the reader to compute such a constant O(1)). Put
Δ̃i =

∑
0≤j≤N

Δi,jX
j ∈ k[v][X], 1 ≤ i ≤ m3.

If all polynomials Δ̃i, 1 ≤ i ≤ m3, are zero, then put ψ(1) = f(X, 0). Assume that not all
polynomials Δ̃i, 1≤ i≤m3, are zero. There is an injective function κ : {1, 2, . . . ,m3+m2

3}→Z
n

such that if κ(i) = (j1, . . . , jn) then jα ≥ 0 for all α and j1 + . . . + jn ≤ N where N = dO(1).
Put

ψ(1) = G C D Y1,...,Yn,X,v3,...,vn

( ∑

1≤i≤m1

Y j1
1 . . . Y jn

n Δ̃i, f(X, 0)
)
∈ k[v][X],

where (j1, . . . , jn) = κ(i) for every summand Y j1
1 . . . Y jn

n Δ̃i. Further, set

ψ(2) = G C D Y1,...,Yn,X,v3,...,vn

(
ψ(1),

∑

m1<i2≤m2,
m2<i3≤m3

Y j1
1 . . . Y jn

n Δ̃i2Δ̃i3

)
∈ k[v][X],

where (j1, . . . , jn) = κ(i2 + m3i3) for every summand Y j1
1 . . . Y jn

n Δ̃i2Δ̃i3. Now ψ(2) �= 0 and
ψ(2) divides ψ(1) in the ring k[v][X]. Applying the Noether normalization and Lemma 2 (cf.
Sec. 2), we compute a polynomial ψ(3) ∈ k[v][X] coinciding with ψ(1)/ψ(2) up to a nonzero
factor from k.
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Note that lcXψ(3) ∈ k[v]. Further,

ψ(4) = ψ(3)/lcXψ(3) ∈ k[X],

since ψ(4) divides the polynomial f(X, 0) in the ring kv[X] and f(X, 0)∈k[X]. Again applying
Lemma 2, we compute a polynomial ψ∈k[X] coinciding with ψ(4) up to a nonzero factor from k.
We have ψ(x)=0, since otherwise condition (20) does not hold. Hence degX ψ = α3 ≥ 1 and
degX ψ(1) > degX ψ(2) ≥ 0. We write ψ in the form ψ =

∑
0≤i≤α3

ψiX
i where ψi ∈ k. According

to the described construction, all ψi are polynomials of degree dO(1) in the coefficients of f .
These polynomials have coefficients in the ring K0.

Under the identification (18), we have q =
∑

0≤i≤α2

qiX
i where qi ∈ k[x][v][T ]. Note that

qα2 = lcXq ∈ k[x][v], since q divides fv in the ring kv[x][X,T ] and lcXfv = lcXf(X, 0) ∈ k.
Further, q/lcXq ∈ k[x][v][X,T ], since this polynomial divides fv in the ring kv[x][X,T ] and
lcXfv ∈ k.

Applying the Noether normalization and Lemma 2 (here we leave the details to the reader),
we compute a polynomial q′ coinciding with q/lcXq up to a nonzero factor from k[x]. So,
replacing q by q′, in what follows we will asume without loss of generality that lcXq ∈ k[x].

According to the described construction, one can represent q in the form

q =
∑

0≤s≤degT q

∑

0≤i≤α2

∑

0≤j≤N

qs,i,jX
ixjT s,

where qs,i,j ∈ k[v], the integer N is bounded from above by dO(1), and all qi,j,s are polynomials
in the coefficients from k[v] of fv. These polynomials have coefficients in the ring K0. Put
qi,j =

∑
0≤s≤degT q

qs,i,jT
s for all i, j. Now qi =

∑
0≤j≤N

qi,jx
j for all i.

Put q(X, 0) = q|T=0. Then q(X, 0) ∈ k[x][X], since q(X, 0) divides f(X, 0) in the ring
kv[x][X] and lcXq(X, 0) ∈ k[X].

Let A = k[Z]/(ψ(Z)) be a separable algebra and z1 = Z mod ψ ∈ A. Thus 1, z1, . . . , z
deg ψ−1
1

is a basis of A over k. Put ν0 = lcXψ. Let N ≥ α3, and let all ai ∈ k, 0 ≤ i ≤ N , be arbitrary.
Note that the element

∑
0≤i≤N

aiz
i
1 can be represented in the form

∑
0≤i<α3

biz
i
1 with bi ∈ k

using Lemma 2. Namely, every νN−α3+1
0 bi is a polynomial in ψ0, . . . , ψα3 and a0, . . . , aN with

coefficients from the ring K0.
The element qα2 is invertible in k[x] for every root x of ψ, since degX q(X, 0) = α2 for every

root x of ψ. We are going to find q−1
α2

. Put q̃α2 =
∑

0≤j≤N
q0,α2,jz

j
1 where q0,α2,j ∈ k[x]. Then

q̃α2 is invertible in A. Let q̃−1
α2

=
∑

0≤i<α3

biz
i
1 where bi ∈ k. Then

⎛

⎝
∑

0≤i≤N

q0,α2,jz
j
1

⎞

⎠

⎛

⎝
∑

0≤i<α3

biz
i
1

⎞

⎠ = 1.

From here, applying Lemma 2, we get the relation
∑

0≤i<α3

∑

0≤j<α3

Li,jbjz
i
1 = νN+1

0 ,

where all Li,j are polynomials in ψ0, . . . , ψα3 , qα2,0, . . . , qα2,N with coefficients from the ring
K0. Hence we obtain a linear system for finding b0, . . . , bα3−1. We solve it by Cramer’s rule.
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Put ν1 = det({Li,j}0≤i,j<α3). Thus, one can write

q−1
α2

=
∑

0≤i<α3

aiν
N+1
0 xi/ν1, (22)

where all ai, ν1 are polynomials in ψ0, . . . , ψα3 , qα2,0, . . . , qα2,N with coefficients from the
ring K0.

Put q′′ = (ν1/qα2)q. Let

q′′ =
∑

0≤s≤degT q′′

∑

0≤i≤α2

∑

0≤j<α3

q′′s,i,jX
ixjT s,

where q′′s,i,j ∈ k. Then, by (22) and Lemma 2, we have lcXq′′ ∈ k and all qs,i,j are polynomials
in ψ0, . . . , ψα3 , qi,0, . . . , qi,N with coefficients from the ring K0. One can compute all q′′i,j using
(22) and Lemma 2. Now, replacing (N, q, {qs,i,j}∀i,j) by (α3−1, q′′, {q′′s,i,j}∀i,j), in what follows
we will assume without loss of generality that lcXq ∈ k and N = α3 − 1.

4. Completing the construction of the absolute factorization of polynomials

In this section, we will construct primitive elements of the fields generated by the coefficients
of the absolute irreducible factors of a polynomial f . Here, as in the previous section, we need
a detailed description, in order to obtain an algorithm corresponding to a computation forest
in the next section.

Let q(X, 0) =
∑

0≤i≤α2

Q0,iX
i where Q0,i ∈ k[x]. Then Q0,α2 = qα2 ∈ k. Further, for every i,

0 ≤ i < α3, a representation Q0,i =
∑

0≤j<α3

q0,i,jx
j is computed with q0,i,j ∈ k. Let Y be a new

variable. Put

θi =
∑

0≤j<α3

q0,i,jz
j
1 ∈ A, 0 ≤ i ≤ α2,

θ =
∑

0≤i≤α2

θiY
i ∈ A[Y ].

Hence for every root x of the polynomial ψ, we have θi|z1=x = q0,i, 0 ≤ i ≤ α2, and θ|z1=x =∑
0≤i≤α2

Q0,iY
i = q(Y, 0).

For an integer α4 with 0 ≤ α4 ≤ α3, denote by E ′
δ the following assertion: “The ele-

ments 1, θ, . . . , θα4 ∈ A ⊗k k(Y ) are linearly dependent over the field k(Y ).” Let us write
ν

(α3−1)2+1
0 θi =

∑
0≤j<α3

θi,jz
j
1 where θi,j ∈ k[Y ] and, by Lemma 2, they are polynomials in

Y , ψ0, . . . , ψα3 and all q0,i,j with coefficients from the ring K0. Denote by S ′
α4

the following
homogeneous linear system over the field k(Y ) in the unknowns Zi, 0 ≤ i ≤ α4:

∑

0≤i≤α4

Ziθi,j = 0, 0 ≤ j < α3. (23)

Then the condition E ′
α4

is fulfilled if and only if the system S ′
α4

has a nonzero solution. Denote
by S′

α4
the matrix of this system; its entries are in k[Y ].

Denote by H ∈ k(Y )[Z] the minimal polynomial of the element θ ∈ A⊗k k(Y ) over the field
k(Y ) such that H ∈ k[Y,Z]. Let degZ H = α4, and hence H =

∑
0≤i≤α4

HiZ
i ∈ k[Y,Z] where

Hi ∈ k[Y ]. Then H(Y, θ) = 0.
The degree degZ H is equal to α4 if and only if the following two conditions are satisfied:
(c) the homogeneous linear system S ′

α4
has a nonzero solution,
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(d) the homogeneous linear system S ′
α4−1 has only the zero solution.

If (c) and (d) are fulfilled, then any nonzero solution from k[Y ]α4+1 of the system S ′
α4

gives the
coefficients (H0, . . . ,Hα4) of a minimal polynomial H (such a polynomial is uniquely defined
up to a nonzero factor from k[Y ]).

Condition (c) is fulfilled if and only if all minors of size α4 + 1 of the matrix S′
α4

are equal
to 0. Condition (d) is fulfilled if and only if not all minors of size α4 of the matrix S′

α4−1 are
equal to 0.

Denote by Δm3+1, . . . ,Δm4 all minors of size α4 + 1 of S′
α4

. Denote by Δm4+1, . . . ,Δm5 all
minors of size α4 of S′

α4−1. Note that Δi ∈ k[Y ] for m3 < i ≤ m5.
Now the conjunction (c) ∧ (d) is equivalent to the condition

(Δm3+1 = . . . = Δm4 = 0) ∧ ((Δm4+1 �= 0) ∨ . . . ∨ (Δm5 �= 0)). (24)

Besides, if condition (24) is fulfilled, then one can choose a solution of the system S ′
α4

in the
form Zi = Δ′

i where each Δ′
i is equal, up to a sign, to some minor of size α4 − 1 of the matrix

S′
α4

and Δ′
α4

is a nonzero minor of the matrix S′
α4−1. The minors Δ′

i, 0 ≤ i ≤ α4, are taken
from the same rows with indices 0 ≤ i0 < . . . < iα4−1 < α3 of the matrix S′

α4
.

Put Hi = Δ′
i, 0 ≤ i ≤ α4, ν2 = Δ′

α4
. Note that degY Δ′

α4
< α2α4 ≤ d2.

For every root x of the polynomial ψ, the element q(Y, 0) is integral over k[Y ]. Hence there
is a minimal polynomial H̃x ∈ k(Y )[Z] of the element q(Y, 0) over the field k(Y ) such that
H̃x ∈ k[Y,Z] and lcZH̃x ∈ k. Note that each polynomial H̃x is separable with respect to Z.

Denote by H̃ the product of all pairwise distinct polynomials H̃x where x runs over all roots
of the polynomial ψ, i.e., H̃ is the square-free part of the polynomial

∏
{x : ψ(x)=0}

H̃x. Then H̃

coincides with H/Hα4 up to a nonzero factor from k. Therefore, H/Hα4 ∈ k[Y,Z]. Applying
Lemma 2, we compute a polynomial H ′ ∈ k[Y,Z] such that H/Hα4 and H ′ coincide up to a
nonzero factor from k. Replacing H by H ′, in what follows we will assume without loss of
generality that lcZH ∈ k.

Further, for every root x of the polynomial ψ, the field k(Y )[q0,0, . . . , q0,α2 ] contains the
primitive element q(Y, 0). Hence, by the Chinese remainder theorem, the separable algebra
k(Y )[θ0, . . . , θα2 ] (it is a subalgebra of A⊗k k(Y )) contains the primitive element θ. Therefore,
there is a unique representation

θi =
∑

0≤j<α4

ci,jθ
j, 0 ≤ i ≤ α2,

where ci,j ∈ k(Y ).
To find the coefficients ci,j, note that

θi =
∑

0≤j<α4

ci,jθ
j =

∑

0≤s<α3

∑

0≤j<α4

ci,jθj,sz
s
1ν

−(α3−1)2−1
0

and θi =
∑

0≤s<α3

q0,i,sz
s
1. Hence

∑
0≤j<α4

ci,jθj,s = q0,i,sν
(α3−1)2+1
0 for all i, s.

Now consider the linear system
∑

0≤j<α4

Zjθj,s = q0,i,sν
(α3−1)2+1
0 , s = i0, . . . , iα4−1, (25)

for 0 ≤ i < α2. Then Zj = ci,j , 0 ≤ j < α4, is the unique solution of the system (25). It can
be found by Cramer’s rule. Hence one can write ci,j = ai,j/ν2 where ai,j ∈ k[Y ] and compute
all ai,j.
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Enumerating the elements from the set Jd2−1, we find y∗ ∈ Jd2−1 such that ν2(y∗) �= 0. Put
ξ = θ|Y =y∗ .

Let us show that ξ is a primitive element of the separable algebra k[θ0, . . . , θα2 ] (it is a
subalgebra of A) over the field k. Indeed, the elements 1, ξ, . . . , ξα4−1 are linearly independent
over k, since ν2(y∗) �= 0. The polynomial H(y∗, Z) is a minimal polynomial of the element ξ,
since H(y∗, ξ) = 0, 0 �= lcZH ∈ k, and degZ H(y∗, Z) = α4. Finally, θi =

∑
0≤j<α4

θ∗i,j · ξj where

θ∗i,j = ai,j(y∗)/ν2(y∗) for all i, j. The required assertion is proved.
Every element of k[ξ] can be represented in the form

∑
0≤i<α4

aiξ
i where ai ∈ k. Nonetheless,

performing the algebraic operations ×,+,− with elements of k[ξ], we will not use the relation
H(y∗, ξ) = 0 unless otherwise stated. Hence we will represent elements of k[ξ] in the form∑
0≤i≤N

aiξ
i where ai ∈ k and N is arbitrary, i.e., in these computations ξ is analogous to a

transcendental element over k (of course, such a representation with an arbitrary N is not
unique, but it will arise in a natural way from the context).

Put Q0 = q(X, 0)ν2(y∗). So Q0 ∈ k[ξ][X] and lcXQ0 ∈ k. Applying Lemma 2, we find a
polynomial U0 ∈ k[ξ][X] such that Q0U0 coincides with f(X, 0) up to a nonzero factor from k.
More precisely, Q0U0 = λ0f(X, 0) where 0 �= λ0 = (lcXQ0)d−α2+1 ∈ k.

Let λ0fv =
∑
i≥0

ΦiT
i where Φi ∈ k[v][X] for all i and Φ0 = λ0f(X, 0) (here Φi = 0

if i ≥ degT fv). Now we are going to use Hensel’s lifting. Namely, we will construct the
decomposition (

Q0 +
∑

i≥1

QiT
i
)(

U0 +
∑

j≥1

UjT
j
)

= Φ0 +
∑

i≥1

ΦiT
i, (26)

where Qi, Uj ∈ k[ξ][v][X]. More precisely, let R0 = ResX(Q0, U0) ∈ k be the resultant of the
polynomials Q0 and U0. Let R1 (respectively, R2, R3) be the discriminant of the polynomial
λ0f(X, 0) (respectively, Q0, U0). Therefore,

R1 = R2R3R
2
0. (27)

The elements R0, R2, R3 are not zero divisors in k[ξ], since 0 �= R1 ∈ k.
Put Qi = R2i−1

0 Qi, U j = R2i−1
0 Ui, Φi = R2i−2

0 Φi for i, j ≥ 1. We will prove that one can
represent these elements in the form Qi =

∑
0≤j≤α2−1

Qi,jX
j , U i =

∑
0≤j≤d−α2−1

U i,jX
j where all

Qi,j , U i,j are in k[ξ][v].
Assume that for some i ≥ 1, the elements Qj and U j are already defined for 0 ≤ j < i and

Qj , U j ∈ k[ξ][v][X]. Then

U0Qi + Q0U i = R0

(
Φi +

∑

1≤w≤i−1

QwU i−w

)
. (28)

Now, to find all Qi,j, 0 ≤ j ≤ α2 − 1, and U i,j, 0 ≤ j ≤ d − α2 − 1, one should solve the
linear system with coefficients from k[ξ][v] corresponding to (28). It has the unique solution,
which can be obtained by Cramer’s rule. The coefficient matrix of this system is the Sylvester
matrix of the polynomials Q0 and U0. Its determinant ±R0 is not a zero divisor in k[ξ][v].
All free terms of this system are divisible by R0. Hence Qi,j ∈ k[ξ][v], U i,j ∈ k[ξ][v] for all
i, j, and, actually, they are polynomials in the coefficients from k[ξ][v] of Q0, U0, λ0fv. The
recursive step for the definition and construction of Qi and U i is described.

Recall that degT q = α1. Put q′′′ = qν2(y∗)Rα1
1 ∈ k[ξ][v][T,X]. Now (27) implies that

q′′′ ∈ k[ξ][v][T,X]. We have lcXq′′′ ∈ k, and, according to the described construction of
Hensel’s lifting, all coefficients from k[ξ] of q′′′ are polynomials in the coefficients from k[ξ][v]

375



of q0 and λ0fv. The degrees of these polynomials are bounded from above by dO(1) with an
absolute constant in O(. . .).

We have q′′′ = q′′′(v3, . . . , vn, T,X) ∈ k[ξ][v3, . . . , vn, T,X]. Put

Q′′′ = q′′′(X3/X2, . . . ,Xn/X2,X2,X1).

Then Q′′′ ∈ k[ξ][X1, . . . ,Xn] by the Gauss lemma (we leave the details to the reader). Put

Q(4) = Q′′′(X1,X2 − α2X1 − β2, . . . ,Xn − αnX1 − βn),

see (12) at the beginning of Sec. 3.
According to the described construction, one can write

Q(4) =
∑

0≤i≤N1

∑

i1,...,in

Q
(4)
i,i1,...,in

Xi1
1 · . . . · Xin

n ξi,

where Q
(4)
i,i1,...,in

∈ k and N1 is the minimum possible such that N1 ≥ α4 − 1. The integer N1

is bounded from above by dO(1) with an absolute constant in O(. . .). Moreover, all Q
(4)
i,i1,...,in

are polynomials in the coefficients of f . These polynomials have coefficients from the ring K0.
Put Q = HN1−α4+1

α4
Q(4). Then, by Lemma 2, one can find a representation

Q =
∑

0≤i<α4

∑

i1,...,in

Qi,i1,...,inXi1
1 · . . . · Xin

n ξi

where Qi,i1,...,in ∈ k. Moreover, all Qi,i1,...,in are polynomials in the coefficients of f . These
polynomials have coefficients from the ring K0.

Set
ε = qα2ν2(y∗)Rα1

1 HN1−α4+1
α4

. (29)

Then ε = HN1−α4+1
α4

lcXq′′′(X, 0).
For every root Z = ξ∗ of the polynomial H(y∗, Z), put Q∗ = Q|ξ=ξ∗. Then the polynomial

Q∗ is irreducible in the ring k[X1, . . . ,Xn] and Q∗ divides F in the ring k[ξ∗][X1, . . . ,Xn] (we
leave the details to the reader). Thus Q∗ is an absolutely irreducible factor of the polynomial F .

5. Computation trees, coverings, and stratifications

In this section, we will obtain the required decomposition of the polynomial f into absolutely
irreducible factors.

In what follows, we will not assume that necessarily f(x, 0) = 0. Let k = k. Set P̃n,d =⋃
−1≤d′≤d

Pn,d, d ≥ 0 (we assume here that degX1,...,Xn
0 = −1). By definition, put P̃ 0

n,d = {∅}
(it is a one-element set). Denote by P2,d2,d3 the set of all polynomials Φ from k[Y,Z] such that
degZ Φ = d2, degY Φ = d3.

The construction described in the previous sections defines the function

t :
⋃

d≥2

(Pspr,n,d × k) →
⋃

d1≥0, d2≥0, d3≥0

(P̃ d2
n,d1

× P2,d2,d3 × k
4)

given by the formula

t(F, x) =
{

((Q0, . . . , Qα4−1),H(Y,Z), ε, qα2 , c, y
∗) if f(x, 0) = 0,

(∅, 1, 1, 1, 1, 1) if f(x, 0) �= 0,

where Q =
∑

0≤i<α4

Qiξ
i and Qi ∈ k[X1, . . . ,Xn] for all i. Recall that c = lcXf(X, 0), qα2 =

lcXq(X, 0), y∗ ∈ Jd2−1 and ε is defined by (29), see Secs. 3, 4. We leave to the reader to
prove that this function is an algorithm corresponding to a computation forest (this follows
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straightforwardly from the construction described in two preceding sections). Denote this
forest by {T ′′′

d }d≥2 (now we assume that n is fixed).
Remark 2. One can omit k

4 in the definition of t. Indeed, assume that

((Q0, . . . , Qα4−1),H(Y,Z))

are computed at the output corresponding to a leaf w of a computation tree. This computation
tree is obtained from the construction described in the two preceding sections. Then all
elements ε, qα2 , c, y

∗ are also computed at some vertices v1, v2, v3, v4 which are ancestors of w

in this computation tree. So, we introduce k
4 in the definition of t only for convenience.

Denote by b1, . . . , bμ, Z the coordinate functions of the space of parameters Pspr,n,d×k. Here
μ =

(n+d
n

)
and Z is the coordinate function of k.

Recall that in the notation of [1], a condition Aw corresponds to each vertex w of the
tree T ′′′

d . For the reader’s convenience and better understanding, here we observe that, for
example, for all possible α1, α2, (i, j) ∈ Jm1,m3,m3 , there is a vertex w of the tree T ′′′

d such that
Aw = Eα1,α2,i,j (now all Δi in (21) are polynomials with coefficients in k[b1, . . . , bμ]).

Let L(T ′′′
d ) be the set of leaves of the tree T ′′′

d . In the notation of [1], a condition Aw

corresponds to each leaf w ∈ L(T ′′′
d ) (one should not confuse this w with that from the

preceding sections). It follows from the construction described in Secs. 3, 4 that each Aw is
equivalent to

(ϕw,1 = . . . = ϕw,μw,1 = 0) ∧ ((ϕw,μw,1+1 �= 0) ∨ . . . ∨ (ϕw,μw,2 �= 0),

where there is exactly one index j0 with 1 ≤ j0 ≤ μw,2 such that

ϕw,j0 ∈ k[b1, . . . , bμ, Z] \ k[b1, . . . , bμ].

Moreover, j0 = 1 or j0 = μw,1 + 1. All other polynomials ϕw,j, 1 ≤ j ≤ μw,2, j �= j0, are
in k[b1, . . . , bμ]. Actually, if j0 = 1 then the polynomial ϕw,j0 corresponds to ψ(Z), and if
j0 = μw,1 + 1 then ϕw,j0 corresponds to f(Z, 0), see Sec. 3.

If j0 �= μw,1 + 1, then, by definition, w is a leaf of the first kind, otherwise w is a leaf of the
second kind.

In the notation of [1], we have the quasiprojective algebraic variety

Ww = Z(ϕw,1, . . . , ϕw,μw,1) \ Z(ϕw,μw,1+1, . . . , ϕw,μw,2) ⊂ Pspr,n,d × k.

Let w be a leaf of the first kind. Then, by definition, we have the quasiprojective algebraic
variety

W ′
w = Z(ϕw,2, . . . , ϕw,μw,1) \ Z(ϕw,μw,1+1, . . . , ϕw,μw,2) ⊂ Pspr,n,d.

The degrees of all polynomials ϕw,j with respect to b1, . . . , bμ, Z are bounded from above by
dO(1) with an absolute constant in O(. . .) (the reader may compute such a constant). Further,
the tree L(T ′′′

d ) has level l(T ′′′
d ) bounded from above by dO(1), again with an absolute constant

in O(. . .).
The output corresponding to a leaf w ∈ L(T ′′′

d ) of the first kind has the form

((Qw,0, . . . , Qw,d2−1),Hw, εw, ew, cw, yw)

where

Hw ∈ k[b1, . . . , bν ][Y,Z], degY H = d3 ≥ 1, degZ Hw = d2 ≥ 1,
Qw,i ∈ k[b1, . . . , bμ][X1, . . . ,Xn], max

0≤i≤d2−1
degX1,...,Xn

Qw,i = d1 ≥ 1,

0 �= εw, ew, cw ∈ k[b1, . . . , bμ], yw ∈ k.
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Here 1 ≤ d1 ≤ d, 1 ≤ d2 ≤ d, 1 ≤ d3 ≤ d2. The degrees degb1,...,bμ
Qw,i for all i, degb1,...,bμ

Hw,
degb1,...,bμ

ew, degb1,...,bμ
εw, degb1,...,bμ

cw are bounded from above by dO(1) with an absolute
constant in O(. . .).

Besides, ew, cw, lcZHw do not have zeros on Ww and W ′
w, i.e., Ww ∩ Z(εwewcwlcZHw)=∅

and W ′
w ∩ Z(εwewcwlcZHw) = ∅. This follows immediately from the construction described

in Secs. 3, 4.
The output corresponding to a leaf w ∈ L(T ′′′

d ) of the second kind has the form

(∅, 1, 1, 1, 1, 1).

Put Pi,di,1,di,2,di,3
= P̃

di,2

n,di,1
× P2,di,2,di,3

× k
4, 1 ≤ i ≤ d. Now consider the function

T :
⋃

d≥2

(Pspr,n,d × k
d) →

⋃

d≥1

⋃

di,1≥0, di,2≥0,
di,3≥0 ∀ 1≤i≤d

∏

1≤i≤d

Pi,di,1,di,2,di,3

given by the formula
T(F, (x1, . . . , xd)) = (t(F, x1), . . . , t(F, xd)).

The function T is an algorithm corresponding to a computation forest {T (4)
d }d≥2. For every

d, the tree T
(4)
d is obtained from the trees T ′′′

d similarly to the construction of a d-tuple of
computation trees, see [1, Sec. 2] (here we leave the details to the reader). We will assume
that the coordinate functions on Pspr,n,d × k

d are b1, . . . , bμ, Z1, . . . , Zd.
Actually, we will use only the following properties of the tree T

(4)
d . The set of leaves L(T (4)

d )
can be identified with L(T ′′′

d )d where L(T ′′′
d ) is the set of leaves of the tree T ′′′

d . Let w =
(w1, . . . , wd) ∈ L(T (4)

d ) where wi ∈ L(T ′′′
d ). Assume that the algebraic variety of parameters

Wwi corresponds to wi, 1 ≤ i ≤ d, see above and the definitions in [1]. So, Wwi ⊂ Pspr,n,d × k.
Then the variety of parameters Ww corresponding to w is equal to

{(z, (x1, . . . , xn)) : (z, xi) ∈ Wwi , 1 ≤ i ≤ d }.
Hence if all leaves w1, . . . , wd ∈ L(T ′′′

d ) are of the first kind, then

Ww = Z(ψw,1, . . . , ψw,μw,1) \ Z(ψw,μw,1+1, . . . , ψw,μw,2) (30)

for some integers μw,2, μw,1, where μw,2 ≥ μw,1 ≥ d, and polynomials ψw,i such that

ψw,i ∈ k[b1, . . . , bμ, Zi] \ k[b1, . . . , bμ], 1 ≤ i ≤ d,
ψw,i ∈ k[b1, . . . , bμ], d + 1 ≤ i ≤ μw,2.

(31)

For all i, the degrees degb1,...,bμ,Z1,...,Zd
ψw,i are bounded from above by dO(1) with an absolute

constant in O(. . .). The level l(T (4)
d ) is also bounded from above by dO(1).

Further, if all leaves w1, . . . , wd ∈ L(T ′′′
d ) are of the first kind, then

⋂
1≤i≤d W ′

wi
coincides

with the set of z such that there is (x1, . . . , xd) with (z, (x1, . . . , xd)) ∈ Ww.
Let U ⊂ ∏

1≤i≤d

Pi,di,1,di,2,di,3
be a Zariski open subset of all elements

(Q(i),H(i), ε(i), e(i), c(i), y(i))1≤i≤d

such that Q(i) ∈ P̃
di,2

n,di,1
, H(i) ∈ k[Y,Z], H(i) ∈ P2,di,2,di,3

, 0 �= ε(i), e(i), c(i) ∈ k, y(i) ∈ k, and

lcZH(i) ∈ k for 1 ≤ i ≤ d. Then U depends on d and dj,i 1 ≤ j ≤ 3, 1 ≤ i ≤ d. So we will
write U = U(d, dj,i) for brevity. Put Pi,di,1,di,2

= P̃
di,2

n,di,1
× P1,di,2

× k
2.
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Now we introduce the function

S :
⋃

d≥1

⋃

di,1≥0, di,2≥0,
di,3≥0 ∀ 1≤i≤d

U(d, dj,i) →
⋃

d≥1

⋃

di,1≥0, di,2≥0,
di,3≥0 ∀ 1≤i≤d

∏

1≤i≤d

Pi,di,1,di,2

given by the formula

S((Q(i),H(i), ε(i), e(i), y(i))1≤i≤d) = (Q̃(i), G̃(i), ε̃(i), c(i))1≤i≤d,

where Q̃(i) ∈ P̃
αi,2
n,αi,1 , G̃(i) ∈ P1,αi,2 , ε̃(i) ∈ k, αi,1, αi,2 ≥ 0, are computed in the following way.

If degZ H(i) = 0 for at least one i, 1 ≤ i ≤ d, then put αi,1 = αi,2 = 0, Q̃(i) = ∅ and
G̃(i) = 1, ε̃(i) = ε(i) for all i (actually, we are not intrested in this case).

Assume that degZ H(i) ≥ 1 for 1 ≤ i ≤ d. Then we compute the polynomial

E(i) = G C D Y,Z

(
H(i)(Y, e(i)Z)),

∏

1≤j<i

H(j)(Y, e(j)Z)
)

and, using Lemma 2, a polynomial H̃(i) coinciding with H(i)/E(i) up to a nonzero factor
from k.

Put αi,2 = degZ H̃(i). If αi,2 = 0, then put αi,1 = 0 and G̃(i) = H̃(i), Q̃(i) = ∅ ∈ P̃ 0
0 ,

ε̃(i) = ε(i).
Assume that αi,2 > 0. Let H̃(i)(y(i), Z) =

∑
0≤j≤αi,2

H̃
(i)
j Zj where H̃

(i)
j ∈ k. Then put

G̃(i) =
∑

0≤j≤αi,2

H̃
(i)
j · (e(i))αi,2−jZj.

Let νi,2 = lcZG̃(i) (note that lcZG̃(i) = H̃
(i)
α2 = lcZH̃(i) ∈ k). Then, using Lemma 2, we write

for every i, 0 ≤ i ≤ d − 1, the representation

ν
di,2−αi,2+1
i,2

∑

0≤j<di,2

Q
(i)
j Zj = A(i)G̃(i) + B(i),

where A(i), B(i) ∈ k[X1, . . . ,Xn][Z] and degZ B(i) < αi,2. Let

B(i) =
∑

0≤j<αi,2

B
(i)
j Zj , B

(i)
j ∈ k[X1, . . . ,Xn] for all i, j.

Put Q̃(i) = (B(i)
0 , . . . , B

(i)
αi,2−1) and αi,1 = max1≤j<αi,2 degX1,...,Xn

B
(i)
j . Finally, set ε̃(i) =

ν
di,2−αi,2+1
i,2 ε(i). Thus, the element (Q̃(i), H̃(i), ε̃(i), c(i))1≤i≤d is defined.
According to the described construction, the function S is an algorithm corresponding to a

computation forest. Denote this forest by T (5) = {T (5)
d,di,j

}∀d,di,j
.

Now the composition T (5) ◦ T (4) of the computation forests T (5) and T (4) is defined, see [1].
Recall that T (5) ◦ T (4) corresponds to the function S ◦ T. Put T (6) = T (5) ◦ T (4). Thus
T (6) = {T (6)

d }d≥2 where each T
(6)
d is a computation tree.

The output corresponding to any leaf w ∈ L(T (6)
d ) of the tree T

(6)
d has the form

(Q(i)
w , G(i)

w , ε(i)
w , cw)1≤i≤d

where
G(i)

w ∈ k[b1, . . . , bμ][Z], degZ G(i)
w = αw,i,2 ≥ 0,

if αw,i,2 > 0 then Q
(i)
w = (Q(i)

w,0, . . . , Q
(i)
w,αw,i,2−1) where Q

(i)
w,j ∈ k[b1, . . . , bμ][X1, . . . ,Xn] and

αw,i,1 = max
1≤j≤αw,i,2−1

degX1,...,Xn
Q

(i)
w,j,
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if αw,i,2 = 0 then αw,i,1 = 0 and Q
(i)
w = ∅. We have 0 �= ε

(i)
w , cw ∈ k[b1, . . . , bμ] (here cw does

not depend on i).
The degrees with respect to b1, . . . , bμ of all polynomials G

(i)
w , ε

(i)
w , cw and Q

(i)
w,j (if αw,i,2 > 0)

are bounded from above by dO(1) with an absolute constant in O(. . .).
The algebraic variety Ww corresponding to any leaf w ∈ L(T (6)

d ) has the form (30) where
each ψw,i is a polynomial from k[b1, . . . , bμ] or k[b1, . . . , bμ, Zj ] for some j, 1 ≤ j ≤ d. Actually,
all polynomials ψw,i have coefficients in K0. For all i, the degrees degb1,...,bμ,Z1,...,Zd

ψw,i are

bounded from above by dO(1) with an absolute constant in O(. . .). The level l(T (6)
d ) is also

bounded from above by dO(1).
Besides, all polynomials ε

(i)
w , cw, lcZG

(i)
w do not have zeros on Ww, i.e.,

Ww ∩ Z
(
cw

∏

1≤i≤d

(ε(i)
w lcZG(i)

w )
)

= ∅.

This follows immediately from our construction.
Denote by L′(T (6)

d ) the set of leaves w of the tree T
(6)
d satisfying the following properties:

• there are leaves w1, . . . , wd ∈ L(T ′′′
d ) of the first kind such that w is a descendant of

the leaf (w1, . . . , wd) ∈ L(T (4)),
• ∑

1≤i≤d αw,i,1αw,i,2 = d.

The algebraic variety Ww corresponding to any leaf w ∈ L′(T (6)
d ) has the form (30) for some

integers μw,1, μw,1 with μw,2 ≥ μw,1 ≥ d and polynomials ψw,i satisfying (31). Put

W ′
w = Z(ψw,d+1, . . . , ψw,μw,1) \ Z(ψw,μw,1+1, . . . , ψw,μw,2) ⊂ Pspr,n,d.

For every w ∈ L′(T (6)
d ), denote by Iw the set of all integers i such that 1 ≤ i ≤ d and

αw,i,1αw,i,2 �= 0. For every i ∈ Iw, put

Fw,i =
∑

0≤j<αw,i,2

Q
(i)
w,jZ

j ∈ k[b1, . . . , bμ, Z,X1, . . . ,Xn].

For every point (b∗1, . . . , b
∗
μ) ∈ W ′

w, denote by Ξw,i the set of roots of the polynomial

G(i)
w (b∗1, . . . , b

∗
μ, Z) ∈ k[Z].

Thus #Ξw,i = αw,i,2.
Let F ∈ k[b1, . . . , bμ,X1, . . . ,Xn] be a generic polynomial of degree degX1,...,Xn

F = d ≥ 2.
As a polynomial in X1, . . . ,Xn, it has all coefficients in the family b1, . . . , bμ.

Lemma 4. The following assertions hold.

(a) The union
⋃

w∈L′(T (6)
d )

W ′
w is Pspr,n,d, i.e., {W ′

w}w∈L′(T (6)
d )

is a covering of the space
Pspr,n,d.

(b) For every w ∈ L′(T (6)
d ), for every point (b∗1, . . . , b∗μ) ∈ W ′

w, for every root ξ ∈ Ξw,i, the
polynomial

Fw,i(b∗1, . . . , b
∗
μ, ξ,X1, . . . ,Xn) ∈ k[X1, . . . ,Xn]

is irreducible in the latter ring, i.e., it is absolutely irreducible.
(c) The family {Fw,i(b∗1, . . . , b∗μ, ξ,X1, . . . ,Xn)}ξ∈Ξw,i i∈Iw contains

∑
i∈Iw

αw,i,2 polynomials

pairwise relatively prime in the ring k[X1, . . . ,Xn].
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(d) We have

cw(b∗1, . . . , b
∗
μ)

∏

i∈Iw

∏

ξ∈Ξw,i

Fw,i(b∗1, . . . , b
∗
μ, ξ,X1, . . . ,Xn)

=
( ∏

i∈Iw

(ε(i)
w (b∗1, . . . , b

∗
μ))αw,i,2

)
F (b∗1, . . . , b

∗
μ,X1, . . . ,Xn). (32)

Hence (32) is a decomposition of the polynomial F (b∗1, . . . , b∗μ,X1, . . . ,Xn) into abso-
lutely irreducible factors up to a nonzero factor from k.

Proof. Note that any root of the polynomial H(Y, qα2Z) ∈ k(Y )[Z] has the form
q(Y, 0)/qα2 ∈ k[x][Y ] for some root x of the polynomial f(X, 0). Therefore,

lcY q(Y, 0)/qα2 = 1.

On the other hand, there is a unique absolutely irreducible factor ϕ of the polynomial f
such that lcX1ϕ = 1 and ϕ(Y, 0, . . . , 0) = q(Y, 0)/qα2 . Conversely, according to the described
construction, for every absolutely irreducible factor ϕ of the polynomial f such that lcX1ϕ = 1
there is a root x of the polynomial f(X, 0) such that ϕ(Y, 0, . . . , 0) = q(Y, 0)/qα2 . From here
one can easily deduce all the assertions of the lemma (we leave the details to the reader). �

6. Lemma on a covering and a stratification

In the next general lemma, we show how to obtain a stratification of some variety if a
covering of this variety is known. But first we need some definitions, cf. [1].

Let A
μ(k) have coordinate functions b1, . . . , bμ. Let V ⊂ A

μ(k) be a quasiprojective algebraic
variety and V be the closure of V with respect to the Zariski topology in the affine space A

μ(k).
Assume that V =

⋃
0≤a≤μ

Va is a decomposition of V into the union of equidimensional affine

algebraic varieties Va, i.e., for every integer a, 0 ≤ a ≤ μ, the dimension of every irreducible
component E of the algebraic variety Va is equal to a and E is an irreducible component
of V . Let deg Va = Da (the degree of an affine algebraic variety is the degree of its closure
with respect to the Zariski topology in the corresponding projective space). By definition, set
Da(V ) = Da. For every integer D ≥ 2, put

deg V =
∑

0≤a≤μ

Da,

δ0(V ) = Da(V ) where a = dim(V ),

δ1(V,D) =
∑

0≤a≤μ

Da(V )Da,

δ(V,D) =
∑

0≤a≤μ

Da(V )(Da+1 − 1)/(D − 1).

Let us fix an integer D ≥ 2. Let V1, V2 ⊂ A
μ(k) be two quasiprojective algebraic varieties.

We will say that V1 < V2 if and only if V1 ⊂ V2 and dimV1 < dim V2 or V1 ⊂ V2 and
dimV1 = dim V2 but δ0(V1) < δ0(V2). Hence < is a partial order on the set of all quasiprojective
algebraic varieties in A

μ(k).

Lemma 5. Let V be a quasiprojective algebraic variety in A
μ(k). Let {Wγ}γ∈Γ be a family of

quasiprojective algebraic varieties in A
μ(k). Assume that for every γ ∈ Γ

Wγ = Z(ψγ,1, . . . , ψγ,μγ,1) \ Z(ψγ,μγ,1+1, . . . , ψγ,μγ,2) ⊂ A
μ(k)
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for some polynomials ψγ,i ∈ k[b1, . . . , bμ] such that degb1,...,bμ
ψγ,i ≤ D for all i for an integer

D ≥ 2. Assume that
⋃

γ∈Γ Wγ ⊃ V . Then there is a family of quasiprojective algebraic
varieties {Wβ}β∈B satisfying the following properties.

(a) For every β ∈ B,

Wβ = Z(ψ(1)
β,1, . . . , ψ

(1)
β,μβ,1

) \
⋃

2≤j≤mβ

Z(ψ(j)
β,1, . . . , ψ

(j)
β,μβ,j

) ⊂ A
μ(k)

for an integer mβ ≥ 2 and some polynomials ψ
(j)
β,i ∈ k[b1, . . . , bμ] such that

degb1,...,bμ
ψβ,i ≤ D

for all i, j.
(b) For every β ∈ B, the integer mβ is bounded from above by δ1(V,D).
(c) {V ∩Wβ}β∈B is a stratification of the algebraic variety V , i.e.,

⋃
β∈B(V ∩Wβ) = V

and (V ∩Wβ1) ∩ (V ∩Wβ2) = ∅ for all pairwise distinct β1, β2.
(d) For every β ∈ B there is γ ∈ Γ such that Wβ ⊂ Wγ.
(e) #B ≤ δ(V,D).

Proof. The proof uses recursion on V . Namely, we will assume that the lemma is proved for
all quasiprojective algebraic varieties V ′ such that V ′ < V . The base of the recursion V = ∅

is obvious, since in this case δ(V,D) = 0 and one can take B = ∅.
For every γ ∈ Γ, put

W(1)
γ = Z(ψγ,1, . . . , ψγ,μγ,1), W(2)

γ = Z(ψγ,μγ,1+1, . . . , ψγ,μγ,2).

Denote by V
(1)
γ the union of all irreducible components E of V such that E ⊂ W(1)

γ and
E �⊂ W(2)

γ .
Denote by V

(2)
γ the union of all irreducible components E of V such that E ⊂ W(1)

γ ∩W(2)
γ .

Denote by V ′
γ the union of all irreducible components E of V such that E �⊂ W(1)

γ .

Put V ′′
γ = (V (1)

γ ∩W(2)
γ ) ∪ V

(2)
γ .

Let us describe the step of the recursion. There is γ0 ∈ Γ such that dimV
(1)
γ0 = dim V . Let

us choose and fix such an index γ0. Now V ′
γ0 < V and V ′′

γ0 < V . Let us apply the recursive
assumption to the algebraic varieties V ′

γ0 and V ′′
γ0 . We get a family {W ′

β}β∈B′ (respectively,
{W ′′

β}β∈B′′) satisfying properties (a)–(d) with (V ′
γ0 , B

′) (respectively, (V ′′
γ0 , B

′′)) in place of
(W,B).

We may assume without loss of generality that γ0 �∈ B′ ∪ B′′ and B′ ∩ B′′ = ∅. Put
B = B′ ∪ B′′ ∪ {γ0} and

Wβ =

⎧
⎪⎨

⎪⎩

Wγ0 if β = γ0,

Wβ \ W(1)
γ0 if β ∈ B′,

Wβ ∩W(1)
γ0 ∩W(2)

γ0 if β ∈ B′′.

Obviously, now properties (a), (c), and (d) are satisfied. We have δ1(V ′′
γ0 ,D) ≤ δ1(V,D) by

the Bézout theorem and, obviously, δ1(V ′
γ0 ,D) < δ1(V,D). From here, using the recursive

assumption, we get (b).
Let E ⊂ A

μ(k) be a quasiprojective algebraic variety irreducible over k and

g ∈ k[X1, . . . ,Xn]

be a polynomial of degree at most D. Then, by the Bézout theorem, δ(E∩Z(g),D) ≤ δ(E,D),
and if E ∩ Z(g) �= E then deg E + δ(E ∩ Z(g),D) ≤ δ(E,D).
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Hence, repeatedly applying the latter assertion, we deduce that

1 + δ(V (1)
γ0 ∩W(2)

γ0 ,D) ≤ deg V (1)
γ0 + δ(V (1)

γ0 ∩W(2)
γ0 ,D) ≤ δ(V (1)

γ0 ,D),

cf. the proof of Lemma 1 in [1] (here we leave the details to the reader).
Therefore, using the recursive assumption, we deduce that

#B ≤ 1 + #B′ + #B′′ ≤ 1 + δ(V ′,D) + δ(V ′′,D)

≤ 1 + δ(V (1)
γ0 ∩W(2)

γ0 ,D) + δ(V (2)
γ0 ,D) + δ(V ′

γ0 ,D)

≤ δ(V (1)
γ0 ,D) + δ(V (2)

γ0 ,D) + δ(V ′
γ0 ,D) = δ(V,D).

This proves (e). The lemma is proved. �

For example, applying Lemma 5 to the covering {W ′
w}w∈L′(T (6)

d )
of the space Pspr,n,d from

Lemma 4 (i), one can obtain a stratification {Wβ}w∈B of the space Pspr,n,d.

7. The general case

Recall that in Sec. 2, the function SQFX1,...,Xn
corresponding to the computation forest

{T ′
d}d≥0 is defined. We have SQFX1,...,Xn

= {SQFi,X1,...,Xn
}1≤i≤d, see the end of Sec. 2.

Let d be an integer, d ≥ 2, let F ∈ k[X1, . . . ,Xn] be an arbitrary polynomial of degree
degX1,...,Xn

F ≤ d, and let xi = (xi,1, . . . , xi,d) ∈ k
d, 1 ≤ i ≤ d. Then put F ′ = RDPX1,...,Xn(F ),

see Remark 1. Let degX1,...,Xn
F ′ = d1. If d1 ≤ 0, put D(F, (x1, . . . , xd)) = F ′.

Assume that d1 ≥ 1. Then put F ′′
i = SQFi,X1,...,Xn

(F ′), 1 ≤ i ≤ d1. Let di,1 =
degX1,...,Xn

F ′′
i . If di,1 ≤ 1, put Gi = F ′′

i for every i, 1 ≤ i ≤ di,1. If di,1 ≥ 2, put Gi =
(S ◦ T)(F ′′

i , (xi,1, . . . , xi,di,1
)) for every i, 1 ≤ i ≤ di,1. Set D(F, (x1, . . . , xd)) = (G1, . . . , Gd1).

Now D is a function with the domain of definition
⋃

d≥2(k
N(n,d) × k

d2). We leave to the
reader to define the range of values of the function D. The function D corresponds to a
computation forest T (7) = {T (7)

d }d≥2.
The following assertions on the computation trees T

(7)
d are similar to those from Sec. 5

related to T
(6)
d . Their poofs are only sligtly more complicated than the proofs of the analogous

assertions from Sec. 5. So we leave the details to the reader.
The level l(T (7)

d ) of the tree T
(7)
d is bounded from above by dO(1). For every leaf w ∈ L(T (7)

d ),
the degrees with respect to b1, . . . , bμ of all polynomials from the output corresponding to w are
bounded from above by dO(1). The quasiprojective algebraic variety Ww can be represented
in the form (30) where ψw,r ∈ k[b1, . . . , bμ, {Zi,j}1≤i,j≤d] and for every (i, j) there is at most
one polynomial ψw,r such that degZi,j

ψw,r > 0. We will write r = ri,j in this case. Besides,
if degZi,j

ψw,r > 0, then ψw,r ∈ k[b1, . . . , bμ, Zi,j ]. The degrees of all polynomials ψw,r are
bounded from above by dO(1).

Let w ∈ L(T (7)
d ). Assume that for all (i, j) we have 1 ≤ ri,j ≤ μw,1 if ri,j is defined. In this

case, by definition, w is a leaf of the first kind. For every leaf of the first kind, by definition,
the quasiprojective algebraic variety W ′

w is the projection of Ww to A
μ(k) (this affine space

has the coordinate functions b1, . . . , bμ).

Proof of Theorem 1. First, consider the case where ((a1, . . . , aν), f) = ((b1, . . . , bμ), F ) with F
a generic polynomial of degree d (i.e., the family of its coefficients is {bj}1≤j≤μ). Now the
analog of Lemma 4 is exactly Theorem 1 (note only that a slightly different notation is used
in the statement of the theorem). The tree T

(7)
d now is similar to T

(6)
d .
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One can define the subset L′(T (7)
d ) ⊂ L(T (7)

d ) of leaves w of the first kind such that for
every point (b∗1, . . . , b∗μ) ∈ W ′

w the output corresponding to w determines a decomposition
of the polynomial F (b∗1, . . . , b

∗
μ,X1, . . . ,Xn) into absolutely irreducible factors. The family

{W ′
w}w∈L′(T (7)

d )
is a covering of the space k

N(n,d) for every d ≥ 2. One can obtain a stratification

{Wβ}β∈B1 of this space applying Lemma 5 to the covering under consideration.
Further, as in the proof of Lemma 4, combining the results of the preceding sections one can

easily establish all the required assertions in the case of a generic polynomial F . In particular,
one can compute the exact values of λα,0 and λα,1 in the terms from the constructions described
in Secs. 2–4, cf. the statement of Lemma 4.

Now, to prove the theorem for the initial input data ((a1, . . . , aν), f), it is sufficient to
consider the tree T

(7)
d (f), see the definition in [1] (roughly speaking, to obtain T

(7)
d (f), one

should substitute the coefficients from k[a1, . . . , aν ] of the polynomial f in place of b1, . . . , bμ

everywhere in the objects of T
(7)
d ). The leaves L(T (7)

d (f)) are in a one-to-one correspondence
with L(T (7)

d ). We have l(T (7)
d (f)) = l(T (7)

d ) + 1. For every leaf w ∈ L(T (7)
d (f)), the degrees

with respect to a1, . . . , aν of all polynomials from the output corresponding to w are bounded
from above by d′dO(1). The quasiprojective algebraic variety Ww can be represented in the
form (30) where ψw,r ∈ k[a1, . . . , aν , {Zi,j}1≤i,j≤d]. The degrees of all polynomials ψw,r are
bounded from above by d′dO(1).

For every leaf w ∈ L(T (7)
d (f)) corresponding to a leaf of the first kind from L(T (7)

d ), by
definition, the quasiprojective algebraic variety W ′

w is the projection of Ww to A
ν(k) (here

this affine space has the coordinate functions a1, . . . , aν).
Denote by L′(T (7)

d (f)) the set of leaves w from L(T (7)
d (f)) such that w corresponds to a leaf

from L′(T (7)
d ). For every leaf w ∈ L′(T (7)

d (f)), for every point (a∗1, . . . , a∗ν) ∈ W ′
w, the ouput

corresponding to w determines a decomposition of the polynomial f(a∗1, . . . , a∗ν ,X1, . . . ,Xn)
into absolutely irreducible factors.

Finally, we replace the tree T
(7)
d (f) by the irredundant tree IRD(T (7)

d (f)), see [1]. The
number of leaves of the tree IRD(T (7)

d (f)) is bounded from above by (d′)νdO(ν) by Theorem 1
of [1]. Put T

(8)
d = IRD(T (7)

d (f)) and L′(T (8)
d ) = L(IRD(T (7)

d (f))) ∩ L′(T (7)
d (f)).

The family {W ′
w}w∈L′(T (8)

d )
is a covering of the space A

ν(k). One can obtain a stratifi-

cation {Wβ}β∈B2 of this space applying Lemma 5 to the covering under consideration. By
Lemma 5 (e), the number of elements #B2 is bounded from above by (d′)νdO(ν). Now one
can take A to be the subset of all β ∈ B2 such that Wβ �= ∅ (here the notation (β,Wβ) corre-
sponds to (α,Wα) from the statement of Theorem 1). Thus, the initial case ((a1, . . . , aν), f)
is reduced to the generic case ((b1, . . . , bμ), F ). The theorem is proved. �

Translator A. L. Chistov.
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