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BÉZOUT RINGS WITH FINITE KRULL DIMENSION

A. Gatalevych UDC 512.552.12

Abstract. It is proven that if R is a commutative Bézout ring of Krull dimension 1, with stable range 2,
then R is an elementary divisor ring.

Let R be a commutative ring with identity. Recall that the Krull dimension of R is the maximal
length n of a chain P0 ⊂ P1 ⊂ · · · ⊂ Pn of prime ideals inside R. By convention, a ring R has Krull
dimension −1 if and only if it is trivial (i.e., 1R = 0R) [5]. By a Bézout ring we mean a ring in which
all finitely generated ideals are principal. An (n ×m) matrix A = (aij) is said to be diagonal if aij = 0
for all i �= j. We say that a matrix A of dimension n × m admits a diagonal reduction if there exist
invertible matrices P ∈ GLn(R) and Q ∈ GLm(R) such that PAQ is a diagonal matrix. We say that
two matrices A and B over a ring R are equivalent if there exist invertible matrices P and Q such that
B = PAQ. Following [3], we say that if every matrix over R is equivalent to a diagonal matrix (dii) with
the property that every dii is a divisor of di+1,i+1, then R is an elementary divisor ring. A ring R is said
to be a Hermite ring if every (1× 2) matrix over R admits diagonal reduction. A row (a1; a2; . . . ; an) over
a ring R is called unimodular if a1R + a2R + · · · + anR = R. If (a1; a2; . . . ; an) is a unimodular n-row
over a ring R, then we say that (a1; a2; . . . ; an) is reducible if there exists an (n− 1)-row (b1; b2; . . . ; bn−1)
such that the (n − 1)-row (a1 + anb1; a2 + anb2; . . . ; an−1 + anbn−1) is unimodular. A ring R is said to
have stable range n if n is the least positive integer such that every unimodular (n+ 1)-row is reducible.
A commutative Bézout ring R with identity is said to be adequate if it satisfies such conditions: for every
a, b ∈ R, with a �= 0, there exist ai, d ∈ R such that

(i) a = aid,
(ii) (ai, b) = (1),
(iii) for every nonunit divisor d′ of d, we have (d′, b) �= (1) [2].
In Theorems 1 and 2, we obtain the generalizations of the results in [1, 7].

Theorem 1. If R is a commutative Bézout ring of Krull dimension 1, with stable range 2, then R is an
elementary divisor ring. In fact, it is adequate.

Proof. According to the results of [9], we can assume that the ring R is a reduced ring. As a Bézout ring
with stable range 2 is Hermite, by [4, p. 232] we must prove that if a, d ∈ R, then there exist elements
b, c ∈ R with a = bc and no nonunit factor of c is relatively prime to d. Consider the following sequence
of elements of R: a1 = a/(a, d), a2 = a1/(a1, d), a3 = a2/(a2, d), . . . . We claim that for some integer n,
(an, d) = 1. Otherwise, look at the following chain of ideals of R:

(a, d) ⊆ (a1, d) ⊆ (a2, d) ⊆ . . . .

The union is a proper ideal of R and so is contained in a maximal ideal M . Since the ring R is reduced,
according to the results of [6, 2.1] RM is a Bézout domain; moreover, it is a valuation domain. In the
valuation domain RM , if (ai, d) = (ai) for some i, then (ai+1, d) = RM , a contradiction. The alternative
is that (ai, d) = (d) for each i, but this implies that a ∈ (di)RM for each i. I.e. a ∈ ⋂

(di)RM . Then
by [6, p. 187]

⋂
(di)RM ∈ specRM and, therefore, a = 0, since RM is a one-dimensional domain. This

justifies the claim.
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Theorem 2. If R is a commutative semihereditary Bézout ring of Krull dimension 2, then R is an
elementary divisor ring.

Proof. The following theorem has been proven in [7]: Let R be a commutative semihereditary Bézout ring.
Then R is an elementary divisor ring if and only if R/dR is an elementary divisor ring for all nonzero
divisors d ∈ R. Let d be a nonzero divisor of R. By [6] d is not contained in any minimal prime ideal. So
R/dR is commutative Bézout ring of Krull dimension 1, with stable range 2. Then R/dR is an elementary
divisor ring and by Theorem 1 R also is an elementary divisor ring.

Open problem. Following [8], a ring R is fractionally P provided that the classical quotient ring Q(R/I)
of the ring R/I satisfies P for every ideal I of the ring R. In [10], Theorem 7 was proved: A fractionally
regular Bézout ring of a stable range 2 is an elementary divisor ring. The author asks the following
question: Is every commutative Bézout ring of Krull dimension 1 with stable range 2 fractionally regular?
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