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A CRACK IN THE FORM OF A THREE-LINK BROKEN LINE UNDER THE  
ACTION OF LONGITUDINAL SHEAR WAVES 

V. G. Popov  UDC 539.3 

We solve the problem of determination of the dynamic stress intensity factors for a crack in the form of 
a three-link broken line.  The crack is located in an infinite elastic medium with propagating harmonic 
longitudinal shear waves.  The initial problem is reduced to a system of three singular integrodifferential 
equations with fixed singularities.  A numerical method is proposed for the solution of this system with 
regard for the true asymptotics of the unknown functions. 

At present, there are numerous solutions of two-dimensional dynamical problems of the theory of elasticity 
for bodies with cracks in the form of a segment of the straight line or an arc of a smooth curve.  However, the 
actual cracks may have corner points, can be piecewise smooth, can cross each other and bifurcate.  The prob-
lems of determination of the dynamic stressed state in the vicinities of cracks of this kind have, in fact, not been 
studied yet.  This is explained by the difficulties encountered in their solution by the method of boundary inte-
gral equations extensively applied in recent years and in the reduction of the analyzed problems to singular in-
tegrodifferential or hypersingular equations with fixed singularities.   

As the most studied, we can mention the static problems for bodies containing cracks with corner points.  
We especially mention the works [2, 13] in which the exact solution was obtained by the Wiener–Hopf method 
and the exact values of the stress intensity factors were determined.  These solutions and the results obtained 
in [3] show that the presence of kernels with fixed singularities affects the singularities of solutions in the vicini-
ties of the ends of the intervals of integration.  The stressed states near branched, broken, and edge cracks were 
also studied in [5, 10, 12, 14]. In these works, the integral equations were numerically solved by the method of 
mechanical quadratures.  This method is based on the application of the Gauss–Chebyshev quadrature formulas 
specifying the root singularities of the solutions.  In this case, the true asymptotics of the solutions are not taken 
into account or an additional condition leading to a singularity weaker than the root singularity is imposed on the 
solution.   

Another drawback of the numerical methods used in these works is connected with the formal application of 
the Gauss–Chebyshev quadrature formulas to integrals with fixed singularities.  As a result, the convergence is 
very slow (in order to get the results with an error smaller than  0.1%,  it is necessary to use several tens of col-
location points).  

In the present work, we solve the problem of determination of the dynamical stress intensity factors for 
cracks in the form of three-link broken lines interacting with harmonic longitudinal shear waves.  The problem is 
reduced to a system of three singular integrodifferential equations solved by the method of collocations.  In this 
method, we take into account the true singularity of the solution and use special quadrature formulas for finding 
the integrals with fixed singularities.  
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Fig. 1 

Statement of the Problem and Its Reduction to a System of Singular Integral Equations 

We consider an unbounded isotropic elastic medium under the conditions of antiplane deformation with  
a through crack in the form of a three-link broken line in the plane  Oxy   (Fig. 1).  The crack interacts with plane 
longitudinal shear waves.  Its front forms an angle  θ0   with the Ox-axis and causes the displacements 

  W0
in (x, y) = A0 exp(iκ2(x sin θ0 + y cos θ0 )) ,      κ2

2 = ρω2

G
, (1) 

in the medium along the Oz -axis.  In (1), the symbols  G   and  ρ  stand, respectively, for the shear modulus and 
the density of the medium and  ω   is the frequency of oscillations.  The time dependence is specified by the fac-
tor  e−iωt .  Here and in what follows, this factor is omitted.  

Assume that the vector of displacements have a single component  W (x, y)  nonzero under the conditions  
of antiplane deformation.  In the coordinate system  Oxy ,  it satisfies the Helmholtz equation 

 ΔW + κ2
2W = 0 .  (2) 

To specify the boundary conditions on the crack, we associate a coordinate system with each link of the 
crack.  Assume that these coordinate systems   Oxy ,    = 1, 2, 3,  are centered at the midpoints of the links.  
The relationship between the coordinate systems is given by the formulas  

  x = (x − a ) cosα + (y − b ) sinα ,       x = a + x cosα − y sinα , 
   (3) 
  y = −(x − a ) sinα + (y − b ) cosα ,       y = b + x sinα + y cosα. 

Let 

  W (x , y ) = W (a + x cosα − y sinα , b + x sinα + y cosα )  

be the displacements in the coordinate system connected with the   th link of the crack.  Then, in the absence of 



A CRACK IN THE FORM OF A THREE-LINK BROKEN LINE UNDER THE ACTION OF LONGITUDINAL SHEAR WAVES 145 

loading applied to the crack edges, the following equalities must be true: 

  τzy (x , 0) = −τzyin (x , 0) ,      x ∈[−d , d ], (4) 

where 

 
 
τzy = G ∂W

∂y
,      

 
τzy
in = G ∂W in

∂y
. 

The presence of the crack leads to the discontinuity of displacements.  For their jumps, we introduce the fol-
lowing notation: 

  W (x , +0) −W (x , +0) = χ (x ),        x ∈[−d , d ],      = 1, 2, 3. (5) 

In addition, the continuity of displacements along the crack edge implies that  

  W (d , +0) = W+1(−d+1, +0), 
   (6) 
  W (d , −0) = W+1(−d+1, −0),      = 1, 2 . 

We start the solution of the posed problem (2)–(5) from the construction of a discontinuous solution of the 
Helmholtz equation in the coordinate system  Okxkyk   for each link of the crack [8] 

 Wk
d (xk , yk ) = ∂

∂yk
χk (η) r2(η− xk , yk ) dη

−dk

dk

∫ , (7) 

where 

 r2(η− xk , yk ) = − i
4
H0

(1) κ2 (η− xk )2 + yk2( ). 
The corresponding stresses are given by the formulas 

 τzyk
d = −G χk (η)

∂2

∂η2 r2(η− xk , yk ) dη
−dk

dk

∫  

  – Gκ2
2 χk (η) r2(η− xk , yk ) dη
−dk

dk

∫ , 

   (8) 

 τzxk
d = −G ∂

∂yk
χk (η)

∂2 r2
∂η2 (η− xk , yk ) dη

−dk

dk

∫ ,    k = 1, 2 . 



146 V. G. POPOV 

Then the displacements of the reflected wave field can be represented in the form 

 W (x, y) = Wk
g (x, y)

k=1

3

∑ , (9) 

where 

  Wk
g (x, y) = Wk

d((x − ak ) cosαk + (y − bk ) sinαk , −(x − ak ) sinαk + (y − bk ) cosαk). 

In order to finally determine the displacements of the diffraction field, it is necessary to find the unknown 
jumps (5).  To this end, we use condition (4).  By using relations (8) and (9), we preliminarily get 

 
 
τzy = τzy

k

k=1

2

∑ ,       τzy
k = −τzxk

d sinαk + τzyk
d cosαk ,     αk = α − αk ,        = 1, 2, 3. (10) 

Further, we pass to the coordinate system connected with the   th link.  Then, according to (8), the terms  
in (10) are given by the formulas 

 
 

τzy
k (x , y ) = G ′χk (η)Fk (η, x , y ) dη

−dk

dk

∫  

  + 
 

G iκ2
2

4
cosαk χk (η)H0

(1) κ2 Zk( ) dη
−dk

dk

∫ , (11) 

where 

   
Fk (η, x , y ) = iκ2

4
(η cosαk − x − (a − ak ) cosα

 

  – 
  
(b − bk ) sinα)

H1
(1) κ2 Zk( )

Zk
, 

  Zk = (Ak + x cosαk − y sinαk )2 + (Bk + x sinαk + y cosαk )2 , 

  Ak = (a − ak ) cosαk + (b − bk ) sinαk , 

  Bk = −(a − ak ) sinαk + (b − bk ) cosαk . 

In deducing relation (11), it is necessary to perform the integration by parts in the integrals containing the se-
cond-order derivatives and take into account the fact that the terms outside the integral are equal to zero in view 
of conditions (6). 

Substituting (10) and (11) in (4), we get a system of singular integrodifferential equations for jumps (5)  
and their derivatives.  We now remove singular components of the kernels and, after necessary transformations, 
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arrive at the following system: 

 1
2π

E
τ − ζ

+G(τ,ζ) + R(τ,ζ)⎛
⎝⎜

⎞
⎠⎟

′Φ (τ) dτ
−1

1

∫  

  + 
 

1
2π

(−κ0
2 ln τ − ζ +U(τ,ζ))Φ(τ) dτ

−1

1

∫ = F(ζ),    −1 < ζ < 1, (12) 

 Φ(τ) =

ϕ1(τ)

ϕ2(τ)

ϕ3(τ)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,      ′Φ (τ) =

′ϕ1(τ)

′ϕ2(τ)

′ϕ3(τ)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, 

 F(τ) =

f1(τ)

f2(τ)

f3(τ)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,      E =

1 0 0

0 1 0

0 0 1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

, 

 G(τ,ζ) =

0 g12(τ,ζ) 0

−g21(τ,ζ) 0 g23(τ,ζ)

0 −g32(τ,ζ) 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

, 

   R(τ,ζ) = {Rk (τ,ζ)},        U(τ,ζ) = {Uk (τ,ζ)},       ϕ (τ) = dχ(dτ), 

   f (ζ) = −iκ0C0 cos (θ0 ) exp(iκ0(ε sin θ0 + δ cos θ0 + γ ζ sin θ0 )), 

  ε = ad−1,       δ = bd−1,       γ  = dd−1 ,       d = max (d ) ,     , k = 1, 2, 3, 

 C0 = d−1A0 ,      κ0 = κ2d . 

The nonzero elements of the matrix  G(τ,ζ)  are the functions 

 
  
gk (τ,ζ) = − skγ k((1− skτ) cosαk + γ k (1+ skζ))

Qk (τ,ζ)
,       sk = sgn ( − k) , (13) 

where 

  Qk (τ,ζ) = γ k2(1− skτ)2 + γ 2(1+ skζ)2 + 2γ kγ  (1− skτ)(1+ skζ) cosαk , 

  k,  = 1, 2, 3,     k ≠  . 
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It is easy to see that these functions have singularities for ζ = ±1, τ = ±1.  The matrices R(τ,ζ) and U(τ,ζ)  
are formed by functions specifying regular integrals. 

Numerical Solution of the System of Integrodifferential Equations 

The presence of fixed singularities in the singular components of system (12) affects the behavior of solu-
tions in the vicinities of the points  ±1.  Their asymptotics in the vicinities of these points are determined in the 
same way as in [6, 8].  As a result, we conclude that the derivatives of the unknown functions should be sought 
in the form 

  ′ϕ (τ) = (1− τ)−σ+1 (1+ τ)−σψ  (τ),      = 1, 2, 3, (14) 

where   ψ  (τ)   satisfy the Hölder condition and the exponents are as follows: 

 
 
σ = β−1

π + β−1
,     0 ≤ β−1 ≤ π ,      

 
σ = 2π − β−1

3π − β−1
,     π ≤ β−1 ≤ 2π, 

  β−1 = α − α−1 ,      = 2, 3 ,      σ1 = σ4 = 0.5 . 

Further, we approximate the functions   ψ  (τ)   by interpolating polynomials [11] 

 ψ k (τ) ≈ ψn−1
(k ) (τ) ,      ψn−1

(k ) (τ) = ψ km
Pkn (τ)

(τ − τkm ) ′Pkn (τ)m=1

n

∑ , 

   (15) 
 ψ km = ψ k (τkm ),    k = 1, 2, 3, 

where   

 Pkn (τ) = Pn−σk+1−σk (τ)  

are the Jacobi polynomials (orthogonal with the corresponding weight) and  τkm   are roots of these polynomials.  
Representing the derivatives of the unknown functions in the form (14) and (15), we use the following quadra-
ture formula [1] for the integrals with the Cauchy kernel: 

 ′ϕk (τ)
τ − ζkj

dτ
−1

+1

∫ = Akm
ψ km

τkm − ζkjm=1

n

∑ ,            j = 1, 2,…, nk ,    n1 = n3 = n ,    n2 = n +1. (16) 

In relation (16),  ζkj ,  k = 1, 2, 3,   j = 1, 2,…, nk ,  are the roots of the Jacobi functions of the second kind   

 Jn−σk+1−σk (τ)   

and  Akm   are the coefficients of the corresponding Gauss–Jacobi quadrature formulas [4]. 
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In what follows, we obtain similar formulas for the integrals with fixed singularities 

 
 
Ek

j = ′ϕk (τ)gk (τ,ζj ) dτ
−1

1

∫ ,       , k = 1, 2, 3,      ≠ k . (17) 

If  1± ζ > ε > 0 ,  then it follows from relations (13) that the functions   gk (τ,ζ)  are infinitely differentiable.  
Therefore, we can apply the Gauss–Jacobi quadrature formulas to integrals (17).  The main difficulty is connect-
ed with the calculation of these integrals as  1± ζ → 0 .  To this end, we use representation (13)–(15) and per-
form the transformations 

 
  

gk (τ,ζ)
τ − τkm

= gk (τkm ,ζ)
τ − τkm

+ skγ k2

qk (τkm ,ζ)
((1+ skτkm )gk (τ,ζ) 

  –  (1− skζ) gk (ζ, τ) ),       , k = 1, 2, 3,      ≠ k . (18) 

We now substitute (14), (15), and (18) in (17).  As a result, the integral in the first term can be found by using 
the formula 

 (1− τ)−σk+1 (1+ τ)−σk Pkn (τ)
τ − τkm

dτ
−1

+1

∫ = Akm ′Pkn (τkm ),    k = 1, 2, 3. (19) 

Analogous integrals of the functions   gk (τ,ζ)  and   gk (ζ, τ)  can be found by the method of taking the in-
tegrals with orthogonal polynomials [9] based on the application of the Mellin integral transformation.  The final 
relations for the integrals with fixed singularities take the form 

 
 
Ek

j = ψ km
Djm
k

Qk (τkm ,ζj )m=1

n

∑ ,       , k = 1, 2, 3,      ≠ k , (20) 

where 

   Djm
k = −skAkmγ k(γ k (1− skτkm ) cosβ + γ  (1+ skζj )) , 

  1+ skζj > ε > 0 , 

   Djm
k = −skAkmγ k(γ k (1− skτkm ) cosαk + γ  (1+ skζj )) 

  – 
 

γ ksk (−1)nk

′Pkn (τm )
γ k (1− skτkm )Bn

(1) γ  (1+ skζj )
2γ k

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

 

  + 
 
γ  (1+ skζj )Bn

(2) γ  (1+ skζj )
2γ k

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠⎟

,       0 ≤ 1+ skζj < ε , 



150 V. G. POPOV 

 Bkn
(p)(y) = Γ(1− σ k+1 + n)

n!2σk+1+σk
− sin π(σk+1 + σk )

sin πσk+1

⎡
⎣⎢

cskys cosβ(s + 2 − p)
s=0

∞

∑  

  + sin πσk
sin πσk+1

dsky−σk+1+s cosβ(σk+1 − s − 2 + p)
s=0

∞

∑
⎤

⎦
⎥ ,    p = 1, 2 , 

 cs = (−1)s (n + s)!Γ(σk+1 + σk − n + s)
s !Γ(1+ s + σ k+1)

, 

 ds = (−1)sΓ(1− s + n + σ k+1)Γ(σk − n + s)
s !Γ(1+ s − σk+1)

. 

Since system (12) also includes the functions   ϕ (τ) ,    = 1, 2, 3,  it is necessary to deduce the quadrature 
formulas for the corresponding integrals.  First, we use obvious formulas 

 ϕk (τ) = ϕk (−1) + ′ϕk (x) dx
−1

τ

∫ ,      ϕk (τ) = ϕk (1) − ′ϕk (x) dx
τ

1

∫ . (21) 

Then we use relations (14) and (15) and the Darboux–Christoffel identity for the orthogonal polynomials [11]: 

 Pkn (τ)
τ − τkm

= Akm ′Pkn (τkm )
Pkj (τkm )Pkj (τ)

skj2j=0

n−1

∑ , (22) 

where 

 skj2 = 21−σk+1−σk Γ(1− σk+1 + j)Γ(1− σk + j)
(1− σ k − σk+1 + 2 j)Γ(1− σk − σk+1 + 2 j)

,      k = 1, 2, 3. 

We now substitute (14), (15), and (22) in (21).  After integration, we get the following approximate formu-
las for the unknown functions: 

 
 
ϕk (τ) = ϕk (±1) + (1± τ)1−σk


AkmSkm



m=1

n

∑ (τ) ,      σk
− = σk ,    σk

+ = σk+1 , (23) 

where 

 
 
Skm
 = sk0−2Fk

 (τ) − (1 τ)1−σk
± Pkj−1

(1) (τ)Pkj (τkm )
2 jskj2j=1

n−1

∑ , 

 
 
Fk
 (τ) =

F σ k
± ,1− σk

 , 2 − σk
 , 1± τ

2
⎛
⎝⎜

⎞
⎠⎟

2σk
±
(1− σk

 )
. 
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Representation (23) serves as a basis for the following quadrature formulas with unknown functions: 

 
 
ϕk (τ)Uk (τ,ζj ) dτ

−1

1

∫ = ϕk (±1)Uk
j + Akmψ kmUkj±

m=1

n

∑ , (24) 

where  

 
 
Uk

j = A0 pUk (z0 p ,ζj )
p=1

n

∑ ,      A0 p = 2
(1− z0 p2 )( ′Pn (z0 p ))2

, 

Pn (z)   are Legendre polynomials,  z0 p  are the roots of these polynomials, 

 
 
Ukj± = Akp

± Skm± (zkp± )Uk (zkp± ,ζj )
p=1

n

∑ , 

 Akp
± = 2σk

±

1− (zkp± )2( ) ′Pn± (zkp± )( )2
, 

Pn− (z) = Pn01−σk
−
(z)   and  Pn+ (z) = Pn1−σk

+ 0(z)   are Jacobi polynomials, and  zkp±   are the roots of these polynomials. 
We now consider the integrals with logarithmic difference kernels.  As a result of integration by parts and 

application of representations (14) and (15) for the derivatives of the unknown functions, we obtain the follow-
ing quadrature formulas: 

 
 
ϕ (τ) ln τ − ζj dτ

−1

1

∫ = ϕ (±1)hj + AmH jm± ψ j
m=1

n

∑ , (25) 

where 

   hj = (1− ζj )(ln (1− ζj ) −1)+ (1+ ζj )(ln (1+ ζj ) −1), 

    H jm
± = (1− ζj )(ln (1− ζj ) −1)− (τm − ζj )(ln τm − ζj −1). 

We now apply the quadrature formulas (16), (20), (24), and (25) and the Gauss–Jacobi quadrature formulas 
and use the roots of the Jacobi polynomials as collocation points.  As a result, system (12) is reduced to a system 
of linear algebraic equations for  ψ2(−1),  ψ km ,  k = 1, 2, 3.  As a result of the solution of this system, we get 
the following formulas for the approximate values of the stress intensity factors: 

 K − = −G d1 ⋅ 2−(1+σ2 )P1n (−1)
ψ1m

′P1n (τ1m )(1+ τ1m )m=1

n

∑ , 

   (26) 

 K + = −G d3 ⋅ 2−(1+σ3)P3n (1)
ψ3m

′P3n (τ3m )(1+ τ3m )m=1

n

∑ . 
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Fig. 2 

 

Fig. 3 

Results of Numerical Analysis and Conclusions 

In our numerical analyses, we made an attempt, first, to study the practical convergence of the method pro-
posed for the numerical solution of the problem.  Thus, we considered a crack whose configuration is illustrated 
in Fig. 2.  We accepted the following relation between the lengths of the links:  d2 = 3d1 = 3d3 . 

By using relations (26), we determined the dimensionless values of the stress intensity factors   

 k− = K −

G d1
      and      

 
k+ = K +

G d3
 .   

Moreover, it follows from the symmetry of the problem that  k+   = k− = k .  The calculations were carried out 
for the angle  α = 45 °. 

The results of calculations are presented in the form of plots of the absolute value of the stress intensity fac-
tor as a function of the dimensionless wave number  κ0 = κ2d .  The values  n = 5, 10, 15,  and  20  correspond 
to the numbers of interpolation nodes in relation (15).  We see that it suffices to take at most 20  interpolation 
nodes in (15) in order to get the values of the stress intensity factors with an error of at most  0.1%.  For the 
waves with small frequencies  κ0 ≤ 2 ,  it is sufficient to take five nodes.  

We also studied the influence of crack shape on the value of stress intensity factor by using the crack  
depicted in Fig. 4 as an example.  The ratio of the lengths of its links is the same as in the previous case.   
We performed the numerical analysis of the influence of the angle  β   on the frequency dependence of the stress 
intensity factor.   
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Fig. 4 

 

Fig. 5 

 

Fig. 6 

The results of calculations are presented in Fig. 5 (for  β = 0, 30, 45 ,  and  60°)  and in Fig. 6 (for  β  = 90, 
120, 135,  and  150°).  It is easy to see that, for acute angles  β ,  the rectilinear crack  (β = 0°)  has the maximum 
values of the stress intensity factor.  As this angle increases, the values of stress intensity factor decrease and are 
minimum in the case where the adjacent links of the crack are perpendicular. 
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As the angle between the links increases further, the stress intensity factors exhibit a trend to increase and 
exceed the values corresponding to the rectilinear crack.  In general, in view of complexity of the wave field cre-
ated by the reflection of waves from the crack links, the frequency dependence of the stress intensity factor has 
well-pronounced maxima whose amplitudes and positions depend on the configuration of the crack.  

REFERENCES 

 1. A. V. Andreev,  “Direct numerical method for solving singular integral equations of the first kind with generalized kernels,” Izv. 
Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 1, 126–146 (2005);  English translation: Mech. Solids, 40, No. 1, 104–119 (2005). 

 2. B. A. Afyan,  “On the integral equations with fixed singularities in the theory of branching cracks,” Dokl. Akad. Nauk Arm. SSR, 79, 
No. 4, 177–181 (1984). 

 3. R. V. Duduchava, Integral Equations of Convolution with Discontinuous Presymbols, Singular Integral Equations with Fixed Singu-
larities, and Their Applications to Problems of Mechanics [in Russian], Proc. Razmadze Math. Inst., 60 (1979). 

 4. V. I. Krylov,  Approximate Calculation of Integrals, Dover, New York (2006). 
 5. P. N. Osiv and M. P. Savruk,  “Determination of stresses in an infinite plate with broken or branching crack,” Prikl. Mekh. Tekh. 

Fiz., No. 2, 142–147 (1983);  English translation: J. Appl. Mech. Tech. Phys., 24, No. 2, 266–271 (1983). 
 6. V. G. Popov,  “Diffraction of elastic shear waves on an inclusion of complex shape located in an unbounded elastic medium, 

in: Hydroaeromechanics and Elasticity Theory: Numerical and Analytic Methods of Solution of Problems of Hydroaerodynamics 
and Elasticity Theory [in Russian], Dnepropetrovsk State University, Dnepropetrovsk (1986), pp. 121–127. 

 7. V. G. Popov,  “Investigation of the fields of stresses and displacements in the case of diffraction of elastic shear waves on a thin rigid 
separated inclusion,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 139–146 (1992). 

 8. V. G. Popov,  “Stressed state near two cracks leaving the same point under harmonic longitudinal shear oscillations,” Visn. Kyiv. 
Shevchenko Nats. Univ. Ser. Fiz.-Mat. Nauk., Issue 3, 205–208 (2013). 

 9. G. Ya. Popov,  Concentration of Elastic Stresses near Punches,  Notches, Thin Inclusions, and Reinforcements [in Russian], Nauka, 
Moscow (1982).  

 10. M. P. Savruk,  Two-Dimensional Problems of Elasticity for Bodies with Cracks [in Russian], Naukova Dumka, Kiev (1981). 
 11. G. Szegö,  Orthogonal Polynomials, Amer. Math. Soc., New York (1959). 
 12. M. Isida and H. Noguchi,  “Stress intensity factors at tips of branched cracks under various loadings,” Int. J. Fract., 54, No. 4,  

293–316 (1992). 
 13. V. Vitek,  “Plane strain stress intensity factors for branched cracks,” Int. J. Fract., 13, No. 4, 481–501 (1977). 
 14. X. Yan,  “Stress intensity factors for asymmetric branched cracks in plane extension by using crack-tip displacement discontinuity 

elements,” Mech. Res. Comm., 32, No. 4, 375–384 (2005). 


	Abstract
	Statement of the Problem and Its Reduction to a System of Singular Integral Equations
	Numerical Solution of the System of Integrodifferential Equations
	Results of Numerical Analysis and Conclusions
	REFERENCES

