Yu. A. Neretin^{*}

Consider probability distributions on the space of infinite Hermitian matrices $\operatorname{Herm}(\infty)$ invariant with respect to the unitary group $U(\infty)$. We describe the closure of $U(\infty)$ in the semigroup of spreading maps (polymorphisms) of $\operatorname{Herm}(\infty)$; this closure is a semigroup isomorphic to the semigroup of all contractive operators. Bibliography: 11 titles.

1. The assertion

1.1. Notation. Denote by $\operatorname{Herm}_{\infty}$ the space of all infinite Hermitian matrices. By $\operatorname{Herm}_{\infty}^{0}$ we denote the space of all infinite Hermitian matrices with finitely many nonzero matrix elements.

By $U(\infty)$ we denote the group of infinite unitary matrices g such that g-1 has only finitely many nonzero matrix elements. This group acts on Herm_{∞} by conjugations,

$$U: X \mapsto U^{-1}XU. \tag{1.1}$$

UDC 517.987, 517.986.4

By $U(\infty)$ we denote the full unitary group in ℓ_2 , equiped with the weak operator topology. By $\mathcal{B}(\infty)$ we denote the semigroup of all linear operators in ℓ_2 with norm ≤ 1 , also equipped with the weak operator topology.

1.2. The Whishart–Pickrell distributions. For any probability measure μ on Herm_{∞}, we define its characteristic function on Herm⁰_{∞} by the formula

$$\chi(\mu|A) = \int_{\operatorname{Herm}_{\infty}} e^{i \operatorname{tr} AX} d\mu(X).$$

Obviously, this function uniquely determines the measure.

The following theorem, in the spirit of de Finetti's theorem, is due to Pickrell [11] (see also another proof with additional details in [9]).

Any $U(\infty)$ -invariant measure on $\operatorname{Herm}_{\infty}$ can be uniquely decomposed into ergodic measures. An ergodic $U(\infty)$ -invariant measure has a characteristic function of the form

$$\chi_{\gamma_1,\gamma_2,\lambda}(A) = e^{-\frac{\gamma_1}{2}\operatorname{tr} A^2 + i\gamma_2 \operatorname{tr} A} \prod_{k=1}^{\infty} \left(\det \frac{e^{-i\lambda_k A}}{1 - i\lambda_k A} \right), \tag{1.2}$$

where $\gamma_1 \geq 0$, γ_2 , and λ_1 , λ_2 , ... are real numbers and $\sum \lambda_k^2 < \infty$.

Denote this measure by $\mu_{\gamma_1,\gamma_2,\lambda}$.

The characteristic function is a product, hence the corresponding measure can be decomposed into an (infinite) convolution. The factor $e^{-\frac{\gamma_1}{2} \operatorname{tr} A^2 + i\gamma_2 \operatorname{tr} A}$ corresponds to a Gaussian measure on $\operatorname{Herm}_{\infty}$. Let us explain the meaning of the factors $\det(1-i\lambda_k A)^{-1}$. Consider the complex plane \mathbb{C} equipped with the Gaussian measure $\pi^{-1}e^{-|u|^2} d\operatorname{Re} u d\operatorname{Im} u$. Consider the space \mathbb{C}^{∞} equipped with a product measure ν . Consider the map $\mathbb{C}^{\infty} \to \operatorname{Herm}_{\infty}$ given by

$$u \mapsto \lambda_k u^* u.$$

^{*}University of Vienna, Vienna, Austria; Institute for Theoretical and Experimental Physics; Moscow State University; Institute for Information Transmission Problems, Moscow, Russia, e-mail: neretin@mccme.ru.

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 448, 2016, pp. 236–245. Original article submitted September 6, 2016.

^{328 1072-3374/17/2242-0328 ©2017} Springer Science+Business Media New York

Consider the image μ of ν under this map. The characteristic function of μ is

$$\int_{\operatorname{Herm}_{\infty}} e^{i\operatorname{tr} AX} d\mu(X) = \int_{\mathbb{C}^{\infty}} e^{i\operatorname{tr} \lambda_k Au^* u} d\nu(u) = \int_{\mathbb{C}^{\infty}} e^{i\lambda_k u Au^*} d\nu(u) = \det(1 - i\lambda_k A)^{-1}.$$

If $\sum |\lambda_k| < \infty$, then we can transform the expression (1.2) into

$$\chi_{\gamma_1,\gamma_2,\lambda}(A) = e^{-\frac{\gamma_1}{2}\operatorname{tr} A^2 + i(\gamma_2 - \sum \lambda_k)\operatorname{tr} A} \prod_{k=1}^{\infty} \det(1 - i\lambda_k A)^{-1}.$$

If the series $\sum \lambda_k$ diverges, we obtain a divergent series in the exponent and a divergent product.

1.3. Polymorphisms. See [3, 10], [5, Sec. VIII.4]. Consider a Lebesgue measure space M with a nonatomic probability measure μ . Denote by $\operatorname{Ams}(M)$ the group of measure-preserving bijective a.e. transformations of M.

A polymorphism of M is a measure \varkappa on $M \times M$ whose pushforwards to M with respect to both projections $M \times M \to M$ coincide with μ . Denote by $\operatorname{Pol}(M)$ the set of all polymorphisms of M. We say that a sequence $\pi_j \in \operatorname{Pol}(M)$ converges to π if for any measurable sets $A, B \subset M$ we have the convergence $\pi_j(A \times B) \to \pi(A \times B)$. The space $\operatorname{Pol}(M)$ is compact, and the group $\operatorname{Ams}(M)$ is dense in $\operatorname{Pol}(M)$.

Polymorphisms can be regarded as maps spreading points of M to probability measures on M. Namely, for $\pi \in \text{Pol}(M)$ consider the system of conditional measures π_m on the sets $m \times M \subset M \times M$, where m ranges over M. We declare that the "map" π sends each point mto the measure π_m . If $\pi, \varkappa \in \text{Pol}(M)$, then the product $\rho = \varkappa \circ \pi$ is defined from the condition

$$\rho_m = \int\limits_M \varkappa_n \, d\pi_m(n).$$

We obtain a semigroup with a separately continuous product.

For any $g \in \operatorname{Ams}(M)$, consider the map from M to $M \times M$ defined by $m \mapsto (m, g(m))$ and take the pushforward of the measure μ . Thus we obtain a polymorphism supported by the graph of g. The group $\operatorname{Ams}(M)$ is dense in $\operatorname{Pol}(M)$.

A Markov operator R in $L^2(M)$ is a bounded operator satisfying the following properties:

- for any function $f \ge 0$, we have $Rf \ge 0$;
- $R \cdot 1 = 1, R^* \cdot 1 = 1.$

Recall that, automatically, ||R|| = 1. There is a one-to-one correspondence between the set of Markov operators Mar(M) and Pol(M). Namely, let R be a Markov operator; then we define a polymorphism π by the formula

$$\pi(A \times B) = \langle RI_A, I_B \rangle_{L^2(M)},$$

where $A, B \subset M$ are measurable sets and I_A , I_B are their indicator functions. The weak convergence in Mar(M) corresponds to the convergence in Pol(M), the product of Markov operators corresponds to the product of polymorphisms.

1.4. Closures of actions. Let a group G act on M by measure-preserving transformations. That is, we have a homomorphism $G \to \operatorname{Ams}(M)$; for definiteness, assume that this is an embedding. Then the closure of G in $\operatorname{Pol}(M)$ is a compact semigroup $\Delta \supset G$. The description of the closure is not very interesting for connected Lie groups (for instance, for semisimple linear Lie groups, we get a one-point compactification, this follows from [2, Theorem 5.3]). However, the description of such a closure is interesting for infinite-dimensional groups. The first result of this type was obtained by Nelson [4] in 1973. He showed that the standard action of the infinite-dimensional orthogonal group on the space with a Gaussian measure admits an extension to an action of the semigroup of all contractive operators by polymorphisms and obtained formulas for the corresponding measures. Now, a large collection of actions of infinite-dimensional groups on measure spaces is known, however, the closures are found only in few cases, see [6,7]. In this paper, we describe a new (relatively simple) example.

1.5. The assertion. For any polymorphism π on $\operatorname{Herm}_{\infty}^{0}$, we define a characteristic function on $\operatorname{Herm}_{\infty}^{0} \times \operatorname{Herm}_{\infty}^{0}$ by the formula

$$F(\pi|A,B) := \int_{\operatorname{Herm}_{\infty} \times \operatorname{Herm}_{\infty}} e^{i \operatorname{tr} AX + BY} d\pi(X,Y).$$

Our purpose is the following assertion.

Theorem 1.1. For any ergodic measure $\mu_{\gamma_1,\gamma_2,\lambda}$ on $\operatorname{Herm}_{\infty}$, the action (1.1) of $U(\infty)$ admits a continuous extension to an action of the semigroup $\mathcal{B}(\infty)$ by polymorphisms of M. The closure of $U(\infty)$ in $\operatorname{Pol}(\operatorname{Herm}_{\infty})$ coincides with the image of $\mathcal{B}(\infty)$. If $S \in \mathcal{B}(\infty)$, then the characteristic function of the corresponding polymorphism π_S is given by

$$F(\pi_S|A,B) = \exp\left\{-\frac{\gamma_1}{2}\operatorname{tr}\left[\begin{pmatrix}A & 0\\ 0 & B\end{pmatrix}\begin{pmatrix}1 & S\\ S^* & 1\end{pmatrix}\right]^2 + i\gamma_2(\operatorname{tr} A + \operatorname{tr} B)\right\}$$
$$\times \prod_k \frac{e^{-i\lambda_k(\operatorname{tr} A + \operatorname{tr} B)}}{\det\left[1 - i\lambda_k\begin{pmatrix}A & 0\\ 0 & B\end{pmatrix}\begin{pmatrix}1 & S\\ S^* & 1\end{pmatrix}\right]}. \quad (1.3)$$

Since the characteristic function is a product, the measure π_S can be decomposed into a convolution of measures. The exponential factor corresponds to a Gaussian measure; let us explain the meaning of the other factors in the product. Consider a measure ν_S on $\mathbb{C}^{\infty} \times \mathbb{C}^{\infty}$ defined in the following way in terms of its characteristic function:

$$\int_{\mathbb{C}^{\infty}\times\mathbb{C}^{\infty}} e^{i\operatorname{Re} u\overline{z}_{1}+i\operatorname{Re} v\overline{z}_{2}} d\nu_{S}(z_{1}, z_{2}) := \exp\left\{-\frac{1}{2} \begin{pmatrix} u & v \end{pmatrix} \begin{pmatrix} 1 & S \\ S^{*} & 1 \end{pmatrix} \begin{pmatrix} u^{*} \\ v^{*} \end{pmatrix}\right\}$$

Consider the map $\mathbb{C}^{\infty} \times \mathbb{C}^{\infty} \to \operatorname{Herm}_{\infty} \times \operatorname{Herm}_{\infty}$ given by

 $(u,v) \mapsto (\lambda u^* u, \lambda v^* v).$

Then the image of ν_S under this map is the measure whose characteristic function is

$$\det \begin{bmatrix} 1 - i\lambda_k \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} 1 & S \\ S^* & 1 \end{bmatrix}^{-1}$$

2. The proof

2.1. A priori remarks

Theorem 2.1. Let the full unitary group $\overline{U}(\infty)$ act by measure-preserving transformations¹ on a Lebesgue space M with a probability measure. Then this action admits a continuous extension to an action of $\mathcal{B}(\infty)$ by polymorphisms of M. The closure of $\overline{U}(\infty)$ in $\operatorname{Pol}(M)$ coincides with the image of $\mathcal{B}(\infty)$.

¹Such an action cannot be pointwise; the transformations are defined only almost everywhere, and the equalities $g_1(g_2m) = (g_1g_2)m$ are fulfilled only a.e., see [1].

Proof. Let ρ be a unitary representation of $\overline{U}(\infty)$ in a Hilbert space H. The closure of the group $\rho(\overline{U}(\infty))$ in the group of all bounded operators in H with respect to the weak operator topology is a semigroup isomorphic to $\mathcal{B}(\infty)$ (this follows from the Kirillov–Olshanski classification of unitary representations of $\overline{U}(\infty)$, see [8, Theorem 1.2]).

We apply this to the action of $\overline{U}(\infty)$ in $L^2(M)$. The group $\overline{U}(\infty)$ acts by Markov operators, and weak limits of Markov operators are Markov operators. Therefore, the semigroup $\mathcal{B}(\infty)$ also acts by Markov operators.

Lemma 2.2. For any $U(\infty)$ -ergodic measure on $\operatorname{Herm}_{\infty}$, the action of $U(\infty)$ admits a continuous extension to an action of the full unitary group $\overline{U}(\infty)$.

Proof. According to [9, Corollary 2.14], the representation of $U(\infty)$ in the space $L^2(\operatorname{Herm}_{\infty}, \mu)$ has a continuous extension to $\overline{U}(\infty)$. By continuity arguments, the group $\overline{U}(\infty)$ acts by Markov operators $\rho(g)$. We have $\|\rho(g)\| \leq 1$, $\|\rho(g)^{-1}\| \leq 1$. Therefore, $\rho(g)$ is a unitary operator. Hence it corresponds to a measure-preserving transformation.

2.2. The calculation. Consider a measure μ with a characteristic function of the form (1.2). For $g \in U(\infty)$, consider the corresponding polymorphism π_g of Herm_{∞}. The characteristic function of π_g is

$$F(\pi_g|A,B) = \exp\left\{-\frac{\gamma_1}{2}\operatorname{tr}(A+UBU^{-1})^2 + i\gamma_2(\operatorname{tr}A + \operatorname{tr}UBU^{-1})\right\} \times \prod_{k=1}^{\infty} \frac{e^{-i\lambda_k \operatorname{tr}(A+UBU^{-1})}}{\det\left[1 - i\lambda_k(A+UBU^{-1})\right]}.$$
 (2.4)

By Theorem 2.1, for any $R \in \mathcal{B}(\infty)$ we have a polymorphism π_R of the space (Herm $_{\infty}, \mu$). If a sequence $R_j \in \mathcal{B}(\infty)$ weakly converges to R, then we have the weak convergence of the corresponding polymorphisms, $\pi_{R_j} \to \pi_R$. It is equivalent to the pointwise convergence of the characteristic functions. Now, for $R \in \mathcal{B}(\infty)$ and a sequence $g_j \in U(\infty)$ weakly converging to R, we can find $F(\pi_R|A, B)$ as the pointwise limit of $F(\pi_{g_j}|A, B)$.

Let S be a finitary operator with norm ≤ 1 , and let S be represented as a $(\alpha + \infty)$ -block matrix of the form

$$S = \begin{pmatrix} u & 0 \\ 0 & 0 \end{pmatrix}.$$

Then we can build u as a block into a unitary $(\alpha + \alpha)$ -block matrix $\begin{pmatrix} u & v \\ w & z \end{pmatrix}$ (see, e.g., [5, Theorem VIII.3.2]). Let $U = U_m$ be a block unitary $(\alpha + m + m + \alpha + \infty)$ -matrix of the form

$$U_m = \begin{pmatrix} u & 0 & 0 & v & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ w & 0 & 0 & z & 0\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Clearly, we have the weak convergence $U_m \to S$, and we want to trace the convergence of the characteristic functions $F(\pi_{U_m}|A, B)$. In fact, we will show that this sequence is eventually constant for any fixed A, B.

Fix $A, B \in \operatorname{Herm}_{\infty}^{0}$. Assume that actually $A, B \in \operatorname{Herm}_{\alpha+\beta}$. Let *m* be sufficiently large (in fact, we need that $m \geq \beta$). We represent the matrices A, B as block matrices of size

 $\alpha + \beta + (m - \beta) + \beta + (m - \beta) + \infty$:

$$A = \begin{pmatrix} a_{11} & a_{12} & 0 & \dots & 0 \\ a_{21} & a_{22} & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} b_{11} & b_{12} & 0 & \dots & 0 \\ b_{21} & b_{22} & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \dots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

We want to evaluate

$$\det\left[1-i\lambda_k(A+U_mBU_m^{-1})\right] \quad \text{and} \quad \operatorname{tr}(A+U_mBU_m^{-1})^2.$$

A straightforward calculation gives

Clearly, we can remove zero columns and zero rows from this matrix. Formally,

$$\det\left(1-i\lambda_k(A+U_mBU_m^{-1})\right) = \det(1-i\lambda_kH),$$

where

$$H = \begin{pmatrix} a_{11} + ub_{11}u^* & a_{12} & ub_{12} & ub_{11}w^* \\ a_{21} & a_{22} & 0 & 0 \\ b_{21}u^* & 0 & b_{22} & b_{21}w^* \\ wb_{11}u^* & 0 & wb_{12} & wb_{11}w^* \end{pmatrix}.$$

Denote by Δ the block diagonal matrix with blocks 1, 1, 1, w. Represent H as $H = \Delta Z$ (where the expression for Z is clear). We apply the formula

$$\det(1 - i\lambda_k \Delta Z) = \det(1 - i\lambda_k Z \Delta).$$

Denote $H' := Z\Delta$,

$$H' = \begin{pmatrix} a_{11} + ub_{11}u^* & a_{12} & ub_{12} & ub_{11}w^*w \\ a_{21} & a_{22} & 0 & 0 \\ b_{21}u^* & 0 & b_{22} & b_{21}w^*w \\ b_{11}u^* & 0 & b_{12} & b_{11}w^*w \end{pmatrix}.$$
 (2.5)

Since the matrix $\begin{pmatrix} u & v \\ w & z \end{pmatrix}$ is unitary, we have $w^*w = 1 - uu^*$. We substitute this into the 4th column of (2.5) and, keeping the result in mind, continue our calculations. Denote

$$T = \begin{pmatrix} 1 & 0 & 0 & u \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Then

$$H' = \begin{pmatrix} a_{11} + ub_{11}u^* & a_{12} & ub_{12} & a_{11}u + ub_{11} \\ a_{21} & a_{22} & 0 & a_{21}u \\ b_{21}u^* & 0 & b_{22} & b_{21} \\ b_{11}u^* & 0 & b_{12} & b_{11} \end{pmatrix} T^{-1} = T \begin{pmatrix} a_{11} & a_{12} & 0 & a_{11}u \\ a_{21} & a_{22} & 0 & a_{21}u \\ b_{21}u^* & 0 & b_{22} & b_{21} \\ b_{11}u^* & 0 & b_{12} & b_{11} \end{pmatrix} T^{-1}.$$

332

Hence

$$\det\left(1-i\lambda_{k}H'\right) = \det\left[1-i\lambda_{k}\begin{pmatrix}a_{11}&a_{12}&0&a_{11}u\\a_{21}&a_{22}&0&a_{21}u\\b_{21}u^{*}&0&b_{22}&b_{21}\\b_{11}u^{*}&0&b_{12}&b_{11}\end{pmatrix}\right]$$
$$= \det\left[1-i\lambda\begin{pmatrix}a_{11}&a_{12}&a_{11}u&0\\a_{21}&a_{22}&a_{21}u&0\\b_{11}u^{*}&0&b_{11}&b_{12}\\b_{21}u^{*}&0&b_{21}&b_{22}\end{pmatrix}\right]\det\left[1-i\lambda\begin{pmatrix}A&0\\0&B\end{pmatrix}\begin{pmatrix}1&S\\S^{*}&1\end{pmatrix}\right],\quad(2.6)$$

and we get the desired expression.

Next,

$$\operatorname{tr}(A + U_m B U_m^{-1})^2 = \operatorname{tr} A^2 + \operatorname{tr} B^2 + 2 \operatorname{tr} A U_m B U_m^{-1}.$$

Multiplying the matrices, we observe that $AU_mBU_m^{-1}$ has a unique nonzero diagonal block, $a_{11}ub_{11}u^*$. Thus,

$$\operatorname{tr} AU_m BU_m^{-1} = \operatorname{tr} a_{11} u \, b_{11} u^* = \operatorname{tr} ASBS^*,$$

and this implies that

$$\operatorname{tr}(A + U_m B U_m^{-1})^2 = \operatorname{tr}\left[\begin{pmatrix} A & 0\\ 0 & B \end{pmatrix} \begin{pmatrix} 1 & S\\ S^* & 1 \end{pmatrix}\right]^2.$$

Thus, for $m \ge \beta$ the value of $F(\pi_{U_m}|A, B)$ is given by formula (1.3).

So, the theorem holds for finitary matrices S. Consider an arbitrary operator $S \in \mathcal{B}(\infty)$. Denote by S[m] the left upper corner of S of size m. Denote

$$S_m := \begin{pmatrix} S[m] & 0\\ 0 & 0 \end{pmatrix}.$$

We have the weak convergence $S_m \to S$. On the other hand, we have the pointwise convergence

$$F(\pi_{S_m}|A,B) \to F(\pi_S|A,B)$$

(in fact, this sequence is eventually constant for any fixed A, B).

This completes the proof of the theorem.

Supported by the grant FWF, P28421, P25142.

Translated by the author.

REFERENCES

- E. Glasner, B. Tsirelson, and B. Weiss, "The automorphism group of the Gaussian measure cannot act pointwise," *Israel J. Math.*, 148, 305–329 (2005).
- R. E. Howe and C. C. Moore, "Asymptotic properties of unitary representations," J. Funct. Anal., 32, No. 1, 72–96 (1979).
- 3. U. Krengel, *Ergodic Theorems*, Walter de Gruyter & Co., Berlin (1985).
- 4. E. Nelson, "The free Markoff field," J. Funct. Anal., 12, 211–227 (1973).
- 5. Yu. A. Neretin, *Categories of Symmetries and Infinite-Dimensional Groups*, Oxford Univ. Press, New York (1996).
- Yu. A. Neretin, "Spreading maps (polymorphisms), symmetries of Poisson processes, and matching summation," Zap. Nauchn. Semin. POMI, 292, 62–91 (2002).
- Yu. A. Neretin, "Symmetries of Gaussian measures and operator colligations," J. Funct. Anal., 263, No. 3, 782–802 (2012).

- 8. G. I. Olshanski, "Unitary representations of the infinite-dimensional classical groups $U(p, \infty)$, $SO_o(p, \infty)$, $Sp(p, \infty)$ and the corresponding motion groups," Funct. Anal. Appl., **12**, No. 3, 185–195 (1978).
- G. Olshanski and A. Vershik, "Ergodic unitarily invariant measures on the space of infinite Hermitian matrices," in: *Contemporary Mathematical Physics*, Amer. Math. Soc. Transl., Ser. 2, **175**, Amer. Math. Soc., Providence, Rhode Island (1996), pp. 137–175.
- A. M. Vershik, "Multivalued mappings with invariant measure (polymorphisms) and Markov operators," Zap. Nauchn. Semin. LOMI, 72, 26–61 (1977).
- D. Pickrell, "Mackey analysis of infinite classical motion groups," *Pacific J. Math.*, 150, No. 1, 139–166 (1991).