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ON THE ROBUST STABILIZATION OF ONE CLASS OF NONLINEAR
DISCRETE SYSTEMS

V. I. Korobov and A. V. Lutsenko UDC 517.977.14

We study the problem of robust linear stabilization of a family of nonlinear discrete control systems
with uncertainties and nonlinearly dependent control. We establish sufficient conditions for the robust
stabilization and synthesize linear regulators of state engaged in the robust stabilization. The obtained
necessary conditions for the robust stabilization are close to sufficient.

1. Introduction

The problem of stabilization of controlled systems is one of the most complex problems in the modern control
theory, which is extensively investigated by numerous authors [1–4, 13–22]. The problem of robust stabilization
of systems [2, 4, 13, 18–21, 24–28, 31, 32] caused by the presence of uncertainties in the mathematical description
of control systems occupies a significant place in the theory of stabilization. The Lyapunov theorem on stability in
the first approximation can be regarded as the first result in this direction. As one of the most efficient methods for
the investigation of the problem of stabilization of nonlinear systems, one can mention the method of Lyapunov
functions, which is a powerful tool for the analysis and synthesis of control systems that enables one to obtain
many important results [1, 2, 13, 15, 17, 18, 20, 22, 29].

In the present paper, we consider the problem of one-dimensional stabilization of a family of nonlinear discrete
systems based on the Lyapunov functions and algebraic Lyapunov equations. We use an approach based on the
method of quadratic stabilization [4] guaranteeing the existence of the general Lyapunov function for a given family
of systems.

In the Euclidean space, we consider a family of nonlinear discrete control systems

x.k C 1/ D .AC A0.k; x.k///x.k/C .B C B0.k; x.k///u.k/C '0.k; x.k/; u.k//;

.k; x.k/; u.k// 2 N0 ⇥Rn ⇥Rr ;

(1)

where N0 D f0; 1; 2; : : :g; x.k/ 2 Rn is the vector of state of the system and u.k/ 2 Rr is the vector of control.
Assume that A and B are given constant real n ⇥ n and n ⇥ r matrices, respectively. It is known that the real
matrices A0.k; x/ and B0.k; x/ are defined in N0 ⇥Rn and satisfy the conditions

kA0.k; x/k  l0kxk! C d; kB0.k; x/k  l0kxk! C d; (2)

where ! > 0; l0 � 0; and 0  d < d0: It is also known that the real functions '0.k; x; u/ satisfy the following
condition in N0 ⇥Rn ⇥Rr :

k'0.k; x; u/k  l1.kxk C kuk/1C! ; l1 � 0: (3)
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The robust linear stabilization is understood as the law of control u D Px common for the entire family (1)
and guaranteeing the asymptotic stability of the trivial solutions of systems (1). In other words, the trivial solutions
of systems (1) must be stable and there should exist a domain of attraction of the origin of coordinates invariant
under the set of incompletely defined functional parameters A0.k; x/; B0.k; x/; and '0.k; x; u/:

We say that the expression

ÅV.x/ D V.f .k; x// � V.x/

is the first difference of a function V.x/ by the system

x.k C 1/ D f .k; x.k//: (4)

It is clear that if x.k/ is a solution of system (4), then

ÅV.x.k// D V.f .k; x.k// � V.x.k// D V.x.k C 1// � V.x.k//:

Assume that

(i) C� D f� 2 C W j�j < 1g and CC D f� 2 C W j�j � 1gI

(ii) I is the identity matrix of the corresponding order;

(iii) the symbol ⇤ denotes the operation of transposition;

(iv) L D Lin .B; AB; : : : ; An�1B/ is the linear span of the column vectors of the matrices B; AB; : : : ;
An�1B;

(v) �.�/ is the spectrum of a matrix in parentheses;

(vi) ei is the vector that coincides with the i th column of the identity matrix of the corresponding order;

(vii) Rn⇥m is the set of .n ⇥m/ matrices.

A polynomial is called stable if its roots belong to the ball C�:

2. Auxiliary Result

Let A1 2 Rm⇥m; let B1 2 Rm⇥r ; let rankB1 D r; and let b1; : : : ; br be columns of the matrix B1: It is known
(see [5–7]) that, for each polynomial

'.�/ D �m C �1�
m�1 C : : :C �m

with real coefficients �i to have a matrix K 2 Rr⇥m such that the characteristic polynomial �A1CB1K.�/ of the
matrix A1 C B1K coincides with the polynomial '.�/; it is necessary and sufficient that rankQ D m; where
Q D .B1; A1B1; : : : ; A

m�1
1 B1/:

The algorithms of determination of the matrix K are known (see [5, 11, 12]). In the present paper, we use the
algorithm proposed in [5]. This algorithm can be described as follows:

1. Formation of a nonsingular matrix

W D .b1; A1b1; : : : ; A
m1�1
1 b1; : : : ; bk; A1bk; : : : ; A

mk�1bk/ 2 R m⇥m
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of linearly independent column vectors of the matrixQ; wherem1C : : :Cmk D m; mi is the least natural number
such that the vector Ami

1 bi linearly depends on the previous vectors of the matrix W ;

2. Formation of the .r ⇥m/ matrix

S D .0; : : : ; 0; e2; 0; : : : ; 0; e3; : : : ; 0; : : : ; 0; ek; 0; : : : ; 0/ ⇢ Rr⇥m;

where e2 is the m1th column, e3 is the .m1 C m2/th column, : : : ; ek is the .m1 C : : :C mk�1/th column of the
matrix S I ei 2 Rr ;

3. Determination of the matrix K1 D SW �1 2 Rr⇥m;

4. Determination of the characteristic polynomial

�bA1
.�/ D �m C a1�

m�1 C : : :C am

of the matrix bA1 D A1 C B1K1;

5. Formation of the matrices

A0 D

0

BBBBBB@

0 1 0 : : : 0

0 0 1 : : : 0

: : : : : : : : : : : : : : :

0 0 0 : : : 1

�am �am�1 �am�2 : : : �a1

1

CCCCCCA
;

b0 D .0; : : : ; 0; 1/⇤ 2 Rm⇥1;

T0 D .Am�1
0 b0; A

m�2
0 b0; : : : ; b0/ 2 Rm⇥m;

T1 D .bAm�1
1 b1;bAm�2

1 b1; : : : ; b1/ 2 Rm⇥m;

T D T0T
�1
1 I

6. Determination of the vector f D .�m � am; : : : ; �1 � a1/;

7. Determination of the matrix

K D K1 � e1f T: (5)

Let dimL D m; where L D Lin .B;AB; : : : ; An�1B/; A 2 Rn⇥n; B 2 Rn⇥r ; rankB D r; let v1; : : : ; vm be
a basis of the subspace L; and let vmC1; : : : ; vn be a basis of L?:We form a matrix

F D .v1; : : : ; vm; vmC1; : : : ; vn/: (6)
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Theorem 1. If there is no eigenvector x0 of the matrix A⇤ associated with the corresponding eigenvalue from
CC and satisfying the relation x⇤0B D 0; then the inclusion �.ACBP/ ⇢ C� takes place for each .r ⇥n/ matrix
of the form

P D KH⇤F�1; (7)

where F is taken from (6),H⇤ D .e1; : : : ; em/
⇤; ei is the i th column of the .n ⇥ n/ identity matrix,

K D SW �1 � e1f T �1; (8)

W D .b1; A1b1; : : : ; A
m1�1
1 b1; : : : ; bk; A1bk; : : : ; A

mk�1
1 bk/ 2 Rm⇥m;

bi 2 Rm are columns of the matrixB1 D H⇤F�1B 2 Rm⇥r ; A1 D H⇤F�1AFH 2 Rm⇥m; m1C: : :Cmk D m;

mi is the least natural number such that the vector Ami

1 bi linearly depends on the previous vectors of the matrix
W I

S D .0; : : : ; 0; e2; 0; : : : ; 0; e3; : : : ; 0; : : : ; 0; ek; 0; : : : ; 0/ 2 R r⇥m;

e2 is the m1th column of the matrix S I e3 is its .m1 C m2/th column, : : : ; and ek is its .m1 C : : : C mk�1/th
column;

f D .�m � am; : : : ; �1 � a1/ 2 R1⇥m;

a1; : : : ; am are the coefficients of the characteristic polynomial

�A1CB1SW �1.�/ D �m C a�m�1 C : : :C am

of the matrix bA1 D A1 C B1SW
�1I �1; : : : ; �m are the coefficients of an arbitrary stable polynomial '.�/ D

�m C �1�
m�1 C : : :C �m with real coefficients;

T D T1T
�1
0 ;

T1 D .bAm�1
1 b1; bAm�2

1 b1; : : : ; b1/;

T0 D .Am�1
0 b0; A

m�2
0 b0; : : : ; b0/;

A0 D

0

BBBBBB@

0 1 0 : : : 0

0 0 1 : : : 0

: : : : : : : : : : : : : : :

0 0 0 : : : 1

�am �am�1 �am�2 : : : �a1

1

CCCCCCA
; b0 D

0

BBBBB@

0

:::

0

1

1

CCCCCA
2 Rm:
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Proof. We first prove the following relation for the eigenvalues � of the matrix A satisfying the condition
� 2 CC:

rank .F�1AF � �I F�1B/ D n: (9)

Assume the contrary. Then

rank .F�1AF � �I F�1B/ < n

for some eigenvalue � 2 CC: In this case, there exists a nonzero n-dimensional vector x0 for which

x⇤0 .F
�1AF � �I F�1B/ D 0

or, in the equivalent form, x⇤0 .F
�1AF ��I / D 0 and x⇤0F

�1B D 0: The last equalities mean that y0 D .F�1/⇤x0
is the eigenvector of the matrix A⇤ associated with the eigenvalue � 2 CC and satisfying the relation y⇤0B D 0;

which contradicts the condition of the theorem.
We now show that the matrices

bA D F�1AF; bB D F�1B (10)

have the structures

bA D
✓
A1 A2

0 A3

◆
; bB D

✓
B1

0

◆
;

where A1 2 Rm⇥m and A3 2 R.n�m/⇥.n�m/:

Indeed, the columns of the matrix B belong to the subspace L: Hence, each of them is a linear combination

of the vectors v1; : : : ; vm: Therefore, by virtue of (10), the matrix bB must have the form
✓
B1

0

◆
; where B1 is an

.m ⇥ r/ matrix. Since the subspace L is A-invariant, Avi 2 L; i D 1;m: In this case, it follows from (10) that

FbA D AF D
 

mX

iD1

˛1ivi : : :

mX

iD1

˛mivi

nX

iD1

˛mC1; ivi : : :

nX

iD1

˛n i vi

!
:

This implies that the matrix bA has the form

bA D
✓
A1 A2

0 A3

◆
;

where A3 is a square matrix of order n �m: Equality (9) now takes the form

rank
✓
A1 � �I A2 B1

0 A3 � �I 0

◆
D n; � 2 CC: (11)

It follows from (11) that rank .A3 � �I / D n � m for each � 2 CC: The last equality means that �.A3/ ⇢ C�:
We now show that

rank .B1; A1B1; : : : ; A
m�1
1 B1/ D m:
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Indeed, in view of the fact that

F�1AkB D F�1AkFF�1B D .F�1AF /k
✓
B1

0

◆
D

✓
A1 A2

0 A3

◆k ✓
B1

0

◆
D

✓
Ak
1B1

0

◆
;

we arrive at the following chain of equalities for block matrices:

m D rank .B AB : : : An�1B/

D rank
�
F�1B F�1AB : : : F�1An�1B

�

D rank
✓
B1 A1B1 : : : An�1

1 B1

0 0 : : : 0

◆

D rank
�
B1 A1B1 : : : A

n�1
1 B1

�

D rank
�
B1 A1B1 : : : A

m�1
1 B1

�
:

By using the algorithm described above under the condition that the roots of the polynomial '.�/ belong to
the ball C�; we arrive at the inclusion

�.A1 C B1K/ ⇢ C�;

where the matrix K is the same as in (5).

The spectrum of the matrix
✓
A1 C B1K A2

0 A3

◆
belongs to C� because the inclusions �.A1CB1K/ ⇢ C�

and �.A3/ ⇢ C� are true. By using the relations

F

✓
A1 C B1K A2

0 A3

◆
F�1 D AC F

✓
B1

0

◆
.K 0/F�1 D AC B.K 0/

✓
H⇤F�1

⇤

◆

D AC BKH⇤F�1 D AC BP;

where P D KH⇤F�1; we obtain the inclusion �.AC BP/ ⇢ C�:
Theorem 1 is proved.

3. Main Results

Thus, Theorem 1 enables us to conclude that if there is no eigenvector x0 of the matrix A⇤ corresponding to
an eigenvalue from CC and satisfying the relation x⇤0B D 0; then there exists an .r ⇥ n/ matrix P such that

�.AC BP/ ⇢ C�: (12)

By using this matrix P; we show that the discrete Lyapunov equation

.AC BP/⇤Q.AC BP/ �Q D �I (13)
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possesses (see [4, 6, 7]) a unique positive-definite solutionQ D Q.P /:

Theorem 2 presented below gives sufficient conditions for the robust stabilization and indicates the regulators
performing the robust stabilization.

Theorem 2. Assume that conditions (2) and (3) are satisfied for family (1) and that there is no eigenvector
x0 of the matrix A⇤ corresponding to an eigenvalue from CC and satisfying the relation x⇤0B D 0: Then, for

d0 D 1

1C kP k

 s

kAC BP k2 C 1

kQk � kAC BP k
!
;

family (1) admits the robust linear stabilization and, as a stabilizing control, one can use u D Px; where P is
taken from (7) andQ is taken from (13).

Proof. Substituting the control u D Px in (1), we obtain

x.k C 1/ D .AC BP/x.k/C A0.k; x.k//x.k/C B0.k; x.k//Px.k/C '0.k; x.k/; P x.k//: (14)

As a Lyapunov function for the obtained system, we take the quadratic form

V.x/ D x⇤Qx;

whereQ is taken from (13).
We now determine the first difference of the function V.x/ by the analyzed system:

ÅV.x/ D ..AC BP/x C A0x C B0Px C '0/
⇤ Q..AC BP/x C A0x C B0Px C '0/ � x⇤Qx:

In view of (13), we have

x⇤.AC BP/⇤Q.AC BP/x � x⇤Qx D �kxk2:

Therefore,

ÅV.x/ D �kxk2 C 2 ⇤Q.AC BP/x C  ⇤Q ; (15)

where

 .k; x/ D A0.k; x/x C B0.k; x/Px C '0.k; x; Px/:

By using the estimate

j2 ⇤Q.AC BP/x C  ⇤Q j  kxk2
�
c1kxk2! C c2kxk! C c3

�
;

where

c1 D kQk.1C kP k/2.l0 C l1.1C kP k/!/2;
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c2 D kQk.l0 C l1.1C kP k/!/.2a1.1C kP k/C 2d.1C kP k/2/;
(16)

c3 D kQk.2a1d.1C kP k/C d2.1C kP k/2/;

a1 D kAC BP k;

we arrive at the inequality

2 ⇤Q.AC BP/x C  ⇤Q  kxk2.c1kxk2! C c2kxk! C c3/:

Substituting this inequality in (15), we get

ÅV.x/  kxk2.�1C c1kxk2! C c2kxk! C c3/:

This implies that, for

0  d <
1

1C kP k

 s

kAC BP k2 C 1

kQk � kAC BP k
!
D 1

a2

 s

a21 C
1

kQk � a1
!
;

the first difference ÅV.x/ satisfies, in the ball

kxk 

0

B@
�c2 C

q
c22 � 4c1.c3 � 1/
2c1

1

CA

1=!

;

the inequality ÅV.x/  W.x/; where

W.x/ D kxk2.�1C c1kxk2! C c2kxk! C c3/

is a function negative-definite in this ball. Hence, the conditions of the theorem on asymptotic stability of the trivial
solution of Eq. (14) (see [33], Proposition 2) are satisfied in this ball.

Theorem 2 is proved.

Example 1. Consider a family of systems of the second order

x1.k C 1/ D 2x1.k/C .1C .d � 2x22.k// sin2 ˛x1.k//u.k/C .x21.k/C u2.k// 2�˛2 k2

;

x2.k C 1/ D 1

2
x2.k/C .d C x21.k//.cos˛k/x2.k/C

x21.k/C u2.k/

1C ˛2k2
;

˛ 2 R:

Here,
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A D

0

@
2 0

0
1

2

1

A ; A0 D
 
0 0

0
�
d C x21

�
cos k˛

!
;

B D
 
1

0

!
; B0 D

 �
d � 2x22

�
sin2 ˛ x1

0

!
;

'0 D

0

@
.x21 C u2/2�˛2k2

x21 C u2

1C ˛2k2

1

A ; kA0k  .d C x21/j cos˛kj  2kxk2 C d;

kB0k  .d C 2x22/ sin
2 ˛x1  2kxk2 C d; k'0k  .x21 C u2/

p
2 

p
2.kxk C juj/2:

The matrix A possesses the eigenvalues �1 D 2 and �2 D 1

2
: The vector

x0 D
✓
1

0

◆

is the eigenvector of the matrix A⇤ associated with the eigenvalue �1 D 2 and, furthermore, x⇤0B D 1: The

subspace L has the form L D Lin
✓
1

0

◆
and, moreover, m D 1: It is obvious that L? D Lin

✓
0

1

◆
:

Hence,

F D F�1 D
✓
1 0

0 1

◆
:

We determine the matrix P by relation (7) : P D KH⇤F�1: Since m D 1; we haveH⇤ D .1 0/: The matrix
K is given by relation (8):

K D SW �1 � e1f T �1:

We have e1 D 1; B1 D b1 D 1; W D 1; S D 0; A1 D 2; bA1 D 2; �bA1
D � � 2; and a1 D �2:

As a stable polynomial, we take '.�/ D �: Then �1 D 0; f D �1 � a1 D 2; T1 D 1; A0 D 2; b0 D 1;

T0 D 1; T D T1T
�1
0 D 1; K D �2; P D .�2 0/;

AC BP D

0

@
0 0

0
1

2

1

A ; Q D

0

@
1 0

0
4

3

1

A ; kQk D 4

3
; d0 D 1

6
;

whence it follows that

�.AC BP/ D
º
0;
1

2

»
:

Thus, for

0  d <
1

6
;
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this family admits the robust linear stabilization by the control u D �2x1:
The theorem presented below gives necessary conditions for the robust stabilization of Eqs. (1).

Theorem 3. Let conditions (2) and (3) be satisfied for family (1). In order that the family of systems (1)
admit a robust linear stabilization, it is necessary that the eigenvector x0 of the matrix A⇤ corresponding to the
eigenvalue �j with j�j j > 1 and satisfying the relation x⇤0B D 0 do not exist.

Proof. Assume that family (1) admits a robust stabilization by the control u D Px: Substituting the control
u D Px in (1), we get (14).

Assume the contrary, i.e., that there exists an eigenvector x0 of the matrix A⇤ corresponding to the eigenvalue
�j with j�j j > 1 and satisfying the relation x⇤0B D 0:

By using the equalities A⇤x0 � �jx0 D 0 and x⇤0B D 0; we arrive at the equality

x⇤0 .AC BP � �j I / D 0:

Hence, �j is an eigenvalue of the matrix AC BP:

Thus, the matrix ACBP has at least one eigenvalue � satisfying the condition j�j > 1: There are two possible
cases: either the matrix ACBP has eigenvalues � satisfying the condition j�j  1 or all eigenvalues of the matrix
AC BP satisfy the condition j�j > 1:

Consider the first case. Let T be a nonsingular real .n⇥n/matrix that reduces the matrix ACBP to the block
diagonal form

T �1.AC BP/T D
✓
A1 0

0 A2

◆
;

where

�.A1/ D f� 2 �.AC BP/ W j�j > 1g; �.A2/ D f� 2 �.AC BP/ W j�j  1g;

A1 is an m ⇥m matrix, and A2 is an .n �m/ ⇥ .n �m/ matrix.

Substituting x D Ty in (14), we obtain

y.k C 1/ D
✓
A1 0

0 A2

◆
y.k/C  .k; y.k//; (17)

where

 .k; y/ D T �1.A0.k; Ty/Ty C B0.k; Ty/PTy C '0.k; Ty; PTy//; (18)

and the following estimates are true:

kA0.k; Ty/k  l0kT k!kyk! C d; kB0.k; Ty/k  l0kT k!kyk! C d;

k'0.k; Ty; PTy/k  l1.kT k C kP kkT k/1C!kyk1C! :

In view of the linearity of the substitution x D Ty; the trivial solutions of system (17) are asymptotically
stable.
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System (17) can be represented in the form

y1.k C 1/ D A1y1.k/C  1.k; y.k//; y1 2 Rm;

y2.k C 1/ D A2y2.k/C  2.k; y.k//; y2 2 Rn�m:

(19)

Since

k i .k; y/k  k .k; y/k; i D 1; 2;

in view of (18), we obtain the following estimate for the functions  i .k; y/:

k i .k; y/k  k .k; y/k

 kT �1.A.k; Ty/Ty C B.k; Ty/PTy C '.k; Ty; PTy//k

M1kyk1C! C dM2kyk;

where

M1 D kT �1k.l0kT k1C!.1C kP k/C l1kT k1C!.1C kP k/1C!/

and

M2 D kT �1k kT k.1C kP k/:

We now denote min�j2�.A1/ j�j j D 1C �; � > 0 and choose a number q > 0 such that 1 < q < 1C �: Then
we get the inclusions

�

✓
1

q
A1

◆
⇢ CC and �

✓
1

q
A2

◆
⇢ C�:

In this case, the algebraic matrix Lyapunov equations

✓
1

q
A1

◆⇤
Q1

✓
1

q
A1

◆
�Q1 D I; (20)

✓
1

q
A2

◆⇤
Q1

✓
1

q
A2

◆
�Q2 D �I (21)

have solutionsQ1 andQ2; which are positive-definite matrices of the corresponding orders.
As a Lyapunov function for system (19), we take the quadratic form

V.y/ D y⇤1Q1y1 � y⇤2Q2y2:

It is obvious that V.y/ > 0 at the points y D
✓
y1
0

◆
; y1 ¤ 0: We now determine the first difference of the

function V.y/: By virtue of system (19), we find

ÅV.y/ D .A1y1 C  1/
⇤Q1.A1y1 C  1/ � .A2y2 C  2/

⇤Q2.A2y2 C  2/ � y⇤1Q1y1 C y⇤2Q2y2:
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In view of (20) and (21), the equalities

y⇤1A
⇤
1Q1A1 y1 D q2.ky1k2 C y⇤1Q1 y1/;

y⇤2A
⇤
2Q2A2 y2 D q2.�ky2k2 C y⇤2Q2 y2/

are true. Hence,

ÅV.y/ D q2kyk2 C .q2 � 1/V .y/C 2 ⇤
1Q1A1 y1 � 2 ⇤

2Q2A2 y2 C  ⇤
1Q1 1 �  ⇤

2Q2 2 : (22)

By using the estimate

j2 ⇤
1Q1A1 y1 � 2 ⇤

2Q2A2 y2 C  ⇤
1Q1 1 �  ⇤

2Q2 2j  kyk2
�
c1kyk2! C c2kyk! C c3

�
;

where

c1 D .kQ1k C kQ2k/M 2
1 ;

c2 D 2.kQ1A1k C kQ2A2k/M1 C 2.kQ1k C kQ2k/dM1M2;

c3 D 2.kQ1A1k C kQ2A2k/dM2 C .kQ1k C kQ2k/d2M 2
2 ;

we arrive at the inequality

2 ⇤
1Q1A1 y1 � 2 ⇤

2Q2A2 y2 C  ⇤
1Q1 1 �  ⇤

2Q2 2 � �kyk2
�
c1kyk2! C c2kyk! C c3

�
:

Substituting this inequality in (22), we obtain

ÅV.y/ � .q2 � 1/V .y/C
�
q2 �

�
c1kyk2! C c2kyk! C c3

��
kyk2:

It follows from the last inequality that, for

d <
�.kQ1A1k C kQ2A2k/C

p
.kQ1A1k C kQ2A2k/2 C .kQ1k C kQ2k/q2

.kQ1k C kQ2k/kT �1k kT k.1C kP k/ ;

in the ball

kyk 

0

B@
�c2 C

q
c22 � 4c1.c3 � q2/
2c1

1

CA

1=!

;

the following inequality is true:

ÅV.y/ � .q2 � 1/V .y/: (23)
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By y.k; k0; y0/ we denote a solution of Eq. (17) satisfying the initial condition y.k0; k0; y0/ D y0: It follows
from (23) that

V.y.k C 1; k0; y0// � .q2/k�k0C1V.y0/;

which implies that the trivial solution of Eq. (17) is unstable. We arrive at a contradiction.
We now consider the second case. Since all eigenvalues of the matrix ACBP belong to the set f� W j�j > 1g;

the matrix Lyapunov equation

.AC BP/⇤Q.AC BP/ �Q D I (24)

has a unique positive-definite solution Q: As a Lyapunov function for system (14), we take the quadratic form
V.x/ D x⇤Qx:

We determine the first difference of the function V.x/ for this system. We have

ÅV.x/ D ..AC BP/x C A0x C B0Px C '0/
⇤Q..AC BP/x C A0x C B0Px C '0/ � x⇤Qx:

Since Eq. (24) yields the equality

x⇤.AC BP/⇤Q.AC BP/x � x⇤Qx D kxk2;

we get

ÅV.x/ D kxk2 C 2 ⇤Q.AC BP/x C  ⇤Q ; (25)

where

 .k; x/ D A0.k; x/x C B0.k; x/Px C '0.k; x; Px/:

By using the estimate

j2 ⇤Q.AC BP/x C  ⇤Q j  kxk2.c1kxk2! C c2kxk! C c3/;

where ci is taken from (16), we deduce the inequality

2 ⇤Q.AC BP/x C  ⇤Q � �kxk2.c1kxk2! C c2kxk! C c3/:

Substituting this inequality in (25), we obtain

ÅV.x/ � kxk2.1 � c1kxk2! � c2kxk! � c3/:

The last inequality implies that, for

0  d <
1

1C kP k

 s

kAC BP k2 C 1

kQk � kAC BP k
!
D 1

a2

 s

a21 C
1

kQk � a1
!
;
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the first difference ÅV.x/ satisfies, in the ball

kxk 

0

B@
�c2 C

q
c22 � 4c1.c3 � 1/
2c1

1

CA

1=!

;

the inequality ÅV.x/ � W.x/; where

W.x/ D kxk2.1 � c1kxk2! � c2kxk! � c3/

is a positive-definite function in this ball. Hence, in this ball, all conditions of the theorem on instability of the
trivial solution of Eqs. (14) are satisfied (see [33], Proposition 4).

Hence, the control u D Px does not stabilize family (1). We arrive at a contradiction.
Theorem 3 is proved.

Example 2. In the family of systems from Example 1, we replace the matrix

A D

0

@
2 0

0
1

2

1

A

by the matrix

A D

0

BBB@

2
1

2

1
1

2

1

CCCA

and the vector B D
✓
1

0

◆
by the vector B D

✓
1

�1

◆
: It is easy to see that the obtained new family of systems

satisfies the conditions of Theorem 3 and, hence, does not admit robust linear stabilization.

4. Conclusions

In the present paper, for the family of objects

x.k C 1/ D .AC A0.k; x.k///x.k/C .B C B0.k; x.k///u.k/C '0.k; x.k/; u.k//;

nonlinear in control and with functional uncertainties, we synthesize a set of general regulators linear with respect
to the state u D Px and guaranteeing the possibility of robust linear stabilization of this family. We estimate
the admissible value of the parameter d for each stabilizing regulator. The procedure of synthesis is based on the
method of square stabilization.
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6. A. Halanay and D. Wexler, Teoria Calitativă a Sistemelor cu Impulsuri, Editura Academiei Republicii Socialiste România, Bucureşti
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