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THE WHISHART–PICKRELL DISTRIBUTIONS AND
CLOSURES OF GROUP ACTIONS

Yu. A. Neretin∗ UDC 517.987, 517.986.4

Consider probability distributions on the space of infinite Hermitian matrices Herm(∞) invariant
with respect to the unitary group U(∞). We describe the closure of U(∞) in the semigroup
of spreading maps (polymorphisms) of Herm(∞); this closure is a semigroup isomorphic to the
semigroup of all contractive operators. Bibliography: 11 titles.

1. The assertion

1.1. Notation. Denote by Herm∞ the space of all infinite Hermitian matrices. By Herm0
∞ we

denote the space of all infinite Hermitian matrices with finitely many nonzero matrix elements.
By U(∞) we denote the group of infinite unitary matrices g such that g−1 has only finitely

many nonzero matrix elements. This group acts on Herm∞ by conjugations,

U : X �→ U−1XU. (1.1)

By U(∞) we denote the full unitary group in �2, equiped with the weak operator topology.
By B(∞) we denote the semigroup of all linear operators in �2 with norm ≤ 1, also equipped
with the weak operator topology.

1.2. The Whishart–Pickrell distributions. For any probability measure μ on Herm∞, we
define its characteristic function on Herm0

∞ by the formula

χ(μ|A) =
∫

Herm∞

ei trAX dμ(X).

Obviously, this function uniquelly determines the measure.
The following theorem, in the spirit of de Finetti’s theorem, is due to Pickrell [11] (see also

another proof with additional details in [9]).
Any U(∞)-invariant measure on Herm∞ can be uniquely decomposed into ergodic measures.

An ergodic U(∞)-invariant measure has a characteristic function of the form

χγ1,γ2,λ(A) = e−
γ1
2

trA2+iγ2 trA
∞∏

k=1

(
det

e−iλkA

1 − iλkA

)
, (1.2)

where γ1 ≥ 0, γ2, and λ1, λ2, . . . are real numbers and
∑

λ2
k < ∞.

Denote this measure by μγ1,γ2,λ.
The characteristic function is a product, hence the corresponding measure can be decom-

posed into an (infinite) convolution. The factor e−
γ1
2

trA2+iγ2 trA corresponds to a Gaussian
measure on Herm∞. Let us explain the meaning of the factors det(1− iλkA)−1. Consider the
complex plane C equipped with the Gaussian measure π−1e−|u|2 dRe u d Im u. Consider the
space C

∞ equipped with a product measure ν. Consider the map C
∞ → Herm∞ given by

u �→ λku
∗u.
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Consider the image μ of ν under this map. The characteristic function of μ is∫

Herm∞

ei trAXdμ(X) =
∫

C∞

ei trλkAu∗u dν(u) =
∫

C∞

eiλkuAu∗
dν(u) = det(1 − iλkA)−1.

If
∑ |λk| < ∞, then we can transform the expression (1.2) into

χγ1,γ2,λ(A) = e−
γ1
2

trA2+i(γ2−
∑

λk) trA
∞∏

k=1

det(1 − iλkA)−1.

If the series
∑

λk diverges, we obtain a divergent series in the exponent and a divergent
product.

1.3. Polymorphisms. See [3, 10], [5, Sec. VIII.4]. Consider a Lebesgue measure space M
with a nonatomic probability measure μ. Denote by Ams(M) the group of measure-preserving
bijective a.e. transformations of M .

A polymorphism of M is a measure κ on M ×M whose pushforwards to M with respect to
both projections M×M → M coincide with μ. Denote by Pol(M) the set of all polymorphisms
of M . We say that a sequence πj ∈ Pol(M) converges to π if for any measurable sets A, B ⊂ M
we have the convergence πj(A×B) → π(A×B). The space Pol(M) is compact, and the group
Ams(M) is dense in Pol(M).

Polymorphisms can be regarded as maps spreading points of M to probability measures
on M . Namely, for π ∈ Pol(M) consider the system of conditional measures πm on the sets
m×M ⊂ M ×M , where m ranges over M . We declare that the “map” π sends each point m
to the measure πm. If π, κ ∈ Pol(M), then the product ρ = κ ◦π is defined from the condition

ρm =
∫

M

κn dπm(n).

We obtain a semigroup with a separately continuous product.
For any g ∈ Ams(M), consider the map from M to M ×M defined by m �→ (m, g(m)) and

take the pushforward of the measure μ. Thus we obtain a polymorphism supported by the
graph of g. The group Ams(M) is dense in Pol(M).

A Markov operator R in L2(M) is a bounded operator satisfying the following properties:
• for any function f ≥ 0, we have Rf ≥ 0;
• R · 1 = 1, R∗ · 1 = 1.
Recall that, automatically, ‖R‖ = 1. There is a one-to-one correspondence between the

set of Markov operators Mar(M) and Pol(M). Namely, let R be a Markov operator; then we
define a polymorphism π by the formula

π(A × B) = 〈RIA, IB〉L2(M),

where A, B ⊂ M are measurable sets and IA, IB are their indicator functions. The weak
convergence in Mar(M) corresponds to the convergence in Pol(M), the product of Markov
operators corresponds to the product of polymorphisms.

1.4. Closures of actions. Let a group G act on M by measure-preserving transformations.
That is, we have a homomorphism G → Ams(M); for definiteness, assume that this is an
embedding. Then the closure of G in Pol(M) is a compact semigroup Δ ⊃ G. The description
of the closure is not very interesting for connected Lie groups (for instance, for semisimple
linear Lie groups, we get a one-point compactification, this follows from [2, Theorem 5.3]).
However, the description of such a closure is interesting for infinite-dimensional groups.
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The first result of this type was obtained by Nelson [4] in 1973. He showed that the
standard action of the infinite-dimensional orthogonal group on the space with a Gaussian
measure admits an extension to an action of the semigroup of all contractive operators by
polymorphisms and obtained formulas for the corresponding measures. Now, a large collection
of actions of infinite-dimensional groups on measure spaces is known, however, the closures
are found only in few cases, see [6, 7]. In this paper, we describe a new (relatively simple)
example.

1.5. The assertion. For any polymorphism π on Herm∞, we define a characteristic function
on Herm0

∞ × Herm0
∞ by the formula

F (π|A,B) :=
∫

Herm∞×Herm∞

ei trAX+BY dπ(X,Y ).

Our purpose is the following assertion.

Theorem 1.1. For any ergodic measure μγ1,γ2,λ on Herm∞, the action (1.1) of U(∞) admits
a continuous extension to an action of the semigroup B(∞) by polymorphisms of M . The
closure of U(∞) in Pol(Herm∞) coincides with the image of B(∞). If S ∈ B(∞), then the
characteristic function of the corresponding polymorphism πS is given by

F (πS |A,B) = exp
{
−γ1

2
tr

[(
A 0
0 B

)(
1 S
S∗ 1

)]2
+ iγ2(tr A + tr B)

}

×
∏
k

e−iλk(trA+trB)

det
[
1 − iλk

(
A 0
0 B

)(
1 S
S∗ 1

)] . (1.3)

Since the characteristic function is a product, the measure πS can be decomposed into a
convolution of measures. The exponential factor corresponds to a Gaussian measure; let us
explain the meaning of the other factors in the product. Consider a measure νS on C

∞ × C
∞

defined in the following way in terms of its characteristic function:∫

C∞×C∞

eiReuz1+iRe vz2dνS(z1, z2) := exp
{
−1

2
(
u v

) (
1 S
S∗ 1

)(
u∗
v∗

)}
.

Consider the map C
∞ × C

∞ → Herm∞ × Herm∞ given by

(u, v) �→ (λu∗u, λv∗v).

Then the image of νS under this map is the measure whose characteristic function is

det
[
1 − iλk

(
A 0
0 B

)(
1 S
S∗ 1

)]−1
.

2. The proof

2.1. A priori remarks

Theorem 2.1. Let the full unitary group U(∞) act by measure-preserving transformations1

on a Lebesgue space M with a probability measure. Then this action admits a continuous
extension to an action of B(∞) by polymorphisms of M . The closure of U(∞) in Pol(M)
coincides with the image of B(∞).

1Such an action cannot be pointwise; the transformations are defined only almost everywhere, and the
equalities g1(g2m) = (g1g2)m are fulfilled only a.e., see [1].
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Proof. Let ρ be a unitary representation of U(∞) in a Hilbert space H. The closure of the group
ρ(U(∞)) in the group of all bounded operators in H with respect to the weak operator topology
is a semigroup isomorphic to B(∞) (this follows from the Kirillov–Olshanski classification of
unitary representations of U(∞), see [8, Theorem 1.2]).

We apply this to the action of U(∞) in L2(M). The group U(∞) acts by Markov operators,
and weak limits of Markov operators are Markov operators. Therefore, the semigroup B(∞)
also acts by Markov operators. �

Lemma 2.2. For any U(∞)-ergodic measure on Herm∞, the action of U(∞) admits a con-
tinuous extension to an action of the full unitary group U(∞).

Proof. According to [9, Corollary 2.14], the representation of U(∞) in the space L2(Herm∞, μ)
has a continuous extension to U(∞). By continuity arguments, the group U(∞) acts by Markov
operators ρ(g). We have ‖ρ(g)‖ ≤ 1, ‖ρ(g)−1‖ ≤ 1. Therefore, ρ(g) is a unitary operator.
Hence it corresponds to a measure-preserving transformation. �

2.2. The calculation. Consider a measure μ with a characteristic function of the form (1.2).
For g ∈ U(∞), consider the corresponding polymorphism πg of Herm∞. The characteristic
function of πg is

F (πg|A,B) = exp
{
−γ1

2
tr(A + UBU−1)2 + iγ2(tr A + tr UBU−1)

}

×
∞∏

k=1

e−iλk tr(A+UBU−1)

det
[
1 − iλk(A + UBU−1)

] . (2.4)

By Theorem 2.1, for any R ∈ B(∞) we have a polymorphism πR of the space (Herm∞, μ).
If a sequence Rj ∈ B(∞) weakly converges to R, then we have the weak convergence of the
corresponding polymorphisms, πRj → πR. It is equivalent to the pointwise convergence of the
characteristic functions. Now, for R ∈ B(∞) and a sequence gj ∈ U(∞) weakly converging
to R, we can find F (πR|A,B) as the pointwise limit of F (πgj |A,B).

Let S be a finitary operator with norm ≤ 1, and let S be represented as a (α + ∞)-block
matrix of the form

S =
(

u 0
0 0

)
.

Then we can build u as a block into a unitary (α + α)-block matrix
(

u v
w z

)
(see, e.g., [5,

Theorem VIII.3.2]). Let U = Um be a block unitary (α + m + m + α +∞)-matrix of the form

Um =

⎛
⎜⎜⎜⎜⎝

u 0 0 v 0
0 0 1 0 0
0 1 0 0 0
w 0 0 z 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

Clearly, we have the weak convergence Um → S, and we want to trace the convergence of the
characteristic functions F (πUm |A,B). In fact, we will show that this sequence is eventually
constant for any fixed A, B.

Fix A, B ∈ Herm0
∞. Assume that actually A, B ∈ Hermα+β. Let m be sufficiently large

(in fact, we need that m ≥ β). We represent the matrices A, B as block matrices of size
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α + β + (m − β) + β + (m − β) + ∞:

A =

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 0 . . . 0
a21 a22 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎝

b11 b12 0 . . . 0
b21 b22 0 . . . 0
0 0 0 . . . 0
...

...
...

. . . · · ·
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

.

We want to evaluate

det
[
1 − iλk(A + UmBU−1

m )
]

and tr(A + UmBU−1
m )2.

A straightforward calculation gives

A + UmBU−1
m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 + ub11u
∗ a12 0 ub12 ub11w

∗ 0 0
a21 a22 0 0 0 0 0
0 0 0 0 0 0 0

b21u
∗ 0 0 b22 b21w

∗ 0 0
wb11u

∗ 0 0 wb12 wb11w
∗ 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Clearly, we can remove zero columns and zero rows from this matrix. Formally,

det
(
1 − iλk(A + UmBU−1

m )
)

= det(1 − iλkH),

where

H =

⎛
⎜⎜⎝

a11 + ub11u
∗ a12 ub12 ub11w

∗
a21 a22 0 0

b21u
∗ 0 b22 b21w

∗
wb11u

∗ 0 wb12 wb11w
∗

⎞
⎟⎟⎠ .

Denote by Δ the block diagonal matrix with blocks 1, 1, 1, w. Represent H as H = ΔZ
(where the expression for Z is clear). We apply the formula

det(1 − iλkΔZ) = det(1 − iλkZΔ).

Denote H ′ := ZΔ,

H ′ =

⎛
⎜⎜⎝

a11 + ub11u
∗ a12 ub12 ub11w

∗w
a21 a22 0 0

b21u
∗ 0 b22 b21w

∗w
b11u

∗ 0 b12 b11w
∗w

⎞
⎟⎟⎠ . (2.5)

Since the matrix
(

u v
w z

)
is unitary, we have w∗w = 1 − uu∗. We substitute this into the 4th

column of (2.5) and, keeping the result in mind, continue our calculations. Denote

T =

⎛
⎜⎜⎝

1 0 0 u
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

Then

H ′ =

⎛
⎜⎜⎝

a11 + ub11u
∗ a12 ub12 a11u + ub11

a21 a22 0 a21u
b21u

∗ 0 b22 b21
b11u

∗ 0 b12 b11

⎞
⎟⎟⎠ T−1 = T

⎛
⎜⎜⎝

a11 a12 0 a11u
a21 a22 0 a21u

b21u
∗ 0 b22 b21

b11u
∗ 0 b12 b11

⎞
⎟⎟⎠ T−1.
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Hence

det
(
1 − iλkH

′) = det

⎡
⎢⎢⎣1 − iλk

⎛
⎜⎜⎝

a11 a12 0 a11u
a21 a22 0 a21u

b21u
∗ 0 b22 b21

b11u
∗ 0 b12 b11

⎞
⎟⎟⎠

⎤
⎥⎥⎦

= det

⎡
⎢⎢⎣1 − iλ

⎛
⎜⎜⎝

a11 a12 a11u 0
a21 a22 a21u 0

b11u
∗ 0 b11 b12

b21u
∗ 0 b21 b22

⎞
⎟⎟⎠

⎤
⎥⎥⎦ det

[
1 − iλ

(
A 0
0 B

)(
1 S
S∗ 1

)]
, (2.6)

and we get the desired expression.
Next,

tr(A + UmBU−1
m )2 = tr A2 + tr B2 + 2 tr AUmBU−1

m .

Multiplying the matrices, we observe that AUmBU−1
m has a unique nonzero diagonal block,

a11ub11u
∗. Thus,

tr AUmBU−1
m = tr a11u b11u

∗ = tr ASBS∗,
and this implies that

tr(A + UmBU−1
m )2 = tr

[(
A 0
0 B

)(
1 S
S∗ 1

)]2
.

Thus, for m ≥ β the value of F (πUm|A,B) is given by formula (1.3).
So, the theorem holds for finitary matrices S. Consider an arbitrary operator S ∈ B(∞).

Denote by S[m] the left upper corner of S of size m. Denote

Sm :=
(

S[m] 0
0 0

)
.

We have the weak convergence Sm → S. On the other hand, we have the pointwise convergence

F (πSm |A,B) → F (πS |A,B)

(in fact, this sequence is eventually constant for any fixed A, B).
This completes the proof of the theorem.

Supported by the grant FWF, P28421, P25142.

Translated by the author.
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