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1-D Schrödinger operators with local interactions on a discrete set

with unbounded potential

Aleksandra Yu. Ananieva

Presented by M. M. Malamud

Abstract. We study spectral properties of the one-dimensional Schrödinger operators HX,α,q := − d2

dx2 +
q(x)+

∑
xn∈X αnδ(x−xn) with local interactions, d∗ = 0, and an unbounded potential q being a piecewise

constant function, by using the technique of boundary triplets and the corresponding Weyl functions.
Under various sufficient conditions for the self-adjointness and discreteness of Jacobi matrices, we obtain
the condition of self-adjointness and discreteness for the operator HX,α,q.

Keywords. Schrödinger operator, unbounded potential, self-adjoint, local point interaction, discreteness.

1. Introduction

Let R+ = [0,+∞), and let X = {xn}∞n=1 ⊂ R+ be a strictly increasing sequence (xn+1 > xn for all
n ∈ N) such that xn → +∞. We set x0 = 0 and dn := xn − xn−1 for all n ∈ N. Let also

d∗ := inf
n∈N

dn = inf
n∈N

(xn − xn−1), d∗ := sup
n∈N

dn = sup
n∈N

(xn − xn−1).

Let HX,α,q be the minimal symmetric operator associated in L2(R+) with the differential expression

ℓX,α,q := − d2

dx2
+ q(x) +

∑

xn∈X
αnδ(x− xn), x ≥ 0. (1.1)

Namely, assuming that {αn}∞n=1 ⊂ R and q : R+ → R is locally square integrable function on R+, q ∈
L2
loc(R+), define the pre-minimal operator H0

X,α,q in L2(R+) by the differential expression

τq := − d2

dx2
+ q(x) (1.2)

on the domain

dom(H0
X,α,q) =

{
f ∈ W 2,2

comp(R+ \X) : f ′(0) = 0,
f(xn+) = f(xn−)

f ′(xn+)− f ′(xn−) = αnf(xn)
, n ∈ N

}
. (1.3)

Clearly, H0
X,α,q is symmetric, and we denote its closure by HX,α,q. Note that if all αn = 0, the

operator HX,0,q =: HN
q is the Neumann realization of the expression (1.2).

The operator HX,α,q describes δ-interactions on a discrete set X = {xn}n∈N, and the coefficient αn

is called the strength of the interaction at x = xn. Let us stress that the operator HX,α,q is symmetric,
but not automatically self-adjoint even in the case q ≡ 0 (see [21, 22,34]).
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Schrödinger operators with point interaction on a finite or discrete set arise in various physical
applications (see [3]). In recent years, spectral properties of the operator HX,α,q have been studied
in numerous papers (see, e.g., [4, 7, 8, 15, 16, 18, 20–25, 27, 30, 31, 33, 34], and [22] for a comprehensive
review).

Here, we will study spectral properties of the Hamiltonian HX,α,q with d∗ = 0 and an unbounded
potential q being a piecewise constant function. Namely, later on in this paper we make the following
assumption:

Hypothesis 1. Assume that
q(x) ≡ qn > 0, x ∈ (xn−1, xn), (1.4)

for all n ∈ N, and the sequence {qn}n∈N satisfies the condition

sup
n∈N

dn
√
qn =: c < ∞. (1.5)

We mention that relation (1.5) covers the very important case in our considerations:

dn
√
qn → 0 as n → ∞. (1.6)

Our main tool is a powerful approach developed recently in [21]. Namely, applying the technique
of boundary triplets and the corresponding Weyl function (see [12, 13, 17]), it was shown in [21] that
spectral properties of the operator HX,α,q with a bounded potential q ∈ L∞(R+) closely correlate with
the corresponding properties of a certain class of Jacobi matrices. Similar results were obtained later
for Schrödinger operators with a matrix-valued potential [24], as well as for Dirac operators [9]. Our
main aim is to extend the results of [21] to the case of unbounded potentials satisfying Нypothesis 1.
Namely, let us consider the Jacobi (three-diagonal) matrix

BX,α,q =




b1 a1 0 . . .
a1 b2 a2 . . .
0 a2 b3 . . .
. . . . . . . . . . . .


 , (1.7)

where

an = −
√
qn+1

rnrn+1 sinh(dn+1
√
qn+1)

, rn :=
√
dn + dn+1, (1.8)

bn =
αn +

√
qn coth(dn

√
qn) +

√
qn+1 coth(dn+1

√
qn+1)

dn + dn+1
. (1.9)

Our main result reads as follows.

Theorem 1.1. Assume that Hypothesis 1 holds, and HX,α,q is the minimal symmetric operator as-
sociated with (1.1). Let also BX,α,q be the minimal operator associated with the Jacobi matrix (1.7).
Then

(i) The deficiency indices of HX,α,q and BX,α,q are equal, and

n±(HX,α,q) = n±(BX,α,q) ≤ 1.

In particular, HX,α,q is self-adjoint, iff BX,α,q is self-adjoint.
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(ii) The operator HX,α,q is lower semibounded, iff so is the operator BX,α,q.

In addition, we assume that HX,α,q (and, hence, BX,α,q) is self-adjoint. Then:

(iii) The operator HX,α,q is nonnegative, iff so is BX,α,q.

(iv) The total multiplicities of the negative spectra of HX,α,q and BX,α,q coincide:

κ−(HX,α,q) = κ−(BX,α,q). (1.10)

(v) For any p ∈ (0,∞], the following equivalence holds:

EHX,α,q
(R−)HX,α,q ∈ Sp ⇐⇒ EBX,α,q

(R−)BX,α,q ∈ Sp.

In particular, the negative part of the spectrum HX,α,q is discrete, iff the same holds for the
negative spectrum of BX,α,q.

(vi) σc(HX,α,q) ⊆ [0,∞), iff σc (BX,α,q) ⊆ [0,∞).

(vii) σc(HX,α,q) ⊂ (0,∞), iff σc (BX,α,q) ⊂ (0,∞).

(viii) The operator HX,α,q has a purely discrete spectrum, iff lim
n→∞

dn = 0, and BX,α,q has a purely

discrete spectrum.

(ix) Let α̃ = {α̃k}∞k=1 ⊂ R, and let BX,α̃,q be the minimal operator associated with matrix (1.7) and
constructed by the sequence α̃ instead of α. If HX,α̃,q = H∗

X,α̃,q, then BX,α̃,q = B∗
X,α̃,q, and, for

any p ∈ (0,+∞], the following equivalence holds:

(HX,α,q − i)−1 − (HX,α̃,q − i)−1 ∈ Sp ⇐⇒ (BX,α,q − i)−1

−(BX,α̃,q − i)−1 ∈ Sp.

Combining Theorem 1.1(i) with the Carleman test (see, e.g., [1, Chapter II]), we obtain the following
result.

Proposition 1.2. Assume that Hypothesis 1 holds. Then the Hamiltonian HX,α,q is self-adjoint for
any α = {αn}∞n=1 ⊂ R provided that

∞∑

n=1

d2n = ∞. (1.11)

Note that this result is sharp. Namely, if {dn}∞n=1 ∈ l2 and the coefficients X = {xn}n∈N ⊂
R and αn ∈ R satisfy certain concavity assumptions, then the operator HX,α,q is symmetric with
n±(HX,α,q) = 1 (see Proposition 6.8). Note that Proposition 1.2 in the case where q ∈ L∞(R+) was
first proved in [21]. A more general result was proved later in [30].

Investigating the discreteness and absolute continuity of spectra of the operator BX,α,q, we arrive
at the following sufficient condition (see Propositions 6.17 and 6.23).

Proposition 1.3. Assume that Hypothesis 1 holds and limn→∞ dn
√
qn = 0. Assume also that

limn→∞ dn = 0 and the operator BX,α,q is self-adjoint. If

lim
n→∞

∣∣∣∣
αn−1

dn
+ qn

∣∣∣∣ = ∞, lim
k→∞

1

dk(αk + qk+1dk+1)
> −1

4

and lim
n→∞

1

dnαn−1
> −1

4
, (1.12)

then the operator HX,α,q has a discrete spectrum.
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This result is of interest only in the case where the operator HX,α,q is not semibounded, since the
lower-bounded below Hamiltonian HX,α,q is always self-adjoint (see [4]).

Proposition 1.4. Assume that Hypothesis 1 holds, and assume that

∞∑

n=1

|αn|
dn+1

< ∞. (1.13)

Then the absolutely continuous part Hac
X,α,q of the Hamiltonian HX,α,q is unitarily equivalent to the

operator HN
q := HX,0,q that is the Neumann realization of (1.2) in L2(R+). In particular,

σac(HX,α,q) = σac(H
N
q ), (1.14)

where dom(HN
q ) = dom(HX,0,q) ⊂ {W 2,2(R+) : f

′(0) = 0}.
If, in addition, q ∈ L1(R+), then σac(HX,α,q) = R+.

The main results were announced in [5].

Notation. Let H and H stand for the separable Hilbert spaces. Further, [H,H] denotes the set of
bounded operators from H to H; [H] := [H,H]; Sp(H), (p ∈ (0,∞)), denotes the Neumann–Schatten
ideal in H. In particular, S∞(H) is a set of compact operators in H, S1(H) is a trace class of operators
in H, C(H) and C̃(H) are the sets of closed operators and linear relations in H, respectively. Let T
be a linear operator in the Hilbert space H. In what follows, dom(T ), ker(T ), and ran(T ) denote the
domain, kernel, and range of T , respectively; σ(T ), ρ(T ), and ρ̂(T ) denote the spectrum, resolvent set,
and set of regular-type points of T , respectively; RT (λ) := (T − λI)−1, λ ∈ ρ(T ), is the resolvent of
T .

By W 2,2(R+ \X), W 2,2
0 (R+ \X), and W 2,2

loc (R+ \X), we denote the Sobolev spaces

W 2,2(R+ \X) := {f ∈ L2(R+) : f, f
′ ∈ ACloc(R+ \X), f ′′ ∈ L2(R+)},

W 2,2
0 (R+ \X) := {f ∈ W 2,2(R+) : f(xk) = f ′(xk) = 0 for all xk ∈ X},
W 2,2

comp(R+ \X) := {f ∈ W 2,2(R+ \X) : supp f is compact in R+}.

Let I be a subset of Z, I ⊆ Z. We denote, by l2(I,H), the Hilbert space of H-valued sequences
such that ‖f‖2 =

∑
n∈I ‖fn‖2H < ∞; l20(I,H) is a set of sequences with a finite number of nonzero

components; we also abbreviate l2 := l2(N,C), l20 := l20(N,C).

2. Preliminaries

2.1. Boundary triplets and Weyl functions

In this section, we briefly recall the notion of abstract boundary triplets and associated Weyl
functions in the extension theory of symmetric operators (for a detailed study of boundary triplets, we
refer the reader to [12,13,17]).

Linear relations, boundary triplets, and self-adjoint extensions

1. The set C̃(H) of closed linear relations in H is the a of closed linear subspaces of H⊕H. Recall
that dom(Θ) =

{
f : {f, f ′} ∈ Θ

}
, ran(Θ) =

{
f ′ : {f, f ′} ∈ Θ

}
and mul (Θ) =

{
f ′ : {0, f ′} ∈ Θ

}

are the domain, range, and multivalued part of Θ, respectively. A closed linear operator A in H is
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identified with its graph gr(A), so that the set C(H) of closed linear operators in H is viewed as a
subset of C̃(H). In particular, a linear relation Θ is an operator, iff mul (Θ) is trivial. For the definition
of the inverse linear relation, resolvent set, and spectrum of linear relations, we refer to [14]. We recall
that the adjoint relation Θ∗ ∈ C̃(H) of Θ ∈ C̃(H) is defined by

Θ∗ =

{(
h
h′

)
: (f ′, h)H = (f, h′)H for all

(
f
f ′

)
∈ Θ

}
.

A linear relation Θ is said to be symmetric, if Θ ⊂ Θ∗, and self-adjoint, if Θ = Θ∗.
For a symmetric linear relation Θ ⊆ Θ∗ in H, the multivalued part mul (Θ) is the orthogonal

complement of dom(Θ) in H. Setting Hop := dom(Θ) and H∞ = mul (Θ), one arrives at the orthogonal
decomposition Θ = Θop⊕Θ∞, where Θop is a symmetric operator in Hop, the operator part of Θ, and
Θ∞ =

{(
0
f ′

)
: f ′ ∈ mul (Θ)

}
is a “pure” linear relation in H∞.

2. Let A be a densely defined closed symmetric operator in the separable Hilbert space H with
equal deficiency indices n±(A) = dimN±i ≤ ∞, Nz := ker(A∗ − z).

Definition 2.1 ([17]). A triplet Π = {H,Γ0,Γ1} is called a boundary triplet for the adjoint operator
A∗, if H is a Hilbert space and Γ0,Γ1 : dom(A∗) → H are bounded linear mappings such that the
abstract Green identity

(A∗f, g)H − (f,A∗g)H = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H, f, g ∈ dom(A∗), (2.1)

holds, and the mapping Γ :=

(
Γ0

Γ1

)
: dom(A∗) → H⊕H is surjective.

First, we note that a boundary triplet for A∗ exists, since the deficiency indices of A are assumed
to be equal. Moreover, n±(A) = dim(H) and A = A∗ ↾ (ker(Γ0) ∩ ker(Γ1)) hold. Note also that a
boundary triplet for A∗ is not unique.

A closed extension Ã of A is called proper, if A ⊆ Ã ⊆ A∗. Two proper extensions Ã1 and Ã2 of A are
called disjoint, if dom(Ã1)∩dom(Ã2) = dom(A), and transversal, if, in addition, dom(Ã1)∔dom(Ã2) =
dom(A∗). The set of all proper extensions of A is denoted by ExtA. Fixing a boundary triplet Π, one
can parametrize the set ExtA in the following way.

Proposition 2.2 ([13]). Let A be as above, and let Π = {H,Γ0,Γ1} be a boundary triplet for A∗.
Then the mapping Γ = {Γ0,Γ1} : dom(A∗) → H × H establishes a bijective correspondence between
the sets ExtA and C̃(H) as follows:

Θ 7→ AΘ := A∗ ↾ Γ−1Θ = A∗ ↾
{
f ∈ dom(A∗) : {Γ0f,Γ1f} ∈ Θ

}
. (2.2)

At the same time, the following relations hold:

(i) A∗
Θ = AΘ∗.

(ii) The extensions AΘ and A0 are disjoint (transversal), iff Θ ∈ C(H)
(
Θ ∈ [H]

)
. In this case, AΘ

admits a representation AΘ = A∗ ↾ ker(Γ1 −ΘΓ0).

(iii) AΘ ∈ C(H), iff Θ ∈ C̃(H).

(iv) AΘ1 ⊆ AΘ2 , iff Θ1 ⊆ Θ2.

(v) AΘ is symmetric (self–adjoint), iff the same is true for Θ, and n±(AΘ) = n±(Θ) holds.
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(vi) Let AΘ = A∗
Θ and A

Θ̃
= A∗

Θ̃
. Then, for any p ∈ (0,+∞], the following equivalence holds:

(AΘ − i)−1 − (A
Θ̃
− i)−1 ∈ Sp(H) ⇐⇒ (Θ− i)−1 − (Θ̃− i)−1 ∈ Sp(H).

Moreover, if dom(Θ) = dom(Θ̃), then the following implication is valid:

Θ− Θ̃ ∈ Sp(H) =⇒ (AΘ − i)−1 − (A
Θ̃
− i)−1 ∈ Sp(H).

Proposition 2.2 immediately implies that the extensions A0 := A∗ ↾ ker(Γ0) and A1 := A∗ ↾ ker(Γ1)
are self-adjoint. Clearly, Aj = AΘj , j ∈ {0, 1}, where the subspaces Θ0 := {0}×H and Θ1 := H×{0}
are self-adjoint relations in H. Note that Θ0 is a “pure” linear relation.

Weyl functions, γ-fields, and Krein-type formula for resolvents

1. In [12,13], the concept of the classical Weyl–Titchmarsh m-function from the theory of Sturm–
Liouville operators was generalized to the case of symmetric operators with equal deficiency indices.
The role of abstract Weyl functions in the extension theory is similar to that of the classical Weyl–
Titchmarsh m-function in the spectral theory of singular Sturm–Liouville operators.

Definition 2.3 ([12]). Let A be a densely defined closed symmetric operator in H with equal deficiency
indices, and let Π = {H,Γ0,Γ1} be a boundary triplet for A∗. The operator-valued functions γ :
ρ(A0) → [H,H] and M : ρ(A0) → [H] defined by

γ(z) :=
(
Γ0 ↾ Nz

)−1
and M(z) := Γ1γ(z), z ∈ ρ(A0), (2.3)

are called the γ-field and the Weyl function, respectively, corresponding to the boundary triplet Π.

The γ-field γ(·) and the Weyl function M(·) in (2.3) are well defined. Moreover, both γ(·) and
M(·) are holomorphic on ρ(A0), and the following relations hold (see [12]):

γ(z) =
(
I + (z − ζ)(A0 − z)−1

)
γ(ζ), (2.4)

M(z)−M(ζ)∗ = (z − ζ)γ(ζ)∗γ(z), (2.5)

γ∗(z) = Γ1(A0 − z)−1, z, ζ ∈ ρ(A0). (2.6)

Identity (2.5) implies that M(·) is an RH-function (or Nevanlinna function). In other words, M(·) is
an ([H]-valued) holomorphic function on C \ R and

Im z · ImM(z) ≥ 0, M(z∗) = M(z), z ∈ C \ R. (2.7)

In addition, it follows from (2.5) that M(·) satisfies 0 ∈ ρ(ImM(z)) for z ∈ C \ R. Since A is densely
defined, M(·) admits an integral representation (see, e.g., [13]):

M(z) = C0 +

∫

R

(
1

t− z
− t

1 + t2

)
dΣM (t), z ∈ ρ(A0), (2.8)

where ΣM (·) is an operator-valued Borel measure on R satisfying∫
R

1
1+t2

dΣM (t) ∈ [H] and C0 = C∗
0 ∈ [H]. The integral in (2.8) is understood in the strong sense.

In contrast to the spectral measures of self-adjoint operators, the measure ΣM (·) is not necessarily
orthogonal. However, the measure ΣM is uniquely determined by the Nevanlinna function M(·). The
operator-valued measure ΣM is called the spectral measure of M(·). If A is a simple symmetric operator,
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then the Weyl function M(·) determines the pair {A,A0} up to unitary equivalence (see [13,26]). Due
to this fact, the spectral properties of A0 can be expressed in terms of M(·).

2. The following result provides a description of resolvents and spectra of proper extensions of the
operator A in terms of the Weyl function M(·) and the corresponding boundary parameters.

Proposition 2.4 ([12]). For any Θ ∈ C̃(H), the following Krein-type formula holds:

(AΘ − z)−1 − (A0 − z)−1 = γ(z)(Θ−M(z))−1γ∗(z), z ∈ ρ(A0) ∩ ρ(AΘ). (2.9)

Moreover, if z ∈ ρ(A0), then

z ∈ σi(AΘ) ⇔ 0 ∈ σi(Θ−M(z)), i ∈ {p, c, r}.
Formula (2.9) is a generalization of the well-known Krein formula for canonical resolvents (cf. [2]).

We note also that all the objects in (2.9) are expressed in terms of the boundary triplet Π.
The following result follows from (2.9).

Proposition 2.5 ([12]). Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗, Θ1,Θ2 ∈ C̃(H), and let
Sp, p ∈ (0,∞), be the Neumann–Schatten ideal. Then,

(i) for any z ∈ ρ(AΘ1) ∩ ρ(AΘ2), ζ ∈ ρ(Θ1) ∩ ρ(Θ2), the following equivalence holds:

(AΘ1 − z)−1 − (AΘ2 − z)−1 ∈ Sp(H) ⇐⇒ (Θ1 − ζ)−1 − (Θ2 − ζ)−1 ∈ Sp(H). (2.10)

(ii) If, in addition, Θ1,Θ2 ∈ C(H) and dom(Θ1) = dom(Θ2), then

Θ1 −Θ2 ∈ Sp(H) =⇒ (AΘ1 − z)−1 − (AΘ2 − z)−1 ∈ Sp(H). (2.11)

(iii) Moreover, if Θ1,Θ2 ∈ [H], then implication (2.11) becomes the equivalence.

Extensions of a nonnegative operator

Assume that a symmetric operator A ∈ C(H) is nonnegative. Then the set ExtA(0,∞) of its
nonnegative self-adjoint extensions is nonempty (see [2, 19]). Moreover, there is a maximal nonnega-
tive extension AF (also called the Friedrichs or hard extension), and there is a minimal nonnegative
extension AK (Krein or soft extension) satisfying the relation

(AF + x)−1 ≤ (Ã+ x)−1 ≤ (AK + x)−1, x ∈ (0,∞), Ã ∈ ExtA(0,∞)

(for details we refer the reader to [2, 17]).

Proposition 2.6 ([12]). Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗ such that A0 = A∗
0 ≥ 0.

Let M(·) be the corresponding Weyl function. Then A0 = AF (A0 = AK) iff

lim
x↓−∞

(M(x)f, f) = −∞,
(
lim
x↑0

(M(x)f, f) = +∞
)
, f ∈ H \ {0}. (2.12)

Proposition 2.7 ( [12]). Let A be a nonnegative symmetric operator in H. Assume that Π =
{H,Γ0,Γ1} is a boundary triplet for A∗, and M(·) is the corresponding Weyl function. Let also
A0 = AF be the Friedrichs extension. Then the following assertions hold:

(i) the linear relation Θ ∈ C̃self(H) is semibounded below;

(ii) a self-adjoint extension AΘ is semibounded below;

the equivalence holds, iff M(·) uniformly tends to −∞ as x → −∞, i.e., for any a > 0, there exists
xa < 0 such that M(xa) < −a · IH.

In this case, we will write M(x) ⇒ −∞ as x → −∞.
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3. Direct sums of boundary triplets

Let Sn be a densely defined symmetric operator in a Hilbert space Hn with n+(Sn) = n−(Sn) ≤
∞, n ∈ N. Consider the operator A :=

⊕∞
n=1 Sn acting in H :=

⊕∞
n=1Hn, the Hilbert direct sum of

Hilbert spaces Hn. By definition, H = {f = ⊕∞
n=1fn : fn ∈ Hn,

∑∞
n=1 ‖fn‖2 < ∞}. Clearly,

A∗ =
∞⊕

n=1

S∗
n,

dom(A∗) = {f = ⊕∞
n=1fn ∈ H : fn ∈ dom(S∗

n),
∑

n∈N
‖S∗

nfn‖2 < ∞}. (3.1)

We equip the domains dom(S∗
n) =: Hn+ and dom(A∗) =: H+ with the graph norms ‖fn‖2Hn+

:=

‖fn‖2 + ‖S∗
nfn‖2 and ‖f‖2H+

:= ‖f‖2 + ‖A∗f‖2 = ∑
n ‖fn‖2Hn+

, respectively.

Further, let Πn = {Hn,Γ
(n)
0 ,Γ

(n)
1 } be a boundary triplet for S∗

n, n ∈ N. By ‖Γ(n)
j ‖, we denote the

norm of the linear mapping Γ
(n)
j ∈ [Hn+,Hn], j ∈ {0, 1}, n ∈ N.

Let H :=
⊕∞

n=1Hn be a Hilbert direct sum of Hn. Define mappings Γ0 and Γ1 by setting

Γj :=
∞⊕

n=1

Γ
(n)
j ,

dom(Γj) =
{
f = ⊕∞

n=1fn ∈ dom(A∗) :
∑

n∈N
‖Γ(n)

j fn‖2Hn
< ∞

}
. (3.2)

Clearly, dom(Γ) := dom(Γ1)∩dom(Γ0) is dense in H+. We define the operators Snj := S∗
n ↾ ker Γ

(n)
j

and Aj :=
⊕∞

n=1 Snj , j ∈ {0, 1}. Then A0 and A1 are self-adjoint extensions of A. Note that A0 and
A1 are disjoint but not necessarily transversal.

Definition 3.1. Let Γj be defined by (3.2) and H =
⊕∞

n=1Hn. A collection Π = {H,Γ0,Γ1} will be
called a direct sum of boundary triplets and will be assigned as Π :=

⊕∞
n=1Πn.

The following criteria were obtained in [9, 21].

Theorem 3.2. Let Πn = {Hn,Γ
(n)
0 ,Γ

(n)
1 } be a boundary triplet for S∗

n, and let Mn(·) be the corre-
sponding Weyl function, n ∈ N. The direct sum Π =

⊕∞
n=1Πn forms an ordinary boundary triplet for

the operator A∗ =
⊕∞

n=1 S
∗
n, iff

C1 = sup
n

‖Mn(i)‖Hn < ∞ and C2 = sup
n

‖(ImMn(i))
−1‖Hn < ∞. (3.3)

Theorem 3.2 makes it possible to construct a boundary triplet by regularizing an arbitrary direct
sum Π =

⊕∞
n=1Πn of boundary triplets.

Theorem 3.3 ( [28, 29]). Let Sn be a symmetric operator in Hn with deficiency indices n±(Sk) =
nn ≤ ∞ and Sn0 = S∗

n0 ∈ ExtSn, n ∈ N. Then, for any n ∈ N, there exists a boundary triplet

Πn = {Hn,Γ
(n)
0 ,Γ

(n)
1 } for S∗

n such that ker Γ
(n)
0 = dom(Sn0), and Π =

⊕∞
n=1Πn forms an ordinary

boundary triplet for A∗ =
⊕∞

n=1 S
∗
n satisfying ker Γ0 = dom(Ã0) :=

⊕∞
n=1 dom(Sn0).
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Next, we assume that the operator A =
⊕∞

n=1 Sn has a regular real point, i.e., there exists a = a ∈
ρ̂(A). The latter is equivalent to the existence of ε > 0 such that

(a− ε, a+ ε) ⊂ ∩∞
n=1ρ̂(Sn). (3.4)

Emphasize that the condition a ∈ ∩∞
n=1ρ̂(Sn) is not sufficient for the inclusion a ∈ ρ̂(A) to hold.

It is known that, under condition (3.4) for every k ∈ N, there exists a self-adjoint extension S̃k = S̃∗
k

of Sk preserving the gap (a − ε, a + ε). Moreover, the Weyl function of the pair {Sk, S̃k} is regular
within the gap (a− ε, a+ ε).

Theorem 3.4 ([9, Theorem 2.12]). Let {Sn}∞n=1 be a sequence of symmetric operators satisfying (3.4).

Let also Πn = {Hn,Γ
(n)
0 ,Γ

(n)
1 } be a boundary triplet for S∗

n such that (a − ε, a + ε) ⊂ ρ(Sn0), and let
Mn(·) be the corresponding Weyl function. Then

(i) Π =
⊕∞

n=1Πn forms a B-generalized boundary triplet for A∗ =
⊕∞

n=1 S
∗
n, iff

C3 := sup
n∈N

‖Mn(a)‖Hn < ∞ and C4 := sup
n∈N

‖M ′
n(a)‖Hn < ∞, (3.5)

where M ′
n(a) := (dMn(z)/dz)|z=a.

(ii) Π =
⊕∞

n=1Πn is an ordinary boundary triplet for A∗ =
⊕∞

n=1 S
∗
n, iff, in addition to (3.5), the

following condition is satisfied:

C5 := sup
n∈N

‖
(
M ′

n(a)
)−1‖Hn < ∞. (3.6)

Corollary 3.5 ( [9, Corollary 2.13]). Let {Sn}∞n=1 be a sequence of symmetric operators satisfying

(3.4). Let also Π̃n = {Hn, Γ̃
(n)
0 , Γ̃

(n)
1 } be a boundary triplet for S∗

n such that (a − ε, a + ε) ⊂ ρ(Sn0),

Sn0 = S∗
n ↾ ker(Γ̃

(n)
0 ), and let M̃n(·) be the corresponding Weyl function. Assume also that, for some

operators Rn such that Rn, R
−1
n ∈ [Hn], the following conditions are satisfied:

sup
n

‖R−1
n (M̃ ′

n(a))(R
−1
n )∗‖Hn < ∞ and

sup
n

‖R∗
n(M̃

′
n(a))

−1Rn‖Hn < ∞, n ∈ N. (3.7)

Then the direct sum Π =
⊕∞

n=1Πn of boundary triplets

Πn = {Hn,Γ
(n)
0 ,Γ

(n)
1 } with Γ

(n)
0 := RnΓ̃

(n)
0 ,

Γ
(n)
1 := (R−1

n )∗
(
Γ̃
(n)
1 − M̃n(a)Γ̃

(n)
0

)
, (3.8)

forms a boundary triplet for A∗ =
⊕∞

n=1 S
∗
n.

4. First boundary triplet for the operator Hn

In what follows, R+ = [0,+∞), and X = {xn}∞n=0 ⊂ R+ is a strictly increasing sequence.
Consider the following symmetric operator in L2(xn−1, xn):

Hn = − d2

dx2
+ qn, dom(Hn) = W 2,2

0 [xn−1, xn], (4.1)

where qn satisfies (1.5).
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Lemma 4.1. Assume that Hypothesis 1 holds. Then the operator Hn is a symmetric one with defi-
ciency indices n±(Hn) = 2. Its adjoint H∗

n is given by

H∗
n = Hn, dom(H∗

n) = W 2,2[xn−1, xn].

Moreover, the following assertions hold:

(i) A boundary triplet for the operator H∗
n can be chosen as follows:

H = C
2, Γ̃

(n)
0 =

(
f(xn−1)
f ′(xn)

)
, Γ̃

(n)
1 =

(
f ′(xn−1)
f(xn)

)
. (4.2)

(ii) The corresponding Weyl function M̃n(·) is

M̃n(z) =

( √
z − qn tan(dn

√
z − qn)

1
cos(dn

√
z−qn)

1
cos(dn

√
z−qn)

tan(dn
√
z−qn)√

z−qn

)
. (4.3)

Proof. It is straightforward.

Clearly, Hmin is a closed operator with n±(Hmin) = ∞, and

Hmax := H∗
min =

∞⊕

n=1

H∗
n,

dom(Hmax) ⊆ W 2,2(R+\X) =
∞⊕

n=1

W 2,2[xn−1, xn].

Proposition 4.2. Assume that Hypothesis 1 holds. Let X = {xn}∞n=0 be as above and d∗ < +∞.

Define the mappings Γ
(n)
j : W 2,2[xn−1, xn] → C

2 , n ∈ N , j ∈ {0, 1} , by setting

Γ
(n)
0 =

(
d
1/2
n f(xn−1)

d
3/2
n f ′(xn)

)
, (4.4)

Γ
(n)
1 =




d
−1/2
n f ′(xn−1) +

√
qn
dn

tanh(dn
√
qn)f(xn−1)− d

−1/2
n f ′(xn)

cosh(dn
√
qn)

d
−3/2
n f(xn)− d

−3/2
n f(xn−1)
cosh(dn

√
qn)

− tanh(dn
√
qn)f ′(xn)√

qnd3n


 . (4.5)

Define the function Mn(z) given by

Mn(z)

=




1
dn
(
√
z − qn tan(dn

√
z − qn) +

√
qn tanh(dn

√
qn))

1
d2n

(
1

cos(dn
√
z−qn)

− 1
cosh(dn

√
z−qn)

)

1
d2n

(
1

cos(dn
√
z−qn)

− 1
cosh(dn

√
z−qn)

)
1
d3n

(
tan(dn

√
z−qn)√

z−qn
− tanh(dn

√
qn)√

qn

)

 .

(4.6)

Then:

(i) For any n ∈ N, the triplet Πn = {C2,Γ
(n)
0 ,Γ

(n)
1 } is the boundary triplet for the operator H∗

n.

(ii) The Weyl function Mn(z) corresponding to the triplet Πn takes the form (4.6).
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(iii) The direct sum Π :=
⊕∞

n=1Π
(n) = {H,Γ0,Γ1} with H = C

2 and Γj =
⊕∞

n=1 Γ
(n)
j , j ∈ {0, 1}, is

a boundary triplet for the operator H∗
min =

⊕∞
n=1H

∗
n.

Proof. (i) The proof is straightforward. Note, however, that it follows from Lemma 4.1, since

Γ
(n)
0 := RnΓ̃

(n)
0 , Γ

(n)
1 := R−1

n (Γ̃
(n)
1 −QnΓ̃

(n)
0 ), n ∈ N, (4.7)

where

Rn :=

(
d
1/2
n 0

0 d
3/2
n

)
,

Qn := M̃n(0) =

( −√
qn tanh(dn

√
qn)

1
cosh(dn

√
qn)

1
cosh(dn

√
qn)

tanh(dn
√
qn)√

qn

)
, n ∈ N. (4.8)

(ii) It easily follows from (4.3) and (4.7) that

Mn(z) = R−1
n (M̃n(z)−Qn)R

−1
n , n ∈ N. (4.9)

(iii) We set vn := dn
√
qn. Then

M ′
n (0) = R−1

n M̃ ′
n (0)R

−1
n

=




sinh(vn) cosh(vn)+vn
2vn cosh2(vn)

sinh(vn)

2vn cosh2(vn)
sinh(vn)

2vn cosh2(vn)

sinh(vn) cosh(vn)−vn
2v3n cosh2(vn)


 , n ∈ N.

(4.10)

Clearly, (1.5) yields
sinh(vn) < 2−1 exp(vn).

Since, in addition, lim
x→0

sinh(x)
x = 1, the matrices M ′

n(0) are uniformly bounded:

sup
n∈N

‖M ′
n(0)‖ =: c1 < ∞. (4.11)

Further,

(M ′
n(0))

−1 = Rn(M̃
′
n(0))

−1Rn

=




2vn(sinh(vn) cosh(vn)−vn)

sinh2(vn)−v2n

−2v3n sinh(vn)

sinh2(vn)−v2n
−2v3n sinh(vn)

sinh2(vn)−v2n

2v3n(sinh(vn) cosh(vn)+vn)

sinh2(vn)−v2n


 , n ∈ N.

(4.12)

Similarly, (1.5) yields the uniform boundedness of matrices (M ′
n(0))

−1, i.e.,

sup
n∈N

‖(M ′
n(0))

−1‖ =: c2 < ∞. (4.13)

We complete the proof by applying Theorem 3.4.

Remark 4.3. Assume that condition (1.6) holds. Then we have

lim
n→∞

M ′
n(0) =

(
1 1

2
1
2

1
3

)
, n ∈ N, (4.14)

lim
n→∞

(M ′
n(0))

−1 =

(
4 −6
−6 12

)
, n ∈ N. (4.15)
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5. Second boundary triplets for the operator Hn

In what follows, R+ = [0,∞) ⊆ R denotes a bounded interval or positive semiaxis, X = {xn}∞n=0 ⊂
R+ is a strictly increasing sequence.

Consider the following symmetric operator in L2(xn−1, xn):

Hn = − d2

dx2
+ qn, dom(Hn) = W 2,2

0 [xn−1, xn], (5.1)

where qn satisfies (1.5).

Lemma 5.1. Assume that Hypothesis 1 holds. Then the operator Hn is a symmetric one with defi-
ciency indices n±(Hn) = 2.
Its adjoint H∗

n is given by

H∗
n = Hn, dom(H∗

n) = W 2,2[xn−1, xn].

Moreover, the following assertions hold:

(i) A boundary triplet for the operator H∗
n can be chosen as follows:

H = C
2, Γ̃

(n)
0 =

(
f(xn−1)
−f(xn)

)
, Γ̃

(n)
1 =

(
f ′(xn−1)
f ′(xn)

)
; (5.2)

(ii) The corresponding Weyl function M̃n(·) is

M̃n(z) =

(
−√

z − qn cot(dn
√
z − qn) −

√
z−qn

sin(dn
√
z−qn)

−
√
z−qn

sin(dn
√
z−qn)

−√
z − qn cot(dn

√
z − qn)

)
. (5.3)

Proof. It is straightforward.

Proposition 5.2. Assume that Hypothesis 1 holds. Let also X = {xn}∞n=0 be as above, and let

d∗ < +∞. For any n ∈ N, define the boundary triplet Π(n) = {C2,Γ
(n)
0 ,Γ

(n)
1 } for H∗

n by setting

Γ
(n)
j : W 2,2[xn−1, xn] → C

2 , n ∈ N , j ∈ {0, 1} ,

Γ
(n)
0 =

√
dn

(
f(xn−1)
−f(xn)

)
, (5.4)

Γ
(n)
1 =

1√
dn


 f ′(xn−1) +

√
qnf(xn−1) coth(dn

√
qn)−

√
qnf(xn)

sinh(dn
√
qn)

f ′(xn) +
√
qnf(xn−1)

sinh(dn
√
qn)

−√
qnf(xn) coth(dn

√
qn)


 . (5.5)

Define the function Mn(z) by

Mn(z) =

(
an(z) bn(z)
bn(z) an(z)

)
, (5.6)

where

an(z) :=
1

dn
(−√

z − qn cot(dn
√
z − qn) +

√
qn coth(dn

√
qn)),

bn(z) :=
1

dn

(
−

√
z − qn

sin(dn
√
z − qn)

+

√
qn

sinh(dn
√
qn)

)
.

Then:
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(i) For any n ∈ N the triplet Πn = {C2,Γ
(n)
0 ,Γ

(n)
1 } is the boundary triplet for the operator H∗

n.

(ii) The Weyl function Mn(z) corresponding to the triplet Πn takes the form (5.6).

(iii) The direct sum Π :=
⊕∞

n=1Π
(n) = {H,Γ0,Γ1} with H = C

2 and Γj =
⊕∞

n=1 Γ
(n)
j , j ∈ {0, 1}, is

a boundary triplet for the operator H∗
min =

⊕∞
n=1H

∗
n.

Proof. (i) The proof is straightforward. Note, however, that it follows from Lemma 5.1, since

Γ
(n)
0 := RnΓ̃

(n)
0 , Γ

(n)
1 := R−1

n (Γ̃
(n)
1 −QnΓ̃

(n)
0 ), n ∈ N, (5.7)

where

Rn :=

(
d
1/2
n 0

0 d
1/2
n

)
,

Qn := M̃n(0) =


 −√

qn coth(dn
√
qn) −

√
qn

sinh(dn
√
qn)

−
√
qn

sinh(dn
√
qn)

−√
qn coth(dn

√
qn)


 , n ∈ N. (5.8)

(ii) It easily follows from (5.3) and (5.7) that

Mn(z) = R−1
n (M̃n(z)−Qn)R

−1
n , n ∈ N. (5.9)

(iii) We set vn := dn
√
qn. Then

M ′
n (0) = R−1

n M̃ ′
n (0)R

−1
n

=




cosh(vn) sinh(vn)−vn
2vn sinh2(vn)

sinh(vn)−vn cosh(vn)

2vn sinh2(vn)
sinh(vn)−vn cosh(vn)

2vn sinh2(vn)

cosh(vn) sinh(vn)−vn
2vn sinh2(vn)


 , n ∈ N.

(5.10)

Clearly, (1.5) yields

cosh(vn) < 2−1 exp(vn).

Since, in addition, lim
x→0

sinh(x)
x = 1, the matrices M ′

n(0) are uniformly bounded

sup
n∈N

‖M ′
n(0)‖ =: c3 < ∞. (5.11)

Further,

(M ′
n(0))

−1 = Rn(M̃
′
n(0))

−1Rn

=
1

sinh2(vn)− v2n
·
(
2(cosh(vn) sinh(vn)− vn) 2(vn cosh(vn)− sinh(vn))
2(vn cosh(vn)− sinh(vn)) 2(cosh(vn) sinh(vn)− vn)

)
, n ∈ N.

(5.12)

Similarly, (1.5) yields the uniform boundedness of matrices (M ′
n(0))

−1, i.e.,

sup
n∈N

‖(M ′
n(0))

−1‖ =: c4 < ∞. (5.13)

We complete the proof by applying Theorem 3.4.
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Remark 5.3. Assume that condition (1.6) is satisfied. Then we get

M ′
n (0) = R−1

n M̃ ′
n (0)R

−1
n −→

(
1
3 −1

6
−1

6
1
3

)
, n → ∞, (5.14)

(M ′
n(0))

−1 = Rn(M̃
′
n(0))

−1Rn −→
(
4 2
2 4

)
, n → ∞. (5.15)

Proposition 5.4. Assume that Hypothesis 1 holds. Let also Π be the boundary triplet for the operator
H∗

min defined in Proposition 5.2, and let M(·) be the corresponding Weyl function. If

d∗ = sup
n∈N

dn < +∞, (5.16)

then
M(−a2) ⇒ −∞ as a → +∞. (5.17)

Proof. The Weyl function M(·) has the form M(z) = ⊕∞
n=1Mn(z), where Mn(·) is given by (5.6). We

now introduce the matrix-valued function

M(−a2; dn, qn) :=

(
Fa(dn, qn) Ga(dn, qn)
Ga(dn, qn) Fa(dn, qn)

)
, (5.18)

where

Fa(dn, qn) :=
1

dn

[
−
√
a2 + qn coth(dn

√
a2 + qn) +

√
qn coth(dn

√
qn)

]

=
1

d2n

[
−
√
d2na

2 + d2nqn coth(
√
d2na

2 + d2nqn) + dn
√
qn coth(dn

√
qn)

]
,

(5.19)

Ga(dn, qn) :=
1

dn

[
−

√
a2 + qn

sinh(dn
√
a2 + qn)

+

√
qn

sinh(dn
√
qn)

]

=
1

d2n

[
−

√
d2na

2 + d2nqn

sinh(
√

d2na
2 + d2nqn)

+
dn

√
qn

sinh(dn
√
qn)

]
.

(5.20)

Let us check that
Ga(dn, qn) > 0 and Fa(dn, qn) < 0 for a2 > 1.

Consider the function f1(x) :=
sinh(

√
x)√

x
. Since

f ′
1(x) =

(
sinh(

√
x)√

x

)′
=

√
x cosh(

√
x)− sinh(

√
x)

2x
√
x

=
e
√
x(
√
x− 1) + e−

√
x(
√
x+ 1)

4x
√
x

> 0 for x > 1,

we have that f1(x) grows, if x > 1. Hence, the function f−1
1 (x) =

√
x

sinh(
√
x)

decreases for x > 1. This

implies that Ga(dn, qn) > 0, whenever a2 > 1.
Further, consider the function f2(x) :=

√
x coth(

√
x). Since

f ′
2(x) =

(√
x coth(

√
x)
)′
=

cosh(
√
x) sinh(

√
x)−√

x

2
√
x sinh2(

√
x)

=
sinh(2

√
x)− 2

√
x

2
√
x sinh2(

√
x)

> 0 for x > 1,
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we have that f2(x) grows, if x > 1. Hence, Fa(dn, qn) < 0 for a2 > 1.
According to Hypothesis 1, we have dn

√
qn < c. Since

(
Fa(dn, qn) Ga(dn, qn)
Ga(dn, qn) Fa(dn, qn)

)
− (Fa(dn, qn) +Ga(dn, qn))I2 = Ga(dn, qn)

(
−1 1
1 −1

)
(5.21)

and Ga(dn, qn) > 0, we get the following inequality:

M(−a2; dn, qn) ≤ (Fa(dn, qn) +Ga(dn, qn))I2.

Further, consider the functions

Fa(dn, qn) +Ga(dn, qn) =
1

d2n

[
dn

√
qn

sinh(dn
√
qn)

{cosh(dn
√
qn) + 1}

−
√
a2d2n + d2nqn

sinh(
√

a2d2n + d2nqn)

{
cosh(

√
a2d2n + d2nqn) + 1

}] (5.22)

and g(x) :=
√
x

sinh(
√
x)

(1 + cosh(
√
x)). Since

g′(x) =

( √
x

sinh(
√
x)

(
1 + cosh(

√
x)
))′

=
sinh(

√
x)−√

x

4
√
x sinh2(

√
x
2 )

> 0, (5.23)

the function g(·) grows. Applying the Lagrange theorem to the right-hand side of (5.22), we get

Fa(dn, qn) +Ga(dn, qn) = − 1

d2n

(
g(a2d2n + d2nqn)− g(d2nqn)

)
= −a2g′(ξn), (5.24)

where ξn ∈ (d2nqn, a
2d2n + d2nqn). Further, since limx→0 g

′(x) = 1
6 > 0, there exists ε > 0 such that

g′(x) >
1

12
, x ∈ [ε,∞). (5.25)

On the other hand,

lim
x→∞

sinh(
√
x)−√

x

4 sinh2(
√
x
2 )

=
1

2
. (5.26)

Combining this relation with the obvious inequality sinh(
√
x) >

√
x, x > 0, we arrive at the two-sided

estimate

C1 <
sinh(

√
x)−√

x

4 sinh2(
√
x
2 )

< C2, x ∈ [ε,∞). (5.27)

In view of (5.23), we have

C1√
x
< g′(x) =

sinh(
√
x)−√

x

4
√
x sinh2(

√
x
2 )

<
C2√
x
, x ∈ [ε,∞). (5.28)

Using d2nqn < c2 (see Hypothesis 1) and (5.16), we obtain

C1√
a2d2n + d2nqn

>
C1√

a2d2n + c2
>

C1√
a2(d∗)2 + c2

. (5.29)
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Combining the latter with (5.25) and (5.28), we have

inf
x∈(d2nqn,a2d2n+d2nqn)

g′(x) > β(a),

where β(a) = min

{
1

12
,

C1√
a2(d∗)2 + c2

}
.

(5.30)

Choosing a >
√
3c
d∗ , we continue this inequality as

inf
x∈(d2nqn,a2d2n+d2nqn)

g′(x) >
C1

2ad∗
, a >

√
3c

d∗
. (5.31)

Combining this estimate with (5.24) yields

sup
n

(Fa(dn, qn) +Ga(dn, qn)) ≤ −a2 · C1

2ad∗
= −a

C1

2d∗
. (5.32)

Since Mn(−a2) = M(−a2, dn), the preceding inequality yields

M(−a2) = ⊕∞
n=1Mn(−a2) ≤ −a

C1

2d∗
, a >

√
3c

d∗
. (5.33)

Relation (5.17) is obviously satisfied.

Combining Proposition 5.2 with Proposition 2.2, we arrive at the following parametrization of the
set ExtHmin of closed proper extensions of the operator Hmin :

H̃ = HΘ := H∗
min⌈dom(HΘ),

dom(HΘ) = {f ∈ dom(H∗
min) : {Γ0f,Γ1f} ∈ Θ}, (5.34)

where Θ ∈ C̃(l2) and Γ0, Γ1 are defined by (5.4)-(5.5).

Theorem 5.5. Let Π = ⊕∞
n=1Πn be a boundary triplet for H∗

min defined in Proposition 5.2, Θ, Θ̃ ∈
C̃(H), and let HΘ, HΘ̃

∈ ExtHmin be proper extensions of Hmin defined by (5.34). Then

(i) The operator HΘ is symmetric (self-adjoint), iff so is Θ, and n±(Hmin) = n±(Θ).

(ii) The self-adjoint (symmetric) operator HΘ is lower semibounded, iff so is Θ.

(iii) Let Θ = Θ∗. Then κ−(HΘ) = κ−(Θ). In particular, HΘ ≥ 0 iff Θ ≥ 0.

(iv) For any p ∈ (0,∞], z ∈ ρ(HΘ) ∩ ρ(H
Θ̃
), and ζ ∈ ρ(Θ) ∩ ρ(Θ̃), the following equivalence holds

(HΘ − z)−1 − (H
Θ̃
− z)−1 ∈ Sp ⇐⇒ (Θ− ζ)−1 − (Θ̃− ζ)−1 ∈ Sp.

(v) The operator HΘ = H∗
Θ has a discrete spectrum, iff dn ց 0, and Θ has a discrete spectrum.

Proof. (i) follows from Proposition 2.2.
(ii), (iii) Combining Proposition 2.7 with Proposition 5.4 yields the first statement.
(iv) is implied by Proposition 2.5.
(v) First, we show that conditions are sufficient. Indeed, the operator

H0 := H∗
min⌈ker(Γ0) = ⊕n∈NHn0, Hn0 := H∗

n⌈ker(Γ
(n)
0 ), (5.35)
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has a discrete spectrum, if limn→∞ dn = 0. Moreover, the Krein resolvent formula and the discreteness
of σ(Θ) yield RHΘ

(z)−RH0(z) ∈ S∞, z ∈ C+, and, hence, RHΘ
(z) ∈ S∞.

Let us show that the condition dn ց 0 is necessary for the discreteness of σ(HΘ). Without loss
of generality, assume that 0 ∈ ρ(HΘ). Assume also that lim supn→∞ dn > 0 and HΘ has a discrete
spectrum. Then there exists a sequence {dnk

}∞k=1 such that dnk
≥ d∗/2 > 0. For ε ∈ (0, d∗/2), define

the function

ϕε(·) ∈ W 2
2 (R), ϕε(x) =

{
1, ε ≤ x ≤ d∗ − ε,
0, x /∈ [0, d∗].

Note that ϕk(x) := PIϕε(x+ xnk
) ∈ dom(HΘ), where PI is the orthoprojection in L2(R) onto L2(I).

Moreover, ‖ϕk‖L2 ≡ const and ‖HΘϕk‖L2 ≡ const. Since the functions ϕk(·) have disjoint supports,
the operator (HΘ)

−1 is not compact. We arrive at the contradiction.

Remark 5.6. Clearly, all statements of Theorem 5.5 with exception for (ii)–(iii) remain valid for the
boundary triplet Π = ⊕∞

1 Πn with Πn defined by (4.4)–(4.5) in place of (5.4)–(5.5).

Corollary 5.7. If a is large enough, then HΘ ≥ −a2, whenever Θ ≥ − a
2d∗ Il2.

6. Schrödinger operators with δ-interactions

Now, we return to the symmetric differential operator H0
X,α,q in L2(R+)

H0
X,α,q := − d2

dx2
+ qn,

dom(H0
X,α,q) =

{
f ∈ W 2,2

comp(I \X) :
f ′(0) = 0, f(xn+) = f(xn−)
f ′(xn+)− f ′(xn−) = αnf(xn)

}
.

(6.1)

As above, we denote, by HX,α,q, the closure of H0
X,α,q, HX,α,q = H0

X,α,q.

6.1. Parametrization of the operator HX,α,q

Let Π1 = {H,Γ1
0,Γ

1
1}, and let Π2 = {H,Γ2

0,Γ
2
1} be the boundary triplets defined in Propositions

5.2 and 4.2, respectively. According to Proposition 2.2, the extension HX,α(∈ ExtHmin) admits two
representations

HX,α,q = HΘj := H∗
min⌈dom(HΘj ),

dom(HΘj ) = {f ∈ dom(H∗
min) : {Γj

0f,Γ
j
1f} ∈ Θj}, j ∈ {1, 2}, (6.2)

where Θj ∈ C̃(H) (j ∈ {1, 2}) are closed symmetric linear relations. In this section, we show that Θ2,
as well as the operator part Θ′

1 of Θ1, is a Jacobi matrix.

1. The first parametrization. At first, we consider the triplet Π1 = {H,Γ1
0,Γ

1
1} constructed in

Proposition 4.2. For any α, the operators HX,α and H
(1)
0 := H∗

min⌈ker(Γ1
0) are disjoint. Hence, Θ1 in

(6.2) is a (closed) operator in H = l2(N), Θ1 ∈ C(l2). More precisely, consider the Jacobi matrix

BX,α,q :=




b1 a1 0 0 0 . . .
a1 b2 a2 0 0 . . .
0 a2 b3 a3 0 . . .
0 0 a3 b4 a4
...

...
. . .

. . .
. . .




, (6.3)
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where

b2k−1 = d−1
k (αk−1 +

√
qk tanh(dk

√
qk)), b2k = −tanh(dk

√
qk)

d3k
√
qk

,

a2k−1 = − 1

d2k cosh(dk
√
qk)

, a2k = d
−3/2
k d

−1/2
k+1 .

Let τX,α,q be a second-order difference expression associated with (6.3). We defines the corresponding
minimal symmetric operator in l2 by (see [1, 6])

B0
X,α,qf := τX,α,qf, f ∈ dom(B0

X,α,q) := l20 and BX,α,q = B0
X,α,q. (6.4)

Recall that BX,α,q has equal deficiency indices, and n+(BX,α,q) = n−(BX,α,q) ≤ 1.
In addition, we note that BX,α,q admits the representation

BX,α,q = R−1
X (B̃α −QX)R−1

X ,

where B̃α :=




0 0 0 0 0 . . .
0 0 1 0 0 . . .
0 1 α1 0 0 . . .
0 0 0 0 1 . . .
0 0 0 1 α2 . . .
. . . . . . . . . . . . . . . . . .




, (6.5)

and RX = ⊕∞
n=1Rn, QX = ⊕∞

n=1Qn are given by (4.8).

Proposition 6.1. Let Π1 = {H,Γ1
0,Γ

1
1} be the boundary triplet for H∗

min constructed in Proposition
4.2, and let BX,α,q be the minimal Jacobi operator defined by (6.3)–(6.4). Then Θ1 = BX,α,q, i.e.,

HX,α,q = HBX,α,q
= H∗

min⌈dom(HBX,α,q
),

dom(HBX,α,q
) = {f ∈ dom(H∗

min) : Γ
1
1f = BX,α,qΓ

1
0f}.

Proof. Let f ∈ W 2,2
comp(R+ \ X). Then f ∈ dom(HX,α,q), iff Γ̃1

1f = B̃αΓ̃
1
0f. Here, Γ̃1

j := ⊕n∈NΓ̃
(n)
j

where Γ̃
(n)
j , j ∈ {0, 1}, are defined by (4.5), and B̃α is defined by (6.5). Combining (5.7) and (5.8)

with (6.5), we rewrite the equality Γ̃1
1f = B̃αΓ̃

1
0f as Γ1

1f = BX,αΓ
1
0f .

Taking the closures, we complete the proof.

Remark 6.2. Note that matrix (6.3) has negative off-diagonal entries, although the off-diagonal
entries in the classical theory of Jacobi operators are assumed to be positive. But it is known (see,
e.g., [35]) that the (minimal) operator BX,α,q is unitarily equivalent to the minimal Jacobi operator
associated with the matrix

B′
X,α,q :=




b1 a1 0 0 0 . . .
a1 b2 a2 0 0 . . .
0 a2 b3 a3 0 . . .
0 0 a3 b4 a4
...

...
. . .

. . .
. . .




, (6.6)

where

b2k−1 = d−1
k (αk−1 +

√
qk tanh(dk

√
qk)), b2k = −tanh(dk

√
qk)

d3k
√
qk

,
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a2k−1 =
1

d2k cosh(dk
√
qk)

, a2k = d
−3/2
k d

−1/2
k+1 .

In the sequel, we will identify the operators BX,α,q and B′
X,α,q, while investigating those spectral

properties of the operator HX,α,q, which are invariant under unitary transformations.

2. The second parametrization. Let us consider the boundary triplet Π2 = {H,Γ2
0,Γ

2
1}

constructed in Proposition 5.2. Now the operators HX,α,q and H
(2)
0 := H∗

min⌈ker(Γ2
0) are not disjoint.

Hence, by Proposition 2.2(ii), the corresponding linear relation Θ2 in (6.2) is not an operator, i.e., it
has a nontrivial multivalued part, mulΘ2 := {f ∈ H : {0, f} ∈ Θ2} 6= {0}.

Let f ∈ W 2,2
comp(R+ \ X). Then Γ2

0f,Γ
2
1f ∈ l20 and f ∈ dom(HX,α,q), iff CX,α,qΓ1f = DX,α,qΓ0f ,

where

CX,α,q := CRX , DX,α,q := (Dα − CQX)R−1
X , (6.7)

C :=




0 0 0 0 0 . . .
0 0 0 0 0 . . .
0 −1 1 0 0 . . .
0 0 0 0 0 . . .
0 0 0 −1 1 . . .
. . . . . . . . . . . . . . . . . .




,

Dα :=




1 0 0 0 0 . . .
0 1 1 0 0 . . .
0 0 α1 0 0 . . .
0 0 0 1 1 . . .
0 0 0 0 α2 . . .
. . . . . . . . . . . . . . . . . .




, (6.8)

and RX = ⊕∞
n=1Rn, QX = ⊕∞

n=1Qn are defined by (5.8);

CX,α,q :=




0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .

0 −d
1/2
1 d

1/2
2 0 0 0 . . .

0 0 0 0 0 0 . . .

0 0 0 −d
1/2
2 d

1/2
3 0 . . .

0 0 0 0 0 0 . . .
. . . . . . . . . . . . . . . . . . . . .

,




(6.9)

DX,α,q := (ai,j)
∞
i,j=1 , (6.10)

where
a1,1 = d

−1/2
1 ,

a2k,2k = d
−1/2
k , a2k,2k+1 = d

−1/2
k+1 ,

a2k+1,2k−1 = − d
−1/2
k

√
qk

sinh(dk
√
qk)

, a2k+1,2k = −d
−1/2
k

√
qk coth(dk

√
qk),

a2k+1,2k+1 = d
−1/2
k+1 (αk +

√
qk+1 coth(dk

√
qk)),
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a2k+1,2k+2 = −
d
−1/2
k+1

√
qk+1

sinh(dk+1
√
qk+1)

,

ai,j = 0 otherwise.

We now define a linear relation Θ0
2 by

Θ0
2 = {{f, g} ∈ l20 ⊕ l20 : DX,α,qf = CX,α,qg}. (6.11)

Hence, we get obviously
H0

X,α,q = H∗
min⌈dom(H0

X,α,q),

dom(H0
X,α,q) = {f ∈ W 2,2

comp(R+ \X) : {Γ2
0f,Γ

2
1f} ∈ Θ0

2}. (6.12)

Direct calculations show that Θ0
2 is symmetric. Moreover, (6.12) implies that the closure of Θ0

2 is
Θ2. Hence, Θ2 is a closed symmetric linear relation. Therefore (see Subsection 2.1), Θ2 admits the
representation

Θ2 = Θop
2 ⊕Θ∞

2 , H = Hop ⊕H∞,

Hop = dom(Θ2) = dom(Θop
2 ), H∞ := mulΘ2, (6.13)

where Θop
2 (∈ C(Hop)) is the operator part of Θ2. Moreover, it follows from (6.7) that

mulΘ2 = ker(CX,α) = R−1
X (kerC), Θ∞

2 = {{0, f} : f ∈ mulΘ2}. (6.14)

Since Hop = ran(RXC∗), the system {fn}∞n=1, fn :=
√
dne2n−

√
dn+1e2n+1√

dn+dn+1
, forms the orthonormal basis

in Hop. Next, we show that the operator part Θop
2 of Θ2 is unitarily equivalent to the minimal Jacobi

operator

BX,α,q =




b1 a1 0 . . .
a1 b2 a2 . . .
0 a2 b3 . . .
. . . . . . . . . . . .


 , (6.15)

where
bn = r−2

n (αn +
√
qn coth(dn

√
qn) +

√
qn+1 coth(dn+1

√
qn+1)),

an = −
√
qn+1

rnrn+1 sinh(dn+1
√
qn+1)

,

and rn :=
√
dn + dn+1, n ∈ N. We show that {fn}∞n=1 ⊂ dom(Θop

2 ). Assume that there exists gn
such that {fn,gn} ∈ Θop

2 , i.e., gn = Θop
2 fn. The latter yields gn ∈ Hop and, hence, gn =

∑∞
k=1 gn,kfk.

Moreover, after direct calculations, we obtain

DX,α,qf1 = r−1
1

(
−(α1 +

√
q1 coth(d1

√
q1) +

√
q2 coth(d2

√
q2))e3

+
√
q2 sinh

−1(d2
√
q2)e5

)
,

DX,α,qfn = r−1
n

( √
qn

sinh(dn
√
qn)

e2n−1 − (αn +
√
qn coth(dn

√
qn)

+
√
qn+1 coth(dn+1

√
qn+1)e2n+1 +

√
qn+1

sinh(dn+1
√
qn+1)

e2n+3

)
, n ≥ 2,

CX,α,qgn = −
∞∑

k=1

gn,krke2k+1, n ≥ 1.
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Hence, {fn,gn} ∈ Θ, i.e., the equality DX,α,qfn = CX,α,qgn holds, iff

gn,n−1 = −
√
qn

sinh(dn
√
qn)rn−1rn

,

gn,n =
1

r2n

(
αn +

√
qn coth(dn

√
qn) +

√
qn+1 coth(dn+1

√
qn+1

)
,

gn,n+1 = −
√
qn+1

sinh(dn+1
√
qn+1)rnrn+1

, n ≥ 2,

and gn,k = 0 for all k /∈ {n− 1, n, n+ 1}. Hence, fn ∈ dom(Θop
2 ), and the matrix representation of the

operator Θop
2 in the basis {fn}∞n=1 coincides with the matrix BX,α,q defined by (6.15).

Since the operator BX,α,q of the form (6.3) and (6.15) is closed, we conclude that Θop
1 and BX,α,q

are unitarily equivalent.

Proposition 6.3. Let Π2 = {H,Γ2
0,Γ

2
1} be the boundary triplet constructed in Proposition 5.2, and

let the linear relation Θ2 be defined by (6.2). Then Θ2 admits representation (6.13), where the “pure”
relation Θ∞

2 is determined by (6.14) and (6.8), and the operator part Θop
2 is unitarily equivalent to the

minimal Jacobi operator BX,α,q of the form (6.4) and (6.15).

6.2. Self–adjontness

Theorem 6.4. The operator HX,α,q has equal deficiency indices n+(HX,α,q) = n−(HX,α,q) ≤ 1. More-
over, n±(HX,α,q) = n±(BX,α,q), where BX,α,q is the minimal operator associated with the Jacobi matrix
either (6.3) or (6.15). In particular, HX,α,q is self-adjoint, iff BX,α,q is.

Proof. Combining Theorem 5.5 (i) with Propositions 6.1 and 6.3, we arrive at the equality
n±(HX,α,q) = n±(BX,α,q). It remains to note that, for Jacobi matrices, n±(BX,α,q) ≤ 1 (see [1,6]).

Corollary 6.5. Let B
(1)
X,α,q and B

(2)
X,α,q be the minimal Jacobi operators associated with (6.3) and

(6.15), respectively. Then n±(B
(1)
X,α,q) = n±(B

(2)
X,α,q). In particular, B

(1)
X,α,q is self-adjoint, iff so is

B
(2)
X,α,q.

Proof. The assertion immediately follows from Theorem 6.4.

Proposition 6.6. Assume that Hypothesis 1 is valid. Then the Hamiltonian HX,α,q is self-adjoint for
any α = {αn}∞n=1 ⊂ R provided that

∞∑

n=1

d2n = ∞. (6.16)

Proof. Consider the Jacobi matrix BX,α,q (6.6). By Carleman’s theorem [1], [6, Chapter VII.1.2],
BX,α,q is self-adjoint, whenever

∞∑

n=1

(d2n cosh(dn
√
qn) + d3/2n d

1/2
n+1) = ∞. (6.17)

Obviously,

d2n cosh(dn
√
qn) ∼ d2n, and d2n < d2n + d3/2n d

1/2
n+1 ≤

7

4
d2n +

1

4
d2n+1 as n → ∞,

and, hence, relations (6.16) and (6.17) are equivalent.
Now, the result follows from Theorem 6.4.
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Corollary 6.7 ( [16]). If lim supn dn > 0 (in particular, d∗ = lim infn dn > 0), then HX,α is self-
adjoint.

Let us present the sufficient conditions of self-adjointness in the case where (6.16) does not hold.

Proposition 6.8. Let {dn}∞n=1 ∈ l2,

c1 ≤ dn
√
qn ≤ c2, c1, c2 > 0, (6.18)

and let

dn−1 · dn+1 ≥ d2n, n ∈ N. (6.19)

If, in addition, the strengths αn of δ-interactions satisfy the relation

∞∑

n=1

dn+1 |αn +
√
qn coth(dn

√
qn) +

√
qn+1 coth(dn+1

√
qn+1| < ∞, (6.20)

then the operator HX,α,q is symmetric with n±(HX,α,q) = 1.

Proof. Consider the Jacobi matrix (6.15). To apply [25, Theorem 1], we denote an := r−2
n |αn +

√
qn coth(dn

√
qn) +

√
qn+1 coth(dn+1

√
qn+1| and bn :=

√
qn

sinh(dn
√
qn)rn−1rn

, n ∈ N, and define a sequence

{cn}∞n=1 as follows:

c1 := b1, c2 := 1, cn+1 := −bn−1

bn
cn−1, n ∈ N.

It is easily seen that

cn+1 = (−1)n+1rn+1

√
qn−2

sinh(dn−2
√
qn−2)

·
√
qn

sinh(dn
√
qn)

· sinh(dn−1
√
qn−1)√

qn−1

×sinh(dn+1
√
qn+1)√

qn+1
· . . . · c̃, n ∈ N;

c̃ :=

{
c1r

−1
1 , n = 2k,

c2r
−1
2 , n = 2k + 1.

Using both conditions (6.24)–(6.19) and the obvious inequality sinh(x) > x, x > 0, we obtain

√
qn−2

sinh(dn−2
√
qn−2)

·
√
qn

sinh(dn
√
qn)

· sinh(dn−1
√
qn−1)√

qn−1
· sinh(dn+1

√
qn+1)√

qn+1
· . . .

=
sinh(dn+1

√
qn+1)√

qn+1
· sinh(dn−1

√
qn−1)√

qn−1
·

√
qn

sinh(dn
√
qn)

·
√
qn−2

sinh(dn−2
√
qn−2)

· . . .

=

√
sinh(dn+2

√
qn+2)√

qn+2

(
sinh(dn+1

√
qn+1)√

qn+1
·
√ √

qn+2

sinh(dn+2
√
qn+2)

·
√
qn

sinh(dn
√
qn)

)

×
(
sinh(dn−1

√
qn−1)√

qn−1
·
√ √

qn

sinh(dn
√
qn)

·
√
qn−2

sinh(dn−2
√
qn−2)

)

≤ C
√
dn+2, n ∈ N. (6.21)
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Therefore,

|cn+1| ≤ Cc̃rn+1

√
dn+2 =

√
2Cc̃(dn+2 +

√
dn+1dn+2) ≤

√
2Cc̃

(
3

2
dn+2 +

1

2
dn+1

)
,

and, hence, {cn}∞n=1 ∈ l2. On the other hand, it follows from (6.20) and (6.21) that
∑∞

n=1 |an|c2n < ∞,
i.e.,

∞∑

n=1

sinh(dn+1
√
qn+1)√

qn+1
|αn +

√
qn coth(dn

√
qn) +

√
qn+1 coth(dn+1

√
qn+1| < ∞.

Since sinh(x) > x, x > 0, we easily get conditions (6.20). By [25, Theorem 1], this inequality and the
inclusion {cn}∞n=1 ∈ l2 yield n±(BX,α,q) = 1. It remains to apply Theorem 6.4.

Corollary 6.9. Let the assumptions of Proposition 6.8 be satisfied. If

dn(qn)
3
2 ≤ c, c > 0, (6.22)

then condition (6.20) is equivalent to

∞∑

n=1

dn+1

∣∣∣∣αn +
1

dn
+

1

dn+1
+

1

3
(dn

√
qn + dn+1

√
qn+1)

∣∣∣∣ < ∞. (6.23)

Proof. Using

coth(x) =
1

x
+

x

3
−O(x3),

{dn}∞n=1 ∈ l2, and (6.22), we prove the assertion.

Remark 6.10. Let the assumptions of Proposition 6.8 be satisfied. Note that condition (6.20) is
automatically satisfied, whenever

αn = −(
√
qn +

√
qn+1).

Proposition 6.11. Assume that Hypothesis 1 is valid, and assume that (6.16) does not hold. Let also
α = {αn}∞n=1 and X = {xn}∞n=1 satisfy one of the following conditions:

(i)

c1 ≤ dn
√
qn ≤ c2, c1, c2 > 0, (6.24)

and
∞∑

n=1

|αn|dndn+1rn−1rn+1 = ∞, (6.25)

where rn =
√
dn + dn+1.

(ii) There exists a positive constant C1 > 0 such that

αn +
√
qn

(
M1 +

rn
Mrn−1

)
+

√
qn+1

(
M1 +

rn
Mrn+1

)
≤ C1(dn + dn+1), n ∈ N, (6.26)

where

M = lim inf
n→∞

sinh(dn
√
qn), M1 = lim sup

n→∞
coth(dn

√
qn). (6.27)
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(iii) There exists a positive constant C2 > 0 such that

αn +
√
qn

(
M2 −

rn
Mrn−1

)
+
√
qn+1

(
M2 −

rn
Mrn+1

)
≥ −C2(dn + dn+1), n ∈ N, (6.28)

where

M = lim inf
n→∞

sinh(dn
√
qn), M2 = lim inf

n→∞
coth(dn

√
qn). (6.29)

Then the operator HX,α,q is self-adjoint in L2(R+).

Proof. (i) Applying the Dennis–Wall test ( [1, p. 25, Problem 2]) to matrix (6.15), we obtain that the
condition

∞∑

n=1

|αn +
√
qn coth(dn

√
qn) +

√
qn+1 coth(dn+1

√
qn+1|

×sinh(dn
√
qn) sinh(dn+1

√
qn+1)√

qn
√
qn+1

rn−1rn+1 = ∞ (6.30)

yields the self-adjointness of the minimal operator BX,α,q associated with (6.15).

Obviously,

|αn +
√
qn coth(dn

√
qn) +

√
qn+1 coth(dn+1

√
qn+1)|

sinh(dn
√
qn) sinh(dn+1

√
qn+1)√

qn
√
qn+1

≥ (|αn| − |√qn coth(dn
√
qn) +

√
qn+1 coth(dn+1

√
qn+1)|)

sinh(dn
√
qn) sinh(dn+1

√
qn+1)√

qn
√
qn+1

.

(6.31)

Since sinh(x) > x, x > 0, we get

|αn|
sinh(dn

√
qn) sinh(dn+1

√
qn+1)√

qn
√
qn+1

≥ |αn|dndn+1. (6.32)

Condition (6.24) implies that

|√qn coth(dn
√
qn) +

√
qn+1 coth(dn+1

√
qn+1)|

×sinh(dn
√
qn) sinh(dn+1

√
qn+1)√

qn
√
qn+1

≤ sinh(2c2)

2c1
(dn + dn+1) . (6.33)

Since {dn}∞n=1 ∈ l2, we get

∞∑

n=1

|√qn coth(dn
√
qn) +

√
qn+1 coth(dn+1

√
qn+1)|

×sinh(dn
√
qn) sinh(dn+1

√
qn+1)√

qn
√
qn+1

< ∞. (6.34)

Combining (6.31)–(6.32) with (6.34), we get that relations (6.25) and (6.30) are equivalent. By The-
orem 6.4, HX,α,q = H∗

X,α,q.
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(ii) − (iii) Applying results in [6, Theorem VII.1.4] (see also [1, Problem 3, p. 37]) to the Jacobi
matrix (6.15), we obtain that the conditions

−
√
qn

sinh(dn
√
qn)rn−1rn

+
1

r2n

(
αn +

√
qn coth(dn

√
qn)

+
√
qn+1 coth(dn+1

√
qn+1)

)
−

√
qn+1

sinh(dn+1
√
qn+1)rnrn+1

≤ C1

(6.35)

and

−
√
qn

sinh(dn
√
qn)rn−1rn

− 1

r2n

(
αn +

√
qn coth(dn

√
qn)

+
√
qn+1 coth(dn+1

√
qn+1)

)
−

√
qn+1

sinh(dn+1
√
qn+1)rnrn+1

≤ C2

(6.36)

guarantee the self-adjointness of BX,α,q. Since dn
√
qn is bounded, we get easily conditions (6.26) and

(6.38), by using conditions (6.27) and (6.29). Theorem 6.4 completes the proof.

Corollary 6.12. Let the assumptions of Proposition 6.11 be satisfied. If, in addition, lim
n→∞

dn
√
qn = 0,

then conditions (6.26)–(6.38) are equivalent to

αn +
1

dn

(
1 +

rn
rn−1

)
+

1

dn+1

(
1 +

rn
rn+1

)
≤ C1(dn + dn+1), n ∈ N (6.37)

and

αn +
1

dn

(
1− rn

rn−1

)
+

1

dn+1

(
1− rn

rn+1

)
≥ −C2(dn + dn+1), n ∈ N, (6.38)

respectively.

Example 6.13. Let dn := 1
n , n ∈ N. Consider the operator

HA := − d2

dx2
+ q(x) +

∞∑

n=1

αnδ(x− xn). (6.39)

Clearly, {dn}∞n=1 ∈ l2, i.e., condition (6.16) is violated. Applying Propositions 6.8 and 6.11 and
executing some direct calculations, we obtain

(i) If
∑∞

n=1
|αn|
n3 = ∞, then the operator HA is self-adjoint (cf. Proposition 6.11 (i)).

(ii) If αn ≤ −2(c2M1 +
c2
M )n− (c2M1 +

c2
M ) + O(n−1), then HA is self-adjoint (cf. Proposition 6.11

(ii)).

(iii) If αn ≥ −K
n , n ∈ N, K ≡ const > 0, then HA is self-adjoint (cf. Proposition 6.11 (iii)).

(iv) If αn = −(
√
qn +

√
qn+1) +O(n−ε), then n±(HA) = 1 (cf. Proposition 6.8).

6.3. Operators with discrete spectrum

Theorem 6.14. Assume that Hypothesis 1 is valid. Let BX,α,q be the minimal Jacobi operator defined
either by (6.3) or (6.15).

(i) If n±(BX,α,q) = 1, then any self-adjoint extension of HX,α,q has a discrete spectrum.

(ii) If BX,α,q = B∗
X,α,q, then the Hamiltonian HX,α,q(= H∗

X,α,q) has a discrete spectrum, iff
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• limn→∞ dn = 0, and

• BX,α,q has a discrete spectrum.

Proof. 1) To be precise, let BX,α,q be defined by (6.3). Since n±(BX,α,q) = 1, any self-adjoint extension
of BX,α,q has a discrete spectrum (see [1, 6]). Moreover, by Corollary 6.7, limn→∞ dn = 0. Hence the
operator H0 defined by (5.35) has a discrete spectrum as well. The Krein resolvent formula (2.9)
implies that any self-adjoint extension of HX,α,q is discrete.

2) This follows from Theorem 5.5 (iv) and Remark 5.6.

Proposition 6.15. Assume that Hypothesis 1 is valid. Let the operator BX,α,q defined by (6.15) be
self-adjoint, and let limn→∞ dn = 0. Assume also that αn < 0, and there exist

lim inf
n→∞

sinh(dn
√
qn) = C, lim sup

n→∞
coth(dn

√
qn) = C2 > 0, (6.40)

and also

lim
n→∞

∣∣αn + C2(
√
qn +

√
qn+1)

∣∣
(
dn + dn+1

) = ∞,

lim
n→∞

qn+1C
−2 (αn + C2(

√
qn + c

√
qn+1))

−1 (αn+1 + C2(
√
qn+1 + c

√
qn+2))

−1 <
1

4
.

(6.41)

Then the operator HX,α,q has a purely discrete spectrum.

Proof. Applying [10, Theorem 8] to the Jacobi matrix BX,α,q of the form (6.15), we get the sufficient
conditions of discreteness of the spectrum:

lim
n→∞

1

r2n

(
αn +

√
qn coth(dn

√
qn) +

√
qn+1 coth(dn+1

√
qn+1

)
= ∞ (6.42)

and

lim
n→∞

qn+1 sinh
−2(dn+1

√
qn+1) (αn +

√
qn coth(dn

√
qn) +

√
qn+1 coth(dn+1

√
qn+1))

−1

× (αn+1 +
√
qn+1 coth(dn+1

√
qn+1) +

√
qn+2 coth(dn+2

√
qn+2))

−1 <
1

4
.

(6.43)

Since αn < 0, we get regard for the boundedness of dn
√
qn that conditions (6.42) and (6.43) are

equivalent to (6.40) and (6.41), respectively. Since limn→∞ dn = 0, the same is true for HX,α,q by
Theorem 6.14.

Remark 6.16. If HX,α,q is a semibounded operator, in particular, if αn > 0, then the assertion of
Proposition 6.15 follows immediately from the analogous classical Molchanov discreteness criterion
(see [4]).

Proposition 6.17. Assume that Hypothesis 1 is valid, limn→∞ dn = 0, and dn
√
qn → 0 as n → ∞.

Let also the operator BX,α,q defined by (6.3)–(6.4) be self-adjoint. Let the following conditions be
satisfied:

lim
n→∞

∣∣∣∣
αn−1

dn
+ qn

∣∣∣∣ = ∞, lim
n→∞

1

dn(αn + qn+1dn+1)
> −1

4

and lim
n→∞

1

dnαn−1
> −1

4
. (6.44)

Then the operator HX,α,q has discrete spectrum.
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Proof. We apply [10, Theorem 8] to the operator B′
X,α,q of the form (6.6) and prove the statement in

at least two steps.
At first, we consider the case bn = b2k−1 and an = a2k−1. We obtain the following sufficient

conditions of discreteness of the spectrum of B′
X,α:

lim
k→∞

∣∣∣∣
αk−1

dk
+ qk

∣∣∣∣ = ∞ and lim
k→∞

1

dkαk−1
> −1

4
. (6.45)

Similarly, if bn = b2k and an = a2k, we obtain

lim
k→∞

∣∣∣∣
1

d2k

∣∣∣∣ = ∞ and lim
k→∞

1

dk(αk + qk+1dk+1)
> −1

4
. (6.46)

Since limn→∞ dn = 0 and qn is unbounded, conditions (6.45)–(6.46) are equivalent to (6.44). Theorem
6.14 completes the proof.

Remark 6.18. In the case of q ∈ L∞(R+), Proposition 6.17 was obtained in [21].

Corollary 6.19. Let the assumptions of Proposition 6.17 be satisfied, αn + qn+1dn+1 < 0, and let the
following conditions be met:

lim
n→∞

1

dn(αn + qn+1dn+1)
> −1

4
and lim

n→∞
1

dnαn−1
> −1

4
. (6.47)

Then the operator HX,α,q has a discrete spectrum.

Proof. If αn + qn+1dn+1 < 0, then the condition

lim
n→∞

1

dn(αn + qn+1dn+1)
> −1

4

yields the relation

|αn + qn+1dn+1| >
4

dn
.

Combining the latter with the condition limn→∞ dn = 0, we get

lim
n→∞

∣∣∣∣
αn−1

dn
+ qn

∣∣∣∣ = ∞.

In this case, conditions (6.44) are reduced to (6.47).

Remark 6.20. Note that if αn + qn+1dn+1 > 0, then the condition limn→∞ 1
dn(αn+qn+1dn+1)

> −1
4 in

(6.44) is automatically satisfied and can be omitted.

6.4. Resolvent comparability

Proposition 6.21. Assume that Hypothesis 1 is valid. Suppose also that HX,α,q and HX,α̃,q are self-
adjoint, and BX,α,q and BX,α̃,q are the corresponding (self-adjoint) Jacobi operators defined either by
(6.3) or (6.6). Then, for any p ∈ (0,∞], the inclusion

(HX,α,q − z)−1 − (HX,α̃,q − z)−1 ∈ Sp (6.48)

is equivalent to the inclusion

(BX,α,q − i)−1 − (BX,α̃,q − i)−1 ∈ Sp. (6.49)
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Proof. From Theorem 2.5, we get the result with BX,α,q defined by (6.6). The result with the matrices
defined by (6.3) follows from Proposition 6.1.

Corollary 6.22. Assume that Hypothesis 1 is valid. If
{

αn−α̃n
dn+1

}∞

n=1
∈ lp, p ∈ (0,∞) (∈ c0, p = ∞),

then inclusion (6.48) holds.

Proof. Note that the condition BX,α̃,q −BX,α,q ∈ Sp is sufficient for inclusion (6.48) to hold. Clearly,
l20 ⊂ dom(BX,α,q) ∩ dom(BX,α̃,q). On the other hand, for any f ∈ l2,0, (6.5) yields the inclusion
(BX,α̃,q −BX,α,q) ∈ Sp, i.e.,

BX,α̃,qf −BX,α,qf = R−1
X

(
B̃α̃ − B̃α

)
R−1

X f = ⊕∞
n=1

(
αn−α̃n
dn+1

0

0 0

)
f

for all finite sequences f ∈ l2(N). Hence, due to the assumption of Corollary 6.22, we get

BX,α̃,q −BX,α,q ∈ Sp ⊂ [H]

and dom(BX,α,q) = dom(BX,α̃,q). It remains to apply Proposition 2.5. Finally, Proposition 6.21
completes the proof.

Proposition 6.23. Assume that Hypothesis 1 is valid. Let also d∗ < ∞. If

∞∑

n=1

|αn|
dn+1

< ∞, (6.50)

then
σac(HX,α,q) = σac(HX,0,q). (6.51)

If, in addition, q(·) ∈ L1(R+), then σac(HX,α,q) = R+.

Proof. Applying Corollary 6.22 for p = 1 to the Hamiltonians HX,α,q and HX,0,q and using (6.50), we
get that inclusion (6.48) holds. Now, the result follows from the Kato–Rozenblum theorem (cf. [32,
Theorem XI.9]). The assertion is proved.

If q(·) ∈ L1(R+), then σac(HX,0,q) = R+. Hence,

σac(HX,α,q) = σac(HX,0,q) = R+.

Remark 6.24. In the case of q ∈ L∞(R+), Proposition 6.23 was established in [4].

Example 6.25. Let x0 = 0,

xn :=

{
k, n = 2k − 1,

k + 1
k3
, n = 2k,

k ∈ N, (6.52)

and let

dn :=

{
1− 1

(k−1)3
, n = 2k − 1,

1
k3
, n = 2k,

k ∈ N. (6.53)

We set

q(x) :=

{
k, x ∈ [x2k−1, x2k],
0, otherwise,

k ∈ N. (6.54)
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Consider the minimal symmetric operator HX,α,q associated with (1.1) in L2(R+).
Define

qn(x) :=

{
k, n = 2k,
0, n = 2k − 1.

k ∈ N. (6.55)

In addition, we suppose that
∞∑

k=1

(
k3α2k−1 + α2k

)
< ∞.

Since dn and qn(·) satisfy Hypothesis 1 and q(·) ∈ L1(R+), Proposition 6.23 immediately yields

σac(HX,α,q) = R+. (6.56)
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