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We study the influence of nonclassical boundary conditions on the accuracy of approx-

imation of a smooth function by a quintic spline of class C4 on a uniform mesh of a

segment. We give an asymptotic analysis and compare different boundary conditions.
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Introduction

Definition of splines. Assume that we are given the values of a function fi = f(xi), i = 0, N ,

at nodes of the uniform mesh

Δ : xi = x0 + ih, i = 0, N ; x0 = a, h = (b− a)/N,

on a segment [a, b]. By a quintic interpolation spline we mean a function S(x) such that

1) S(x) ∈ C4[a, b],

2) S(x) is a polynomial of the fifth degree on each interval [xi, xi+1], i = 0, N − 1,

3) S(xi) = fi, i = 0, N .

Quintic splines are useful if we need to approximate a function or its derivatives (of the first,

second, and third order) with higher accuracy in comparison with cubic splines. Furthermore,

using quintic splines, it is possible to approximate the fourth and fifth order derivatives which

vanish in the case of cubic splines.

Necessity of boundary conditions. To define an interpolation spline S(x) in a unique

way, we need to impose additional conditions [1]. Usually, such conditions are given as some

conditions on the derivatives of spline at the endpoints of [a, b] and are referred to as boundary

conditions. There are two conditions at each endpoint.

If a periodic function f(x) is interpolated, then for such an extra conditions we can take the

periodicity condition for the corresponding interpolation spline, namely, S(α)(x0) = S(α)(xN ),

α = 1, 2, 3, 4. We note that the periodic case has been studied well. In particular, as shown in
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[2], for a periodic quintic spline interpolating a periodic function f(x) ∈ C12[a, b] the following

asymptotic relations hold:

S(x) = f(x) +
h6

6!
γ(t)f (6)(x) +

h7

7!
δ(t)f (7)(x) +O(h8), x ∈ [xi, xi+1], (1)

where

γ(t) =
1

2
t2(1− t)2(1 + 2t− 2t2), δ(t) = t(1− t)(1− 2t)(3t4 − 6t3 + 3t+ 1), t =

x− xi
h

.

Furthermore, in the periodic case, for splines of an arbitrary degree with uniform mesh

unimproved pointwise estimates for the approximation error were obtained in [3], where also the

difficulty of the problem with nonperiodic boundary conditions was emphasized.

An asymptotic analysis of different boundary conditions, where the exact values of some

derivatives of f(x) ∈ C7[a, b] are given at the endpoints of [a, b], was performed in [4], where the

following counterparts of (1) in the nonperiodic case were also obtained:

S(x) = f(x) +
h6

6!
γi,N (t)f (6)(x) +O(h7), x ∈ [xi, xi+1], i = 0, N − 1, (2)

where γi,N (t) depend on the number of interval, the number of nodes, and the type of boundary

conditions. It is clear that the approximation error for the spline ‖S−f‖C as h → 0 is determined

by the quantity ‖γi,N‖C . Therefore, the natural question arises: What boundary conditions are

optimal in the sense ‖γi,N‖C . should be minimal. In [4], we give a comparative analysis of

the behavior of ‖γi,N‖C depending on the boundary conditions and present optimal boundary

conditions in the sense of accuracy

S(α)(xi) = f (α)(xi), α = 1, 3, i = 0, 1, N − 1, N. (3)

It is shown that for the optimal boundary conditions

γi,N (t) = γ(t) =
1

2
t2(1− t)2(1 + 2t− 2t2). (4)

For constructing quintic splines one can use a family of boundary conditions [5] which requires

no additional information except for the initial data. These conditions have the form

mi + αmi+1 + βmi+2 + γmi+3 =p′i(xi) + αp′i(xi+1) + βp′i(xi+2) + γp′i(xi+3), i = 0, 1,

mi + αmi−1 + βmi−2 + γmi−3 =p′i−5(xi) + αp′i−5(xi−1)+

+ βp′i−5(xi−2) + γp′i−5(xi−3), i = N,N − 1.

Here, mi = S′(xi), i = 0, N ; pi(x) is an interpolation polynomial of the fifth degree such that

pi(xk) = fk, k = i, i+ 5. The parameters α, β, γ are chosen in such a way that under the

interpolation of f(x) ∈ C7[a, b] the following estimate holds:

‖S(r) − f (r)‖C = O(h6−r), r = 0, 5. (5)

The study of boundary conditions without requirement of the exact values of the derivatives

of an interpolated function at the endpoints of [a, b] was further studied in [6], where it was shown
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that the estimate (5) remains valid for splines of degree 4 interpolating a function f(x) ∈ C7[a, b]

with the boundary conditions

xi+1∫

xi

S(x)dx =

xi+1∫

xi

pi(x)dx, i = 0, 1, N − 2, N − 1.

For quintic splines s(x) ∈ C4[0, 1] interpolating f(x) ∈ C6[0, 1] on a uniform mesh xi =

x0 + ih, i = 0, N ; x0 = 0, h = 1/N , satisfying the initial data

s(αi) = f(αi), s(βi) = f(βi), i = 0, N − 1,

s′′(xi) = f ′′(xi), i = 0, N,

where αi = xi + h/3, βi = xi + 2h/3, and the boundary conditions

s′(x0) = f ′(x0), s′(xN ) = f ′(xN ),

the following estimate was obtained in [7]:

|s(x)− f(x)| � K
h6

6!
‖f (6)‖C [0, 1], x ∈ [0, 1].

For quintic splines and boundary conditions required the continuity of the fifth order deriva-

tive of the spline at points near the endpoints of the interpolation segment

S(5)(xi − 0) = S(5)(xi + 0), i = 1, 2, N − 2, N − 1

under the assumption that f ∈ C6(R+) is bounded and the step is sufficiently small h → 0, the

following error estimate was obtained in [8]:

sup
x∈R+

|f (r)(x)− S(r)(x)| � cfh
6−r.

In this paper, we analyze boundary conditions for an interpolation quintic spline, where only

one derivative or no derivatives are given at each of the endpoints of [a, b].

1 Construction of Quintic Splines

At points x ∈ [xi, xi+1], i = 0, N − 1, the spline S(x) can be represented as [9]:

S(x) = fi(1− t)3(1 + 3t+ 6t2) + fi+1t
3(10− 15t+ 6t2) + hmi(1− t)3t(1 + 3t)

+ hmi+1t
3(1− t)(3t− 4) +

h2

2
Mi(1− t)3t2 +

h2

2
Mi+1t

3(1− t)2, (6)

where mi = S′(xi), Mi = S′′(xi). We assume that the number of interpolation points is at least

4, i.e., N � 3. By the continuity of the third and fourth order derivatives of S(x), we see that
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Mi are connected with mi, fi by the relations [10]

Mi−1 =
1

16h

[−111mi−1 − 227mi − 79mi+1 − 3mi+2

]

+
1

16h2
[−235fi−1 + 65fi + 155fi+1 + 15fi+2] , (7)

Mi =
1

16h

[
3mi−1 − 33mi − 29mi+1 −mi+2

]

+
1

16h2
[
15fi−1 − 85fi + 65fi+1 + 5fi+2

]
, (8)

Mi+1 =
1

16h

[
mi−1 + 29mi + 33mi+1 − 3mi+2

]

+
1

16h2
[
5fi−1 + 65fi − 85fi+1 + 15fi+2

]
, (9)

Mi+2 =
1

16h

[
3mi−1 + 79mi + 227mi+1 + 111mi+2

]

+
1

16h2
[
15fi−1 + 155fi + 65fi+1 − 235fi+2

]
. (10)

Substituting (8), (9) into (6) for x ∈ [xi, xi+1], i = 1, N − 2, we find

S(x) = fi−1ϕ1(t) + fiϕ2(t) + fi+1ϕ2(1− t) + fi+2ϕ1(1− t)

+ hmi−1ψ1(t) + hmiψ2(t)− hmi+1ψ2(1− t)− hmi+2ψ1(1− t), (11)

where

ϕ1 = t2(1− t)2(15− 10t)/32, ϕ2 = (1− t)2(32 + 64t+ 11t2 − 42t3)/32,

ψ1 = t2(1− t)2(3− 2t)/32, ψ2 = t(1− t)2(32 + 31t− 34t2)/32.

Similar expressions for splines at the boundary intervals [x0, x1] and [xN−1, xN ] are obtained

from (6) by substituting Mi and Mi+1 from (7), (8) and (9), (10). Namely, for x ∈ [x0, x1]

S(x) = f0ϕ3(t) + f1ϕ4(t) + f2ϕ5(t) + f3ϕ6(t)

+ hm0ψ3(t) + hm1ψ4(t) + hm2ψ5(t) + hm3ψ6(t), (12)

where

ϕ3 = (1− t)2(32 + 64t− 139t2 + 58t3)/32, ψ3 = t(1− t)2(18t2 − 47t+ 32)/32,

ϕ4 = t2(65 + 40t− 115t2 + 42t3)/32, ψ4 = t2(1− t)(−98t2 + 293t− 227)/32,

ϕ5 = t2(1− t)2(155− 90t)/32, ψ5 = t2(1− t)2(50t− 79)/32,

ϕ6 = t2(1− t)2(15− 10t)/32, ψ6 = t2(1− t)2(2t− 3)/32.

For x ∈ [xN−1, xN ] we have

S(x) = fNϕ3(1− t) + fN−1ϕ4(1− t) + fN−2ϕ5(1− t) + fN−3ϕ6(1− t)

− hmNψ3(1− t)− hmN−1ψ4(1− t)− hmN−2ψ5(1− t)− hmN−3ψ6(1− t). (13)
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To define the spline S(x) completely, it is necessary to find the coefficients mi, i = 0, N ,

satisfying the relations [11]

mi−2 + 26mi−1 + 66mi + 26mi+1 +mi+2 = gi, i = 2, N − 2, (14)

where

gi =
1

h

[−5fi−2 − 50fi−1 + 50fi+1 + 5fi+2

]
. (15)

The relations (14) and (15) are valid since (8) and (9) with the same indices coincide.

The system (14) is undefinite (N−3 equations and N+1 unknowns) and should be completed

with four equations following from the boundary conditions on S(x).

2 Boundary Conditions

The boundary conditions considered in [4] can be formally divided into two groups.

1. The classical conditions, where two different derivatives of the interpolated function are

given at the points x0 and xN⎧⎨
⎩
S(α)(x0) = f

(α)
0 , S(β)(x0) = f

(β)
0 ,

S(α)(xN ) = f
(α)
N , S(β)(xN ) = f

(β)
N ,

α ∈ {1, 2, 3}, α < β � 4, (16)

where f
(α)
i = f (α)(xi).

2. The two-point coniditons, where any dderivatives of the interpolated function are given

at the points x0, x1, xN−1, xN⎧⎨
⎩
S(α)(x0) = f

(α)
0 , S(β)(x1) = f

(β)
1 ,

S(α)(xN ) = f
(α)
N , S(β)(xN−1) = f

(β)
N−1,

α, β ∈ {1, 2, 3, 4}. (17)

As was already mentioned, the main lack of these boundary conditions is that we have to be

given with the exact values of derivatives of the interpolated function. In this paper, we weaken

this requirement in the sense that either no values of derivatives are given at the endpoints or

at most one derivative can be given at each endpoint. Namely, we consider boundary conditions

of the following types.

1. Approximation of the derivatives of f(x) in the classical conditions (16):⎧⎨
⎩
S(α)(x0) = f̃

(α)
0 , S(β)(x0) = f̃

(β)
0 ,

S(α)(xN ) = f̃
(α)
N , S(β)(xN ) = f̃

(β)
N ,

α ∈ {1, 2, 3}, α < β � 4, (18)

and in the two-point conditions (17):⎧⎨
⎩
S(α)(x0) = f̃

(α)
0 , S(β)(x1) = f̃

(β)
1 ,

S(α)(xN ) = f̃
(α)
N , S(β)(xN−1) = f̃

(β)
N−1,

α, β ∈ {1, 2, 3, 4}, (19)

where f̃
(α)
i are approximations of derivatives and they should be chosen in such a way that

f
(α)
i − f̃

(α)
i = O(h6−α), α = 1, 4. (20)
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2. The continuity condition for of the fifth order derivative of the (not-a-knot) spline at the

points x1, x2, xN−2, xN−1:⎧⎨
⎩
S(5)(x1 − 0) = S(5)(x1 + 0), S(5)(x2 − 0) = S(5)(x2 + 0),

S(5)(xN−1 − 0) = S(5)(xN−1 + 0), S(5)(xN−2 − 0) = S(5)(xN−2 + 0)
,

or at the points x1, x3, xN−3, xN−1:⎧⎨
⎩
S(5)(x1 − 0) = S(5)(x1 + 0), S(5)(x3 − 0) = S(5)(x3 + 0),

S(5)(xN−1 − 0) = S(5)(xN−1 + 0), S(5)(xN−3 − 0) = S(5)(xN−3 + 0).
.

3. The combined conditions, where the exact values of derivatives of f(x) are given at the

points x0, xN and the continuity condition for the fifth order derivative of the spline is imposed

at the points x1, xN−1:⎧⎨
⎩
S(α)(x0) = f

(α)
0 , S(5)(x1 − 0) = S(5)(x1 + 0),

S(α)(xN ) = f
(α)
N , S(5)(xN−1 − 0) = S(5)(xN−1 + 0),

α ∈ {1, 2, 3, 4}.

All the boundary conditions are given at both endpoints in a symmetric way. This means that

the type of boundary conditions is the same at both endpoints, i.e., if the conditions S′(x0) = f ′
0

and S(5)(x1 − 0) = S(5)(x1 + 0) are given at the left endpoint, then the conditions S′(xN ) = f ′
N

and S(5)(xN−1 − 0) = S(5)(xN−1 + 0) are imposed at the right endpoint.

Following [4], we code types of boundary conditions by abcd, where a,c means the number

of points at which the derivatives are given or are assumed to be continuous and b,d means the

order of derivatives at points a,c respectively.

To emphasize that the approximate value of derivatives is given, we use the notation ap. For

example, 0213ap means that boundary conditions have the form S′′(x0) = f̃ ′′
0 , S

′′′(x1) = f̃ ′′′
1 .

2.1. Approximation of derivatives. The relations (18) and (19) include difference ap-

proximations of derivatives. First, we note that the indicated accuracy of these approximations

is necessary for preventing the decrease of maximal possible order of approximation O(h6) of a

function by quintic splines. Second, we are naturally interested only in approximations on the

minimal pattern (6 points).

We consider a Lagrange polynomial of the fifth degree constructed from the nodes xi, xi+1, . . .,

xi+5 and represented in the Newton form

Li(x) = fi + f [xi+1, xi](x− xi) + f [xi+2, xi+1, xi](x− xi+1)(x− xi)

+ f [xi+3, xi+2, xi+1, xi](x− xi+2)(x− xi+1)(x− xi)

+ f [xi+4, xi+3, xi+2, xi+1, xi](x− xi+3)(x− xi+2)(x− xi+1)(x− xi)

+ f [xi+5, xi+4, xi+3, xi+2, xi+1, xi](x− xi+4)(x− xi+3)(x− xi+2)(x− xi+1)(x− xi),

where f [xi+k, xi+k−1, . . . , xi] are separated differences of order k = 1, 2, . . . , 5. It is known [13]

that

L
(α)
i (x)− f (α)(x) = O(h6−α).
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Therefore, all the required difference approximations satisfying (20) are obtained by

f̃
(α)
k = L

(α)
i (xk),

where i = 0 for k = 0, 1 and i = N − 5 for k = N − 1, N .

The differential approximations of the derivatives at the left endpoint have the form

f̃ ′
0 = [−137f0 + 300f1 − 300f2 + 200f3 − 75f4 + 12f5]/60h,

f̃ ′′
0 = [45f0 − 154f1 + 214f2 − 156f3 + 61f4 − 10f5]/12h

2,

f̃ ′′′
0 = [−17f0 + 71f1 − 118f2 + 98f3 − 41f4 + 7f5]/4h

3,

f̃
(4)
0 = [3f0 − 14f1 + 26f2 − 24f3 + 11f4 − 2f5]/h

4,

f̃ ′
1 = [−12f0 − 65f1 + 120f2 − 60f3 + 20f4 − 3f5]/60h,

f̃ ′′
1 = [10f0 − 15f1 − 4f2 + 14f3 − 6f4 + f5]/12h

2,

f̃ ′′′
1 = [−7f0 + 25f1 − 34f2 + 22f3 − 7f4 + f5]/4h

3,

f̃
(4)
1 = [2f0 − 9f1 + 16f2 − 14f3 + 6f4 − f5]/h

4.

Similar approximations of derivatives at the right endpoint have the form

f̃ ′
N−1 = [12fN + 65fN−1 − 120fN−2 + 60fN−3 − 20fN−4 + 3fN−5]/60h,

f̃ ′′
N−1 = [10fN − 15fN−1 − 4fN−2 + 14fN−3 − 6fN−4 + fN−5]/12h

2,

f̃ ′′′
N−1 = [7fN − 25fN−1 + 34fN−2 − 22fN−3 + 7fN−4 − fN−5]/4h

3,

f̃
(4)
N−1 = [2fN − 9fN−1 + 16fN−2 − 14fN−3 + 6fN−4 − fN−5]/h

4,

f̃ ′
N = [137fN − 300fN−1 + 300fN−2 − 200fN−3 + 75fN−4 − 12fN−5]/60h,

f̃ ′′
N = [45fN − 154fN−1 + 214fN−2 − 156fN−3 + 61fN−4 − 10fN−5]/12h

2,

f̃ ′′′
N = [17fN − 71fN−1 + 118fN−2 − 98fN−3 + 41fN−4 − 7fN−5]/4h

3,

f̃
(4)
N = [3fN − 14fN−1 + 26fN−2 − 24fN−3 + 11fN−4 − 2fN−5]/h

4.

2.2. Equations obtained from the boundary conditions. Using the expressions for

the derivatives of a spline following from (6) and the expressions (7)–(10), we find the following

relations in terms of mi which are equivalent to the boundary conditions (16) (these equations

were earlier obtained in [4]):

m0 = g1,0, mN = g1,N , (21)

where g1,0 = f ′
0, g1,N = f ′

N ;{
111m0 + 227m1 + 79m2 + 3m3 = g2,0,

3mN−3 + 79mN−2 + 227mN−1 + 111mN = g2,N ,
(22)

where

g2,0 = 235f [x0, x1] + 170f [x1, x2] + 15f [x2, x3]− 16hf ′′
0 ,

g2,N = 15f [xN−3, xN−2] + 170f [xN−2, xN−1] + 235f [xN−1, xN ] + 16hf ′′
N ;
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{
18m0 + 65m1 + 26m2 +m3 = g3,0,

mN−3 + 26mN−2 + 65mN−1 + 18mN = g3,N ,
(23)

where

g3,0 = 50f [x0, x1] + 55f [x1, x2] + 5f [x2, x3] +
2

3
h2f ′′′

0 ,

g3,N = 5f [xN−3, xN−2] + 55f [xN−2, xN−1] + 50f [xN−1, xN ] +
2

3
h2f ′′′

N ;

{
83m0 + 391m1 + 179m2 + 7m3 = g4,0,

7mN−3 + 179mN−2 + 391mN−1 + 83mN = g4,N ,
(24)

where

g4,0 = 255f [x0, x1] + 370f [x1, x2] + 35f [x2, x3]− 4

3
h3f

(4)
0 ,

g4,N = 35f [xN−3, xN−2] + 370f [xN−2, xN−1] + 255f [xN−1, xN ] +
4

3
h3f

(4)
N .

The equations for mi corresponding to the two-point boundary conditions (17) were partially

derived above: (21)–(24). The equations at the points x1 and xN−1 are obtained in the same

way as the equation at the points x0, xN and have the form

m1 = g1,1, mN−1 = g1,N−1, (25)

where g1,1 = f ′
1, g1,N−1 = f ′

N−1;

{
3m0 − 33m1 − 29m2 −m3 = g2,1,

mN−3 + 29mN−2 + 33mN−1 − 3mN = g2,N−1,
(26)

where

g2,1 = 15f [x0, x1]− 70f [x1, x2]− 5f [x2, x3] + 16hf ′′
1 ,

g2,N−1 = 5f [xN−3, xN−2] + 70f [xN−2, xN−1]− 15f [xN−1, xN ] + 16hf ′′
N−1;

{
m0 + 8m1 +m2 = g3,1,

mN−2 + 8mN−1 +mN = g3,N−1,
(27)

where

g3,1 = 5f [x0, x1] + 5f [x1, x2]− 2

3
h2f ′′′

1 ,

g3,N−1 = 5f [xN−2, xN−1] + 5f [xN−1, xN ]− 2

3
h2f ′′′

N−1;

{
7m0 + 99m1 + 71m2 + 3m3 = g4,1,

3mN−3 + 71mN−2 + 99mN−1 + 7mN = g4,N−1,
(28)
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where

g4,1 = 35f [x0, x1] + 130f [x1, x2] + 15f [x2, x3] +
4

3
h3f

(4)
1 ,

g4,N−1 = 15f [xN−3, xN−2] + 130f [xN−2, xN−1] + 35f [xN−1, xN ]− 4

3
h3f

(4)
N−1.

Equations (21)–(28) contain the exact values of derivatives of f
(m)
k . To obtain an equation

for the boundary conditions (18), (19), we need to replace f
(m)
k with the approximate values of

the derivatives f̃
(m)
k obtained from the difference approximation by the above formulas.

2.3. The not-a-knot conditions. At x ∈ [xi, xi+1], i = 0, N − 1, the fifth order derivative

of the spline S(x) has the form

S(5)(x) =
720

h5
(fi+1 − fi)− 360

h4
(mi+1 +mi) +

60

h3
(Mi+1 −Mi), (29)

i.e., it is constant on each segment [xi, xi+1]. Substituting (29) into the continuity condition for

the fifth order derivative S(5)(xi − 0) = S(5)(xi + 0), we find

6(mi+1 −mi−1)− h(Mi+1 − 2Mi +Mi−1) =
12

h
(fi+1 − 2fi + fi−1). (30)

Expressing M = (M0,M1, . . . ,MN )T in terms of m = (m0,m1, . . . ,mN )T in accordance with

(7)–(10), we obtain two different representations of (30):

5mi−1 + 33mi + 21mi+1 +mi+2 = 5f [xi+2, xi+1] + 38f [xi+1, xi] + 17f [xi, xi−1], (31)

mi−2 + 21mi−1 + 33mi + 5mi+1 = 17f [xi+1, xi] + 38f [xi, xi−1] + 5f [xi−1, xi−2]. (32)

Equation (31) is applied for i = 1, N − 3, N − 2, whereas (32) is used for i = 2, 3, N − 1. The

right-hand sides of both equations are denoted by g5,i.

The difference between the boundary conditions 1525 and 1535 consists in the following.

Using the conditions 1525, we find a large continuous, up to the fifth order derivative, part

of the spline on [x0, x3], [xN−3, xN ], whereas, if we use the condition 1535, we find two large

parts on [x0, x2], [x2, x4] and [xN−4, xN−2], [xN−2, xN ]. We note that equation for the combined

boundary conditions was, in fact, obtained in the previous sections.

3 Systems of Equations for mi

Adding the equations obtained from the boundary conditions of each type to Equations (14),

we obtain a closed system of equations with respect to the unknowns mi:

Am = g, (33)

where m = (m0, . . . ,mN )T and g = (g0, g1, g2, . . . , gN−2, gN−1, gN )T . Moreover, the components

g2, . . . , gN−2 of g are the same for all boundary conditions and are computed by formula (15),

whereas g0, g1, gN−1, gN depend on the type of boundary conditions.
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In the case of boundary conditions 1525, we reduce the system of equations (33) by elemen-

tary transformations

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

69 58 3

72 197 78 3

1 26 66 26 1
. . .

1 26 66 26 1

3 78 197 72

3 58 69

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m2

m3

m4
...

mN−4

mN−3

mN−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g15252

g15253

g4
...

gN−4

g1525N−3

g1525N−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (34)

where

g15252 = 3(g2 − g5,2)− 5

24
(5g5,2 − g5,1), g15253 = 3g3 − 1

24
(5g5,2 − g5,1),

g1525N−2 = 3(gN−2 − g5,N−2)− 5

24
(5g5,N−1 − g5,N−2), g1525N−3 = 3gN−3 − 1

24
(5g5,N−1 − g5,N−2).

The unknowns m0, m1, mN−1, mN are found by solving the system (34) in accordance to the

formula

m1 =
1

3
[(5g5,2 − g5,1)/24− 6m2 −m3] ,

mN−1 =
1

3
[(5g5,N−1 − g5,N−2)/24− 6mN−2 −mN−3] ,

m0 =
1

5
[g5,1 − 33m1 − 21m2 −m3] ,

mN =
1

5
[g5,N−1 − 33mN−1 − 21mN−2 −mN−3] .

For boundary conditions 1535 we have the system of equations

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

434 353 18

97 309 129 5

1 26 66 26 1
. . .

1 26 66 26 1

5 129 309 97

18 353 434

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m3

m4

m5
...

mN−5

mN−4

mN−3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g15353

g15354

g5
...

gN−5

g1535N−4

g1535N−3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (35)

where

g15353 = 18(g3 − g5,3)− 5

96
(97g5,3 + g5,1 − 5g2),

g15354 = 5g4 − g3 + g5,3,

g1535N−4 = 5gN−4 − gN−3 + g5,N−3,

g1535N−3 = 5(gN−3 − g5,N−3)− 5

96
(97g5,N−3 + g5,N−1 − 5gN−2).
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The unknowns m0, m1, m2, mN−2, mN−1, mN are found by solving the system of equations

(35) in accordance with the formula

m2 =
1

18

[ 1

96
(97g5,3 + g5,1 − 5g2)− 32m3 − 5m4

]
,

mN−2 =
1

18

[ 1

96
(97g5,N−3 + g5,N−1 − 5gN−2)− 32mN−3 − 5mN−4

]
,

m1 = g5,3 − 21m2 − 33m3 − 5m4,

mN−1 = g5,N−3 − 21mN−2 − 33mN−3 − 5mN−4,

m0 =
1

5
[g5,1 − 33m1 − 21m2 −m3] ,

mN =
1

5
[g5,N−1 − 33mN−1 − 21mN−2 −mN−3] .

For boundary conditions 0115 we have the system of equations

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

5 33 21 1

1 26 66 26 1
. . .

1 26 66 26 1

1 32 33 5

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m0

m1

m2
...

mN−2

mN−1

mN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1,0
g5,1
g2
...

gN−2

g5,N−1

g1,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (36)

For boundary conditions 0215 we have the system of equations

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

158 121 6

97 309 129 5

1 26 66 26 1
. . .

1 26 66 26 1

5 129 309 97

6 121 158

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1

m2

m3
...

mN−3

mN−2

mN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(111g5,1 − 5g2,0)/16

5g2 − g5,1
g3
...

gN−3

5gN−2 − g5,N−1

(111g5,N−1 − 5g2,N )/16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (37)

The unknowns m0, mN are found by solving the system of equations (37) in accordance with

the formula

m0 =
1

111
[g2,0 − 227m1 − 79m2 − 3m3] ,

mN =
1

111
[g2,N − 227mN−1 − 79mN−2 − 3mN−3] .
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For boundary conditions 0315 we have the system of equations

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

269 248 13

97 309 129 5

1 26 66 26 1
. . .

1 26 66 26 1

5 129 309 97

13 248 269

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1

m2

m3
...

mN−3

mN−2

mN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

18g5,1 − 5g3,0
5g2 − g5,1

g3
...

gN−3

5gN−2 − g5,N−1

18g5,N−1 − 5g3,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (38)

The unknowns m0, mN are found by solving the system of equations (38) in accordance with

the formulas

m0 =
1

18
[g3,0 − 65m1 − 26m2 −m3] ,

mN =
1

18
[g3,N − 65mN−1 − 26mN−2 −mN−3] .

For boundary conditions 0415 we have the system of equations

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2000 1206 49

1221 3231 1274 49

1 26 66 26 1
. . .

1 26 66 26 1

49 1274 3231 1221

49 1206 2000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m2

m3

m4
...

mN−4

mN−3

mN−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g04152

g04153

g4
...

gN−4

g0415N−3

g0415N−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (39)

where

g04152 = 49
5 (5g2 − g5,1)− 97

80(83g5,1 − 5g4,0), g04153 = 49g3 − 1
16(83g5,1 − 5g4,0),

g0415N−2 =
49
5 (5gN−2 − g5,N−1)− 97

80(83g5,N−1 − 5g4,N ), g0415N−3 = 49gN−3 − 1
16(83g5,N−1 − 5g4,N ).

The unknowns m0, m1, mN−1, mN are found by solving the system of equations (39) in accor-

dance with the formula

m1 =
1

49
[(83g5,1 − 5g4,0)/16− 53m2 − 3m3] ,

mN−1 =
1

49
[(83g5,N−1 − 5g4,N )/16− 53mN−2 − 3mN−3] ,

m0 =
1

83
[g4,0 − 391m1 − 179m2 − 7m3] ,

mN =
1

83
[g4,N − 391mN−1 − 179mN−2 − 7mN−3] .

The matrices of all the above systems have diagonal dominance. Thus, for all the types

of boundary conditions under consideration we can guarantee the existence, uniqueness, and

possibility of computing solutions by the stable 5-point sweeping method. [9].
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4 Asymptotics of Approximation Error

The asymptotic representations (2) for the error of approximation by a spline S(x) in the

case of the classical boundary conditions were obtained in [4], where the proof was based on

the diagonal dominance in the systems for mi. Since the same fact occurs in the case of the

boundary conditions under consideration, we can repeat the reasoning of [4] to obtain (2).

However, since we cannot explicitly indicate the functions γi,N (t) for each type of boundary

conditions, for further consideration we use numerical experiments. The functions γi,N (t) are

independent of f(x). Therefore, setting f(x) = x6 and taking into account that f (6)(x) = 6!,

f (k)(x) ≡ 0, k � 7, from (2) we find

S(x) = f(x) + h6γi,N (t),

from which we find the sought function γi,N (t):

γi,N (t) =
1

h6
(S(x)− x6). (40)

We note that x6 − S(x) is called a monospline [9].

We show that γi,N (t) are bounded. We consider the system (33) for constructing a spline

with boundary conditions 0102ap. We introduce a spline H(x), x ∈ [x0, xN ], interpolating fi,

f ′
i , i = 0, N , at the nodes and taking the following form on each segment [xi, xi+1], i = 1, N − 2:

H(x) = fi−1ϕ1(t) + fiϕ2(t) + fi+1ϕ2(1− t) + fi+2ϕ1(1− t)

+ hf ′
i−1ψ1(t) + hf ′

iψ2(t)− hf ′
i+1ψ2(1− t)− hf ′

i+2ψ1(1− t).

On [x0, x1] and [xN−1, xN ], the spline H(x) is expressed by

H(x) = f0ϕ3(t) + f1ϕ4(t) + f2ϕ5(t) + f3ϕ6(t)

+ hf ′
0ψ3(t) + hf ′

1ψ4(t) + hf ′
2ψ5(t) + hf ′

3ψ6(t),

H(x) = fNϕ3(1− t) + fN−1ϕ4(1− t) + fN−2ϕ5(1− t) + fN−3ϕ6(1− t)

− hf ′
Nψ3(1− t)− hf ′

N−1ψ4(1− t)− hf ′
N−2ψ5(1− t)− hf ′

N−3ψ6(1− t).

Taking the polynomial x6 for f(x) and repeating the argument of [4], we find

H(x)− x6 = h6γ(t), x ∈ [xi, xi+1], i = 0, N − 1.

Taking into account that ‖γ‖C = 3/64, we obtain the estimate

‖H − x6‖C � 3

64
h6. (41)

We consider the difference S(x)−H(x). For x ∈ [xi, xi+1], i = 1, N − 2, we have

S(x)−H(x) = h[(mi−1 − f ′
i−1)ψ1(t) + (mi − f ′

i)ψ2(t)

− (mi+1 − f ′
i+1)ψ2(1− t)− (mi+2 − f ′

i+2)ψ1(1− t)]. (42)

The vector on the right-hand side of the system is equal to g = (g1,0, g2,0, g2, . . . , g2,N , g1,N )T .

Subtracting Af ′, f ′ = (f ′
0, . . . , f

′
N )T , from both sides of (33), we find

A(m− f ′) = g −Af ′. (43)
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Let us estimate the components of g −Af ′. By the Taylor formula,

g1,0 − (Af ′)0 = 120h5,

g2,0 − (Af ′)1 = 9144h5,

gi − (Af ′)i = 0, i = 2, N − 2,

g2,N − (Af ′)N−1 = 9144h5,

g1,N − (Af ′)N = 120h5.

We denote by ‖z‖∞ = max
i

|zi| and ‖A‖ = max
i

∑
j
|aij | the norms of a vector z = (z0, . . . , zN )T

and a matrix A = (aij). Since the matrix A of the system (33) for constructing a spline

with boundary conditions 0102ap has diagonal dominance, equal to 1, we have [9] ‖A−1‖ � 1.

Therefore,

‖m− f ′‖∞ � ‖g −Af ′‖∞,

and, consequently,

‖m− f ′‖∞ � 9144h5.

The functions ψ1(t), ψ2(t), t ∈ [0, 1], can be estimated from above as follows:

‖ψ1‖C � 0, 005, ‖ψ2‖C � 0, 18.

As a result, from (42) we obtain the estimate

‖S −H‖C � h‖m− f ′‖∞(2‖ψ1‖C + 2‖ψ2‖C) � 3383, 28h6. (44)

Since ‖S − x6‖C � ‖S −H‖C + ‖H − x6‖C , from (41), (44) for (40) we get

‖γi,N‖C � 3383, 33, i = 1, N − 2.

For i = 0, (N − 1) similar arguments lead to the estimate ‖γi,N‖C � 5806, 49. Thus, the

functions γi,N (t) are bounded in the case of boundary conditions 0102ap. In the remaining

cases, the boundedness of γi,N (t) is proved in a similar way.

We present the results of numerical experiment of calculating values of the functions γi,N (t)

and their maxima for different boundary conditions. Computations are performed on [−1, 1].

It should be noted that the functions γi,N (t) fastly converge to the limit values γi,∞(t) as N

increases for any boundary conditions and that all functions fastly converge to γ(t) = 1
2 t

2(1 −
t)2(1 + 2t− 2t2) far from the endpoints of [a, b]. Thereby the well known fact of local influence

of boundary conditions on the behavior of the spline is confirmed, at least, in asymptotics.

Tables 1 and 2 consist of the values of max
i

‖γi,80‖C for different boundary conditions. These

values are, in fact, the same as max
i

‖γi,∞‖C . In Table 1, for the sake of brevity the code of

boundary condition is divided into two parts: the first part (the first column of the table) means

the order of derivative at the point x0, whereas the second part (the first row of the table) means

the order of derivative at the points x0 and x1 for the classical and two-point boundary conditions

respectively. For example, for boundary conditions 0213ap we have max
i

‖γi,∞‖C ≈ 17, 2278. The

empty cells of the table mean the absence of boundary conditions of the corresponding type (for

example, 0202ap) or repetition of some other condition (for example, 0203ap and 0302ap).
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We note that for all boundary conditions with 6-point difference approximations of deriva-

tives (cf. Table 1) the asymptotic behavior of γi,N (t) is considerably worse than in the case

of the not-a-knot conditions 1525 (cf. Table 2). For boundary conditions of type 0X15ap,

X = 1, 2, 3, 4, the situation is similar since max
i

‖γi,∞‖C ∈ [14, 7545, 16, 5224]. Thus, it is not

reasonable to use conditions with difference approximations of derivatives; it suffices to consider

only boundary conditions 1525.

Table 1. Values of max
i

‖γi,80‖C for boundary conditions
with difference approximations of derivatives.

02 03 04 11 12 13 14

01 16,8471 16,7938 16,7310 17,1490 16,0806 17,0406 16,3908

02 16,6531 16,5207 17,3063 15,9410 17,2278 16,0169

03 16,2318 17,4722 15,8901 17,5733 15,7305

04 17,6377 15,8785 18,0879 15,6004

Table 2. Values of max
i

‖γi,80‖C for boundary conditions
with continuous fifth order derivative at one or two points.

1525 1535 0115 0215 0315 0415

9,8340 15,8112 0,7006 1,3749 2,7981 6,0206

The results in Tables 1 and 2 show that the combined boundary conditions are optimal.

Among two variants of the not-a-knot conditions 1525 and 1535, the better is the condition

1525. We also considered the so-called not-a-knot conditions 2535. However, such conditions

are not of great importance since max
i

‖γi,∞‖C ≈ 128, 4, which is considerably worse than the

case of conditions 1525.

We note that all the boundary conditions considered in this paper are worse in the sense

of accuracy than the optimal conditions in [4] because max
i

‖γi,∞‖C > ‖γ‖C = 3/64. However,

the considered conditions are more useful in practice since they require less information about

derivatives of the interpolated function.

5 Interpolation of the Runge Function.
Numerical Experiment

As an example, we consider interpolation of the Runge function [14]

f(x) =
1

1 + 25x2
(45)

on a uniform mesh on [−1, 1]. Lagrange polynomials taken for interpolation in this example

turn out to be divergent [14, 15]. Let us consider quintic splines for interpolation. Tables 3–6

represent the error of approximation of the Runge function by splines with different boundary

conditions.

Assume that the Runge function is interpolated by quintic splines on a uniform mesh with

different N . Then e1 = ‖S − f‖C[−1,1] is the same for all boundary conditions and attains the
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maximum at the middle of [−1, 1], where the boundary conditions do not practically affect the

approximation error. The corresponding data are given in Table 3. However, near the endpoints,

the influence becomes considerable, and the behavior of errors S(x) − f(x) near the endpoints

looks like the behavior of γi,N (t).

Table 3. Values of e1 for all boundary conditions with different N .

N 20 40 80 160

e1 1, 60× 10−4 3, 14× 10−5 2, 48× 10−7 3, 05× 10−9

Now, we consider interpolation of the Runge function (45) by quintic splines on a uniform

mesh on [0, 1] and study the behavior of the approximation error. If we use the boundary condi-

tions with six-point approximations of derivatives for N = 20, then the norms of approximation

error are practically the same: e2 = ‖S − f‖C[0,1] ∈ [1, 21× 10−3, 1, 31× 10−3]. In this case, the

error graphs are practically undistinguishable.

Table 4 presents errors in the case of boundary conditions including the continuity of the

fifth order derivative of the spline at one or two points. The error attains the maximum near

the point 0.

Table 4. Values of e2 for boundary conditions with the fifth order derivative for N = 20.

1525 1535 0115 0215 0315 0415

9, 73× 10−4 1, 21× 10−4 3, 98× 10−5 5, 81× 10−5 7, 04× 10−5 5, 19× 10−5

In the case N = 20, it turns out that the error in the case of conditions 1535 is considerably

less than that for conditions 1525. It can look like a contradiction with the above conclusion

about the advantage of conditions 1525 in comparison with condition 1535. However, the error

asymptotic can be observable only for large N , whereas we have N = 20 in the example with

the Runge function. The results for large N are presented in Tables 5 and 6.

Table 5. Values of e2 for boundary conditions with

approximation of derivatives with different N .

N e2
40 [8, 80× 10−6, 9, 71× 10−6]

80 [5, 07× 10−7, 5, 33× 10−7]

160 [1, 26× 10−8, 1, 35× 10−8]

320 [2, 19× 10−10, 2, 36× 10−10]

Table 6. Values of e2 for boundary conditions with

continuity of the 5th order derivative for different N .

N 1525 1535 0115 0215 0315 0415

40 7, 94×10−7 3, 67×10−5 1, 49×10−6 3, 01×10−6 6, 41×10−6 1, 49×10−5

80 3, 87×10−7 1, 73×10−7 3, 68×10−8 7, 25×10−8 1, 49×10−7 3, 25×10−7

160 8, 31×10−9 1, 11×10−8 6, 33×10−10 1, 24×10−9 2, 53×10−9 5, 47×10−9

320 1, 4×10−10 2, 15×10−10 1, 01×10−11 1, 99×10−11 4, 04×10−11 8, 71×10−11
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The above results show that the use of quintic splines on a uniform mesh allows us to

approximate the Runge function with high accuracy.

In this paper, we used only 6-point approximations for derivatives in the optimal conditions

(3). From the theoretical point of view, 7-point approximations of derivatives, could yield the

same error asymptotics as h → 0 as in the case of the optimal boundary conditions. However,

the results below show that this fact holds, generally speaking, for very small h.

We consider the quantity

AR =
e2

max
i

‖γi,N (t)f (6)(x)h6/6!‖C
.

It is obvious that lim
h→0

AR = 1. This fact is also confirmed by the results (cf. Table 7) of

numerical experiment with the optimal boundary conditions 0111 and conditions 0111ãp (with

7-point approximations of the first order derivatives). However, for conditions 0111ãp, the

convergence rate AR satisfies the relation AR ≈ 1 only for very small h.

Similar results are obtained by for the remaining types of optimal boundary conditions (3).

Table 7. Values of AR for boundary conditions

0111ãp and 0111 with different N .

N 0111ãp 0111

25 42,5300 1,1635

50 123,6195 0,9584

100 80,1194 1,0070

200 25,9438 1,0026

400 7,4697 1,0007

800 2,5577 1,0002

1600 1,3709 1,0009
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