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ON CONVERGENCE RATE ESTIMATES FOR SOME
BIRTH AND DEATH PROCESSES

A. I. Zeifman1,2,3 and T. L. Panfilova1

Homogeneous birth and death processes with a finite number of states are studied. We analyze the
slowest and fastest rates of convergence to the limit mode. Estimates of these bounds for some classes
of mean-field models are obtained. The asymptotics of the convergence rate for some models of
chemical kinetics is studied in the case where the number of system states tends to infinity.

1. Introduction

The problem of analyzing the rate of convergence to the limit mode for birth and death processes
(BDP) has been studied for the last two decades in many papers (see, e.g., [1–3]). The relation between
spectrum bounds of BDP’s intensity matrix and the slowest and fastest rates of convergence is well
known. The common approach (also applicable to the inhomogeneous BDP with a countable state space)
was proposed in [11, 12]. The method is based on two main components: the logarithmic operator norm
and the related estimates, and special transforms of the reduced intensity matrix. The first applications
of mean-field models were considered in [5–7].

Let X(t), t � 0, be the BDP with a phase space E = {0, 1, . . . , N}, and ak > 0, 0 � k � N − 1, and
bk > 0, 1 � k � N, b0 = aN = 0 be its birth and death intensities respectively.

Denote by Σ the spectrum of the corresponding intensity matrix. Let (−ξ) and (−β) be the minimum
and maximum points of Σ \ {0} respectively. It is well known that all points of Σ \ {0} are real, distinct
and negative.

In the present paper we give the estimates of ξ and β for some mean-field models and in some cases
study their asymptotics when N → ∞.

Let us consider a direct Kolmogorov system for the BDP X(t):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

dp0

dt
dp1

dt
...

dpN

dt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

−a0 b1 0 0 · · ·
a0 −(a1 + b1) b2 0 · · ·
0 a1 −(a2 + b2) b3 · · ·
...

...
...

. . . · · ·
0 · · · · · · aN−1 −bN

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

p0
p1
...
pN

⎞
⎟⎟⎟⎠ , (1)

where p0 = p0(t), p1 = p1(t), . . . , pN = pN (t) are the state probabilities for X(t).

Setting p0(t) = 1−
N∑
i=1

pi(t), we come to the system of differential equations of the form

dz(t)

dt
= Bz(t) + f . (2)

Further analysis is based on studying the convergence rate of solutions of the system

dx(t)

dt
= Bx(t) (3)
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to zero. To study this system, special renormalizations and the logarithmic norm are used (see the cited
papers). Here we formulate only the main results, on which further estimates are based.

To formulate the main results, let us consider auxiliary sequences {δi}, {σi} of positive numbers and
the values

αi = ai + bi+1 − ai+1δi+1 − δ−1
i bi, (4)

χi = ai + bi+1 + ai+1σi+1 + σ−1
i bi. (5)

The following double-sided estimates for the convergence rate are valid.

Theorem 1. Let the birth and death intensities be positive, and the number β satisfy the condition

min
0�i�N−1

αi � β � max
0�i�N−1

αi.

Then for some appropriate norm

‖ x∗ (t)− x∗∗ (t) ‖� ‖ x∗ (0)− x∗∗ (0) ‖ e−βt

for all t � 0, and there is a unique positive sequence {δ∗i } such that β∗ = αi for all i; hence, the
corresponding convergence rate estimate is precise.

Theorem 2. Let the birth and death intensities be positive, and the number ξ satisfy the condition

min
0�i�N−1

χi � ξ � max
0�i�N−1

χi.

Then for some appropriate norm

‖ x∗ (t)− x∗∗ (t) ‖� ‖ x∗ (0)− x∗∗ (0) ‖ e−ξt

for all t � 0, and there is a unique positive sequence {σ∗
i } such that ξ∗ = χi for all i; hence, the

corresponding convergence rate estimate is precise.

Note that in practice δ∗k and σ∗
k, are usually intractable, and the main interest is in finding the

sequences giving the closest estimates for β and χ.

2. Mean-field models

Consider an ergodic system with local interaction of particles (see [8]) ϕt, t � 0, on the complete
graph with N nodes (cells). Such systems are well known in statistical physics as mean-field models (see
the references in [4]). They are defined by 2N jump intensities λi, μi, i = 0, . . . , N −1, where λi and
μi are birth (death) intensities in a free (occupied) graph cell when i adjacent cells are occupied. The

relation between such process and the BDP is well known: X
(N)
t = |ϕt|, t � 0, where |ϕt| is the number

of occupied cells at the moment t, and X
(N)
t , t � 0, is a DBP with intensities

ak = (N − k)λk, bk+1 = (k + 1)μk, k = 0, . . . , N − 1. (6)

The behavior of β = βN and χ = χN for some classes of mean-field models was studied in [5–7].
In the present paper we consider other classes of such models describing stochastic models of chemical

kinetics.
Let us set

Ak = λk + μk,

Bk = λk + μk + k
λk−1μk − λkμk−1

λk−1
,
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Ck = λk + μk + (N − k − 1)
λkμk+1 − λk+1μk

μk+1
,

Dk = 2μk + (N − 2k) (λk − μk) ,

Ek = (N − k)λk + (k + 1)μk.

Theorem 3. Let λk descend and μk grow in k. Then the following estimate is valid:

A � βN � B, (7)

where

A = max (min (Ak) ,min (Bk) ,min (Ck) ,min (Dk)) , (8)

B = min (min (Ek) ,max (Bk) ,max (Ck) ,max (Dk)) .

Proof. Let us prove the validity of each estimate. First, let us note that for any choice of δk we
have αi < ai + bi+1 = Ei for any i. Hence, βN < min (Ek) .

Then, setting all δk = 1, we get αk = (N − k − 1) (λk − λk+1) + k (μk − μk−1) + λk + μk � Ak for
any k. From here we obtain the estimate βN � min (Ak).

Setting δk =
λk−1

λk
, we get αk = Bk, and thus

min (Bk) � βN � max (Bk) .

The remaining two estimates are obtained similarly, the first one by choosing δk =
μk−1

μk
, and the second

one by choosing δk =
μk−1

λk
.

Let us introduce the following values:

Fk = (2N − 2k − 1)λk + μk + k
λk−1μk + λkμk−1

λk−1
,

Gk = λk + (2k + 1)μk + (N − k − 1)
λkμk+1 + λk+1μk

μk+1
,

Hk = N (λk + μk) ,

Lk = 2Nλk + (2k + 1) (μk − λk) .

Theorem 4. Let λk descend and μk grow in k. Then the following estimate is valid:

C � ξN � D, (9)

where

C = max (max (Ek) ,min (Fk) ,min (Gk) ,min (Hk)) , (10)

D = min (max (Fk) ,max (Gk) ,max (Hk) ,max (Lk)) .
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Proof. First, let us note that for any choice of σk we have χi > ai + bi+1 = Ei for any i. Hence,
ξN > max (Ek) .

Other inequalities are proved as in the precious theorem. That is, setting all σk = 1, we get

χk = (N − k − 1) (λk + λk+1) + k (μk + μk−1) + λk + μk � Lk

for any k. From here the estimate ξN � max (Lk) follows.

Setting σk =
λk−1

λk
, we get αk = Fk, and thus min (Fk) � ξN � max (Fk) . The remaining two

estimates are obtained similarly, the first one by choosing σk =
μk−1

μk
, and the second one by choosing

σk =
μk−1

λk
.

3. Examples

Let us consider some chemical kinetics models, described in [10]. The first results of estimating β
are given in [9].

Example 1. Consider the reaction A+B ↔ C. It takes place in a closed vessel of volume V . The
number of molecules of the substance C is described by the mean-field model with intensities of the
form λk = a

V (N − k) , μk = b. Let us analyze the behavior of βN in the case where V = N r as N → ∞.

First, note that in this example λkμk+1 − λk+1μk = ab
Nr .

The most precise results are obtained for r > 1. In this case we sequentially have

Ck = b+
a

N r
(2N − 2k + 1) , (11)

lim
N→∞

βN = b.

For r = 1 from (11) we get βN = O (1).

Let now 0 � r < 1. Consider

Bk =
a

N r
(N − k) + b+

bk

N − k + 1
. (12)

Setting x = N − k and analyzing the corresponding function, we get 2
√
abN1−r � Bk � bN + o(1), and

hence for large N the following estimate is valid:

O
(
N

1−r
2

)
� βN � O (N) .

Let us now analyze the behavior of ξN . On the one hand, from the formula

Ek = (N − k)λk + (k + 1)μk =
a(N − k)2

N r
+ (k + 1)b

and Theorem 4, it follows that ξN > max
(
aN2−r, bN

)
. On the other hand, analyzing the right-hand

estimate in (9) and the values Hk, we obtain

Hk = N (λk + μk) = aN1−r(N − k) + bN,

and hence ξN < H0 = aN2−r + bN.

Now for r > 1 and 0 � r < 1 we have respectively:

lim
N→∞

ξN
N

= b and lim
N→∞

ξN
N2−r

= a,
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and finally, for r = 1 and large N

max (a, b) � ξN
N

� a+ b.

Example 2. Consider the reaction A ↔ 2C. This reaction is described by the mean-field model
with intensities of the form λk = a, μk = b

V k, assuming that k � 1. Analyzing the behavior of βN in the
case where V = N r as N → ∞, we get, as in Example 1, interchanging Bk and Ck in our considerations:

lim
N→∞

βN = a for r > 1;

βN = O (1) for r = 1;

O
(
N

1−r
2

)
� βN � O (N) for 0 � r < 1 and large N.

The behavior of ξN in this situation is studied in the same way as in Example 1.

From the formula

Ek = (N − k)λk + (k + 1)μk = a(N − k) +
bk(k + 1)

N r

and Theorem 4 it follows that ξN > max
(
aN, bN2−r

)
. On the other hand, analyzing the right-hand

estimate in (9) and the values Hk, we obtain

Hk = N (λk + μk) = aN + bkN1−r,

hence, ξN < H1 < aN + bN2−r.

Now we have, for r > 1 and 0 � r < 1 respectively,

lim
N→∞

ξN
N

= a and lim
N→∞

ξN
N2−r

= b,

and finally, for r = 1 and large N

max (a, b) � ξN
N

� a+ b.

Example 3. Consider the reaction A + B ↔ C +D. This reaction is described by the mean-field
model with intensities λk = a

V (N − k) , μk = b
V k.

Let us analyze the behavior of βN again in the situation where V = N r as N → ∞. In this example,
λkμk+1 − λk+1μk = abN

N2r . For definiteness let us limit ourselves to the case a � b. Then the sequence

Ck = N−r

(
a (N − k) + bk +

N − k − 1

k + 1
aN1−r

)

monotonically decreases, and hence

CN−1 = aN−r + b(N − 1)N−r � βN � C1 � aN1−r + a(N − 1)N1−2r. (13)

First, let r > 1. In this case from (13) we get βN = O
(
N1−r

)
.

If in addition a = b, then we get lim
N→∞

βN

N1−r = b.

For r = 1 from (13) we get βN = O (1).

If 0 � r < 1, then O
(
N1−r

)
� βN � O

(
N2(1−r)

)
.

Let us analyze the behavior of ξN . From the formula

Ek = (N − k)λk + (k + 1)μk =
a(N − k)2

N r
+

bk(k + 1)

N r
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and Theorem 4 it follows that ξN � (N − 1)2−r max (a, b) = a(N − 1)2−r. On the other hand, analyzing
the right-hand estimate in (9) and the values Hk, we obtain

Hk = N (λk + μk) = N1−r (a(N − k) + bk) ,

hence ξN � H1 � aN2−r.

Then for any r � 0

lim
N→∞

ξN
N2−r

= a.

Now let us consider a more general mean-field model, for which the precise asymptotics of the lower
spectrum bound can be found.

Theorem 5. Let λk = α (N − k)a , and μk = β (k + 1)b , where a, b, α, β are some positive constants,
and a �= b. Then for a < b

lim
N→∞

ξN
N1+b

= β,

and for a > b

lim
N→∞

ξN
N1+a

= α.

Proof. Let a < b. Set σk =
β
(
N1+b − k1+b

)

α (N − k)1+a . Then

χk = N1+b

(
β +

α (N − k)1+a

N1+b − k1+b

)

monotonically decreases and hence

βN1+b < χN−1 � χk � χ0 = βN1+b + αN1+a.

From here the first equality follows.

To prove the second one we set

σk =
βk1+b

α
(
N1+a − (N − k)1+a

) .

Now we have

χk = N1+a

(
α+

β (1 + k)1+b

N1+a − (N − k − 1)1+a

)
.

Let us prove that χk grows. Consider the function f (x) = x1+b

N1+a−(N−x)1+a . It is easy to verify that the

sign of f ′(x) is the same as the sign of the function

g (x) = (1 + b)N1+a − (N − x)a ((1 + b)N + x (a− b)) .

In addition, g (0) = 0, and g′ (x) > 0 for all x ∈ (0, N). Thus, f (x) grows, and hence χk also grows.
From here we obtain the estimate

αN1+a � χk � αN1+a + βN1+b,

and hence the second equality.



622 A. I. Zeifman and T. L. Panfilova

Acknowledgements

This research is supported by RFBR, project 06–01–00111.

REFERENCES

1. P. Diaconis and L. Salloff-Coste, “Walks on generating sets of Abelian groups,” Probab. Theory
Relat. Fields, 105, 393–421 (1996).

2. E.A. Van Doorn, “Conditions for exponential ergodicity and bounds for the decay parameter of a
birth-death process,” Adv. Appl. Probab., 17, 514–530 (1985).

3. E.A. Doorn and A. I. Zeifman, “Extinction probability in a birth-death process with killing,” J.
Appl. Probab., 42, 185–198 (2005).
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