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SOME PROBLEMS OF QUALITATIVE ANALYSIS
IN THE MODELING OF THE MOTION OF RIGID BODIES
IN RESISTIVE MEDIA

M. V. Shamolin UDC 517; 531.01

Abstract. In this paper, we present a qualitative analysis of plane-parallel and spatial problems

on the motion of realistic rigid bodies in a resistive medium and construct a nonlinear model of the

influence of the medium on the rigid body.
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In the first chapter, we present a qualitative analysis of plane-parallel and spatial problems on the

motion of realistic rigid bodies in a resistive medium. We construct a nonlinear model of the influence
of the medium on the rigid body, in which the dependence of the arm of force on the reduced angular
velocity of the body is taken into account; in this case, the moment of force is also a function of the

angle of attack. Experiments on the motion of homogeneous circular cylinders in water show that
these circumstances must be taken into account in modeling (see [9–11, 14–16]). In the study of plane
and spatial models of interaction of a rigid body with a medium (both in the presence or absence

of an additional tracking force), we find sufficient conditions of stability of one of the key regimes of
motion, rectilinear translational motion. We show that under certain conditions, stable or unstable
autooscillation regimes in the system can appear.
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Similar conditions are obtained for the key regime of the motion of a four-dimensional rigid body

in a nonconservative force field. In this case, we note mechanical and topological analogies between
the motion of low-dimensional bodies in a resistive medium and higher-dimensional bodies in the
corresponding nonconservative field.

Chapter 2 is devoted to the study of the problem of the plane-parallel motion of a rigid body that

interacts with a medium only on a frontal flat domain of its outer surface. In the construction of
the influence function of the medium we use information on properties of the jet flow under quasi-
stationarity conditions (for example, when a homogeneous circular cylinder is immersed in water). We

do not examine the motion of the medium, but we consider the problem of the rigid-body dynamics
in which the characteristic time of motion of the body relative to its center of mass is comparable
with the characteristic time of motion of the center itself. In the first chapter we deduce conditions

of asymptotic stability of the rectilinear translational deceleration, in [28, 32–34, 36, 40, 62] a new
multiparameter family of phase portraits in the space of quasi-velocities is obtained, and in the second
chapter we prepare quantitative material for further full-scale experiments on the motion of hollow

circular cylinders in a medium.

Acknowledgment. This work was partially supported by the Russian Foundation for Basic Research
(project No. 12-01-00020-a).

Chapter 1

ON THE STABILITY OF SOME KEY REGIMES OF MOTION

OF A RIGID BODY IN A NONCONSERVATIVE FORCE FIELD

In this paper, we perform a qualitative analysis of plane-parallel and spatial problems on the motion
of realistic rigid bodies in resistive media.

We construct a nonlinear model of the influence of a medium on a rigid body in which the dependence

of the arm of force on the reduced angular velocity is taken into account and the moment of the force
is also a function of the angle of attack. Results of experiments on the motion of homogeneous circular
cylinders in water show that these circumstances must be taken into account in modeling (see [8, 12,

13, 18, 23, 25, 29]).
In the study of plane and spatial models of interaction of a rigid body with medium (both in the

presence or absence of an additional tracking force), we find sufficient conditions of stability of one of

the key regimes of motion, rectilinear translational motion. We show that under certain conditions,
stable or unstable autooscillation regimes in the system can appear.

Similar conditions are also obtained for the key regime of the motion of a four-dimensional rigid body

in a nonconservative force field; we also note mechanical and topological analogies between the motion
of low-dimensional bodies in a resistive meduim and higher-dimensional bodies in the corresponding
nonconservative field.

1. Introduction

We study the problem on the motion of a rigid body that interacts with a medium only on a frontal
flat domain of its outer surface. In the construction of the influence function of the medium we use

information on properties of the jet flow under quasi-stationarity conditions (see [18–20, 30, 60, 61]).
We do not examine the motion of the medium, but we consider the problem of the rigid-body dynamics
in which the characteristic time of motion of the body relative to its center of mass is comparable

with the characteristic time of motion of the center itself.
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Fig. 1. Plane-parallel motion of a symmetric rigid body is a resistive medium

Since the nonlinear analysis is quite difficult, we neglect the dependence of the moment of force on

the angular velocity of the body but take into account the dependence on the angle of attack (see
also [24, 26, 27, 31, 41])).

From the practical point of view, the problem on the stability of the nonperturbed (rectilinear

translational) motion is of interest; in this motion, velocities of points of the body are perpendicular
to the lamina (cavitator).

Results obtained under this simplifying assumption allow one to conclude that there is no conditions

under which the systems considered have solutions corresponding to angular oscillations of limited
amplitude.

Experiments on the motion of homogeneous circular cylinders in water (see [29]) confirm that in

the modeling of the influence of a medium on a rigid body one must take into account the dependence
of the moment of force on the angular velocity of the body. In this case, equations of motions contain
additional dissipative terms.

In the study of the motion of a body with finite angles of attack, the main problem of the nonlinear
analysis is to obtain conditions under which there exist bounded-amplitude oscillations about the
nonperturbed motion, which confirms the necessity of the complete nonlinear study.

2. Plane-parallel Motion of a Symmetric Rigid Body in a Resistive Medium

Assume that a homogeneous rigid body of mass m performs a plane-parallel motion in a homoge-
neous medium and some domain of the outer surface of the body is a plane lamina AB under the

conditions of jet flow. This means that in the case where tangential forces are absent, the influence
of the medium on the lamina is described by a normal force S applied at a point N (see Fig. 1). The
remaining part of the surface of the body is located inside the volume bounded by the jet surface; it

is not affected by the medium. Similar conditions appear, for example, after the immersion of a body
in water (see [29]). We also assume that the gravity force acting on a body is negligible compared
with the resistance force (see also [44]).

Consider a right-hand coordinate system Dxyz attached to the lamina (the axis z is perpendicular
to the plane of the figure); for simplicity, we assume that Dzx is the plane of geometric symmetry of
the body. Then among possible motions, there exist a regime of rectilinear translational deceleration

(nonperturbed motion) that is perpendicular to the lamina AB. The perpendicular bisector Dx
passing through the center of gravity C of the body belongs to the line of action of the force S. Under
a perturbation of this regime, the velocity vector v of the point D with respect to the medium deviates

from the axis DC of geometric symmetry by an angle α (angle of attack).
To construct a dynamical model, we introduce the first three phase coordinates: the speed v of the

point D with respect to the flow of the medium (see Fig. 1), the angle α, and the algebraic value Ω of

the projection of the absolute angular velocity of the body on the axis z, AB = Δ.
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Assume that the magnitude of the force S is a quadratic function of v:

S = s1v
2, (2.1)

where s1 is a coefficient called the Newton resistance. We represent it in the form

s1 =
ρPcx
2

, (2.2)

where cx is the dimensionless coefficient of the front resistance (here ρ is the density of the medium
and P is the area of the lamina). This coefficient depends on the angle of attack, the Strouhal number,
and other parameters. We introduce the “Strouhal-type” dimensionless phase variable

ω ∼= ΩΔ

v
(2.3)

and the auxiliary function

s = s1 sgn cosα; (2.4)

the influence of the medium on the body is described by the pair of functions (yN , s).

We restrict ourselves to the case of the dependence of the coefficient cx on the angle of attack, i.e.,
we assume that s is a function of α and yN = DN is a function of two dimensionless variables (α, ω).

As was noted above, previous works were devoted to the study of a plane interaction in which only

the dependence of the pair (yN , s) on the angle of attack is takes into account. Here we examine
plane-parallel and spatial motions of bodies in the nonlinear case where s depends on the angle of
attack and, in addition, the function yN depends on the reduced angular velocity ω.

The free deceleration of a body (i.e., the motion of a body under the action of a single resistance
force; see case I below) with small angles of attack is an example of nonlinear dynamical systems
that describe the interaction of a medium with a body with account of rotational derivatives of the

moment of force with respect to the angular velocity. The term “retational derivative” is often used in
hydrodynamics in the case where differentiation of dynamical functions is performed in a noninertial
coordinate system; if the moment of force depends on the angular velocity, then it is linearly involved

in the equations of motion.
The nonperturbed motion is determined by the equations

α(t) ≡ 0, ω(t) ≡ 0. (2.5)

Therefore, the function yN (α, ω) for small (α, ω) has the form

yN = Δ(kα− hω), (2.6)

where k and h are some constants. Since the function s is even (due to the geometric symmetry of
the body), we neglect the dependence of s on α.

Linearized models of the force action of the medium contain three parameters s = s1, k, and

h, which depend on the shape of the lamina. The first of these parameters, the coefficient s, is
dimensional, whereas the parameters k and h are dimensionless. The parameters s and k can be
found experimentally by weight measuring in wind tunnels. In [22], one can find information on

theoretic methods of finding these values for some shapes of laminas; this information allows one to
assume that k > 0. As for the parameter h (which provides the dependence of the moment of force
on the angular velocity), the necessity of introduction of this parameter to the model theory is not

a priori obvious.
The study of properties of motions of some classes of bodies in the Institute of Mechanics of the

M. V. Lomonosov Moscow State University (see [29]) began from experiments with homogeneous

circular cylinders. The experiments allow one to state the following conclusions.
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1. The nonperturbed regime of the motion of a body in water is unstable, at least with respect to

the orientation angle of the body. These experiments give a possibility of finding the dimensionless
parameters k and h of the influence of a medium on a rigid body.

2. In the modeling of the influence of a medium on a body, one must take into account an additional
parameter equivalent to the rotational derivative of the moment of hydroaerodynamical forces with

respect to the angular velocity of the body, which leads to an additional dissipation in the system.
The magnitude of the coefficient of damping moment was estimated in [9] for some cases of motion

of bodies in water. The estimates obtained indicates the instability of the unperturbed motion of a

rigid body in water with respect to the angle of attack and the angular velocity. Formally, increasing
this coefficient, one can achieve a motion, which in some media (for example, in clay) is stable in the
above sense, as experiments show (see [1–3]). However, this stability is perhaps achieved owing to the

damping in the system caused by forces tangential to the lamina.
Under the same assumptions about the character of interaction of a body with a medium, we

distinguish a class of problems in which the body is affected by a tracking force (thrust) T along a

straight line CD (see Fig. 1). For one of such problems considered in [12] under the assumption that
the thrust is constant, the instability of the nonperturbed regime was proved.

We distinguish the cases of motion that were analyzed in detail.

I. A (free) deceleration of a body, i.e., a motion under the action of a single resistance force (tracking
forces ar absent).

II. A motion of a body in which the speed of the center of the lamina is constant (The system

contains a nonintegrable constraint):

v ≡ const. (2.7)

III. A motion of a body in which the velocity of the center of mass is constant:

VC ≡ const. (2.8)

Note that in the case I, the nonperturbed regime is also called the rectilinear translational deceler-
ation.

The position of a body on the plane is determined by the coordinates (x0, y0) of the point D and
the angle of deviation ϕ. The polar coordinates (v, α) of the endpoint of the velocity vector of the
point D and the algebraic value of the projection of the angular velocity Ω are related to the variables

(ẋ0, ẏ0, ϕ̇, ϕ) by the (nonintegrable) kinematic relations:

ϕ̇ = Ω, ẋ0 = v cos(α+ ϕ), ẏ0 = v sin(α+ ϕ). (2.9)

Thus, the phase state of the system is determined by the functions (v, α,Ω, x0, y0, ϕ), and the first
three values are considered as quasi-velocities.

Since the kinetic energy of the body and the generalized forces are independent of the position of

the body on the plane, the coordinates (x0, y0, ϕ) are cyclic; this leads to the decreasing of the order
of the general system of equations of motion.

The equations of motion of the center of mass (in the projections to the axes Dxy) and the equations

for the kinetic moment in the König axes for a closed system of differential equations are considered
in the three-dimensional phase space of quasi-velocities (here σ = DC, I is the central moment of
inertia; differentiation is performed with respect to time):

v̇ cosα− α̇v sinα− Ωv sinα+ σΩ2 = −s(α)v2

m
, (2.10)

v̇ sinα+ α̇v cosα+Ωv cosα− σΩ̇ = 0, (2.11)

IΩ̇ = yN(α, ω)s(α)v2, ω ∼= ΔΩ

v
. (2.12)
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Equations (2.9), (2.10)–(2.12) form a complete system describing the plane-parallel motion of a

rigid body in a resistive medium under quasi-stationarity conditions. If we consider problem II or III
on the motion of a body in the presence of a tracking force, then the right-hand side of Eq. (2.10)
contains the function

T − s(α)v2

m
. (2.13)

In particular, to provide the condition (2.7), the magnitude T of the tracking force must be chosen
as follows:

T = T (v, α,Ω) = mσΩ2 + s(α)v2
[
1− mσ

I
yN (α, ω)

sinα

cosα

]
; (2.14)

the first equation in (2.10) holds identically. Note that the cases II and III have only methodological
significance since they allow one to reduce the order of the system of equations of motion and lead to

important mechanical analogies (see also [6, 7, 35, 37, 38, 64, 65]).

3. Influence Functions of Medium
Depending on the Angular Velocity of the Body

The dynamical system (2.10)–(2.12) contains the functions yN (α, ω) and s(α) that determine the
influence of the medium on the body. The function yN (cf. (2.6)) depends on the angle of attack α

and the reduced angular velocity ω. In particular, if we neglect the dependence on ω (this was done
in a series of earlier papers: the so-called simplest assumption about influence functions of medium),
then the function yN depends only on the angle of attack, yN = y(α), and the dependence on its

single argument can be determined from experimental information on properties of jet circumfluence
(see [29, 46, 48, 51]). In this case, one can apply the method of “immersion” of the problem into a
more general class of problems.

The main purpose of this work is the consideration of the influence of rotational derivatives of the
moment of the action force with respect to the components of the angular velocity of the body, which
requires the introduction of additional arguments in the influence function of the medium, which is

a nontrivial problem of modeling. As was noted above, in this paper we consider the case where the
angular velocity is involved as an argument only in the function yN and neglect the dependence of the
coefficient s on the angular velocity.

Similarly to (2.6), we represent yN as follows:

yN (α, ω) ∼= yN (α,Ω/v) = y(α)− HΩ

v
; (3.1)

experiments show (see [29]) that H > 0.

Then Eq. (2.12) becomes

IΩ̇ = F (α)v2 −Hs(α)Ωv, F (α) = y(α)s(α). (3.2)

The system (2.10), (2.11), (3.2) contains the functions F (α) and s(α), whose explicit analytical
form is quite difficult to find even for laminas of simple geometric shape. For this reason, we use
the method of “immersion” of the problem considered into a wider class of problems in which only

qualitative properties of functions F (α) and s(α) are taken into account.
We use the following representations of the functions y(α) and s(α) analytically obtained by Chap-

lygin (see [6, 7]) for the plane-parallel jet circumfluence of an infinite lamina:

y(α) = A sinα ∈ {y}, A = y′(0) > 0, (3.3)

s(α) = B cosα ∈ {s}, B = s(0) > 0. (3.4)

This result allows one to construct functional classes {y} and {s}. Combining (3.3) and (3.4) with

experimental information on the properties of jet circumfluence, we formally describe these classes
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consisting of sufficiently smooth, 2π-periodic functions (y(α) is odd whereas s(α) is even) that satisfy

the following conditions: y(α) > 0 for α ∈ (0, π) and

y′(0) > 0, y′(π) < 0 (3.5)

(the functional class {y} = Y ); s(α) > 0 for α ∈ (0, π/2), s(α) < 0 for α ∈ (π/2, π), and

s(0) > 0, s′(π/2) < 0 (3.6)

(the functional class {s} = Σ). Both functions y and s change their sign under the replacement of α
by α+ π. Thus,

y ∈ Y, s ∈ Σ. (3.7)

The conditions listed above imply that the function F introduced in (3.2) is a sufficiently smooth,

odd, π-periodic function satisfying the following conditions: F (α) > 0 for α ∈ (0, π/2),

F ′(0) > 0, F ′(π/2) < 0 (3.8)

(the functional class {F} = Φ).

In particular, the analytic function (see [6, 7])

F = F0(α) = AB sinα cosα ∈ Φ, AB = y′(0)s(0), (3.9)

is a typical representative of the functional class Φ.

In connection with the instability of the nonperturbed motion indicated in [29, 45, 47, 51, 53–56,
59], we raise the following question: Do finite-amplitude angular oscillations of the symmetry axis
exist?

We state this question in a more general form: Does a pair of influence functions y and s exist such
that for some solution of the dynamical part of the equations of motion the inequality 0 < α(t) <
α∗ < π/2 holds starting from some time instant t = t1?

Under the simplest assumption about the functions yN and s, it was proved earlier that in the
quasi-stationary model of the interaction of a medium with a symmetric body (when yN and s depend
only on the angle of attack), for any admissible pair of functions y and s in the full range (0 < α < π/2)
of finite angles of attack, there is no finite-amplitude oscillation solutions in the system.

Thus, for a possible positive answer to the question raised above, we will take into account the
dependence of the moment of the influence force of the medium on the angular velocity; we will use
formula (3.1) for H > 0. It turns out that under some assumptions, one can expect a positive answer.

From the practical point of vies, the analysis of dynamical equations only in a neighborhood of the
nonperturbed motion is interesting, since for some values of critical angles of attack, the lateral surface
is blurred and the model of the influence of a medium on the body becomes invalid. However, for

bodies with lateral surfaces of various shapes the critical values of angles are different and unknown,
which leads to the necessity to study the whole range of angles.

Thus, for the study of the plane-parallel circumfluence of a lamina we use several classes of dynamical

systems defined by pairs of influence functions, which considerably complicates the qualitative analysis
(see also [57, 58]).

4. Motion of a Body in a Resistive Medium under a Tracking Force

4.1. Case II. Consider the motion of a body in a medium under a tracking force that provides the
condition (2.7) during the motion. As was noted above, it suffices to choose the magnitude of this

force so that the first equation (2.10) holds identically. Then, in addition to the parameters of the
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system introduced above, the positive parameter v appears, and the dynamical part of the equations

of motion of the body in the case (2.7) takes the form of the following second-order system:

α̇v cosα+Ωv cosα− σΩ̇ = 0,

IΩ̇ = F (α)v2 −Hs(α)Ωv, H > 0.
(4.1)

Outside the union of the straight lines

O =
{
(α,Ω) ∈ R2 : α =

π

2
+ πk, k ∈ Z

}
(4.2)

this system is equivalent to the following system of the normal form:

α̇ = −Ω+
σv

I

F (α)

cosα
− σ

I
H

s(α)

cosα
Ω,

Ω̇ =
v2

I
F (α)−H

v

I
Ωs(α).

(4.3)

First, we examine the stability of its trivial solution corresponding to the nonperturbed motion. For

this, we write the corresponding characteristic equation near the origin:

λ2 + λv

[
BH

I
− σn2

0

]
+ n2

0v
2 = 0, (4.4)

where

A = y′N (0), B = s(0), n2
0 =

F ′(0)
I

=
y′N (0)s(0)

I
=

AB

I
. (4.5)

Introduce the following three positive dimensionless parameters:

μ1 = 2
B

mn0
, μ2 = σn0, μ3 =

BH

In0
, (4.6)

and the dimensionless differentiation and the substitution

〈 · 〉 = n0v
〈 ′ 〉 , Ω �→ n0vΩ. (4.7)

Then the system (4.3) takes the following form:

α′ = −Ω+
σ

In0

F (α)

cosα
− σH

I
Ω
s(α)

cosα
,

Ω′ =
F (α)

In2
0

− H

In0
Ωs(α).

(4.8)

The following proposition is obvious.

Proposition 1. For μ3 > μ2 (respectively, μ3 < μ2) the trivial solution of the system (4.3) is asymp-

totically stable (is repulsive).

For the possible birth of a limit cycle near the origin, we examine the stability of the trivial solution

of the system (4.3) under the critical relation of the parameters:

μ3 = μ2. (4.9)

For this, we perform the following change of phase variables (α,Ω) �→ (a,w) in the system (4.8):

α = a, Ω =
|ω0|

1 + μ2
2

(μ2a− w), ω0 = 1; (4.10)

then the system becomes

a′ = |ω0|w +A3a
3 +A4a

2w + ō1((a
2 + w2)3/2),

w′ = −|ω0|a+A1a
3 +A2a

2w + ō2((a
2 + w2)3/2),

(4.11)
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where

A1 = − f3
6In2

0

+
Hs2
2In0

μ2

1 + μ2
2

+
μ2
2

2(1 + μ2
2)
,

A2 = −Hs2
2In0

1

1 + μ2
2

+
μ3
2

2(1 + μ2
2)
,

A3 =
μ2f3
6In2

0

− μ2Hs2
2In0

μ2

1 + μ2
2

+
μ2

2(1 + μ2
2)
,

A4 =
Hs2
2In0

μ2

1 + μ2
2

+
μ2
2

2(1 + μ2
2)
, s2 = s′′(0), f3 = F ′′′(0).

(4.12)

Introduce the following auxiliary index (see [49, 50]):

In = |ω0|
{
Y 1
111 + Y 1

122 + Y 2
112 + Y 2

222

}
+

+
(
Y 1
11Y

2
11 − Y 1

11Y
1
12 + Y 2

11Y
2
12 + Y 2

22Y
2
12 − Y 1

22Y
1
12 − Y 1

22Y
2
22

)
,

Y i
jkl =

∂3Yi

∂yj∂yk∂yl
(0, 0), Y i

jk =
∂2Yi

∂yj∂yk
(0, 0),

(4.13)

where (
Y1(a,w)
Y2(a,w)

)
(4.14)

is the right-hand side of the system (4.11).
More specifically, for the system (4.11) the index just constructed has the form

In = 6A3 + 2A2 =
μ2f3
In2

0

− Hs2
In0(1 + μ2

2)
(1 + 3μ2

2) +
μ2

1 + μ2
2

(3 + μ2
2). (4.15)

Since for this system

Y i
jk =

∂2Yi

∂yj∂yk
(0, 0) = 0 (4.16)

(owing to the oddness of its right-hand side with respect to phase variables) for all indices i, j, and k,

the following proposition provides necessary and sufficient conditions of asymptotic stability (and
instability) of the origin for In 
= 0.

Proposition 2. If In < 0 (respectively, In > 0) and the inequality

|μ3 − μ2| < 2 (4.17)

holds, then the origin of the phase plane R2{a,w} of the system (4.11) (respectively, (4.3)) for the
critical relation of the parameters μ3 = μ2 is a weak stable (respectively, unstable) focus.

In this case, the condition (4.17) is necessary since only under this condition is the origin of the
plane R2{a,w} a (stable or unstable, straight or weak) focus.

The following theorem is a consequence of the well-known Poincaré–Andronov–Hopf theorem
(see [21]).

Theorem 1. Assume that for the system (4.3) the inequality (4.17) holds. Then the following asser-

tions are valid.

(1) If In < 0, then for each fixed μ2, there exist δ1, δ2 > 0 such that for μ3 ∈ (μ2, μ2+δ1), the origin
is a straight stable focus, whereas for μ3 ∈ (μ2 − δ2, μ2) the origin is a straight unstable focus

encircled by a stable limit cycle whose size increases as
√|μ2 − μ3| when μ3 decreases from μ2

to μ2 − δ2.
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(2) If In > 0, then for each fixed μ2, there exist δ1, δ2 > 0 such that for μ3 ∈ (μ2−δ2, μ2), the origin

is a straight unstable focus, whereas for μ3 ∈ (μ2, μ2 + δ1) the origin is a straight stable focus

encircled by an unstable limit cycle whose size increases as
√|μ2 − μ3| when μ3 increases from

μ2 to μ2 + δ1.

It is easy to verify the condition μ3 > μ2 (or μ3 < μ2) since in each case these parameters depend
either on only the first derivatives of the influence functions yN and s or on their values. Conversely,
the condition In < 0 (or In > 0) is difficult to verify since for each specific body, the explicit form and

higher derivatives of the influence functions yN and s are unknown.

4.2. Case III. Consider the motion of a body in a medium under a tracking force that provides

the condition (2.8) during the motion.
Then the right-hand side of Eq. (2.10) contains zero instead of −s(α)v2/m since the body is influ-

enced by a nonconservative force couple:

T − s(α)v2 ≡ 0. (4.18)

Obviously, in this case the magnitude of the tracking force T is equal to

T = T (v, α,Ω) = s(α)v2, T ≡ −S. (4.19)

Similarly to the choice of the influence function, we take the dynamical functions s and yN of
the system (2.10)–(2.12) in the form (3.1), (3.7). Moreover, the system considered also contains an

additional damping moment of a nonconservative force (note that in some domains of the phase space
this moment can become accelerating).

Introduce the new dimensionless phase variable and the dimensionless differentiation by the formulas

Ω = n0vω, 〈 · 〉 = n0v
〈 ′ 〉 ; (4.20)

then the system (2.10)–(2.12) can be rewritten in the following form:

v′ = vΨ(α, ω), (4.21)

α′ = −ω + μ2ω
2 sinα+

μ2

In2
0

F (α) cos α− μ2

In0
Hωs(α) cosα,

ω′ =
F (α)

In2
0

+ μ2ω
3 cosα− μ2

In2
0

ωF (α) sinα− H

In0
ωs(α) +

μ2

In0
Hω2s(α) sinα,

(4.22)

Ψ(α, ω) = −μ2ω
2 cosα+

μ2

In2
0

F (α) sinα− μ2H

In0
ωs(α) sinα;

the dimensionless parameters b = μ2 and H1 = μ3 are as follows:

b = σn0, n2
0 =

AB

I
, H1 =

BH

In0
. (4.23)

The last two equations (4.22) of the system (4.21), (4.22) form an independent second-order sub-
system on the phase cylinder S1{α mod 2π} ×R1{ω}.

First, we examine the stability of its trivial solution corresponding the nonperturbed motion; for

this, we write the corresponding characteristic equation near the origin:

λ2 + λ [μ3 − μ2] + 1 = 0. (4.24)

The following assertion is obvious.

Proposition 3. For μ3 > μ2 (respectively, μ3 < μ2) the trivial solution of the system (4.22) is

asymptotically stable (is repulsive).
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For the possible birth of a limit cycle near the origin, we examine the stability of the trivial solution

of the system (4.22) under the critical relation of the parameters:

μ3 = μ2. (4.25)

For this, we perform the follow change of phase variables (α,Ω) �→ (a,w) in the system (4.22):

α = a, ω =
|ω0|

1 + μ2
2

(μ2a− w), ω0 = 1, (4.26)

which transforms it to the following system:

a′ = |ω0|w +B1a
3 +B2a

2w +B3aw
2 + ō1((a

2 + w2)3/2),

w′ = −|ω0|a+B4a
3 +B5a

2w +B6aw
2 +B7w

3 + ō2((a
2 + w2)3/2),

(4.27)

where

B1 =
μ2f3
6In2

0

− Hs2
2In0

μ2
2

1 + μ2
2

+
μ3
2

(1 + μ2
2)

2
− μ2

2(1 + μ2
2)
,

B2 =
Hs2
2In0

μ2

1 + μ2
2

− 2μ2
2

(1 + μ2
2)

2
− μ2

2

2(1 + μ2
2)
,

B3 =
μ2

(1 + μ2
2)

2
,

B4 = − f3
6In2

0

+
Hs2
2In0

μ2

1 + μ2
2

+
μ2
2

2(1 + μ2
2)
,

B5 = −Hs2
2In0

1

1 + μ2
2

+
μ3
2

2(1 + μ2
2)

− μ2

(1 + μ2
2)

2
,

B6 = −μ2
2(3 + μ2

2)

(1 + μ2
2)

2
,

B7 =
μ2

(1 + μ2
2)

2
, s2 = s′′(0), f3 = F ′′′(0).

(4.28)

Introduce the following auxiliary index In similarly to (4.13). Namely, for the system (4.27) the
index introduced has the form

In = 6B1 + 2B3 + 2B5 + 6B7 =
μ2f3
In2

0

− Hs2
In0

1 + 3μ2
2

1 + μ2
2

+
μ2

1 + μ2
2

(3 + μ2
2), (4.29)

coinciding with the index (4.15) for the system (4.11).
Since for this system

Y i
jk =

∂2Yi

∂yj∂yk
(0, 0) = 0 (4.30)

(owing to the oddness of its right-hand side with respect to phase variables) for all indices i, j,

and k, the following proposition provides a necessary and sufficient condition of asymptotic stability
(instability) of the origin for In 
= 0.

Proposition 4. If In < 0 (respectively, In > 0) and the inequality

|μ3 − μ2| < 2 (4.31)

holds, then the origin of the phase plane R2{a,w} of the system (4.27) (respectively, (4.22)) under the

critical relation of the parameters μ3 = μ2 is a weak stable (unstable) focus.
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In this case, the condition (4.31) is necessary since under this condition the origin of the plane

R2{a,w} is a (stable or unstable, straight or weak) focus.
The following theorem is a consequence of the well-known Poincaré–Andronov–Hopf theorem

(see [21]).

Theorem 2. Assume that for the system (4.22) the inequality (4.31) holds. Then the following as-
sertions hold.

(1) If In < 0, then for each fixed μ2, there exist δ1, δ2 > 0 such that for μ3 ∈ (μ2, μ2+δ1), the origin
is a straight stable focus, whereas for μ3 ∈ (μ2 − δ2, μ2), the origin is a straight unstable focus

encircled by a stable limit cycle whose size increases as
√|μ2 − μ3| when μ3 decreases from μ2

to μ2 − δ2.

(2) If In > 0, then for each fixed μ2, there exist δ1, δ2 > 0 such that for μ3 ∈ (μ2−δ2, μ2), the origin
is a straight unstable focus, whereas for μ3 ∈ (μ2, μ2 + δ1), the origin is a straight stable focus

encircled by an unstable limit cycle whose size increases as
√|μ2 − μ3| when μ3 increases from

μ2 to μ2 + δ1.

It is easy to verify the condition μ3 > μ2 (or μ3 < μ2) since in each case these parameters depend

either only on first derivatives of the influence functions yN and s or only on their values. Conversely,
the condition In < 0 (or In > 0) is difficult to verify since for each specific body, the explicit form and
higher derivatives of the influence functions yN and s are unknown.

5. Free Deceleration of a Rigid Body in a Resistive Medium (Case I)

Further, we consider the case of the motion of a body where the thrust control is turned off and

the body freely moves (with deceleration) in a resistive medium (case I).
The right-hand side of Eq. (2.10) contains the function −s(α)v2/m and the relation T ≡ 0 holds.
Similarly to the choice of the influence function, we represent the dynamical functions s and yN

of the system (2.10)–(2.12) in the form (3.1), (3.7). As above, the system considered also contains
an additional damping moment of a nonconservative force (in some domains of the phase space this
moment can be accelerating).

Introduce the new dimensionless phase variable and the dimensionless differentiation by the formulas

Ω = n0vω, 〈 · 〉 = n0v
〈 ′ 〉 ; (5.1)

then the system (2.10)–(2.12) can be transformed to the following form:

v′ = vΨ(α, ω), (5.2)

α′ = −ω + μ2ω
2 sinα+

μ2

In2
0

F (α) cos α− μ2

In0
Hωs(α) cosα+

s(α)

mn0
sinα,

ω′ =
F (α)

In2
0

+ μ2ω
3 cosα− μ2

In2
0

ωF (α) sinα− H

In0
ωs(α) +

μ2

In0
Hω2s(α) sinα+

s(α)

mn0
ω cosα,

(5.3)

Ψ(α, ω) = −μ2ω
2 cosα+

μ2

In2
0

F (α) sin α− μ2H

In0
ωs(α) sinα− s(α)

mn0
cosα,

where the dimensionless parameters μ1, b = μ2, and H1 = μ3 are as follows:

μ1 = 2
B

mn0
, b = σn0, n2

0 =
AB

I
, H1 =

BH

In0
. (5.4)

The last two equations (5.3) of the system (5.2), (5.3) form an independent second-order subsystem
on the phase cylinder S1{α mod 2π} ×R1{ω}.

As above, we examine the stability of the trivial solution of the system (5.3), which, obviously,

corresponds to the rectilinear translational deceleration (nonperturbed motion).
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Fig. 2. General structure of rearrangements of trajectories of the vector field of the system (5.3)

We write the corresponding characteristic equation near the origin:

λ2 − λ [μ1 + μ2 − μ3] +
μ1

2

(μ1

2
+ μ2 − μ3

)
+ 1 = 0. (5.5)

Proposition 5. Assume that the inequality (4.17) (or (4.31)) holds. Then for μ3 > μ1 + μ2 (re-

spectively, μ3 < μ1 + μ2) the trivial solution of the system (5.3) is asymptotic stable (respectively, is
repulsive).

The general structure of rearrangements of trajectories of the vector field of the system (5.3) near
the origin is presented in Fig. 2; the domains 1, 2, and 3 correspond to the attracting, saddle, and

repulsive points, respectively.
To study the possibility of birth of a limit cycle near the origin, we examine the stability of the

trivial solution of the system (5.3) under the critical combination of the parameters:

μ3 = μ1 + μ2. (5.6)

For this, we perform the following change of phase variables (α, ω) �→ (a,w) in the system (5.3):

α = a, ω =
(μ2 + μ1/2) a− ω0w

1 + μ1μ2 + μ2
2

, ω0 =

√
1− μ2

1

4
. (5.7)

Then we obtain the system

a′ = |ω0|w + C1a
3 + C2a

2w +C3aw
2 + ō1((a

2 + w2)3/2),

w′ = −|ω0|a+ C4a
3 + C5a

2w + C6aw
2 + C7w

3 + ō2((a
2 + w2)3/2),

(5.8)
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where

C1 =
μ2f3
6In2

0

− Hs2
2In0

μ2(μ2 + μ1/2)

1 + μ1μ2 + μ2
2

+
s2

2mn0
− μ2

2
− μ1

12

+
μ2(μ1 + μ2)(μ2 + μ1/2)

2(1 + μ1μ2 + μ2
2)

+
μ2(μ2 + μ1/2)

2

(1 + μ1μ2 + μ2
2)

2
,

C2 =
Hs2
2In0

μ2ω0

1 + μ1μ2 + μ2
2

− 2μ2(μ2 + μ1/2)ω0

(1 + μ1μ2 + μ2
2)

2
− μ2(μ2 + μ1/2)ω0

2(1 + μ1μ2 + μ2
2)
,

C3 =
μ2ω

2
0

(1 + μ1μ2 + μ2
2)

2
,

C4 = −
(
1 +

μ1μ2

2

) f3
6In2

0ω0
+

Hs2
2In0

(μ2 + μ1/2)(1 + μ1μ2/2)

(1 + μ1μ2 + μ2
2)ω0

+

+
μ2 + μ1/2

2(1 + μ1μ2 + μ2
2)ω0

·
[(

μ2 +
μ1

3

)
− μ1μ2

6
(μ1 + μ2)

]
,

C5 = −Hs2
2In0

1 + μ1μ2 − μ2
1/2

1 + μ1μ2 + μ2
2

+
s2

2mn0
+

μ2(μ2 + μ1/2)
2

(1 + μ1μ2 + μ2
2)

2
+

+
2μ2(μ1 + μ2)

2 − 4μ2 − μ1

4(1 + μ1μ2 + μ2
2)

,

C6 = −2μ2(μ2 + μ1/2)ω0

(1 + μ1μ2 + μ2
2)

2
− μ2(μ1 + μ2)ω0

1 + μ1μ2 + μ2
2

,

C7 =
μ2ω

2
0

(1 + μ1μ2 + μ2
2)

2
, s2 = s′′(0), f3 = F ′′′(0).

(5.9)

We introduce the following auxiliary index In similar to (4.13). Namely, for the system (5.8) this
index has the form

In = 6B1 + 2B3 + 2B5 + 6B7

=
μ2f3
In2

0

− Hs2
In0

1 + 3μ2
2 + 5μ1μ2/2− μ2

1/2

1 + μ1μ2 + μ2
2

+ 4
s2

mn0
+

μ2(μ1 + μ2)(μ2 + 2μ1) + 3μ2 − μ1

1 + μ1μ2 + μ2
2

. (5.10)

Since for the system considered

Y i
jk =

∂2Yi

∂yj∂yk
(0, 0) = 0 (5.11)

(owing to the oddness of its right-hand side with respect to the phase variables) for all indices i, j,
and k, the following assertion states a necessary and sufficiently condition of asymptotic stability (or

instability) of the origin for In 
= 0.

Proposition 6. If In < 0 (respectively, In > 0) and the inequality (4.31) holds, then the origin of
the phase plane R2{a,w} of the system (5.8) (respectively, (5.3)) under the critical relation for the

parameter μ3 = μ1 + μ2 is a weak stable (respectively, unstable) focus.

In the case considered, the condition (4.31) is necessary since only under this condition is the origin
of the plane R2{a,w} a (stable or unstable, straight or weak) focus.

The following theorem is a consequence of the well-known Poincaré–Andronov–Hopf theorem
(see [21]).

Theorem 3. Assume that for the system (5.3) the inequality (4.31) holds. Then the following asser-

tions hold :
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Fig. 3. Spatial motion of an axisymmetric rigid body in a resistive medium

(1) If In < 0, then for all fixed μ1 and μ2, there exist δ1, δ2 > 0 such that for μ3 ∈ (μ1+μ2, μ1+μ2+

δ1), the origin is a straight stable focus, whereas for μ3 ∈ (μ1 + μ2 − δ2, μ1 + μ2) the origin is a

straight unstable focus encircled by a stable limit cycle whose size increases as
√|μ1 + μ2 − μ3|

when μ3 decreases from μ1 + μ2 to μ1 + μ2 − δ2.
(2) If In > 0, then for all fixed μ1 and μ2, there exist δ1, δ2 > 0 such that for μ3 ∈ (μ1 + μ2 −

δ2, μ1 + μ2), the origin is a straight unstable focus, whereas for μ3 ∈ (μ1 + μ2, μ1 + μ2 + δ1),
the origin is a straight stable focus encircled by an unstable limit cycle whose size increases as√|μ1 + μ2 − μ3| when μ3 increases from μ1 + μ2 to μ1 + μ2 + δ1.

It is easy to verify the condition μ3 > μ1+μ2 (or μ3 < μ1+μ2) since in each case these parameters
depend either on only first derivatives of the influence functions yN and s or on their values. Conversely,
the condition In < 0 (or In > 0) is difficult to verify since for each specific body, the explicit form and

higher derivatives of the influence functions yN and s are unknown.

6. Spatial Motion of an Axisymmetric Rigid Body in a Resistive Medium

Consider the problem on the spatial motion of a homogeneous axisymmetric rigid body of mass m

whose surface has a part in the shape of a flat circular disk. Assume that this body interacts with
a medium according to the laws of jet circumfluence. The remaining part of the surface of the body
is located inside the volume bounded by the jet surface; it is not affected by the medium. Similar

conditions appear, for example, after the immersion of a body in water (see [29]).
Assume that tangential forces acting on the disk vanish. Then the influence force S applied to the

body at a point N preserves its orientation with respect to the body (it is directed along the normal to

the disk) and is quadratic with respect to the speed of its center D (Newton’s resistance, see Fig. 3).
We also assume that the gravity force acting on a body is negligible compared with the resistance
force.

Under all the conditions listed above, among all motions of the body, there exists the regime of
rectilinear translational deceleration, which is similar to the case of a plane-parallel (nonperturbed)
motion: the body can perform translational motion in the direction of its axis of symmetry, i.e.,

perpendicularly to the disk.
We attach to the body a right coordinate system Dxyz (see Fig. 3) whose applicate axis Dx is

directed along the axis of geometric symmetry of the body. The axes Dy and Dz are rigidly attached

to the circular disk and form a right coordinate system. We denote the components of the vector
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of angular velocity Ω in the system Dxyz by {Ωx,Ωy,Ωz}. The tensor of inertia of a dynamically

symmetric body in th coordinate system Dxyz has a diagonal form: diag{I1, I2, I2}.
Now we use the quasi-stationarity hypothesis and assume, for simplicity, that the function R1 = DN

is determined by the angle of attack α, i.e., the angle between the velocity vector v of the center D of
the disk and the straight line Dx. Thus, DN = R1(α, . . . ).

Moreover, we assume that the magnitude of the resistance force is S = |S| = s1(α)v
2, v = |v|. For

simplicity (as in the case of a plane-parallel motion), instead of the resistance coefficient s1(α), we
introduce the auxiliary alternating function s(α): s1 = s1(α) = s(α) sgn cosα > 0. Thus, the pair of

functions R1(α, . . .) and s(α) determines the force and moment characteristics of the influence of the
medium on the disk under the model conditions posed above.

6.1. Dynamical part of the equations of spatial motion. Consider the spherical coordinates
(v, α, β1) of the endpoint of the velocity vector v = vD of the point D with respect to the flow, where
the angle β1 is measured in the plane of the disk (see Fig. 3). The coordinates (v, α, β1) are expressed
by nonintegrable relations through the cyclic kinematic variables and their derivatives (see [52]).

Therefore, we take the triple (v, α, β1) as quasi-velocities and, in addition, consider the components
(Ωx,Ωy,Ωz) of the angular velocity in the coordinate system attached to the body. Obviously, in this
coordinate system

vD = {v cosα, v sinα cos β1, v sinα sin β1}. (6.1)

By the theorems on the motion of the center of mass (in the projections onto the axes of the

coordinate system Dxyz) and the kinetic moment with respect to these axes, we obtain the dynamical
part of the differential equations of motion in the six-dimensional phase space of quasi-velocities (here
σ is the distance DC). The first group of equations corresponds to the motion of the center of mass

itself, and the second group to rotation about the center of mass:

v̇ cosα− α̇v sinα+Ωyv sinα sin β1 − Ωzv sinα cos β1 + σ(Ω2
y +Ω2

z) = −s(α)v2

m
,

v̇ sinα cos β1 + α̇v cosα cos β1 − β̇1v sinα sinβ1 +Ωzv cosα

Ωxv sinα sin β1 − σΩxΩy − σΩ̇z = 0,

v̇ sinα sin β1 + α̇v cosα sin β1 + β̇1v sinα cos β1 +Ωxv sinα cos β1

Ωyv cosα− σΩxΩz + σΩ̇y = 0,

I1Ω̇x = 0,

I2Ω̇y + (I1 − I2)ΩxΩz = −zNs(α)v2,

I2Ω̇z + (I2 − I1)ΩxΩy = yNs(α)v2,

(6.2)

where (0, yN , zN ) are the coordinates of the point N in the system Dxyz.

6.2. Motion of a symmetric body under the action of a resistance force and a tracking
force in the case II. We distinguish a class of problems on the influence of a medium on a body

in which a tracking force acts along the axis of the geometric symmetry of the body (cf. the case
of a plane-parallel motion) under some conditions that provide the realization of required classes of
motion. In this case, the tracking force itself is the reaction of constraints imposed on the body. If

the tracking force is absent, then the motion of the body is the spatial free deceleration in a resistive
medium. In the case considered, the tracking force provides the condition (2.7) during the motion
(case II), namely, v ≡ const. Similarly to the plane-parallel motion, one can consider the case where

the tracking force provides the condition (2.8) (the case III, see below).
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By Eqs. (6.2), we have the cyclic invariant relation

Ωx ≡ Ωx0 = const. (6.3)

6.3. Dynamical equations in the case of zero twist of a rigid body about the longitudinal

axis. In the sequel, we analyze the case of zero twist of a rigid body about its longitudinal axis, i.e.,
when the condition Ωx0 = 0 holds.

Then the independent dynamical part of the equations of motion in the four-dimensional phase

spaces has the following form:

α̇ cosα cos β1 − β̇1v sinα sinβ1 +Ωzv cosα− σΩ̇z = 0, (6.4)

α̇ cosα sin β1 + β̇1v sinα cos β1 − Ωyv cosα+ σΩ̇y = 0, (6.5)

I2Ω̇y = −zNs(α)v2, (6.6)

I2Ω̇z = yNs(α)v2. (6.7)

Here yN and zN are the Cartesian coordinates in the plane of the disk containing the application
point N of the resistance force.

The system (6.4)–(6.7) contains the influence functions yN , zN , and s that can be qualitatively

described (similarly to the case of a plane-parallel motion) by using experimental information on
properties of jet circumfluence.

First, we analyze the system (6.4)–(6.7) for the following influence functions (Chaplygin functions):

yN = A sinα cos β1 − h
Ωz

v
, zN = A sinα sinβ1 + h

Ωy

v
,

s(α) = B cosα, A =
∂yN
∂α

∣∣∣∣
α=0, β1=0

=
∂zN
∂α

∣∣∣∣
α=0, β1=π/2

, B = s(0), h > 0.
(6.8)

This systems is said to be a reference system. (Note the a similar analysis can be also performed for
each pair of influence functions yN , zN , and s; see below.)

In Eqs. (6.8), h is the coefficient of terms that are proportional to rotational derivatives of the
moment of hydroaerodynamical forces (in the case considered, influence forces) with respect to the
components of the angular velocity of the rigid body (see also [4, 5]).

The system (6.4)–(6.7) is a dynamical system with variable dissipation with zero mean (in the case
considered, the mean with respect to the angle of attack; see [42, 43]). This means that the integral
(over the period of the angle of attack) of the divergence of its right-hand side responsible for the

change of the phase volume (after the corresponding reduction of the system) vanishes. The system
is “semi-conservative” in some sense.

We project the angular velocity on the movable axes attached to the body so that

z1 = Ωy cos β1 +Ωz sin β1, z2 = −Ωy sin β1 +Ωz cos β1 (6.9)

and introduce the dimensionless variables wk, k = 1, 2, and the dimensionless parameters by the
formulas

b = σn0, n2
0 =

AB

I2
, H1 =

Bh

I2n0
, zk = n0vwk, k = 1, 2, 〈 · 〉 = n0v

〈 ′ 〉 . (6.10)

Then we obtain the following fourth-order analytic dynamical system, called the reference system:

α′ = −(1 + bH1)w2 + b sinα, (6.11)

w′
2 = sinα cosα− (1 + bH1)w

2
1

cosα

sinα
−H1w2 cosα, (6.12)

w′
1 = (1 + bH1)w1w2

cosα

sinα
−H1w1 cosα, (6.13)
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β′
1 = (1 + bH1)w1

cosα

sinα
. (6.14)

This system contains the independent third-order subsystem (6.11)–(6.13).
For b = H1, the divergence of the right-hand side of the systems (6.11)–(6.13) and (6.11)–(6.14)

after the change of variables w∗ = ln |w1| identically vanishes; this allows one to assume that these
systems are conservative.

6.4. On the stability of the rectilinear translational motion. We examine the stability of
the key regime, i.e., the nonperturbed motion, with respect to perturbations of the angle of attack

and angular velocity (i.e., with respect to the variables α, w1, and w2). In other words, we examine
the stability of the trivial solution of the independent third-order system (6.11)–(6.13) (after the
redefinition of the system at the origin).

Consider the following positive-definite function on the phase space of the third-order system (6.11)–
(6.13):

V (α,w1, w2) = (1 + b2)(w2
2 + w2

1)− 2bw2 sinα+ sin2 α. (6.15)

Theorem 4. The function (6.15) is a Lyapunov (Chetaev) function for the system (6.11)–(6.13),

i.e., its derivative with respect to the system (6.11)–(6.13) is negative definite for b < H1 and positive
definite for b > H1.

Corollary 1. After redefinition of the right-hand sides at the origin, the system (6.11)–(6.13) has an
attractive singularity at the origin for b < H1 and a repulsive singilarity for b > H1.

Proof of Theorem 4. Indeed, the derivative of the function (6.15) with respect to the system (6.11)–

(6.13) is equal to

2(b−H1) cosα[w
2
1 + w2

2]. (6.16)

We note that a similar theorem is valid for systems of the general form for all admissible influence

functions yN , zN , and s. The condition of asymptotic stability of the origin for the system of reduced
dynamical equations with respect to the variables (α,w1, w2) is b < H1.

Indeed, in the general case where the admissible influence functions yN and zN can be represented

in the form

yN = R(α) cos β1 − h1
Ωz

v
, zN = R(α) sin β1 + h1

Ωy

v
, (6.17)

whereas the functions R and s satisfy the conditions (3.7) (in this case, the function R corresponds to

the function y), the dynamical equations of motion take the following form:

α′ = −w2 +
σ

I2n0

F (α)

cosα
− σh1

I2
w2

s(α)

cosα
,

w′
2 =

F (α)

I2n2
0

− w2
1

cosα

sinα
− σh1

I2
w2
1

s(α)

sinα
− h1

I2n0
w2s(α),

w′
1 = w1w2

cosα

sinα
+

σh1
I2

w1w2
s(α)

sinα
− h1

I2n0
w1s(α),

β′
1 = w1

cosα

sinα
+

σh1
I2

w1
s(α)

sinα
,

(6.18)

where F (α) = R(α)s(α).
Consider the following function similar to (6.15):

V (α,w1, w2) = w2
2 + (1 + b2)w2

1 + [bw2 − sinα]2 ; (6.19)

it is positive definite in some neighborhood of the origin.
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Theorem 5. The function (6.19) is a Lyapunov (Chetaev) function for the system (6.18), i.e., its

derivative with respect to the system (6.18) in a neighborhood of the origin is negative definite for
σR′(0) < h1 and positive definite for σR′(0) > h1.

Corollary 2. For σR′(0) < h1, the system (6.18) has an attracting singularity at the origin and a

repulsive singularity for σR′(0) > h1.

Proof of Theorem 5. Indeed, the derivative of the function (6.19) with respect to the system (6.18) is

equal to

2

(
b cosα− h1

I2n0
s(α)

)
[w2

1 + w2
2] + 2w2

{
F (α)

I2n0
− sinα cosα

}
(6.20)

and in a neighborhood of the origin can be represented in the form

2

(
b− h1B

I2n0

)
[w2

1 + w2
2] + ō(α2 + z21 + z22). (6.21)

Turning to the problem on the motion of homogeneous circular cylinders, we can conclude that the
asymptotic stability occurs if the inequality σk < hD holds, where D is the diameter of the cylinder,

σ is the distance DC, and k and h are dimensionless influence parameters.

6.5. Motion of a symmetric body under the action of a resistance force and a tracking
force in the case III. In this case, the tracking force during the motion provides the fulfillment of
the condition (2.8) (the case III), namely, VC ≡ const. By Eqs. (6.2), the following cyclic invariant

relations holds:

Ωx ≡ Ωx0 = const. (6.22)

6.6. Dynamical equations in the case of zero twist of a rigid body about the longitudinal
axis. We examine the case of zero twist of a rigid body about its longitudinal axis, i.e., if Ωx0 = 0.
Then on the right-hand side of the first equation of the system (6.2) instead of −s(α)v2/m we obtain

identical zero since a nonconservative force couple acts on the body:

T − s(α)v2 ≡ 0. (6.23)

Obviously, the tracking force T has the form

T = T (v, α,Ω) = s(α)v2, T ≡ −S. (6.24)

Similarly to the choice of the influence functions, we take the dynamical functions s, yN , and zN
in the form (3.7) and (6.17) (the function R corresponds to the function y). Moreover, the system

considered contains also an additional damping moment of a nonconservative force (note that in some
domains of the phase space this moment can be accelerating).

We project the angular velocity on the movable axes so that

z1 = Ωy cos β1 +Ωz sin β1, z2 = −Ωy sin β1 +Ωz cos β1 (6.25)

and introduce the new dimensionless phase variables and differentiation by the formulas

zk = n0vZk, k = 1, 2, 〈 · 〉 = n0v
〈 ′ 〉 . (6.26)

Then the system (6.2) takes the following form:

v′ = vΨ1(α,Z1, Z2), (6.27)

α′ = −Z2 + μ2(Z
2
1 + Z2

2 ) sinα+
σ

I2n0
F (α) cosα− σh1

I2
Z2s(α) cosα, (6.28)
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Z ′
2 =

F (α)

I2n2
0

− Z2Ψ1(α,Z1, Z2)− Z2
1

cosα

sinα
− σh1

I2
Z2
1

s(α)

sinα
− h1

I2n0
Z2s(α), (6.29)

Z ′
1 = −Z1Ψ1(α,Z1, Z2) + Z1Z2

cosα

sinα
+

σh1
I2

Z1Z2
s(α)

sinα
− h1

I2n0
Z1s(α), (6.30)

β′
1 = Z1

cosα

sinα
+

σh1
I2

Z1
s(α)

sinα
, (6.31)

where

Ψ1(α,Z1, Z2) = −μ2(Z
2
1 + Z2

2 ) cosα+
σ

I2n0
F (α) sinα− σh1

I2
Z2s(α) sinα,

and in the case of Chaplygin influence functions (6.8), it takes the form of the following analytic
system:

v′ = vΨ1(α,Z1, Z2), (6.32)

α′ = −Z2 + μ2(Z
2
1 + Z2

2 ) sinα+ μ2 sinα cos2 α− μ2μ3Z2 cos
2 α, (6.33)

Z ′
2 = sinα cosα− Z2Ψ1(α,Z1, Z2)− (1 + μ2μ3)Z

2
1

cosα

sinα
− μ3Z2 cosα, (6.34)

Z ′
1 = −Z1Ψ1(α,Z1, Z2) + (1 + μ2μ3)Z1Z2

cosα

sinα
− μ3Z1 cosα, (6.35)

β′
1 = (1 + μ2μ3)Z1

cosα

sinα
, (6.36)

where

Ψ1(α,Z1, Z2) = −μ2(Z
2
1 + Z2

2 ) cosα+ μ2 sin
2 α cosα− μ2μ3Z2 sinα cosα.

We introduce the dimensionless parameters b = μ2 and H1 = μ3 as follows:

b = σn0, n2
0 =

AB

I2
, H1 =

Bh1
I2n0

. (6.37)

Equations (6.28)–(6.31) of the system (6.27)–(6.31) form an independent fourth-order subsystem,
whereas Eqs. (6.28)–(6.30) form an independent third-order subsystem.

6.7. On the stability of the rectilinear translational motion. We examine the stability of the
key regime (nonperturbed motion) with respect to perturbations of the angle of attack and the angular

velocity, i.e., with respect to the variables α, Z1, and Z2. In other words, we examine the stability of
the trivial solution of the independent third-order system (6.28)–(6.30) (after the redefinition of the
system to the origin).

The follow important assertion is valid.

Proposition 7. The plane

{(α,Z1, Z2) ∈ R3 : Z1 = 0} (6.38)

is an integral manifold for the system (6.28)–(6.30).

Moreover, after the formal substitution Z1 = 0 in the system (6.28)–(6.30), the remaining two
equations for α and Z2 form a system that describes the dynamics of the plane-parallel motion of the

body, and the system obtained coincides with (4.22).
Thus, the plane (6.38) contains the phase portrait of the flat dynamics. Moreover, the plane (6.38)

divides the three-dimensional phase space into two parts:

{(α,Z1, Z2) ∈ R3 : 0 < α < π, Z1 > 0} (6.39)

and

{(α,Z1, Z2) ∈ R3 : 0 < α < π, Z1 < 0}; (6.40)

motions in each of these parts are independent. However, the system possesses the following symmetry:
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(i) the α- and Z2-components of the vector field of the system (6.28)–(6.30) preserves their signs

under the symmetry ⎛
⎝ α

Z1

Z2

⎞
⎠→

⎛
⎝ α

−Z1

Z2

⎞
⎠ (6.41)

with respect to the plane (6.38);
(ii) the Z1-component of the vector fields of the system (6.28)–(6.30) changes its sign under the

symmetry (6.41) with respect to the plane (6.38).

These facts show that it suffices to study the system (6.28)–(6.30) in the semi-bounded layer (6.39),

which, however, cannot be treated as a phase space.
We note the following important consequence: it is possible to take the function

V1(α,Z1) = Z1 sinα (6.42)

as a Lyapunov (Chetaev) function in the semi-bounded layer (6.39) since it is positive definite here.

Theorem 6. The function (6.42) is a Lyapunov (Chetaev) function for the system (6.28)–(6.30),
i.e., its derivative with respect to the system (6.28)–(6.30) is negative definite for μ2 < μ3 and positive
definite for μ2 > μ3.

Corollary 3. After redefinition of the right-hand sides at the origin, the system (6.28)–(6.30) has an
attractive singularity at the origin for μ2 < μ3 and a repulsive singularity for μ2 > μ3.

Proof of Theorem 6. Indeed, the derivative of the function (6.42) with respect to the system (6.28)–
(6.30) has the form

(μ2 − μ3)Z1α+ o(α2 + Z2
1 + Z2

2 ). (6.43)

In particular, a similar theorem is valid for systems of the form (6.33)–(6.35) with the Chaplygin

influence functions (6.8).
We also consider the function (it is similar to (6.15))

V (α,Z1, Z2) = Z2
2 + (1 + b2)Z2

1 + [bZ2 − sinα]2 , (6.44)

which is positive definite in some neighborhood of the origin.

Theorem 7. The function (6.44) is a Lyapunov (Chetaev) function for the system (6.28)–(6.30),
i.e., its derivative with respect to the system (6.28)–(6.30) is negative definite for μ2 < μ3 and positive

definite for μ2 > μ3.

Corollary 4. After redefinition of the right-hand sides at the origin, the system (6.28)–(6.30) has at

the origin an attractive singularity for μ2 < μ3 and a repulsive singularity for μ2 > μ3.

Proof of Theorem 7. Indeed, the derivative of the function (6.44) with respect to the system (6.28)–

(6.30) has the form

2(μ2 − μ3)(Z
2
1 + Z2

2 ) + o(α2 + Z2
1 + Z2

2 ). (6.45)

Passing to the problem on the motion of homogeneous circular cylinders, we can conclude that the
asymptotic stability occurs if the inequality σk < hD holds, where D is the diameter of the cylinder,

σ is the distance DC, and k and h are dimensionless influence parameters.
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7. Spatial Free Deceleration of a Rigid Body in a Resistive Medium (Case I)

Further, we consider the case of the motion of a body when the thrust is turned off and the body

performs a spatial free motion (deceleration) in a resistive medium (case I).
Then the right-hand side of the first equation of the system (6.2) contains the function −s(α)v2/m

since the equality T ≡ 0 holds.

Similarly to the choice of influence function, we can take the dynamical functions s, yN , and zN in
the system (6.2) in the form (3.7), (6.17) (the function R corresponds to the function y). As above, the
system considered also contains an additional damping moment of a nonconservative force (in some

domains of the phase space, this moment can be accelerating).

7.1. Dynamical equations of motion of a symmetric body under the action of a resistance

force in the absence of the proper rotation (problem on the spatial free deceleration).
By Eqs. (6.2), during the motion, the following cyclic invariant relation holds:

Ωx ≡ Ωx0 = const. (7.1)

In the sequel, we examine the case of zero twist of a rigid body about its longitudinal axis, i.e., the

case where the following condition holds:

Ωx0 = 0. (7.2)

Projecting the angular velocity on the movable axes so that

z1 = Ωy cos β1 +Ωz sin β1, z2 = −Ωy sin β1 +Ωz cos β1 (7.3)

and introducing, as above, the new dimensionless phase variables and the new differentiation by the
formulas

zk = n0vZk, k = 1, 2, 〈 · 〉 = n0v
〈 ′ 〉 , (7.4)

we transform the system (6.2) to the following form:

v′ = vΨ1(α,Z1, Z2), (7.5)

α′ = −Z2 + μ2(Z
2
1 + Z2

2 ) sinα+
σ

I2n0
F (α) cosα− σh1

I2
Z2s(α) cosα+

s(α)

mn0
cosα, (7.6)

Z ′
2 =

F (α)

I2n2
0

− Z2Ψ1(α,Z1, Z2)− Z2
1

cosα

sinα
− σh1

I2
Z2
1

s(α)

sinα
− h1

I2n0
Z2s(α), (7.7)

Z ′
1 = −Z1Ψ1(α,Z1, Z2) + Z1Z2

cosα

sinα
+

σh1
I2

Z1Z2
s(α)

sinα
− h1

I2n0
Z1s(α), (7.8)

β′
1 = Z1

cosα

sinα
+

σh1
I2

Z1
s(α)

sinα
, (7.9)

where

Ψ1(α,Z1, Z2) = −μ2(Z
2
1 + Z2

2 ) cosα+
σ

I2n0
F (α) sin α− s(α)

mn0
cosα− σh1

I2
Z2s(α) sinα,

and in the case of Chaplygin influence function it takes the form of the analytical system of equations

v′ = vΨ1(α,Z1, Z2), (7.10)

α′ = −Z2 + μ2(Z
2
1 + Z2

2 ) sinα+ μ2 sinα cos2 α− μ2μ3Z2 cos
2 α+

μ1

2
sinα cosα, (7.11)

Z ′
2 = sinα cosα− Z2Ψ1(α,Z1, Z2)− (1 + μ2μ3)Z

2
1

cosα

sinα
− μ3Z2 cosα, (7.12)

Z ′
1 = −Z1Ψ1(α,Z1, Z2) + (1 + μ2μ3)Z1Z2

cosα

sinα
− μ3Z1 cosα, (7.13)

β′
1 = (1 + μ2μ3)Z1

cosα

sinα
, (7.14)
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where

Ψ1(α,Z1, Z2) = −μ2(Z
2
1 + Z2

2 ) cosα+ μ2 sin
2 α cosα− μ1

2
cos2 α− μ2μ3Z2 sinα cosα.

In the sequel, as above, we choose the dimensionless parameters μ1, b = μ2, and H1 = μ3 as follows:

μ1 = 2
B

mn0
, b = σn0, n2

0 =
AB

I2
, H1 =

Bh1
I2n0

. (7.15)

Equations (7.6)–(7.9) of the system (7.5)–(7.9) form an independent fourth-order subsystem and

Eqs. (7.6)–(7.8) form an independent third-order subsystem.

7.2. On the stability of the rectilinear translational deceleration. We examine the stability
of the key regime, i.e., the nonperturbed motion, with respect to the perturbations of the angle of

attack and the angular velocity, i.e., with respect to the variables α, Z1, and Z2. In other words, we
examine the stability of the trivial solution of the independent third-order system (7.6)–(7.8) (after
the redefinition of the system at the origin).

The following important assertion is valid.

Proposition 8. The plane

{(α,Z1, Z2) ∈ R3 : Z1 = 0} (7.16)

Is an integral manifold for the system (7.6)–(7.8).

Moreover, after the formal substitution Z1 = 0 in the system (7.6)–(7.8), the remaining two equa-
tions for α and Z2 form a system that describes the dynamics of the plane-parallel motion of the body;
the system obtained coincides with (5.3).

Thus, the plane (7.16) contains the phase portrait from the flat dynamics. Moreover, the plane (7.16)

divides the three-dimensional phase space into two parts:

{(α,Z1, Z2) ∈ R3 : 0 < α < π, Z1 > 0} (7.17)

and

{(α,Z1, Z2) ∈ R3 : 0 < α < π, Z1 < 0}; (7.18)

motions in each of these parts are independent, but not arbitrarily, since the system possesses the
symmetry (6.41).

This facts show that it suffices to study the system (7.6)–(7.8) in the semi-bounded layer (7.17),

which is not a phase space.
An important consequence of these facts is the possibility of using the function

V1(α,Z1) = Z1 sinα (7.19)

as a Lyapunov (Chetaev) function in the semi-bounded layer (7.17) since the function considered is
positive definite in it.

Theorem 8. For the system (7.6)–(7.8), the function (7.19) is a Lyapunov (Chetaev) function, i.e.,
its derivative with respect to the system (7.6)–(7.8) is negative definite for μ3 > μ1 + μ2 and positive

definite for μ3 < μ1 + μ2.

Corollary 5. After redefinition of the right-hand sides at the origin, the system (7.6)–(7.8) has an

attractive singularity at the origin for μ3 > μ1 + μ2 and a repulsive singularity for μ3 < μ1 + μ2.

Proof of Theorem 8. Indeed, the derivative of the function (7.19) with respect to the system (7.6)–
(7.8) can be represented in the form

(μ1 + μ2 − μ3)Z1α+ o(α2 + Z2
1 + Z2

2 ). (7.20)
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In particular, a similar theorem is also valid for systems of the form (7.11)–(7.13) with the Chaplygin

influence function (6.8).
For the problem on the motion of homogeneous circular cylinders, we can conclude that the asymp-

totic stability occurs if the following inequality holds:

σk +
2I2
mD

< hD, (7.21)

where D is the diameter of the cylinder, σ is the distance DC, and k and h are dimensionless influence
parameters, or

σDk + 2r21 < hD2, (7.22)

where r1 is the radius if inertia of the cylinder (for details, see the following chapter).
We see that Theorem 8 yields the same conditions of the asymptotic stability with respect to a part

of the variables (α,Z1, Z2) as Proposition 5, in which dynamical systems from the dynamics of the

plane-parallel motion is involved.
In the case of a spatial motion, the systems obtained have singularities at the origin, which is caused

by the degeneracy of the spherical coordinates of the velocity vector v of the frontal disk (cavitator);

this can be overcome by a redefinition of the right-hand sides of dynamical systems.

8. Conclusion for Two-Dimensional and Three-Dimensional Problems

Thus, the instability of the simplest motion of a body, i.e., the rectilinear translational deceleration,
is used methodologically, namely, for the definition of unknown influence parameters under the quasi-

stationarity conditions.
Experiments on the motion of homogeneous circular cylinders in water conducted in the Institute of

Mechanics of the Moscow State University confirmed that in the modeling of the influence of a medium

on a rigid body, one must take into account an additional parameter that describes dissipation in the
system.

In the study of the class of decelerating motions of a body with finite angles of attack, the main

question is the search for conditions under which autooscillations in a finite neighborhood of the rec-
tilinear translational deceleration occur. Thus, the necessity of the complete nonlinear study becomes
obvious.

In the initial stage of this study, we neglected the damping influence of the medium. In the
functional language, this means that the pair of dynamical functions describing the influence of the
medium depends only on a single parameter, namely, the angle of attack. Dynamical systems that

appear in this way are systems with variable dissipation. Hence we must develop methods of examining
such systems.

In the dynamics of a rigid body interacting with a medium, we often obtain either systems with

variable dissipation with nonzero mean (the problem of the free deceleration of a rigid body) or systems
in which the loss of energy during a period can vanish (the problem on the motion of a rigid body in
a resistive medium under the action of a tracking force). In this paper, we use methods that allow

one to perform the analytical study of some model problems on the plane-parallel and spatial motion
of the rigid body.

In the qualitative description of the interaction of a body with a medium, due to the use of ex-

perimental information on the properties of the jet circumfluence, a spread in the modeling of force
and moment characteristics appears. This explains the necessity of the notion of relative roughness
(relative structure stability) and the proof of roughness for the systems considered. Note that many

of systems considered are simply (absolutely) rough in the sense of Andronov–Pontryagin.
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Results obtained under the assumption of the absence of damping influence of a medium on a

rigid body allow one to conclude that there are no conditions under which autooscillations in a finite
neighborhood of the rectilinear translational deceleration exist.

We systematize the study of the motion of a rigid body in a medium in the case where the damping
moment is taken into account. This moment causes an additional dissipation of the system and leads

to the stability of the rectilinear translational deceleration.
Thus, account of the damping influence of the medium under certain conditions leads to a positive

answer to the main question of the existence of stable autooscillations during the motion of a body in

a medium with finite angles of attack.

9. On the Stability of the Trivial Solution with respect to a Part of the Variables
for the Four-Dimensional Problem

Now we examine some dynamical equations of motion of the four-dimensional rigid body considered
in [42].

9.1. System of dynamical equations of motion with a nonintegrable constraint. Con-
sider the system of dynamical equation on the tangent bundle T∗S3{z3, z2, z1;α, β1, β2} of the three-
dimensional sphere S3{α, β1, β2}, which describes the motion of a dynamically symmetric four-

dimensional rigid body with a nonintegrable constraint in a nonconservative field (see [47]):

α̇ = − (1 + μ2μ3) z3 + μ2 sinα, (9.1)

ż3 = sinα cosα− (1 + μ2μ3) (z
2
1 + z22)

cosα

sinα
− μ3z3 cosα, (9.2)

ż2 = (1 + μ2μ3) z2z3
cosα

sinα
+ (1 + μ2μ3) z

2
1

cosα

sinα

cos β1
sin β1

− μ3z2 cosα, (9.3)

ż1 = (1 + μ2μ3) z1z3
cosα

sinα
− (1 + μ2μ3) z1z2

cosα

sinα

cos β1
sin β1

− μ3z1 cosα, (9.4)

β̇1 = (1 + μ2μ3) z2
cosα

sinα
, (9.5)

β̇2 = − (1 + μ2μ3) z1
cosα

sinα sin β1
. (9.6)

We examine the stability of its trivial solution with respect to perturbations of the variables α, z1,
z2, and z3 (note that this system can be continuously redefined at the origin).

Consider the function

V (α, z1, z2, z3) = (1 + μ2
2)(z

2
3 + z22 + z21)− 2μ2z3 sinα+ sin2 α, (9.7)

which is positive definite in a neighborhood of the origin.

Theorem 9. For the system (9.1)–(9.6), the Function (9.7) is a Lyapunov (Chetaev) function, i.e.,
its derivative with respect to the system (9.1)–(9.6) is negative definite for μ2 < μ3 and positive definite
for μ2 > μ3.

Corollary 6. After redefinition of the right-hand sides at the origin, the system (9.1)–(9.6) has an
attractive singularity at the origin for μ2 < μ3 and a repulsive singularity for μ2 > μ3.

Proof of Theorem 9. Indeed, the derivative of the function (9.7) with respect to the system (9.1)–(9.6)

can be represented in the form

2(μ2 − μ3)(z
2
1 + z22 + z23) cosα. (9.8)

284



9.2. System of dynamical equations of motion under the action of a noncon-

servative force couple. Consider the system of dynamical equation on the tangent bundle
T∗S3{Z3, Z2, Z1;α, β1, β2} of the three-dimensional sphere S3{α, β1, β2}, which describes the motion
of a dynamically symmetric four-dimensional rigid body in a nonconservative field under the action
of a force couple [42, 47]:

v′ = vΨ(α, β1, β2, Z), (9.9)

α′ = −Z3 + μ2(Z
2
1 + Z2

2 + Z2
3 ) sinα+ μ2 sinα cos2 α− μ2μ3Z3 cos

2 α, (9.10)

Z ′
3 = sinα cosα− (1 + μ2μ3) (Z

2
1 + Z2

2 )
cosα

sinα
+ μ2Z3(Z

2
1 + Z2

2 + Z2
3 ) cosα

− μ2Z3 sin
2 α cosα+ μ2μ3Z

2
3 sinα cosα− μ3Z3 cosα, (9.11)

Z ′
2 = (1 + μ2μ3)Z2Z3

cosα

sinα
+ (1 + μ2μ3)Z

2
1

cosα

sinα

cos β1
sin β1

+ μ2Z2(Z
2
1 + Z2

2 + Z2
3 ) cosα

− μ2Z2 sin
2 α cosα+ μ2μ3Z2Z3 sinα cosα− μ3Z2 cosα, (9.12)

Z ′
1 = (1 + μ2μ3)Z1Z3

cosα

sinα
− (1 + μ2μ3)Z1Z2

cosα

sinα

cos β1
sin β1

+ μ2Z1(Z
2
1 + Z2

2 + Z2
3 ) cosα

− μ2Z1 sin
2 α cosα+ μ2μ3Z1Z3 sinα cosα− μ3Z1 cosα, (9.13)

β′
1 = (1 + μ2μ3)Z2

cosα

sinα
, (9.14)

β′
2 = − (1 + μ2μ3)Z1

cosα

sinα sin β1
, (9.15)

where

Ψ(α, β1, β2, Z) = −μ2(Z
2
1 + Z2

2 + Z2
3 ) cosα+ μ2 sin

2 α cosα− μ2μ3Z3 sinα cosα.

We examine the stability of its trivial solution with respect to perturbations of the variables α, Z1,
Z2, and Z3 (after the continuous redefinition of the system at the origin).

Consider the function

V (α,Z1, Z2, Z3) = (1 + μ2
2)(Z

2
3 + Z2

2 + Z2
1 )− 2μ2Z3 sinα+ sin2 α, (9.16)

which is positive definite in a neighborhood of the origin.

Theorem 10. For the system (9.9)–(9.15), the function (9.16) is a Lyapunov (Chetaev) function,

i.e., its derivative with respect to the system (9.9)–(9.15) is negative definite for μ2 < μ3 and positive
definite for μ2 > μ3.

Corollary 7. After redefinition of the right-hand sides at the origin, the system (9.9)–(9.15) has an
attractive singularity at the origin for μ2 < μ3 and a repulsive singularity μ2 > μ3.

Proof of Theorem 10. Indeed, the derivative of the function (9.16) with respect to the system (9.9)–

(9.15) has the form
2(μ2 − μ3)(Z

2
1 + Z2

2 + Z2
3 ) + o(α2 + Z2

1 + Z2
2 + Z2

3 ). (9.17)
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Chapter 2

ANALYSIS OF DATA FOR EXPERIMENTS

ON THE MOTION OF BODIES IN A MEDIUM

In this chapter, we present the next stage of examination of the problem on plane-parallel motion of
a rigid body interacting with a medium only at the frontal flat part of its surface.

In the construction of the influence function of the medium, we use information on properties of
jet circumfluence under the quasi-stationarity condition (for example, in the problem on the motion
of homogeneous circular cylinders in water). We do not study the motion of the medium; instead,

we examine the problem of the rigid-body dynamics in which the characteristic time of motion of the
body with respect to its center of mass is comparable with the characteristic time of motion of the
center itself. In [51], the problem was examined under the conditions of the asymptotic stability of the

rectilinear translational deceleration; in [50], a new multi-parameter family of phase portraits in the
space of quasi-velocities was obtained. In the present chapter, we present data used for performing
nature experiments on the motion of hollow circular cylinders in a medium.

10. Preliminaries

First, we give a brief summary of the previous stages of research. Due to the complexity of the
nonlinear analysis of the motion, in the initial stage of the study we neglected the dependence of the
moment of the influence force on the angular velocity of the body and considered only the dependence

on the angle of attack.
From the practical point of view, it is important to study the stability of the nonperturbed (recti-

linear translational) motion where the velocities of points of the body are perpendicular to the lamina

(cavitator).
Results obtained under this simplest assumption allow one to conclude that there is no conditions

under which the systems considered possess solutions corresponding to angular oscillations of the body

with limited amplitude.
Experiments on the motion of homogeneous circular cylinders in water justify the fact that in

the modeling of the influence of a medium on a rigid body, it is necessary to take into account the

dependence of the moment of the influence force on the angular velocity of the body. In this case, the
equations of motion contain additional dissipative terms.

In the study of the motion of a body with finite angles of attack, the main problem of the non-

linear analysis is the search for conditions under which oscillations with limited amplitude near the
nonperturbed motion appear. This justifies the necessity of a complete nonlinear study.

In previous papers, we used the instability of the rectilinear translational deceleration to find un-

known parameters of the influence function under the quasi-stationarity conditions.
The accounting of the damping influence of the medium under certain conditions leads to a positive

answer to the principal question of the nonlinear analysis: During the motion of a body in a medium

with finite angles of attack, can stable autooscillations appear that are caused by the additional
dependence of the influence function of the medium on the angular velocity of the body, which leads
to the appearance of an additional dissipation in the system?

Moreover, in the study of dissipative dynamical systems of certain types, we obtained a new multi-
parameter family of phase portraits on the two-dimensional cylinder that consists of an infinite number
of topologically nonequivalent phase portraits that change their topological types when parameters of

the system vary.
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11. Data Preparation for Nature Experiments

11.1. Problem on the immersion of a homogeneous circular cylinder in water. We consider

the problem on the immersion of a homogeneous circular cylinder in water. The relation between the
values of physical parameters for which the rectilinear translational deceleration can be stable is as
follows:

μ3 > μ1 + μ2 (11.1)

or

h
mD2

I
− 2− k

mσD

I
> 0. (11.2)

Moreover, if the left-hand side of the inequality (11.2) vanishes, then we speak of the critical case.
Recall that D is the diameter of the circular cylinder, σ is the distance from its center of mass to

the frontal end, I and m are the inertia and mass characteristics of the cylinder, and the constants k

and h are dimensionless parameters that describe the influence of the medium on the cylinder.
For the parameters k and h in the case of bodies with circular frontal end, we have obtained an

estimate, namely, k = h = 0.1. Thus, the condition (11.2) allows one to construct a rigid body

(a circular cylinder) for which the rectilinear translational deceleration can be stable. For this, we
must choose the parameters σ, D, I, and m of the cylinder based on the condition (11.2).

Analyzing the inequality (11.2), we arrive at the following conclusion. The inertia and mass param-

eters of homogeneous cylinders are such that the inequality (11.2) cannot hold for h = 0.1. Indeed,
for h = 0.1 the left-hand side of (11.2) has the form

F1(k, h,m, I, σ,D)|k=h=0.1 = h
mD2

I
− 2− k

mσD

I

∣∣∣∣
k=h=0.1

= F2(σ,D), (11.3)

whose right-hand side, up to a positive factor, is always negative and is equal to

−3D2 − 12σD − 80σ2; (11.4)

this corresponds to the exponential instability of the rectilinear translational deceleration. Here we
have taken into account the fact that the central moment of inertia of the cylinder has the form

I = m

(
σ2

3
+

D2

16

)
. (11.5)

Moreover, from an analysis of the left-hand side of (11.2) with respect to change of h, we see that
it can vanish only for the minimum critical value of h∗ satisfying the equation

(
10h∗ − 5

4

)
− σ̄ − 20

3
σ̄2 = 0, σ̄ =

σ

D
; (11.6)

its root

h∗ = 0.125 (11.7)

is greater than the value h = 0.1.
The conditions (11.6) and (11.7) lead us to the following intermediate conclusion. The rectilinear

translational deceleration of a homogeneous circular cylinder in water cannot be stable with respect

to perturbations of the angle of attack and the angular velocity.
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Fig. 4. Hollow cylinder

11.2. Problem on the immersion of a hollow circular cylinder in water. Now we consider
the problem on the search for geometric, inertial, and mass parameters of a hollow cylinder that

provide the stability. Namely, consider a hollow cylinder (see Fig. 4) whose geometric, inertial, and
mass characteristics must satisfy the required inequality for the fixed value h = 0.1.

The composite rigid body consists of the cylindrical frontal homogeneous part of diameter D and

height 2Δ1 and lateral surface of length 2σ1 and width Δ2 (see Fig. 4).
We calculate the following parameters of the composite body that are involved in the inequal-

ity (11.2): the distance σ from the center of mass to the frontal circular end and the (central) radius

of inertia ρ of the body:

σ =
Δ2

1D
2 + 4σ1Δ2(D −Δ2)(σ1 + 2Δ1)

Δ2
1D

2 + 4σ1Δ2(D −Δ2)
, (11.8)

ρ2 =
Δ2

1D
2+

Δ2
1D

2 + 4σ1Δ2(D −Δ2)

{
4

3
Δ2

1 +
D2

16
− 2Δ1σ + σ2

}

+
4σ1Δ2(D −Δ2)

Δ2
1D

2 + 4σ1Δ2(D −Δ2)

×
{
σ2
1

3
+

D2

8
− Δ2(D −Δ2)

4
+

D4Δ2
1(σ1 +Δ1)

2

Δ2
1D

2 + 4σ1Δ2(D −Δ2)

}
. (11.9)

We can use the complete equalities (11.8) and (11.9), but this is not decisive since it suffices to
accept the following assumptions:

Δ2
1 ≈ Δ2

2 ≈ Δ1Δ2 ≈ 0. (11.10)

All geometric parameters are dimensionless:

Δ1 =
Δ1

D
, Δ2 =

Δ2

D
, σ1 =

σ1
D

; (11.11)

for brevity, we omit the bar in the sequel.
Then the left-hand side of (11.2) under the assumptions (11.10) for h = 0.1 in the critical case leads

to the equality

Δ1

(
−1

4

)
+ σ1Δ2

(
7

2

)
− 4σ2

1Δ2 = 0. (11.12)

We find a critical value σ∗
1 of the dimensionless length of the lateral walls of the composite body:

σ∗
1 =

7

16
+

1

8

√
49

4
− 4

Δ1

Δ2
. (11.13)
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From Eq. (11.13) we see that the ratio Δ1/Δ2 takes values in the following interval:

0 <
Δ1

Δ2
<

49

16
= 3.0625. (11.14)

Formally, as Δ1 → 0 (the frontal end becomes infinitesimally thin), the critical value tends to

σ∗
1 = 0.875. (11.15)

In the particular case where Δ1 = Δ2, we have

σ∗
1 =

1

16
(7 +

√
33) ≈ 0.797, (11.16)

and as Δ1/Δ2 → 49/16, we have

σ∗
1 = 0.4375. (11.17)

Thus, we can choose σ∗
1 as follows:

0.4375 ≤ σ∗
1 ≤ 0.875, (11.18)

despite the fact that the expressions (11.15)–(11.17) cover only convenient specific cases.

For example, if we take Δ1 = Δ2 = 0.1 (i.e., if D = 30mm, then Δ1 = Δ2 = 3mm), then the length
of the lateral walls is 2σ1 ≈ 1.6D ≈ 47.8mm and the total “critical” length of the composite body is
47.8 + 6 ≈ 54mm.

Finally, we note that we can “correct” the constant h that describes the influence of the medium
on the body by representing σ∗

1 as follows. The linearized critical equality (11.12) takes the form

Δ1

(
10h− 5

4

)
+ σ1Δ2

(
40h − 1

2

)
− 4σ2

1Δ2 = 0, (11.19)

and the required value of σ∗
1 can be obtained from the equation

σ∗
1 =

1

8

⎧⎨
⎩
(
40h − 1

2

)
+

√(
40h− 1

2

)2

+ 16

(
10h− 5

4

)
Δ1

Δ2

⎫⎬
⎭ . (11.20)

11.3. Possible motions of a rigid body in a resistive medium with bounded angle of
attack. As was noted above, if the parameters of the problem admit a critical case (the left-hand
side of Eq. (11.2) vanishes), then, depending on the higher derivatives of the influence functions yN
and s, the rectilinear translational deceleration of the body can be stable or unstable with respect to
perturbations of the angle of attack and the angular velocity.

Above we have found sufficient conditions of such stability or instability that contain inequalities

for higher derivatives of the influence functions. The main difficulty is the impossibility of direct
measurement of these derivatives in experiments.

Now we show how one can examine the behavior of the body near the rectilinear translational decel-

eration (i.e., stable or unstable angular oscillations) by using experimental information for estimating
higher derivatives of the influence functions.

First, we note that the inequality
DIρ0
m2

<
8k

cxπ
(11.21)

guarantees the oscillation stability (one can change the mass of the body taking various metals). In
addition to the known parameters, we also consider the density ρ0 of the medium (water in the case

considered) and the dimensionless coefficient of frontal resistance cx = 0.82.
Indeed, in the CGS system, the inequality (11.21) is equivalent to

Dρ2

m
< 0.31,
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angular oscillations

a1

a2
longitudinal displacement

Fig. 5.

where [m] = , [D] = [ρ] = , and ρ is the (central) radius of inertia expressed by the formula (11.9).
Further, in the case of oscillation motion, we need to obtain experimental information on three

or more semi-oscillations with amplitudes a1, a2, and a3 (i.e., one and a half periods). Examining

values of parameters close to critical values, we obtain from the theorem on the birth of limit cycles
two conclusions on the stability of the key regime (the rectilinear translational deceleration) and the
character of angular oscillations of the body (see I and II below).

First, we make an important remark on serial measurements of the amplitudes a1, a2, and a3.

Remark 1. The sequence of ratios
a2
a1

,
a3
a2

, . . . (11.22)

of the amplitudes a1, a2, a3, . . . (and further if we can measure more than three semi-oscillations)
determines the character of oscillations. For example, if the amplitudes

a1, a2, a3, . . . (11.23)

are similar to an increasing (decreasing) geometric progression (in particular, the ratios a2/a1 and
a3/a2 are approximately equal), then we can suggest that angular oscillations increase (descrease)
sufficiently rapidly. If the values (11.23) increase whereas their ratios a2/a1, a3/a2, . . . (see (11.22))

decrease, then we observe the transition to angular oscillations of bounded amplitude.

I. Assume that in the nature experiment with parameters corresponding to the critical case we
observe stable oscillations of the deflection angle. Then a small decrease of the length of the body (see

Example 1 below) may cause the damping of angular oscillations (see Fig. 5).
In contrast, a small increase of the length of the body (see Example 2 below) may cause the growth

of angular oscillations and subsequent stable angular auto-oscillations of the body (see Fig. 6); in this

case, one must pay attention to the rate of change of the amplitude (see Remark 1).
Moreover, repeating the experiments for the body from Example 2 for sufficiently large perturbations

of the initial angle of attack and (or) angular velocity, we can observe the transition to stable angular

auto-oscillations with finite amplitudes (see Fig. 7) that are similar to the previous case (see Fig. 6).

Example 1. The total length of the body is equal to 50 < 54mm.

Example 2. The total length of the body is equal to 60 > 54mm.

II. Assume that in the nature experiment with parameters corresponding to the critical case we

observe the growth of angular oscillations. Then a small decrease of the length of the body (see
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angular oscillations

longitudinal displacement

a1

a2

a3

Fig. 6.

angular oscillations

longitudinal displacement

Fig. 7.

angular oscillations

longitudinal displacement

Fig. 8.

Example 1 above) may cause stable oscillations of bounded amplitude (see Fig. 8). Moreover, one
must pay attention to the rate of change of the amplitude of oscillations (see Remark 1).

Moreover, in experiments with bodies from Example 1 for finite perturbations of the initial angle
of attack and (or) the angular velocity, the transition from unstable auto-oscillations to their growth
(see Fig. 9) is possible. A small increase of the length of the body (see Example 2) perhaps leads to

the growth of angular oscillations (see Fig. 10).
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longitudinal displacement

Fig. 9.

angular oscillations

longitudinal displacement

Fig. 10.

12. Conclusion

In the study of the model described above, we have found sufficient conditions of asymptotic sta-

bility of one of the key regimes, namely, the rectilinear translational deceleration. For the case of
homogeneous circular cylinders, we obtained specific estimates of their inertia and mass character-
istic based on results of experiments, including experiments for determining dimensionless influence

parameters.
We also showed that under certain conditions for higher derivatives of the influence functions (the

arm of the influence force and the resistance coefficient), stable or unstable auto-oscillation regimes

of the motion of the system can appear. In this case, the measurement of higher derivatives of the
influence functions is the main difficulty since for an arbitrary body, we know neither the explicit form
nor signs of higher derivatives at some points.

Applying methods of study of dissipative dynamical systems that appear in the problem on free
deceleration, we have obtained a new multi-parameter family of phase portraits on the two-dimensional
cylinder of quasi-velocities consisting of an infinite number of topologically nonequivalent portraits

whose topological type changes in a degenerate way when parameters of the system change. The
family obtained possesses either stable or unstable auto-oscillation regimes in a finite range of values
of the angle of attack. In this case, the domain of physical parameters is a set of finite measure in the

infinite-dimensional space of parameters of the system, so that the results obtained are typical.
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The results obtained allow one to construct hollow circular cylinders that provide the necessary

stability in nature experiments.

REFERENCES

1. Yu. K. Bivin, “Change of direction of motion of a rigid body on separation boundary of a medium,”

Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 4, 105–109 (1981).
2. Yu. K. Bivin, Yu. M. Glukhov, and Yu. V. Permyakov, “Vertical entrance of rigid bodies into

water,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 3–9 (1985).

3. Yu. K. Bivin, V. V. Viktorov, and L. L. Stepanov, “Study of rigid body motion in a clayey
medium,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2, 159–165 (1978).

4. G. S. Byushgens and R. V. Studnev, Dynamics of Longitudinal and Lateral Motion [in Russian],

Mashinostroenie, Moscow (1969).
5. G. S. Byushgens and R. V. Studnev, Airplane Dynamics. Spatial Motion [in Russian], Mashinos-

troenie, Moscow (1988).

6. S. A. Chaplygin, “On motion of heavy bodies in an incompressible fluid,” in: A Complete Col-
lection of Works [in Russian], Vol. 1, Izd. Akad. Nauk SSSR, Leningrad (1933), pp. 133–135.

7. S. A. Chaplygin, Selected Works [in Russian], Nauka, Moscow (1976).
8. V. A. Eroshin, “Ricochet of a lamina from the surface of an ideal incompressible fluid,” Vestn.

MGU, Ser. 1., Mat., Mekh., No. 6, 99–104 (1970).
9. V. A. Eroshin, “Immersion of a disk into a compressible fluid at an angle to a free surface,” Izv.

Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 2, 142–144 (1983).

10. V. A. Eroshin, G. A. Konstantinov, N. I. Romanenkov, and Yu. L. Yakimov, “Experimental
finding of the pressure on a disk under its immersion into a compressible fluid at an angle to a
free surface,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 21–25 (1988).

11. V. A. Eroshin, G. A. Konstantinov, N. I. Romanenkov, and Yu. L. Yakimov, “Experimental
finding of hydrodynamical force moment under an asymmetric penetration of a disk into a com-
pressible fluid,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, 5, 88–94 (1990).

12. V. A. Eroshin, V. A. Privalov, and V. A. Samsonov, “Two model problems of body motion in
a resistive medium,” in: Collection of Scientific-Methodological Papers in Theoretical Mechanics
[in Russian], Issue 18, Nauka, Moscow (1987), pp. 75–78.

13. V. A. Eroshin, N. I. Romanenkov, I. V. Serebryakov, and Yu. L. Yakimov, “Hydrodynamical
forces under a shock of blunt bodies on compressible fluid surface, Izv. Ross. Akad. Nauk, Mekh.
Zhidk. Gaza, 6, 44–51 (1980).

14. V. A. Eroshin, V. A. Samsonov, and M. V. Shamolin, “On the motion of a body under streamline
flow,” in: Abstracts of All-Union Conference on Stability of Motion, Oscillations of Mechani-
cal Systems, and Aerodynamics, Moscow, February 2–4, 1988 [in Russian], Moscow Aviation

Institute, Moscow (1988), p. 21.
15. V. A. Eroshin, V. A. Samsonov, and M. V. Shamolin, “Mathematical modelling in problem of

body drag in a medium under streamline flow,” in: Abstracts of Chebyshev Readings, Vestn.

MGU, Ser. 1, Mat., Mekh., 6 (1995), p. 17.
16. V. A. Eroshin, V. A. Samsonov, and M. V. Shamolin, “Model problem of body drag in a resistive

medium under streamline flow,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, 3, 23–27 (1995).

17. D. V. Georgievskii and M. V. Shamolin, “Valerii Vladimirovich Trofimov,” in: J. Math. Sci., 154,
No. 4, 449–461 (2008).

18. M. I. Gurevich, Jet Theory of Ideal Fluid [in Russian], Nauka, Moscow (1979).

19. G. Lamb, Hydrodynamics [Russian translation], Fizmatgiz, Moscow (1947).

293



20. B. Ya. Lokshin, V. A. Privalov, and V. A. Samsonov, Introduction to the Problem on the Motion

of a Body in a Resistive Medium [in Russian], Moscow (1986).
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