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ON THE LATTICE OF SUBVARIETIES
OF THE WREATH PRODUCT OF THE VARIETY OF SEMILATTICES
AND THE VARIETY OF SEMIGROUPS WITH ZERO MULTIPLICATION

A. V. Tishchenko UDC 512.532.2

Abstract. It is known that the monoid wreath product of any two semigroup varieties that are atoms in
the lattice of all semigroup varieties may have a finite as well as an infinite lattice of subvarieties. If this
lattice is finite, then as a rule it has at most eleven elements. This was proved in a paper of the author in
2007. The exclusion is the monoid wreath product Sl w N2 of the variety of semilattices and the variety
of semigroups with zero multiplication. The number of elements of the lattice L(Sl w N2) of subvarieties
of Sl w N2 is still unknown. In our paper, we show that the lattice L(Sl w N2) contains no less than
33 elements. In addition, we give some exponential upper bound of the cardinality of this lattice.

1. Introduction

Going over from the study of products of group varieties [10] to the study of products of semigroup
varieties, we have some different variants of the definitions of such a product. One variant of the definition
was proposed by A. I. Malcev in [9]. This product has been studied in a number papers of mathematicians
of Ekaterinburg (the science school due to L. N. Shevrin) and some other authors (see [14, 16]). Another
variant was proposed by J. Rhodes as a wreath product or semidirect product of semigroup varieties and
semivarieties (see [1, papers 5–7]. Later this approach has been described in monographs due to S. Eilen-
berg [3] and G. Lallement [8, Chaps. 4–6]. This approach has been used also by some mathematicians.
There have arisen different definitions: general wreath product, monoid wreath product, and standard
wreath product of semigroup varieties. In the first and the second cases, we have the associative wreath
product. The standard wreath product of semigroup varieties is not associative (see [7, 18, 19]).

We recall that the ordered monoid of semigroup varieties under the operation of monoid wreath
product has been studied in [22]. In our paper, we deal with the monoid wreath product of varieties. The
computation of the wreath product of atoms of the lattice of semigroup varieties has been realized in [23].
A semigroup variety U is called a Cross if it is finitely based, is generated by a finite semigroup, and
has a finite lattice of subvarieties (see, e.g., [12]). The atoms of the lattice of all semigroup varieties are
well known (see [4, 16]). These are precisely the varieties N2 of all semigroups with zero multiplication,
L of all semigroups of left zeroes, R of all semigroups of right zeroes, Sl of all semilattices, and Ap of all
Abelian groups of prime exponent p. The lattice L(U w V) is infinite in the following four cases of the
wreath product of atoms: Ap w Ap (p is prime), Sl w Sl, Sl w R, and Sl w Ap (p is prime).

In other cases, the monoid wreath product Uw V of two atoms U and V of the lattice of semigroup
varieties has a finite lattice of subvarieties. The cardinality of such a lattice, as a rule, is not greater
than 11 [23, Theorem 3.1]. However, in the case of the wreath product of the varieties of all semilattices
and all semigroups with zero multiplication we have another situation. It was proved in [23] that the
lattice L(Sl w R) is finite. But precise computation of this lattice is not as easy as for other wreath
products of atoms if such a lattice of subvarieties is finite. Thus, we can set two connected problems.

Problem 1. Describe the lattice L(Sl w N2) of subvarieties.

Problem 2. To give lower and upper bounds of the cardinality of the lattice L(SlwN2) of all subvarieties.
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It is clear that the solution of Problem 1 covers Problem 2. But now we do not have the full solution
of Problem 1. We consider the full solution of this problem as an important step in the study of the
monoid wreath product of semigroup varieties.

Further the variety Sl w N2 will be denoted by W. In this paper, we have some progress in the
solution of Problems 1 and 2. We indicate two disjoint sublattices L′ and L0 of the lattice L = L(W) of
subvarieties. In addition, we have |L′| = 13 and |L0| = 20. So, |L| ≥ 33. In this paper, we shall get an
upper bound for the cardinality of the lattice L. But this bound is not exact, namely, |L| ≤ 2(127) + 33.

In Sec. 2, we give some needed definitions and notation and give some results from [23]. So, we
describe the approach to the solution of Problems 1 and 2. In Sec. 3, we give a complete description
of all subvarieties in L that do not contain the variety Sl of all semilattices. Such subvarieties form
a sublattice L′ of L containing 13 elements. In Sec. 4, we give a sublattice L′′ of L0 consisting of all
subvarieties in L = L(Sl w N2) containing the variety Sl) of all semilattices. So, |L| ≥ 33. We also find
an upper bound for the cardinality of the lattice L, but this estimation is not good.

In conclusion, note that the results on two disjoint sublattices of 13 and 20 elements were announced
in [21].

2. Preliminaries

We shall use the usual terminology of the theory of semigroups and the theory of varieties (see
[2, 15, 16]). We recall some definitions and some notation.

Let X be a countable alphabet. Let us denote the letters of this alphabet by x, y, z, t, x1, x2, . . . ,
xk, . . . , y1, y2, . . . , yk, . . . , z1, z2, . . . , zk, . . . , and so on. If u and v are words over the alphabet X, then
u ≈ v denotes the identity over X; |u| denotes the length of the word u, c(u) denotes the set of letters
that appear in the word u, hk(u) is the prefix of the word u of length k. An identity u ≈ v is called
homotypic if the equality c(u) = c(v) holds, and heterotypic if the inequality c(u) �= c(v) holds.

An element a of a semigroup S is called periodic if it satisfies the equality am+n = am for some
natural numbers m, n. If m and n are the least numbers with such properties, then the number m + n is
called the order, m is called the index, and n is called the period of the element a. It is easy to see that
a monogenic semigroup 〈a〉, generated by the element a of order l = m + n, contains l elements.

A semigroup is called uniform periodic if the identity

xm = xm+n

is true for some natural numbers m and n. A semigroup is called nil semigroup of index m if the identity

xm = 0

holds in it for some m. A semigroup S is called nilpotent of step m if the identity

x1x2 . . . xm = 0

holds. A nonempty word w is called linear if none of its letters occurs in w more than once.
The wreath product of semigroups S and R by a right R-set A is the semigroup T = SA w R defined

on the Cartesian product SA × R with SA being the set of all functions of A into S, and multiplication
given by formulas

(f, p)(g, q) = (f qg, pq), (f qg)(a) = f(a)g(ap)
for any a ∈ A [17,19,20]. First of all, we now are interested in the wreath product of semigroup varieties.
In the study of the wreath product of semigroup varieties, we have chosen the monoid wreath product
of semigroup varieties [18–20] as the most suitable. The monoid wreath product of semigroup varieties
is generated by the set of all extended standard products in which the passive semigroup belongs to the
first variety and the active semigroup belongs to the second variety [19,20]. Note that in [18] the monoid
wreath product of semigroup varieties is called the wreath product of semigroup varieties. We recall that
a wreath product of semigroups T = SA w R is called an extended standard wreath product of semigroups
if the R-set A coincides with the least monoid R1 containing the semigroup R. The extended standard
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wreath product of semigroups S and R is denoted by T = S w1 R. Further in this paper, we consider only
the extended standard wreath product of semigroups.

In [23], there have been proved some results concerning the variety SlwN2, which we need now. We
formulate these results.

Lemma 2.1 ([23, Corollary 2.13]). If var S = Sl, then an identity u ≈ v belongs to the set I(W) if and
only if the following conditions hold :

(1) either u ≈ v is a trivial identity or |u|, |v| ≥ 3;
(2) h2(u) = h2(v);
(3) replacing the common beginning h2(u) = h2(v) in the identity u ≡ h2(u)u1 ≈ h2(v)v1 ≡ v by the

subword z1z2, where z1, z2 /∈ c(uv), yields the identity z1z2u1 = z1z2v1, where c(u1) = c(v1).

Lemma 2.2 ([23, Corollary 2.14]). The variety W has the basis of identities

z1z2y ≈ z1z2y
2, (2.1)

z1z2yx ≈ z1z2xy. (2.2)

Proposition 2.1 ([23, Proposition 3.8]). The lattice L(W) is finite.

In particular, in the proof of this proposition in [23] there has been established the following fact. If
in the subvariety U ⊂ Sl w N2 some heterotypic identity is true, then the identity

z1z2y ≈ z1z2x

is true in it. If each identity in I(U) is homotypic, i.e., for every identity u ≈ v in I(U) the equality
c(u) = c(v) holds, then the variety U contains the variety Sl of all semilattices. In this case, we can
assume that each of the words u and v is reduced to some W-equivalent canonical word, i.e., it has one
of the following forms:

z, z2x1 . . . xk, z3x1 . . . xk, z1z2x1 . . . xk, z1z2z1x1 . . . xk, z1z
2
2x1 . . . xk, z1z

2
2z1x1 . . . xk (k ≥ 0). (2.3)

In solving Problems 1 and 2, it is important to know whether the considered subvariety V of the
variety W contains the variety Sl of all semilattices or not. The fact Sl ⊆ V is known to be equivalent
to the fact that each identity from I(V) is homotypic. It is easy to note that

L(W) = L′ ∪ L′′,

where L′ is the lattice of all subvarieties in W in which there is true a heterotypic identity, and L′′ is the
lattice of all subvarieties in W that contain the variety Sl of all semilattices.

We denote by varΣ the variety of all semigroups in which all semigroup identities of the set Σ are
true.

3. The Sublattice L′ of All Subvarieties of the Variety W
That Do Not Contain the Variety of All Semilattices

Proposition 3.1. The sublattice L′ of all subvarieties of the variety W, in which some heterotypic identity
is true, coincides with the lattice of all subvarieties of the variety L2,3 = var{z1z2x = z1z2y}. This lattice
is represented in Fig. 1. It contains 13 elements.

In Fig. 1, we use the following additional notation:

L1,3 = var{xy1y2 ≈ xz1z2},
N3 = L1,3 = var{y1y2y3 ≈ z1z2z3},
L2,2 = var{x1x2 ≈ x1x2z},
L1,2 = var{xy ≈ xz},
N2 = L0,2 = var{xy ≈ zt},
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Fig. 1. The sublattice L′ of subvarieties of the variety Sl w N2 that do not contain the
variety of all semilattices.

L = L1,1 = var{xy ≈ x},
N3,2 = var{x2 ≈ y1y2y3},
CN3 = var{y1y2y3 ≈ z1z2z3, xy ≈ yx},
CN3,2 = var{x2 ≈ y1y2y3, xy ≈ yx},
V2,3 = var{x2 ≈ x3, x1x2y ≈ x1x2z},
V1,3 = var{x2 ≈ x3, xy1y2 ≈ xz1z2}.

Remark 3.1. The notation Lj,m (m ≥ 1, 0 ≤ j ≤ m) was used in [22] and in [6] for the idempotents
under the wreath product of semigroup varieties.

Proof of Proposition 3.1. The proposition is proved by standard arguments using known full descriptions
of all identities of the varieties L2,3, L2,2, L1,3, and other varieties indicated in Fig. 1. We do this argument
for the case of the variety L2,3. Let V be a subset of L2,3. It is clear that u ≈ v ∈ I(L2,3) if and only if
the following two conditions hold:

(1) u ≈ v is trivial or |u|, |v| ≥ 3;
(2) h2(u) = h2(v).

Let u ≈ v ∈ I(V) − I(L2,3) be true. Then for the identity u ≈ v, condition (1) or (2) is violated.
Let condition (2) be violated but h1(u) = h1(v) be true. In this case, we have some identity of the

form u ≡ xyu′ ≈ xyv′ ≡ v with y, z being two different variables belonging to the set I(V). Multiplying
this identity on the right by some word we can assume that |u|, |v| ≥ 3. Therefore, in the variety V the
following sequence of identities is true:

xyt ≈ xyu′ ≈ h3(u) ≈ h3(v) ≈ xzv′ ≈ xzt1.

Thus, in this case we have V ⊆ L1,3.
Let h1(u) �= h1(v). Then u ≡ xu′ ≈ yv′ ≡ v, where x, y are different variables. Setting ϕ(x) = x1x2,

ϕ(y) = y1y2, and ϕ(z) = z for each z ∈ X − {x, y}, we obtain that the identity x1x2u
′′ ≈ y1y2v

′′ is true
in the variety V. Therefore, in the variety V we have the following chain of identities:

x1x2t ≈ y1y2u
′′ ≈ y1y2v

′′ ≈ x1x2t1.

Thus, in this case, we have V ⊆ N3.
Let for the identity u ≈ v condition (1) be violated. If |u| = 1 and V �= T, then we have the identity

x ≈ x2 in V. Then the identity xy ≈ x2y ≈ x2z ≈ xz is true in V. Therefore, in this case, we have
V ⊆ L1,2. If |u| = 2 and |v| ≥ 3, then x2 ≈ x3 ∈ I(V) and V ⊆ V2,3. If u ≡ xy, then under |v| ≥ 3 this
identity is equivalent to the identity xy ≈ xyz. Thus, in this case, we have that V ⊆ L2,2. If |u| = |v| = 2
and the considered identity is nontrivial, then condition (2) is violated. This case has been considered
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above. The inequality V2,3 �= L2,3 follows from the fact that the first set I(V2,3) of identities contains an
identity u ≡ v with |u| = 2 and the second set does not contain such identities.

4. Subvarieties of the Variety W , Containing the Variety of All Semilattices

Now we shall estimate the number of different possible homotypic identities u ≈ v in which the right
and left sides are W-canonical words, i.e., words of the form (2.3). It should be noted that the letters z,
z1, and z2 in these words are used for letters of the beginnings of length 2.

Further, we assume that for an identity u ≈ v we have the inequality

|u| ≤ |v|. (4.1)

Now we consider distinct cases of u ≈ v. Let us introduce a “working” definition.

Definition 4.1. Identities u ≈ v and u1 ≈ v1 are called W-equivalent for the variety W if the subvarieties
defined in it by these identities coincide.

Definition 4.2. An identity u ≈ v is called W-canonical in a subvariety U ⊆ W if its right and left sides
are W-canonical words.

Thus, if β(W) is some basis of identities of the variety W, then for W-equivalent identities the
subvarieties var(β(W), u ≈ v) and var(β(W), u1 ≈ v1) are equal.

Further we shall consider the subvarieties of W defined by adding one identity u ≈ v to the basis
β(W), i.e., the subvarieties of the form

U = var(β(W), u ≈ v). (4.2)

Remark 4.1. A general plan of solving Problems 1 and 2 consists of the following steps. At first, we
shall describe all W-canonical non-W-equivalent identities. Then for finding U1 ∨ U2 we can use the
known equality I(U1 ∨ U2) = I(U1) ∩ I(U2). If the descriptions of all identities of I(U1) and I(U2)
are known, then we can try to find the basis of the variety U1 ∨U2. Moreover, it is known that for the
intersection of two semigroup varieties we have the following equality: I(U1 ∩U2) = I(U1 ∪U2). In the
last case, the basis of the intersection of two semigroup varieties is the union of the bases of the initial
varieties (see [16, Sec. 5]). The obtained basis possibly may be simplified. Due to [23, Theorem 1.2], the
variety W is Cross. In particular, this variety is hereditarily finitely based (see [5]). So, any subvariety
U ⊆ W is the intersection of a finite number of semigroup subvarieties of the form (4.2). Thus, the first
problem here is the description of all possible W-canonical non-W-equivalent identities.

Let us introduce the following notation for subvarieties of Sl w N2, containing the variety Sl:

V1 = var{β(W), z2 ≈ z3},
V2 = var{β(W), zx ≈ zx2},
V3 = var{β(W), zx ≈ zxz},
W0 = Sl w L = var{zx ≈ zx2, zyx ≈ zxy},
V = Sl ∨ L ∨N2 = var{zx ≈ z2x, zyx ≈ zxy},
P′ = varP ′ = var{zx ≈ zx2, y2x ≈ x2y},
W1 = var{β(W), zyx ≈ zxy},
W2 = var{β(W), zyx ≈ zxy, yxz ≈ xyz},
W3 = var{β(W), yx ≈ xy},
V′ = var{β(W), z2y ≈ z3y},
U0 = var{β(W), y2x ≈ x2y},
W11 = var{β(W), zyx ≈ zxy, z2 ≈ z3},
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W21 = var{β(W), zyx ≈ zxy, yxz ≈ xyz, z2 ≈ z3},
W31 = var{β(W), yx ≈ xy, z2 ≈ z3},
U1 = var{β(W), zyx ≈ zxy, y2x ≈ x2y},
U11 = var{β(W), zyx ≈ zxy, y2x ≈ x2y, z2 ≈ z3}.

Let us add to these subvarieties three more, namely:

Sl = var{z ≈ z2, yx ≈ xy},
Sl ∨ L = var{z ≈ z2, zyx ≈ zxy},
Sl ∨N2 = var{zy ≈ z2y, yx ≈ xy}.

Now we have got the sublattice L0 ⊆ L′′ of 20 subvarieties. Now let us show that this subset L0 of
20 subvarieties is a sublattice.

The main aim of the remainder of the present section is a proof of the following proposition.

Proposition 4.1. The lattice L(W) contains the sublattice L0 ⊆ L′′ of 20 subvarieties, which are defined
only by homotypic identities. The sublattice L0 is depicted in Fig. 2. In particular, the sublattice L0

contains all subvarieties that are defined in Sl w N2 by permutation identities and homotypic identities
u ≈ v with the condition |u| ≤ 2.
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Fig. 2. The sublattice L0 ⊆ L′′ of subvarieties of the variety SlwN2, containing the variety
of all semilattices.

Before proving Proposition 4.1, we shall prove a number of lemmas.

Lemma 4.1. If the identity u ≈ v satisfies the condition |u| = 1, then the subvariety U of the form (4.2)
is contained in the variety Sl ∨ L.

Proof. If |v| = 1, then the assertion is obvious. Let |v| ≥ 1. Then a homotypic identity is either z ≈ z2

or z ≈ z3. In any case, the identity z ≈ z2 is true in the variety U. Then the identity zyx ≈ zxy is also
true in the variety U. The lemma is proved.
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Lemma 4.2. If in the identity we have u = z2, then the variety U of the form (4.2) is contained in the
variety V1.

Proof. It follows from inequality (4.1) and the homotypic identity u ≈ v that |v| = 2 or |v| = 3. In the
first case, the identity u ≈ v is trivial. In the second case, we have the identity z2 ≈ z3.

Lemma 4.3. If in the subvariety U of the form (4.2) we have the identity of the form

yx ≈ v

in which h1(v) = x and |v| ≥ 2, then in U we have the identity of commutativity

yx ≈ xy,

i.e., it is contained in the variety W3.

Proof. It follows from inequality (4.1) and the homotypic identity z2 ≈ z3 that c(v) = {x, y}, h1(v) = x.
Then the word v coincides with one of the following words: (1) xy, (2) xy2, (3) xyx, (4) (xy)2, (5) x2y,
(6) x3y. Let us show that in any case the identity of commutativity is true in U. Indeed, (1) is the
identity of commutativity.

(3) =⇒ (4). It follows from the identity

yx ≈ xyx

that xyx ≈ yxyx. Hence yx ≈ yxyx. Renaming the variables we obtain the identity

yx ≈ (xy)2.

(4) =⇒ (1). The identity yx ≈ (xy)2 implies that the identity x2 ≈ x4 is true in U. Due to the
identity (2.2), the identity x2 ≈ x3 is true in U. Now we have the following chain of identities:

yx ≈ (xy)2 ≈ (yx)4 ≈ (yx)3 ≈ (yx)2 ≈ xy.

(5) =⇒ (3). It follows from the identity

yx ≈ x2y

that the identity x2 ≈ x3 is true in U. So, we also have the following chain of identities:

yx ≈ x2y ≈ x3y = x(x2y) ≈ xyx.

(2) =⇒ (1). The identity
yx ≈ xy2

implies that we have the following chain of identities:

yx ≈ xy2 ≈ y2x2 ≈ x2y4 ≈ x2y2 ≈ xy

in the variety U.
(6) =⇒ (3). The identity

yx ≈ x3y

implies that we have the following chain of identities:

yx ≈ x3y ≈ x4y ≈ x(yx)

in U. Therefore, the identity yx ≈ xy is true in it.

Now let a nontrivial homotypic identity of the form

yx ≈ yv1

be true in some subvariety U of the form (4.2). Then the right side of this identity coincides with some
word from the following list: yx2, yxy, y2x, y3x, yx2y.
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Lemma 4.4.
(1) The identities yx ≈ yx2y and

yx ≈ yxy (4.3)
are W-equivalent.

(2) The identities yx ≈ y3x and
yx ≈ y2x (4.4)

are W-equivalent. In addition, the subvariety var{β(W), yx ≈ y2x} coincides with the variety

V = Sl ∨ L ∨N2 = var{zx ≈ z2x, zyx ≈ zxy}.
Proof. (1) From (4.3) it follows that

yx ≈ yxy ≈ yxyx ≈ yx2y

is true. Conversely, we have the following chain of identities:

yx ≈ yx2y ≈ yxy2x ≈ yxy.

(2) It is clear that we have the following chain of identities:

yx ≈ y3x ≈ y4x ≈ y2x.

Similarly, the converse implication is also true. The basis of the variety

V = Sl ∨ L ∨N2 = var{zx ≈ z2x, zyx ≈ zxy}
is well known and easily may be calculated. In [4], the basis of it contains the additional identity zx ≈ zx2.
It is easy to verify that the last identity is a consequence of the first and second identities. Let us
identity (4.4) is true in a subvariety U. Then the chain of identities

zyx ≈ z2yx ≈ z2xy ≈ zxy

is true in it. Therefore, the variety U is contained in V. The converse inclusion is clear.

Remark 4.2. Further it is convenient to assume that the letters z, z1, z2, z3, z4, and t in W-canonical
words (2.3) are reserved for letters that occur at the beginnings of length 2 of these words. Moreover,
we assume that some of the four letters of the identity u ≈ v may coincide in u ≈ v. In addition, some
of these letters may be absent in u ≈ v. Thus, in fact the identity u ≈ v may contain from one to four
letters zi (i = 1, 2, 3, 4). Furthermore, a linear letter of the left side of (4.1) is present if and only if it
occurs in the set c

(
h2(v)

) − c
(
h2(u)

)
. A similar remark is true for letters zi (i = 1, 2, 3, 4) of the right

side of (4.1).

Lemma 4.5. If for a homotypic identity

u ≡ u1yu′x ≈ v1yv′x ≡ v (4.5)

there are the inequalities |u1|, |v1| ≥ 2, and the letter x is linear in u and in v, then identity (4.5) is
W-equivalent to a shorter identity, which can be obtained from (4.5) by deleting the letter x, i.e., the
identity

ũ ≡ u1yu′ ≈ v1yv′ ≡ ṽ. (4.6)

Proof. Indeed, let the letter y occur in the right and left sides of identity (4.5): u ≡ u1yu′x and v ≡ v1yv′x.
In addition, the lengths of the words satisfy the inequalities |u1| ≥ 2 and |v1| ≥ 2. Putting in the identity
u ≈ v ϕ(x) = y, we get that the chain of identities

u1yu′ = u1y
2u′ = u1yu′y = v1yv′y = v1y

2v′ = v1yv′

is true in V. Thus, identity (4.6) is true in V. Conversely, (4.6) implies (4.5).

Corollary 4.1. Any homotypic identity in a subvariety U ⊆ W is W-equivalent to a homotypic identity
that contains at most one variable x /∈ {z1, z2, z3, z4}. Thus, any W-canonical identity contains either
C = {z1, z2, z3, z4, x}, or some subset of C.
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Later on, we shall use the following notation associated with the identity u ≈ v: A1 is the set c
(
h2(u)

)

with A1 ⊆ {z1, z2} and A2 is the set c
(
h2(v)

)
with A2 ⊆ {z3, z4}. We assume that z1 �= z2 and z3 �= z4.

However, among the letters z1, z2, z3, and z4 some letters may be equal. Let us assume A = A1 ∩ A2.
Now our main problem is to give an upper and lower bound for the cardinality of the sublattice L′′.

As a result of learning of this section we shall get such bounds. Recall that in Lemmas 4.1–4.4 we have
completely enumerated the set of all possible non-W-equivalent homotypic identities of the form u ≈ v
with the condition |u| ≤ 2. In the following lemma, we shall get an upper bound for the number of
non-W-equivalent homotypic identities of the form u ≈ v with the condition |v| ≥ |u| ≥ 3.

Lemma 4.6. The number of possible non-W-equivalent homotypic identities of the form u ≈ v satisfying
the inequalities

|v| ≥ |u| ≥ 3 (4.7)
is at most 142.

Proof. To prove this assertion, consider seven different cases connected with the sets A, A1, and A2. Let
us denote by Du the set of all possible beginnings of maximal length of the word u that contain only
variables having occurrences in the beginning h2(u). First of all, note that for counting non-W-equivalent
homotypic identities we use Lemma 4.5 and its corollary. This fact will not be noted each time.

Case 1. |A| = 2. This means that A1 = A2 = {z1, z2}. Due to Corollary 4.1 either c(u) = c(v) =
{z1, z2}, or c(u) = c(v) = {z1, z2, x}. In this case,

Du = {z1z2, z1z2z1, z1z
2
2 , z1z

2
2z1, z2z1, z2z1z2, z2z

2
1 , z2z

2
1z2}.

If c(u) = {z1, z2}, then the number of such identities is 15. If c(u) = {z1, z2, x}, then due to Corollary 4.1
the number of such identities is C2

8−2 ·C2
4 = 16. The common number of all non-W-equivalent homotypic

identities in Case 1 equals 31. From these identities only one is permutable, namely:

z1z2x ≈ z2z1x. (4.8)

Case 2. |A| = 1, A1 = A2 = {z1}. In this case, we have c(u) = c(v) = {z1, x}. There exists only one
such identity

z21x ≈ z31x. (4.9)
Case 3. |A| = 1, A1 = {z1}, A2 = {z1, z3}. In this case, we have either c(u) = c(v) = {z1, z2}, or

c(u) = c(v) = {z1, z2, x}. Then there are

D3u = {z21 , z31} · z3,
D3v = {z1z3, z1z3z1, z1z

2
3 , z1z

2
3z1; z3z1, z3z1z3, z3z

2
1 , z3z

2
1z3}.

There exist 12 + 8 = 20 such identities. None of these identities is permutable.
Case 4. |A| = 1, A1 = {z1, z2}, A2 = {z1, z3}. There are

D4u = {z1z2, z1z2z1, z1z
2
2 , z1z

2
2z1; z2z1, z2z1z2, z2z

2
1 , z2z

2
1z2},

D4v = {z1z3, z1z3z1, z1z
2
3 , z1z

2
3z1; z3z1, z3z1z3, z3z

2
1 , z3z

2
1z3}.

In this case, we have either c(u) = c(v) = {z1, z2, z3} or c(u) = c(v) = {z1, z2, z3, x}. It should be taken
into account that the subcases h2(u) = z1z2, h2(v) = z3z1, and h2(u) = z2z1, h2(v) = z1z3, are identical.
Moreover, every identity of the first subcase coincides with some identity of the second after renaming
some variables. For example, the identity z2z1z3 ≈ z1z3z1z2 coincides with z3z1z2 ≈ z1z2z1z3, under the
following map of the alphabet: ϕ(z1) = z1, ϕ(z2) = z3, ϕ(z3) = z2.

Taking into account what has been said, there may exist 48+4+2+4+2+1+1 = 62 non-W-equivalent
homotypic identities in Case 4. The following identities in Case 4 are permutable:

z1z2z3 ≈ z1z3z2, (4.10)

z1z2z3 ≈ z3z1z2, (4.11)

z2z1z3 ≈ z1z3z2, (4.12)
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z2z1z3 ≈ z3z1z2, (4.13)

z1z2z3x ≈ z1z3z2x, (4.14)

z1z2z3x ≈ z3z1z2x, (4.15)

z2z1z3x ≈ z1z3z2x, (4.16)

z2z1z3x ≈ z3z1z2x. (4.17)

It is easy to see that the identity (4.12) coincides with (4.11) up to variable renaming. The same is true for
the identities (4.16) and (4.15). Hence, 60 non-W-equivalent homotypic identities are possible in Case 4.
Moreover, 6 of these identities are permutable.

Case 5. |A| = ∅, A1 = {z1, z2}, A2 = {z3, z4}. Then we have

D5u = {z1z2, z1z2z1, z1z
2
2 , z1z

2
2z1; z2z1, z2z1z2, z2z

2
1 , z2z

2
1z2},

D5v = {z3z4, z3z4z3, z3z
2
4 , z3z

2
4z3; z4z3, z4z3z4, z4z

2
3 , z4z

2
3z4}.

In this case, the positions of z1 and z2, as well as z3 and z4 are similar. Therefore, we can assume here
that h2(u) = z1z2 and h2(v) = z3z4. Then we have that

D5uz3z4 = {z1z2z3z4, z1z2z1z3z4, z1z
2
2z3z4, z1z

2
2z1z3z4},

D5vz1z2 = {z3z4z1z2, z3z4z3z1z2, z3z
2
4z1z2, z3z

2
4z3z1z2}.

As in previous cases, we have either c(u) = c(v) = {z1, z2, z3, z4} or c(u) = c(v) = {z1, z2, z3, z4, x}. Now
we have in this case 16 + 1 = 17 different identities. Among these identities we have only two permutable
ones

z1z2z3z4 ≈ z3z4z1z2, (4.18)

z1z2z3z4x ≈ z3z4z1z2x. (4.19)

Case 6. |A| = ∅, A1 = {z1}, A2 = {z3, z4}. There are

D6uz3z4 = {z21z3z4, z31z3z4},
D6vz1 = {z3z4z1, z3z4z3z1, z3z

2
4z1, z3z

2
4z3z1}.

In this case, the positions of z3 and z4 are similar. Therefore, we can assume that h2(v) = z3z4. In this
case, we have 8 + 1 = 9 different identities.

Case 7. |A| = ∅, A1 = {z1}, A2 = {z3}. Then we have

D7uz3 = {z21z3, z31z3},
D7vz1 = {z23z1, z33z1}.

In this case, we have the following identities:

z21z3 ≈ z23z1, z31z3 ≈ z23z1, z21z3 ≈ z33z1, z31z3 ≈ z33z1,

and also
z21z3x ≈ z23z1x, z31z3x ≈ z23z1x, z21z3x ≈ z33z1x, z31z3x ≈ z33z1x.

It should be noted that in this list the second and third identities are the same and the sixth and seventh
identities are the same after renaming the variables. So, we have the following four identities in Case 7:

x2y ≈ y2x, (4.20)

x3y ≈ y2x, (4.21)

x3y ≈ y3x, (4.22)

x2yx1 ≈ y2xx1. (4.23)

Thus, the number of the identities indicated in Lemma 4.6 does not exceed 31+1+20+60+17+9+4 =
142.

445



Lemma 4.7. The following strict inclusions of varieties hold :

V ⊂ V3 ⊂ V2 ⊂ V1 ⊂ W, V ⊂ W0 ⊂ V2, P′ ⊂ W0.

Moreover,
W0 ∩V3 = V.

Proof. Indeed, let identity (4.4) be true in the variety U ⊆ W. Then we have the following chain of
identities in U:

zx ≈ z2x ≈ z3x ≈ z2xz ≈ zxz.

Conversely, the identity zx ≈ z2x is not deduced from the identities zx ≈ zxz and β(W), since all initial
identities have the property h2(u) = h2(v), while the identity zx ≈ z2x does not have this property.
Hence, V ⊂ V3.

Further, identity (4.3) implies
zx ≈ zx2. (4.24)

Indeed,
zx ≈ zxzx ≈ zx2z ≈ zx2.

On the other hand, it should be noted that the identities of the basis of the variety V2 have the following
property: if the letter z has an occurrence only at the leftmost position in the word u, then in any word v
connected by a chain of deduction with u the letter z has an occurrence only at the leftmost position
in the word v. Identity (4.3) does not have this property. Hence, V3 ⊂ V2. Clearly, V2 ⊂ V1. It is
easy to see that W0 ∩ V3 = V. Indeed, from identities (4.24), (4.21), and (4.3) we obtain the validity
of zx ≈ zxz ≈ z2x in W0 ∩ V3. This fact means the coincidence of the intersection of these varieties
with V. Finally, the lattice W0 = Sl w L has been computed in [23, Proposition 3.6].

Remark 4.3. It is easy to see that

W11 = W1 ∩V1, W21 = W2 ∩V1, W31 = W3 ∩V1.

Moreover, these varieties may be defined by their bases of identities:

W11 = var{z1z2x ≈ z1z2x
2, zyx ≈ zxy, z2 ≈ z3},

W21 = var{z1z2x ≈ z1z2x
2, zyx ≈ zxy, yxz ≈ xyz, z2 ≈ z3},

W31 = var{z1z2x ≈ z1z2x
2, yx ≈ xy, z2 ≈ z3}.

Remark 4.4. It is clear from the definitions that there hold the following strict inclusions:

W31 ⊂ W3 ⊂ W2 ⊂ W1 ⊂ V′ ⊂ W, Sl ∨N2 ⊂ W31 ⊂ W21 ⊂ W11 ⊂ V1.

Lemma 4.8. Identities (4.10), (4.14), and

zxy ≈ zy2x (4.25)

are W-equivalent. Each of them defines in W the subvariety W1.

Proof. Indeed, let identity (4.14) be true in a subvariety U ⊆ W. Then in U we have the following chain
of identities:

zxy ≈ zxy2 ≈ zyxy ≈ zy2x,

i.e., identity (4.25) is also true in U. Applying (4.25) to itself, we get that the chain of identities

zxy ≈ zy2x ≈ zx2y2 ≈ zx2y ≈ zyx

is true in U, i.e., identity (4.10) holds in U. The implication (4.10) =⇒ (4.14) is obvious.

Remark 4.5. If in some subvariety U of the variety W identity (4.8) is true, then identity (4.10) is also
true in it.
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Proof. Let identity (4.8) hold in a subvariety U ⊆ W. Then we have the following chain of identities:

zyx ≈ yzx ≈ yzx2 ≈ yxzx ≈ xyzx ≈ zxyx ≈ zx2y

in U. Thus, in U is true the identity which obtain from (4.25) by renaming variables. By virtue of
Lemma 4.8 identity (4.10) is also true in U.

Remark 4.6. Due to Remark 4.5 we can find a shorter basis of identities of the variety W2, namely

W2 = var{z1z2x ≈ z1z2x
2, yxz ≈ xyz}.

Lemma 4.9. The following strict inclusions of varieties are valid :

W3 ⊂ W2 ⊂ W1 ⊂ V′ ⊂ W.

Proof. The indicated nonstrict inclusions are obvious. To prove the strict inclusions, we should analyze
some invariant properties of the identities of the mentioned bases that are preserved during a deduction.
We enumerate these properties:

(1) W3 ⊂ W2, since the set of identities I(W3) contains the nontrivial identity yx ≈ xy, for which
|u| = |v| = 2, and I(W2) does not contain this identity;

(2) W2 ⊂ W1, since the set of identities I(W2) contains the nontrivial identity yxz ≈ xyz, in which
h1(u) �= h1(v), and I(W1) does not contain this identity;

(3) W1 ⊂ V′, since the set of identities I(W1) contains the nontrivial identity zyx ≈ zxy, in which
h2(u) �= h2(v), and the set I(V′) does not contain this identity;

(4) V′ ⊂ W, since the set of identities I(V′) contains the nontrivial identity z2y ≈ z3y, which is
false in W. The last fact is easy to verify by putting ϕ(z) = (f, a), ϕ(y) = (g, a), in the monoid
wreath product T = U2 w N = F (N1, U2) × N , where U2 = {0, 1} is the two-element semilattice
and N = {0, a | a2 = 0} is the two-element semigroup with null multiplication. Here g is the
identity function, i.e., g(1) = g(a) = g(0) = 1, but f(1) = f(a) = 1 and f(0) = 0.

Lemma 4.10. The identities (4.8), (4.11), (4.13), (4.15), (4.17), (4.18), (4.19), and also identities

xyz ≈ yx2z, (4.26)

xyz ≈ zyxz (4.27)

are W-equivalent. Each of them defines in W the subvariety W2.

Proof. Indeed, the implications (4.11) =⇒ (4.15), (4.13) =⇒ (4.17), and (4.18) =⇒ (4.19) are obvious.
(4.11) =⇒ (4.18). Let U be a subvariety of W. Applying (4.11) twice, we obtain a chain of identities

in U:
z1z2z3z4 ≈ z3z1z2z4 ≈ z3z4z1z2.

(4.19) =⇒ (4.8). Let the identity (4.19) be true in a subvariety U of W. Then the chain of identities

yxz ≈ yxz3 ≈ z2yxz ≈ z2xyz ≈ xyz2z ≈ xyz

holds also in it. Therefore, the identity (4.8) is also true in U.
(4.8) =⇒ (4.13). Let the identity (4.8) be true in a subvariety U. Then we have in it the following

chain of identities:
xyz ≈ xyz2 ≈ xzyz ≈ xzy2z ≈ xy2z2 ≈ xy2z.

Hence, the identity
xyz ≈ xy2z (4.28)

holds in the variety U. Further, applying (4.28), we have that the chain of identities

xyz ≈ xy2z ≈ y2xz ≈ y2zx ≈ zy2x ≈ zyx

holds in U. Hence, identity (4.13) is true in U.
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(4.13) =⇒ (4.26). Let identity (4.13) be true in a subvariety U of W. Then the following chain of
identities holds in it:

xyz ≈ xyz2 ≈ z2yx ≈ z2xy ≈ z2x2y ≈ yx2z2 ≈ yx2z,

i.e., identity (4.26) is true.
(4.26) =⇒ (4.13). Identity (4.26) implies that the following chain of identities is true in the subvariety

U of W:

xyz ≈ yx2z ≈ yx2z2 ≈ yxz2x ≈ yxz3x ≈ yxz2xz ≈ yzx2z ≈ yz2x2 ≈ zyx2 ≈ zyx.

(4.26) =⇒ (4.11). Using identity (4.13) obtained in a previous item, we have that the chain of iden-
tities

xyz ≈ yx2z ≈ yx2z2 ≈ z2x2y ≈ xz2y ≈ zxy

is true in the subvariety U, i.e., (4.11) holds in it.
(4.15) =⇒ (4.11). Let identity (4.15) be true in a subvariety U of W. By renaming the variables,

identity (4.15) may be written as
xyzt ≈ zxyt. (4.29)

Setting in (4.29) ϕ(t) = z, we get the identity

xyz ≈ zxyz, (4.30)

faithful in U. In addition, the chain of identities

zxy ≈ zxyy ≈ xyzy ≈ xy2z

is true in it, i.e., the identity
zxy ≈ xy2z (4.31)

holds in U. From here it follows the truth of the chain of identities

zxy ≈ xy2z ≈ y2z2x ≈ z2x2y2 ≈ z2xy ≈ zxzy ≈ zxyz ≈ xyz

in U. Hence, identity (4.11) is true in U.
(4.17) =⇒ (4.27). Let identity (4.17) be true in a subvariety U of W. Setting in (4.17) ϕ(z2) = x,

ϕ(z1) = y, ϕ(z3) = z, ϕ(x) = z, we get that in U identity (4.27) is true.
(4.27) =⇒ (4.13). Identity (4.27) implies that the chain of identities

xyz ≈ zyxz ≈ xyzxz ≈ xyzx ≈ zyx

in a subvariety U is true. Thus, the identity (4.13) holds in it. As noted in Remark 4.6 the truth of the
identity (4.8) in U means the coincidence of the varieties U and W2.

Lemma 4.11. The identities (4.8), (4.30),

xyz ≈ z2xy, (4.32)

xyz ≈ z3xy, (4.33)

xyx ≈ yx2 (4.34)

are W-equivalent. Each of them defines in W the subvariety W2.

Proof. The implication (4.8) =⇒ (4.34) is obvious.
(4.34) =⇒ (4.30). Let identity (4.34) hold in a subvariety U of the variety W. Then assuming

in (4.34) ϕ(y) = yz, ϕ(x) = x, we obtain that

xyzx ≈ yzx2 ≈ yzx

holds in U, i.e., identity (4.30) is true in it.

448



(4.30) =⇒ (4.33). Let identity (4.30) hold in a subvariety U of the variety W. Then the chain of
identities

xyz ≈ zxyz ≈ z2xyz ≈ z3xy

holds in U, i.e., identity (4.33) is true in it.
(4.33) =⇒ (4.8). Let identity (4.33) hold in a subvariety U of the variety W. Then the chain of

identities
xyz ≈ z3xy ≈ z3yx ≈ yxz

is true in U. Therefore, (4.8) is true in it.
(4.8) =⇒ (4.32). Let U be a subvariety of the variety W. According to Remark 4.5 identity (4.10) is

also true in U. Then the chain of identities

z2xy ≈ xz2y ≈ xyz2 ≈ xyz

holds in U, i.e., (4.32) is true in it.
(4.32) =⇒ (4.33). If identity (4.32) holds in a subvariety U of the variety W, then the chain of

identities
xyz ≈ xyz2 ≈ z2xyz ≈ z3xy

holds in U, i.e., (4.33) is true in it.

Lemma 4.12. Identities (4.20) and (4.21) are W-equivalent. Each of them defines in W the subvari-
ety U0, which has the basis of identities of (2.1), (2.2), and (4.20). The variety U0 contains the variety P′.
In addition, the variety V′ defined by identities (2.1), (2.2), and (4.9) contains the variety U0.

Proof. Let us prove that identities (4.20) and (4.21) are W-equivalent. Indeed, if (4.20) is true in a sub-
variety U of the variety W, then the chain of identities

x2y ≈ x2y2 ≈ y2xy ≈ y3x

holds in U, i.e., identity (4.21) is true in it.
Conversely, let identity (4.21) hold in a subvariety U of the variety W. Then the chain of identities

x2y ≈ y3x ≈ y2xy ≈ x3y2 ≈ x3y

holds in it. From here we have that x2y ≈ y3x ≈ y2x are true in U, whence identity (4.20) is also true in
it. Other assertions of this lemma are obvious or follow from what has been said.

Lemma 4.13. The above-defined subvarieties of W satisfy the following conditions:

U0 ⊂ V′, V1 ⊂ V′, W1 ⊂ V′,

U1 = W1 ∩U0 = var{z1z2x ≈ z1z2x
2, zyx ≈ zxy, x2y ≈ y2x},

U11 = V1 ∩U0 = var{z1z2x ≈ z1z2x
2, zyx ≈ zxy, x2y ≈ y2x, z2 ≈ z3},

P′ = V2 ∩U0.

Proof. The mentioned strict inclusions in the lemma are obvious from what was stated above. The basis
of intersection of two varieties, as was noted in Remark 4.1, consists of the union of bases of these varieties.
It remains to verify that these bases are simplified to bases pointed out for intersections of varieties in
the lemma.

Proof of Proposition 4.1. Most of the inclusions and intersections of varieties pointed out on Fig. 2 have
been proved or noted earlier in Lemmas 4.7, 4.12, and 4.13 and in Remark 4.3.

It remains to verify the following strict inclusions:

Sl ∨N2 ⊂ P′, W0 ⊂ W11, W21 ⊂ U11 ⊂ W11.
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All these strict inclusions easily follow from the definitions of bases of the indicated subvarieties. Let us
verify for example that the inclusion W21 ⊂ U11 holds. It is sufficient to prove that the identity x2y ≈ y2x
is true in W21. Indeed, the chain of identities

x2y ≈ x2y2 ≈ xy2x ≈ y2x2 ≈ y2x

holds in it. On the other hand, if u ≈ v ∈ I(U11) and the first letter y of the word u occurs in u only
once, then the first letter of the word v coincides with y and occurs in v only once. This property of the
set I(U11) is false for the set I(W21). Therefore, the inclusion W21 ⊂ U11 is strict.

Corollary 4.2. The lattice L(SlwN2) of all subvarieties of SlwN2 contains the subset L′ ∪L0, whence
it contains at least 33 elements. In particular, the lattice interval I(Sl,Sl w N2) contains at least 20
elements.

Proof. It follows directly from Propositions 3.1 and 4.1.

5. Concluding Remarks

In Secs. 3 and 4, we established that the lattice L(W) contains the subset L′ ∪ L0 with 33 elements.
On the other hand, it is easy to see that in the lattice L0 there are only 6 subvarieties U such that
each identity from I(U) has the property 4.7, namely, W, W1, W2, V′, U0, and U1. Each of the
other 14 subvarieties of L0 has at least one identity u ≈ v with |u| ≤ 2. Moreover, the subvarieties of
type (4.2), i.e., subvarieties defined by a single identity in W, are W1, W2, V′, and U0 and also V1,
V2, V3, V′, and W3. Note that the way of getting an upper bound for the cardinality of the sublattice
L′′ ⊆ L(W) by means of the description of all non-W-equivalent subvarieties in Remark 4.1 apparently
is not efficient. For example, the number of such identities with the property (4.7) due to Lemma 4.6
equals 142. According to Lemmas 4.8, 4.10–4.12, this number reduces to 142− 15 = 127. Then the upper
bound of the number of all subvarieties equals the cardinality of all subsets of such identities, i.e., 2127.
In fact, there are considerably fewer such subvarieties, since different subsets of identities may define the
same variety of semigroups. I think that the cardinality of the lattice L(W) is not large and this lattice
can be fully described.
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