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GENERAL ELASTIC SURFACE WAVES IN
ANISOTROPIC LAYERED STRUCTURES

A. P. Kiselev∗ UDC 517.9, 531.33, 535.4, 539.3, 550.3

A solution of homogeneous equations of elasticity equations, which describes surface waves and is
based on the summation of plane waves, is presented. Bibliography: 15 titles.

1. Introduction

Until very recently, explicit solutions for surface waves in layered elastic structures have
been essentially confined to plane waves. In the present century, novel exact solutions, which
generalize plane waves and describe more complicated wave phenomena, have evolved. We
briefly list the main approaches and results.

1.1. Constructions based on the superposition of surface plane waves. Simple so-
lutions for surface waves with plane wave fronts but amplitudes linearly varying along the
wave fronts have been found for the classical Rayleigh wave [1], for Love waves in isotropic
layered structures [2], and for bulk waves in media with arbitrary anisotropy [3]. These results
grew out of a surmise grounded on the analysis of results of the asymptotic ray theory (e.g.,
see [4]). Further, more general solutions were presented which have plane wave fronts and am-
plitudes polynomial with respect to lateral variables in the case of a homogeneous anisotropic
half-space [5]. The approach applied in [3,5] employed the differentiation of the corresponding
classical plane waves with respect to the wave vector k (or techniques, equivalent to this in
its essence). More sophisticated solutions describing Gaussian (and not necessarily Gaussian)
beams in layered structures (which were earlier known only as asymptotic approximate solu-
tions [4,8]) have been found in [6,7]. In those papers, the standard plane waves were regarded
as known solutions.

1.2. Reduction to a couple of functions that satisfy PDEs. We mention a line of
investigation, in which the solution for a surface wave is expressed in terms of a couple of
functions that satisfy certain partial derivative equations (e.g., see [9, 10]).

1.3. The carrier equation. In Achenbach’s papers it was shown with particular examples
that the construction of a general solution for elastic media that possess an axial symmetry
can be reduced to a certain scalar equation, which appeared to be the membrane equation.
Achenbach called this equation the carrier equation. One of the Achenbach’s examples was the
Love wave in a transversely isotropic plate of finite width [12], and the other was the Rayleigh
wave in a homogeneous isotropic half-space [13]. In Achenbach’s approach, an explicit form
of the exact solution was used and the depth homogeneity of the structure seemed to be
of crucial importance. Analogs of the Achenbach’s carrier equation have been derived for
transient waves in the nondispersive case (it proved to be the 2D wave equation in which the
propagation velocity was that of the Raylegh wave) [11], for elastostatics [14], for the theory
of thin plates (where, in the static case, it turned out to be biharmonic [14]), for piezoelastic
structures [9], and so on.
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1.4. The carrier equation and an integral superposition of plane waves. In papers [6,
7], an alternative derivation of the carrier equation has been accompanied with the observation
that its general solution (assumed to be not growing too rapidly at infinity) can be represented
as a superposition of standard plane waves. For an isotropic (as well as for a transversely
isotropic) structure, the possibility of representation of a solution by an integral superposition
of plane waves implies the carrier equation for it, and vice versa. However, as we show in this
note, an integral superposition of plane waves admits a generalization to a rather arbitrary
anisotropy. In general, the integral solution does not satisfy any partial differential equation.

The analysis that follows is based on a superposition of plane waves.

2. Equations and boundary conditions

We deal with elastic waves harmonic in time in a layered half-space. We divide Cartesian
coordinates x = (x1, x2, x3) into lateral ones x⊥ = (x1, x2) and the depth z ≡ x3. The layered
structure is characterized by elastic stiffnesses cijkl and a volume density ρ > 0, dependent
only on the depth cijkl = cijkl(z), ρ = ρ(z). For z > 0, the components up of the displacement
vector u = (u1, u2, u3) satisfy the elastodynamics equations

∂jcijkl∂kul + ρω2ui = 0, i, j, k, l = 1, 2, 3, (1)

where ω > 0 is the angular frequency. The surface z = 0 of the half-space is traction-free, i.e.,

c3jkl∂kul|z=0 = 0, j, k, l = 1, 2, 3. (2)

Jumps of stiffnesses at the planes z = z1, . . . , zN are allowed, and then conditions of welded
contact are assumed:

[u ]|z=zp
= 0, [c3jkl∂kul]|z=zp

= 0, (3)

p = 1, . . . , N , where [ ] stands for a jump. Since we are aimed at describing surface waves, we
require that u → 0 as z → ∞.

3. Plane waves

The displacement vector in the standard time-harmonic plane wave can be represented in
the form (see, e.g., [15])

u(x ) = u(x⊥, z) = eik ·x⊥W (z; k ). (4)
Here k = (k1, k2) is a wave vector lying in the lateral plane, which is assumed to be real,
W (z; k ) is the depth dependence of the wave field, vanishing as z → ∞. Typically, for
simplicity, the wave propagation is considered along the x1-axis, i.e., k2 = 0. Generally
speaking, the length of k and the direction of W (k ) may depend on the direction of x⊥.

4. Integral superposition of plane waves

Let us parametrize x⊥ by polar coordinates

x1 = r cos ϕ, x2 = r sinϕ, 0 ≤ r, 0 ≤ ϕ < 2π, (5)

so that x⊥ = x⊥(ϕ), k(ϕ), and W (z, k (ϕ)). Assume that for a given ϕ, a solution (4)
exists for all values of ϕ and that it is a single-valued function of ϕ (which holds, e.g., for
a homogeneous half-space with axial symmetry of elastic stiffnesses). We assume that the
vector W is somehow normalized, e.g.,

|W (0, k (ϕ))| ≡ 1. (6)

To generalize the constructions of papers [6,7] to the anisotropic case, consider plane waves (4),
propagating in different directions. The direction will be parametrized by a polar angle ϕ′.
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Multiplying (4) by an arbitrary generalized function A(ϕ−ϕ′) of one variable and integrating
over the angle, we arrive at the expression

U (x⊥(ϕ), z) =

2π∫

0

A(ϕ − ϕ′)eik(ϕ′)·x⊥(ϕ′)W (z, k (ϕ′)) dϕ′. (7)

Obviously, (7) satisfies Eq. (1), boundary conditions (2) and (3) and tends to zero as z → ∞.
In fact, the above construction requires neither that the plane wave exist for all 0 ≤ ϕ < 2π nor
that the dependence k(ϕ′) be single-valued. The matter is that we can take in (7) the density
as a compactly supported function localized on an the interval where the single-valuedness
takes place.

5. Examples

5.1. Solutions polynomial in lateral variables. Putting in (7) A(ψ) = δ(ψ) yields a
standard plane wave, and putting A(ψ) = δ′(ψ) yields a plane wave with a linear dependence
of its amplitude on x⊥. For A(ψ) = dn

dψn δ(ψ) we get solutions with plane-wave phases and
amplitudes polynomial with respect to x⊥. Such solutions were found for a homogeneous
anisotropic half-space by another method in [5].

5.2. Surface wave beams. Modification of the approach of papers [6,7] allows a construction
of beams of surface waves, including Gaussian beams. Such considerations are intended in
another publication.

Also we are planning to generalize the above construction to structures in which the de-
pendence k(ϕ) is not single-valued and to consider other substantial examples of the choice of
amplitudes A in (7).

The author is indebted to V. M. Babich, D. F. Parker, D. Prikazchikov, and B. Erbaş for
helpful discussions.

The paper was partially supported by the RFBR grant 14-01-00535.

Translated by A. P. Kiselev.
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