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THE RATE OF CONVERGENCE OF THE
DISTRIBUTIONS OF REGULAR STATISTICS
CONSTRUCTED FROM SAMPLES WITH
NEGATIVELY BINOMIALLY DISTRIBUTED
RANDOM SIZES TO THE STUDENT DISTRIBUTION

S.V. Gavrilenko1 , V.N. Zubov1 , and V.Yu. Korolev1,2

New estimates are obtained for the rate of convergence of the negative binomial distribution with
parameters (r, p) to the gamma-distribution with parameters (r, r) when p → 0. The main result
is a considerable improvement of convergence rate estimates for regular statistics constructed from
samples with negatively binomially distributed random sizes to the Student distribution.

1. Introduction

The main goal of this paper is to refine the information on the convergence of asymptotically normal
statistics with random indexes of the form TNn , where Nn is a random variable with negative binomial
distribution, to the Student distribution. Let us recall that a statistic Tn is called asymptotically normal
if

P (σ
√
n(Tn − μ) � x)

n→∞
=⇒ Φ(x).

Additionally assume that

sup
x

|P (
√
nσ(Tn − μ) � x)− Φ(x)| = O

(
1√
n

)
, (1)

and that the index distribution has the form

P (Nn = k) =

(
k + r − 1

r − 1

)
pr(1− p)k, p =

r

n
, k = 0, 1, . . . .

Then, as is shown in [1], it is possible to estimate the rate of convergence of P (
√
n− rσ(TNn − μ) � x)

to the Student distribution function F2r(x) with 2r degrees of freedom. In the same paper the authors
obtained an auxiliary result, for which authors of the present paper wish to improve. Namely, it is
proved that

sup
x

∣∣∣∣P
(

Np,r

ENp,r
� x

)
−Gr,r(x)

∣∣∣∣ = O
(
p

r
r+1

)
(2)

for random variable Np,r with negative binomial distribution and Gr,r(x) — the function of gamma-
distribution with equal parameters. On the basis of this result the following statement is proved.

Theorem 2.1. Let Tn be asymptotically normal in the above sense, and let (1) hold. Then the
following estimate is valid:

sup
x

|P (
√
n− rσ(TNn − μ) � x)− F2r(x)| = O

(
n− r

r+1

)
.

In the present paper we considerably improve the estimate (2) and, as a consequence, refine the main
theorem. Its new formulation is given in the final part of the paper.
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2. Convergence rate in terms of smoothed uniform metric for 0 < r < 1

Consider Np,r, a random variable having negative binomial distribution with parameters (r, p), r ∈
(0, 1), i.e.,

P (Np,r = k) =
Γ(r + k)

k! Γ(r)
pr(1− p)k, k = 0, 1, 2, . . . ,

and its normalization

N∗
p,r =

Np,r

ENp,r

as p → 0. In [1] it was shown that

Δp,r ≡ sup
x�0

|P (N∗
p,r � x)−Gr,r(x)| → 0, p → 0,

where Gr,r(x) =
rr

Γ(r)

∫ x
0 e−ryyr−1dy, x > 0.

We are interested in the rate of the weak convergence

N∗
p,r

p→0⇒ ξ ∼ Γ(r, r) (3)

for all r > 0.

Let us begin with the case 0 < r < 1.

In most limit theorems of probability theory and mathematical statistics, the rate of convergence is
dealt with in terms of the uniform metric

ρ(F,G) = sup
x

|F (x)−G(x)|.

For given F (x) = P (Np,r < x) and G(x) =
x∫
o

rr

Γ(r)e
−rttr−1dt the following estimate was obtained in [1]:

sup
x�0

|F (x)−G(x)| = O(p
r

r+1 ),

which, in the best case, considering that r ∈ (0, 1), gives O(
√
p).

However, in some cases, the uniform metric does not allow one to estimate the real closeness of
distribution functions. As an example consider

Fn(x) =

{
1, x > 1

n ,

0, x � 1
n ,

G(x) =

{
1, x > 0,

0, x � 0,

sup
x�0

|Fn(x)−G(x)| = 1, but Fn(x)
n→∞−−−→ G(x) for ∀x.

Let us consider an alternative approach to the problem with the use of the smoothed uniform metric
ρ(F,G) = sup

x
|(F ∗H)(x)− (G ∗H)(x)| for some fixed distribution H. We assume that the distribution

function H is absolutely continuous (h(u) is the distribution density).

Looking at the above example, note that

(Fn ∗G)(x) =

x∫
0

Fn(x− u)h(u)du =

∫

x−u> 1
n

u∈[0,x]

h(u)du =

x− 1
n∫

0

h(u)du,



Rate of Convergence of Regular Statistics Distributions 703

(G ∗H)(x) =

x∫
o

h(u)du,

sup
x

|(Fn ∗H)(x) − (G ∗H)(x)| = sup
x

|
x∫

x− 1
n

h(u)du| n→∞−−−→ 0,

at least for the class of all bounded densities h. Thus, the smoothed uniform metric is more adequate
here.

The smoothed uniform metric is also convenient because, as is well known, the uniform metric is
regular, i.e., if a random variable Z ∼ H(x) is independent of random variables X ∼ F (x) and Y ∼ G(x),
then

ρH(F,G) = ρ(F ∗H,G ∗H) = ρ(X + Z, Y + Z) � ρ(X,Y ) = ρ(F,G).

This means that, in view of the regularity, the results for the rate of convergence of Δp,r in terms of
the smoothed metric obtained below may be combined with the results of D. O. Selivanova (see [3]): for
natural r

Δp,r ≡ sup
x�0

|P (N∗
p,r � x)−Gr,r(x)| � rp

1− p
= O(p).

Let us return to the initial problem of estimation of the rate of convergence (3). Using the uniform
metric we will not be able to obtain good estimates, since we cannot use Esseen’s estimates [1] because
the derivative of Gr,r(x) at zero is unbounded. Therefore we shall try to obtain good estimates of con-
vergence rate in terms of the smoothed uniform metric. We shall take H(x) = Gr,1(x) (i.e., exponential
distribution with the density h(x) = re−rx) as a smoothing distribution. Note that

(G ∗H)(x) = (Gr,r ∗Gr,1(x)) = Gr,r+1(x).

This means that the derivative (G∗H)′(x) = rr+1

Γ(r+1)e
−rxxr is bounded for 0 < r < 1 and, hence, we may

apply the Esseen inequality to the convolutions (F ∗H)(x) and (G ∗H)(x)

sup
x�0

|(F ∗H)(x)− (G ∗H)(x)| � 1

π

∫
|t|�T

|fh(t)− gh(t)|
|t| dt+

24A

πT
, (4)

where A = sup
x

|(G ∗ H)′(x)| and fh(t) and gh(t) are the characteristic functions of (F ∗ H)(x) and

(G ∗H)(x), respectively. This inequality is valid for all T > 0.
Obviously, there exist a probability space, a random variable Z ∼ H, and random variables X,Y

independent of Z defined on the same space, such that X + Z ∼ F ∗H and Y + Z ∼ G ∗H. Then for
the characteristic functions of convolutions we have the inequality

|fh(t)− gh(t)| = |Eeit(Z+X) − Eeit(Z+Y )| =
= |EeitZ(EeitX − EeitY )| � |f(t)− g(t)| ·E|eitZ | = |f(t)− g(t)|.

Therefore, from the Esseen inequality, it follows that

Δp,r = sup
x�0

|(F ∗H)(x)− (G ∗H)(x)| � 1

π

∫
|t|�T

|fh(t)− gh(t)|
|t| dt+

24A

πT
�

� 1

π

∫
|t|�T

|f(t)− g(t)|
|t| dt+

24A

πT
, A = sup

x�0
|(G ∗H)′(x)|.
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The latter inequality is valid for all T . Set T (p) = cpα, where 0 < α < 1. It is clear that the upper
estimate includes two terms, the second of which has the order O

(
1
T

)
. The first term is O(pT ), which

follows from the reasoning in [1], i.e., Δp,r = O(T−1) + O(pT ). It easy to see that the maximum
convergence rate can be found by equating the terms’ orders for α = 1

2 .
Hence, when p → 0, the value Δp,r has the order O(

√
p) irrespective of r from the interval (0, 1).

3. Estimates in the uniform metric

3.1. Statement of the problem

It is necessary to estimate the expression

sup
x�0

∣∣∣∣P
(

Np,r

ENp,r
� x

)
−Gr,r(x)

∣∣∣∣ , p → 0, r > 0,

where Np,r is a random variable, having negative binomial distribution with parameters r and p, and
Gr,r(x) is a gamma-distribution function with equal parameters. The first distribution function is
piecewise constant, and the second one is continuous

P

(
Np,r

ENp,r
� x

)
=

⌊
rqx
p

⌋
∑
k=0

qkpr
Γ(k + r)

k! · Γ(r) ,

Gr,r(x) =

x∫
0

rr

Γ(r)
e−rttr−1dt. (∗)

Because of their monotonicity, it is sufficient to study the behavior of Δp,r at the jump points of the
negative binomial distribution function, i.e., at the points np

rq , n � 0, n ∈ Z.

3.2. Estimation at the point

First let us try to obtain the estimate at a fixed point x for r > 1. Decompose the integral (*) into
two parts

Gr,r(x) =

x∫
0

rr

Γ(r)
e−rttr−1dt =

p
rq∫
0

rr

Γ(r)
e−rttr−1dt +

np
rq∫

p
rq

rr

Γ(r)
e−rttr−1dt = I1 + I2.

Using the generalized mean value formula proved in the Appendix, we can state that

I1 =
rr

Γ(r)
e−r θp

rq

p
rq∫
0

tr−1dt =
pr

rΓ(r)

e
− θp

q

qr
, 0 � θ � 1.

Thus, for sufficiently small p

|I1| � (2p)r

rΓ(r)
= C1(r)p

r,

and the problem reduces to obtaining a similar estimate for the second term I2. The main idea is to
apply the formula of rectangles on the segment [ prq ,

np
rq ] with the constant step p

rq , and to take the values
of the integrand at the right boundaries of the partitioning segments

I2 =
p

rq

n∑
k=2

rr

Γ(r)
e−

pk
q

(
kp

rq

)r−1

+R(r, p, x).
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In what follows we denote the difference Gr,r(x)−R(r, p, x) by Ĝr,r(x). On the other hand,

n∑
k=0

qkpr
Γ(k + r)

Γ(r) · k! = pr + qprr +

n∑
k=2

qkpr
Γ(k + r)

Γ(r) · k! .

Denoting by Δ the expression P (
Np,r

ENp,r
� x)−Gr,r(x), we have

Δ = pr + qprr − pr

Γ(r) · r
e−

θp
q

qr︸ ︷︷ ︸
Δ1

+

+
n∑

k=2

(
qkpr

Γ(k + r)

Γ(r) · k! −
rr

Γ(r)
e−

pk
q

(
kp

rq

)r−1

· p

rq

)

︸ ︷︷ ︸
Δk

+R(r, p, x). (5)

The term Δ1 is O(pr) with the constant depending only on r. Therefore, the key step is to obtain the
upper estimate for Δk and their sum Δ. In Appendix A it is shown that

Γ(r + k)

k!
= kr−1

(
1 +

r(r − 1)

2k
+O

(
1

k2

))
,

where the constant depends only on r. Note that from the Taylor expansion with the Lagrange remainder
term it follows that

(1− p)−r = 1 + pr +
r(r + 1)p2

(1− βp)r+2
,

e
−−pk

q = e−pk(1−p)−1
= e

−pk(1+p+ p2

(1−γp)3
)
= e

−pk−p2k− p3k

(1−γp)3 ,

(1− p)k = (1− p)
− 1

p
·(−pk)

= e
−pk− p2k

2
− p3k

3(1−αp)3 .

Here α, β, γ are numbers from the segment [0, 1]. Substituting this expressions into Δk and taking
common factors out, we obtain

Δk =
pr

Γ(r)
e−pkkr−1 ·

(
e
−pk

(
p
2
+ p2

3(1−αp)3

)

·
(
1 +

r(r − 1)

2k
+O

(
1

k2

))
−

−
(
1 + pr +

r(r + 1)p2

(1− βp)r+2

)
e
−pk

(
p+ p2

(1−γp)3

))
. (6)

Let us slightly simplify this expression. It is obvious that

e−p2k−k·O(p3) = 1− p2k − k ·O(p3) +
eμ

2
· (−p2k − k · O(p3))2 = 1− p2k +O(p2). (7)

However, it is less obvious that the constant in O(p3) may be taken not depending on k. Indeed, in the
remainder we have the terms of the form p2+tk, t � 1. We can write

p2+tk = pt · (p2k) � pt · p2n = pt · p2 · xrq
p

= ptxqrp = O(p2). (8)

Similarly to relation (7),

e
−p2k

2
+kO(p3) = 1− p2k

2
+O(p2), (9)
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where the constant also depends only on n. Now, using exponent expansions, we transform expression
(6) as

Δk =
pr

Γ(r)
e−pkkr−1

((
1− p2k

2
+O(p2)

)(
1 +

r(r − 1)

2k
+O

(
1

k2

))
−

−(1 + pr +O(p2))(1 − p2k +O(p2))

)
=

pr

Γ(r)
e−pkkr−1

((
1 +

r(r − 1)

2k
−

− p2k

2
+O(p2) +O

(
1

k2

))
− (1 + pr − p2k +O(p2)

))
=

=
pr

Γ(r)
e−pkkr−1

(
−pr +

p2k

2
+

r(r − 1)

2k
+O(p2) +O

(
1

k2

))
. (10)

Now let us estimate
n∑

k=2

Δk:

∣∣∣∣∣
n∑

k=2

Δk

∣∣∣∣∣ �
n∑

k=1

|Δk| �
n∑

k=1

pr

Γ(r)
e−pkkr−1 ·

(
pr +

p2k

2
+

r(r − 1)

2k
+ c2p

2 +
c3
k2

)
= I + II + III + IV + V.

We have five terms, each of which will be considered separately. First,

I =
pr

Γ(r)

n∑
k=1

e−pkkr−1pr � pr+1 · r
Γ(r)

nr−1 · n � pxrCI(r).

Similarly

II =
pr

2Γ(r)

n∑
k=1

e−pkkrp2 � CII(r)x
r+1p,

IV � [by analogy with I] � pr · nr ·O(p2) � CIV(r)x
r+dp2,

d is an integer nonnegative number determined from estimate (7).
The estimate for V follows from III, since 1

k2 � 1
k . The estimate for III is less trivial than the

others and is based on the representation of the term in the form of the integral sum for a proper
integral (convergent improper integral) with small p. Also note that there exists λ > 0: p � λ

n , since
n = rqx

p � 1
2
rqx
p . So,

III =
n∑

k=1

pr

Γ(r)
e−pkkr−2 r

2 − r

2
�

�
n∑

k=1

pr

Γ(r)
e−λ k

n

(
k

n

)r−2

nr−2

(
1

n
· n
)

r2 − r

2
=

[
xk =

k

n
,Δxk =

1

n

]
=

=
pr

Γ(r)
nr−1 r

2 − r

2
·

n∑
k=1

f(ξk)Δxk, where f(x) = e−λxxr−2.

The integral sum obviously converges to the integral
∫ 1
0 e−λxxr−2dx. This integral is proper for r � 2

and convergent improper for 1 < r < 2. Therefore, for such r it may be estimated by a constant not
depending on p. It follows from the above that

III � CIII(r)px
r−1.
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Now from the obtained five estimates we may conclude that

|
n∑

k=2

Δk| � C0(x)p.

It may be shown (see Appendix B) that in our version of the method of rectangles for r � 1 R(r, p, x) =
O(p) (the constant does not depend on the chosen point and even on the segment). Moreover, O(pr) +
O(p) = O(p) for r > 1. Therefore Δ = O(p) for the points x = np

rq . Since

∀x∃x0 = n0p

rq
: Δ(x) � Δ(x0),

the estimate O(p) is obtained for all x.

If now we assume that 0 < r � 1, then all the considerations including expansion (6) remain valid.
The only thing to be amended are the estimates I–V.

Using a technique similar to the one we used to estimate III, for estimates of I, II, and IV under new
assumptions we obtain the same rate of convergence. For example, for the estimate of I:

I =
pr

Γ(r)

n∑
k=1

e−pkkr−1pr �
[
p � λ

n

]
� pr+1r

Γ(r)
nr

n∑
k=1

e−
kλ
n

(
k

n

)r−1 1

n
� C

1∫
0

e−λttr−1dt · xrp = O(p).

For the estimates of I, IV everything is similar:

I = O(p), IV = O(p).

The estimation of V, as was already noted, reduces to the estimation of III. For III, 0 < r < 1, we have

n∑
k=1

pr

Γ(r)
e−pkkr−2 r

2 − r

2
<

pr

Γ(r)

n∑
k=1

1

k2−r
� C ′

III · pr.

For r = 1 this estimate, obviously, should be used for V only. For r ∈ (0, 1] there is an estimate of the
remainder at the point (and on the finite segment) of the form O(pr). Noting that O(pr)+O(pr) = O(pr)
for r ∈ (0, 1], we have Δ = O(pr).

3.3. Estimation on the finite segment

Consider x ∈ [0, a]. As before, we are interested in points of the form np
rq . Let us use the considerations

of Section 3.2. Obviously,

∀a > 0∃(n1, n2) :
n1p

rq
� a � n2p

rq
.

Replacing n by n2 > n and x with a � x in the estimates for I–V, we obtain

∣∣∣∣
n∑

k=2

Δk

∣∣∣∣ �
{
C ′
0(a)p, r > 1,

C ′′
0 (a)p

r, 0 < r � 1.

In Appendix B it is shown that

sup
x∈[0, a]

R(r, p, x) =

{
O(p), r � 1,

O(pr), r ∈ (0, 1].

Therefore Δ has the order O(p) (O(pr)) on the whole segment [0, a].
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3.4. Uniform estimation on the whole axis

Let us recall that Gr,r(x) = Ĝr,r(x) + R(r, p, x). Now we shall prove that the following estimate is
valid:

sup
x�0

|P (N∗
p,r � x)− Ĝ(x)| =

{
O(p), r � 1,

O(pr), 0 < r < 1.
(11)

To do this, we first prove that for some a depending only on r,

sup
x>a

|P (N∗
p,r � x)− Ĝ(x)| =

{
O(p), r � 1,

O(pr), 0 < r < 1.
(12)

Consider the function Δ(x) = P (N∗
p,r � x)− Ĝ(x). Using (6), we derive that

Δ(x) =
1

Γ(r)
pr

n∑
k=2

kr−1
[(

1 +
r(r − 1)

2k
+O

( 1

k2

))
e
−pk(1+ p

2
+ p2

3(1−αp)3
)−

−
(
1 + pr + r(r + 1)

p2

(1 − βp)r+2

)
e
−pk

(
1+p+ p2

(1−γp)3

)]
+A(p, r), where α, β, γ ∈ [0, 1].

Let us find out for which x the function Δ(x) is monotonically nondecreasing. It is obvious that all
points of increase of the function Δ(x) are the points of the form p

rqk,

0 � k � n =
[xrq

p

]
.

Hence, Δ(x) is monotonically nondecreasing if and only if

Δ(
p

rq
n)−Δ(

p

rq
(n − 1)) � 0. (13)

Let us solve this inequality denoting np
rq by x. We have

Δ(
p

rq
n)−Δ(

p

rq
(n− 1)) =

1

Γ(r)
prnr−1e−pn

[(
1 +

r(r − 1)

2n
+O

( 1

n2

))
e−C1(r,p)x−

−
(
1 + pr + r(r + 1)

p2

(1− βp)r+2

)
e−C2(r,p)x

]
, (14)

where

C1(r, p) = rq
(p
2
+

p2

3(1− αp)3

)
, C2(r, p) = rq

(
p+

p2

(1− γp)3

)
.

First, let 0 < r < 1. By the definition of O
(

1
n2

)
, for sufficiently small p

(
1 +

r(r − 1)

2n
+O

( 1

n2

))
�
(
1 +

p(r − 1)

2xq

)
� (1− p

2xq
) �
(
1− p

q

)
(15)

for arbitrary x � 1. Therefore, all solutions of the inequality

e−C1(r,p)x
(
1− p

q

)
− e−C2(r,p)x

(
1 + pr + r(r + 1)

p2

(1− βp)r+2

)
� 0 (16)
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are solutions of inequality (13). Let us rewrite (16) in the equivalent form:

(C2(r, p)− C1(r, p))x � ln
(
1 + pr + r(r + 1)

p2

(1 − βp)r+2

)
− ln

(
1− p

q

)
.

Expanding both logarithms in the neighborhood of zero, we obtain

(C2(r, p) − C1(r, p))x � pr +
p

q
+O(p2),

x �
p(r + 1

q +O(p))

p(12 + C3p)rq + C4p2
, where |C3| � 2, |C4| � 2.

The last passage is valid, since the value C2(r, p)−C1(r, p) = p(12 +C3p)rq +C4p
2, by which we divide

both sides of the inequality, is positive for sufficiently small p. Thus, when p → 0, we have

x � 2
(r + 1

r

)
+O(p).

Note that O(p) in the last expression depends on r, but for each fixed r this value is arbitrarily small
with the appropriate choice of p. Then we have that for x � a = 2( r+1

r ) + 1 the function Δ(x) is
monotonically nondecreasing.

The case r � 1 is considered similarly. Here a = 3, which follows from the inequalities

(
1 +

r(r − 1)

2n
+O

( 1

n2

))
� 1,

⇓

x �
ln
(
1 + pr + r(r + 1) p2

(1−βp)r+2

)
p(12 + C3p)rq + C4p2

, where |C3| � 2, |C4| � 2,

⇓

x � p(r +O(p))

prq(12 +O(p))
⇒ x � 2 +O(p).

Note that P (N∗
p,r � x)−G(x) −−−−→

x→+∞ 0. But

|Δ(x)| = |P (N∗
p,r � x)− Ĝ(x)| � |P (N∗

p,r � x)−G(x)|+R(p),

i.e., Δ(x) is bounded and nondecreasing. Hence,

Δ(x) −−−−→
x→+∞ θR(p), where |θ| � 1.

Therefore,
sup
x>a

|P (N∗
p,r � x)− Ĝ(x)| = sup

x>a
|Δ(x)| = max(|Δ(a)|, |θR(p)|) �

� max( sup
x∈[0,a]

|P (N∗
p,r � x)− Ĝ(x)|, R(p)).

Using the remainder estimate obtained in the Appendix and the estimate on the segment, we derive

sup
x>a

|P (N∗
p,r � x)− Ĝ(x)| =

{
O(p), r � 1,

O(pr), 0 < r < 1,
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i.e., (12) is proved, and (11) immediately follows from equality (12).
Using (11) and the fact that

sup
x�0

|P (N∗
p,r � x)−G(x)| � sup

x�0
|P (N∗

p,r � x)− Ĝ(x)|+R(p),

we finally obtain the uniform estimate

sup
x�0

|P (N∗
p,r � x)−G(x)| =

{
O(p), r � 1,

O(pr), 0 < r < 1.
(17)

4. Conclusion

Let us finally return to the paper [1] and Theorem 2.1 mentioned in the Introduction. Now we are
able without significant modifications of the proof to obtain the following new result:

Theorem 2.1’. Let Tn be asymptotically normal, and let (1) hold. Then the following relations are
valid:

sup
x

|P (
√
n− rσ(TNn − μ) � x)− F2r(x)| =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

O

(
1√
n

)
, r ∈ [12 , 1],

O

(
lnn√
n

)
, r = 1

2 ,

O

(
1

nr

)
, 0 < r < 1

2 .

Appendix

A. Asymptotic expansion for Γ(k+r)
k!

Let us use the Stirling formula in the following form:

Γ(λ+ 1) =
√
2πλ

(
λ

e

)λ(
1 +

1

12λ
+O

(
1

λ2

))
, λ → ∞.

Then

Γ(k + r)

k!
=

√
2π(k + r − 1)

(
k+r−1

e

)k+r−1
(
1 + 1

12(k+r−1) +O
(

1
k2

))
√
2πk

(
k
e

)k (
1 + 1

12k +O
(

1
k2

)) .

Using the expansion (
1 +

1

12k
+O

(
1

k2

))−1

= 1− 1

12k
+O

(
1

k2

)
,

we derive that
Γ(k + r)

k!
=

(
k + r − 1

k

)k+ 1
2
(
k + r − 1

e

)r−1(
1 +O

(
1

k2

))
.

Next,

(k + r − 1)r−1 = kr−1

(
1 +

r − 1

k

)r−1

= kr−1

(
1 +

(r − 1)2

k
+O

(
1

k2

))
,

(
k + r − 1

k

)k+ 1
2

= eln(1+
r−1
k )(k+ 1

2) = = er−1

(
1 +

3r − 2− r2

2k
+O

(
1

k2

))
.

Thus,

(
k + r − 1

k

)k+ 1
2
(
k + r − 1

e

)r−1

= kr−1

(
1 +

(r − 1)2

k
+O

(
1

k2

))
×

×
(
1 +

3r − 2− r2

2k
+O

(
1

k2

))
= kr−1

(
1 +

r(r − 1)

2k
+O

(
1

k2

))
.
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B. Estimates for the remainder R(r, p, x), r � 1, x ∈ R

Let us represent R(r, p, x) in the form of the sum of remainders on each decomposition part of the
segment [0, x]:

R(r, p, x) =
rr

Γ(r)

n∑
k=2

⎛
⎜⎜⎝

kp
rq∫

(k−1)p
rq

e−rttr−1dt− p

rq

(
kp

rq

)r−1

e
− pk

q

⎞
⎟⎟⎠ .

Using the mean value theorem and the Lagrange theorem, we have

Rk(r, p, x) = e
− p

q
(k−1+θk)

(
p

rq
· (k − 1 + θk)

)r−1

· p

rq
− p

rq
·
(
kp

rq

)r−1

e
− pk

q =

=
p

rq
·
(
e−

p(k−1+θk)

q

(
p(k − 1 + θk)

rq

)r−1

−
(
pk

rq

)r−1

e−
kp
q

)
=

= [0 � θk � 1] =

(
p

rq

)2

· (−1 + θk)︸ ︷︷ ︸
�−1

(e−rttr−1)′
∣∣
t=ξk

.

Here the point ξk lies between the points kp
rq and p(k−1+θk)

rq , i.e., also on the partial segment [ (k−1)p
rq , kprq ].

Note that the derivative of e−rxxr−1 equals

e−rx(−rxr−1 + (r − 1)xr−2).

Therefore

|R(r, p, x)| � rr

Γ(r)

n∑
k=1

(
p

rq

)2 (
e−rξk

(
rξr−1

k + (r − 1)ξr−2
k

))
.

Recalling that n = xrq
p , on the right-hand side of the inequality we can see the integral sum. Hence,

|R(r, p, x)|
p

� rr

Γ(r)

p

r2q2

n∑
k=1

e−rξk
[
rξr−1

k + (r − 1)ξr−2
k

]
�

� C ·
x∫

0

e−ry(ryr−1 + (r − 1)yr−2) dy � C ·
∞∫
0

e−ry(ryr−1 + (r − 1)yr−2) dy.

The integral on the right-hand side converges for r � 1. Therefore in this case |R(r, p, x)| � R(p) = O(p),
0 < r < 1, x ∈ [0, a], and

Rk(r, p, x) =

kp
rq∫

(k−1)p
rq

e−rttr−1dt− p

rq

(
kp

rq

)r−1

e
− pk

q = e
− p

q
(k−1+θk)

kp
rq∫

(k−1)p
rq

tr−1dt− p

rq

(
kp

rq

)r−1

e
− pk

q .

Since

e
− pk

q
+ p

q
(1−θk) = e

− pk
q e

p
q
− p

q
θk � e

− pk
q e

p
q = e

− pk
q

(
1 +

p

q
+O(p2)

)
,

using the Lagrange theorem, we obtain

|Rk(r, p, x)| � e
− kp

q

⎛
⎜⎜⎝

kp
rq∫

(k−1)p
rq

tr−1dt

(
1 +

p

q
+ C1p

2

)
−
(

p

rq

)r

kr−1

⎞
⎟⎟⎠ �
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� (kr − (k − 1)r) ·
(

p

rq

)r 1

r

(
1 +

p

q
+ C1p

2

)
−
(

p

rq

)r

kr−1 �

� ((k − 1)r−1C2p+ (k − 1)r−1 − kr−1) ·
(

p

rq

)r

�

� [ by Lagrange theorem ] � (C2p(k − 1)r−1 + (1− r)(k − 1)r−2) ·
(

p

rq

)r

�

� [(k − 1)r−1 � 1] � C3p
r(k − 1)r−2 + C4p

r+1.

Summing over k from 2 to rqx
p , we obtain for 0 < r < 1, x � a

|R(r, p, x)| � C ′
3p

r
n∑

k=2

1

(k − 1)2−r
+C ′

4(n− 1)pr+1 � C(a)pr.

Let us split the sum, representing the remainder, into two parts:

R(r, p, x) =
rr

Γ(r)

⌊
rqa
p

⌋
∑
k=2

⎛
⎜⎜⎝

kp
rq∫

(k−1)p
rq

e−rttr−1dt− p

rq

(
kp

rq

)r−1

e
− pk

q

⎞
⎟⎟⎠+

+
rr

Γ(r)

⌊
rqx
p

⌋
∑

k=
⌊
rqa
p

⌋
+1

⎛
⎜⎜⎝

kp
rq∫

(k−1)p
rq

e−rttr−1dt− p

rq

(
kp

rq

)r−1

e−
pk
q

⎞
⎟⎟⎠ .

Obviously, the first part may be estimated similarly to the previous case, and the second one similarly
to the case r � 1 (the upper estimate with the use of the integral

∫∞
a e−ry(ryr−1 + (r − 1)yr−2) dy).

Thus, we obtain the upper estimate of the form C(a)pr + Cp = O(pr), where a is fixed in the proof of
the uniform estimate on the axis.

C. Generalized mean value formula

Lemma (generalization of the theorem on continuous function, taking all intermediate values). Let
f(x) ∈ C((a, b]). Then for ∀μ strictly between infimum and supremum of the function on (a, b] (finite
or infinite) at some point ξ ∈ (a, b] we have μ = f(ξ).

Proof. Denote M = sup
(a,b]

f(x), m = inf
(a,b]

f(x). Consider, for example, the infimum. There may be

two cases.

1. If ∃[a0, b] ⊂ (a, b] : inf
(a,b]

f(x) = inf
[a0,b]

f(x), then we may state (using the second Weierstrass theorem)

that ∃ξ ∈ [a0, b] : f(ξ) = inf
[a0,b]

f(x) = m. Therefore for arbitrary sequence xn → ξ, xn ∈ [a0, b], xn ∈
(a, b], f(xn) → m.

2. If for ∀[a0, b] ⊂ [a, b] inf
[a0,b]

f(x) > inf
(a,b]

f(x), then we take a0 = a + 1
n and denote inf

[a0,b]
f(x) =

mn, mn = m + εn. By the properties of infimum for ε′n = εn
2 ∃x′n : x′n ∈ (a, b] and f(x′n) <

εn
2 +m <

mn. From the latter inequality it follows that x′n ∈ (a, a + 1
n), i.e., x

′
n −−−→

n→∞ a. On the other hand,

m � f(x′n) < m+ εn
2 , εn → 0, since m = infnmn. Thus, in this case also ∃x′n ∈ (a, b] : f(x′n) → m.

Note that in the second case, as opposed to the first one, it as allowed that m = −∞.

The case M = sup
(a,b]

f(x) is considered similarly. Summing up, for both infimum and supremum there

exist sequences from the interval (a, b] such that f(xn) → m, f(x′n) → M . Therefore, for ∀μ strictly
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between m and M , m � −∞, M � +∞. there exists a segment whose boundaries are the elements of
the above sequences and

inf
[y,z]

f(x) � μ � sup
[y,z]

f(x).

But a function continuous on a segment takes all intermediate values on it, i.e., μ = f(ξ), ξ ∈ [y, z].
This concludes the proof of lemma.

Theorem. Let a function f(x) be nonconstant and continuous on a bounded interval (a, b] and let

the improper integral of the second kind
b∫
a
f(x) dx converge. Then

∃ξ ∈ (a, b] : f(ξ)(b− a) =

b∫
a

f(x) dx.

Note that function f(x) may be bounded or unbounded, and it may be unbounded in both directions
(for example, sin 1

x , x
r−1 sin 1

x , 0 < r < 1, (0, 1]).

Denote by μ the value 1
b−a · ∫ ba f(x) dx. Obviously, it is between the infimum and supremum of the

function f(x) on (a, b], and m < μ < M . Otherwise f ≡ const. Therefore by the above lemma we have
μ = f(ξ).
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