ON HIGHER-ORDER GENERALIZED EMDEN-FOWLER DIFFERENTIAL EQUATIONS WITH DELAY ARGUMENT

A. Domoshnitsky¹ and **R. Koplatadze**² **Limitation Example 2** UDC 517.9

We consider a differential equation

$$
u^{(n)}(t) + p(t)|u(\tau(t))|^{(\mu(t))} \text{sign } u(\tau(t)) = 0.
$$
\n^(*)

It is assumed that $n \ge 3$, $p \in L_{loc}(R_+; R_-), \mu \in C(R_+; (0, +\infty)), \tau \in C(R_+; R_+), \tau(t) \le t$ for $t \in R_+$ and $\lim_{t \to +\infty} \tau(t) = +\infty$. In the case $\mu(t) \equiv$ const > 0, the oscillatory properties of equation (*) are extensively studied, whereas for $\mu(t) \neq$ const, to the best of authors' knowledge, problems of this kind were not investigated at all. We also establish new sufficient conditions for the equation $(*)$ to have Property B.

1. Introduction

The present work deals with the oscillatory properties of solutions of a functional differential equations of the form

$$
u^{(n)}(t) + p(t)|u(\tau(t))|^{u(t)} \text{sign } u(\tau(t)) = 0,
$$
\n(1.1)

where

$$
n \ge 3, \quad p \in L_{loc}(R_+; R_-), \quad \mu \in C(R_+; (0, +\infty)), \quad \tau \in C(R_+; R_+),
$$

$$
\tau(t) \le t \quad \text{for} \quad t \in R_+ \quad \text{and} \quad \lim_{t \to +\infty} \tau(t) = +\infty.
$$
 (1.2)

It is always assumed that the condition

$$
p(t) \le 0 \quad \text{for} \quad t \in R_+ \tag{1.3}
$$

is satisfied.

Let $t_0 \in R_+$. A function $u : [t_0; +\infty) \to R$ is said to be a proper solution of equation (1.1) if it is locally absolutely continuous together with its derivatives up to the order $n - 1$, inclusively,

$$
\sup\{|u(s)| : s \in [t, +\infty)\} > 0
$$

Published in Neliniini Kolyvannya, Vol. 18, No. 4, pp. 507–526, October–December, 2015. Original article submitted April 19, 2015.

1072-3374/17/2204–0461 �c 2017 Springer Science+Business Media New York 461

¹ Department of Mathematics and Computer Science, Academic College of Judea and Samaria, Ariel, 44837, Israel; e-mail: adomosh@hotmail.com.

² Javakhishvili Tbilisi State University, Vekua Institute of Applied Mathematics, University Str., Tbilisi, 0186, Georgia; e-mail: r_koplatadze@yahoo.com.

for $t \ge t_0$, and there exists a function $\overline{u} \in C(R_+; R)$ such that $\overline{u}(t) \equiv u(t)$ on $[t_0, +\infty)$ and the equality

$$
\overline{u}^{(n)}(t) + p(t)|\overline{u}(\tau(t))|^{(\mu(t))}\text{sign}\,\overline{u}(\tau(t)) = 0
$$

holds almost everywhere for $t \in [t_0, +\infty)$. A proper solution $u : [t_0, +\infty) \to R$ of equation (1.1) is said to be oscillatory if it has a sequence of zeros tending to $+\infty$. Otherwise, the solution u is said to be nonoscillatory.

Definition 1.1. We say that equation (1.1) has Property A *if any proper solution* u *is oscillatory for even* n *and is either oscillatory or satisfies*

$$
|u^{(i)}(t)| \downarrow 0 \quad \text{as} \quad t \uparrow +\infty, \quad i = 0, \dots, n-1,\tag{1.4}
$$

for odd n:

Definition 1.2. We say that equation (1.1) has Property B *if any proper solution* u *is either oscillatory, or satisfies (1.4), or satisfies*

$$
|u^{(i)}(t)| \uparrow +\infty \quad \text{as} \quad t \uparrow +\infty, \quad i = 0, \dots, n-1,\tag{1.5}
$$

for even n *and is either oscillatory or satisfies (1.5) for odd* n*.*

Definition 1.3. We say that equation (1.1) is almost linear if the condition $\lim_{t\to+\infty} \mu(t) = 1$ *is satisfied. At the same time, if* $\limsup_{t\to\infty}\mu(t) \neq 1$ *or* $\liminf_{t\to\infty}\mu(t) \neq 1$ *, then we say that the analyzed equation is an essentially nonlinear differential equation.*

The oscillatory properties of almost linear and essentially nonlinear differential equations with advanced argument were sufficiently well studied in [1–6]. For the Emden–Fowler differential equations with deviating arguments, an essential contribution was made in [7–13]. In the present paper, sufficient conditions are established for the equation (1.1) to have Property **B**. Analogous results for Property **A** are presented in [14].

2. Some Auxiliary Lemmas

The following notation is used throughout the work: $\tilde{C}_{\text{loc}}^{n-1}$ ([$t_0, +\infty$)) denotes the set of all functions u : $[t_0, +\infty) \rightarrow R$ absolutely continuous in any finite subinterval of $[t_0, +\infty)$ together with their derivatives of the orders up to and including $n - 1$;

$$
\alpha = \inf \{ \mu(t), t \in R_+ \}, \quad \beta = \sup \{ \mu(t), t \in R_+ \}, \tag{2.1}
$$

$$
\tau_{(-1)}(t) = \sup\{s \ge 0; \ \tau(s) \le t\}, \quad \tau_{(-k)} = \tau_{(-1)} \circ \tau_{(-(k-1))}, \quad k = 2, 3, \dots \tag{2.2}
$$

Clearly, $\tau_{(-1)}(t) \geq t$ and $\tau_{(-1)}$ is nondecreasing and coincides with the inverse of σ if the latter exists.

Lemma 2.1 [12]. Let $u \in \widetilde{C}_{loc}^{n-1}([t_0, +\infty))$, $u(t) > 0$, $u^{(n)}(t) \ge 0$ for $t \ge t_0$ and let $u^{(n)}(t) \ne 0$ in any *neighborhood of* $+\infty$. *Then there exist* $t_1 \ge t_0$ *and* $\ell \in \{0, \ldots, n\}$ *such that* $\ell + n$ *is even and*

$$
u^{(i)}(t) > 0 \quad \text{for} \quad t \ge t_1, \quad i = 0, \dots, \ell - 1,
$$

$$
(-1)^{i+\ell} u^{(i)}(t) \ge 0 \quad \text{for} \quad t \ge t_1, \quad i = \ell, \dots, n.
$$
 (2.3_{\ell})

In the case $\ell = 0$, only the second inequality in (2.3_{ℓ}) holds. At the same time, for $\ell = n$, only the first inequality holds and $u^{(n)}(t) \ge 0$.

Lemma 2.2 [15]. Let $u \in \widetilde{C}_{loc}^{n-1}([t_0, +\infty))$, let $u^{(n)}(t) \ge 0$, and let (2.3_ℓ) be satisfied for some $\ell \in \{1, ..., n-2\}$, where $\ell + n$ is even. Then

$$
\int_{t_0}^{+\infty} t^{n-\ell-1} u^{(n)}(t) dt < +\infty.
$$
\n(2.4)

Moreover, if

$$
\int_{t_0}^{+\infty} t^{n-\ell} u^{(n)}(t) dt = +\infty,
$$
\n(2.5_l)

then there exists $t_1 \ge t_0$ such that

$$
u(t) \ge \frac{t^{\ell-1}}{\ell!} u^{(\ell-1)}(t) \quad \text{for} \quad t \ge t_1,
$$
\n(2.6)

$$
\frac{u^{(i)}(t)}{t^{\ell-i}} \downarrow, \quad \frac{u^{(i)}(t)}{t^{\ell-i-1}} \uparrow, \quad i = 0, \dots, \ell-1,
$$
\n(2.7_i)

and

$$
u^{(\ell-1)}(t) \ge \frac{t}{(n-\ell)!} \int\limits_{t}^{+\infty} s^{n-\ell-1} u^{(n)}(s) \, ds + \frac{1}{(n-\ell)!} \int\limits_{t_1}^{t} s^{n-\ell} u^{(n)}(s) \, ds. \tag{2.8}
$$

Definition 2.1. Let $t_0 \in R_+$. By U_{ℓ,t_0} we denote the set of all solutions of equation (1.1) satisfying the condition (2.3_{ℓ}) .

Lemma 2.3. Let conditions (1.2), (1.3) be satisfied, let $l \in \{1, ..., n-2\}$ with even $l + n$, and let equation (1.1) have a positive proper solution $u:[t_0,+\infty)\to(0,+\infty)$ such that $u\in U_{\ell,t_0}$. Moreover, let $\alpha\geq 1$ and let

$$
\int_{t_0}^{+\infty} t^{n-\ell} (c \, \tau^{\ell-1}(t))^{\mu(t)} |p(t)| dt = +\infty \quad \text{for} \quad c \in (0,1]. \tag{2.9}_{\ell,c}
$$

Then, for any $\gamma \in (1, +\infty)$, there exists $t_* > t_0$ such that, for any $k \in N$,

$$
u^{(\ell-1)}(t) \ge \rho_{k,\ell,t_*}^{(\alpha)}(t) \quad \text{for} \quad t \ge \tau_{(-k)}(t_*), \tag{2.10}
$$

where

$$
\rho_{1,\ell,t_*}^{(\alpha)}(t) = \ell \,!\exp\left\{\gamma_\ell(\alpha) \int\limits_{\tau_{(-1)}(t_*)}^t \int\limits_s^{+\infty} \xi^{n-\ell-2}(\tau(\xi))^{1+(\ell-1)\mu(\xi)} |p(\xi)| d\xi \,ds\right\},\tag{2.11}_{\ell}
$$

$$
\rho_{i,\ell,t_*}^{(\alpha)}(t) = \ell! + \frac{1}{(n-\ell)!} \int\limits_{\tau_{(-1)}(t_*)}^{t} \int\limits_s^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)}
$$

$$
\times \left(\frac{1}{\ell!} \rho_{i-1,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi ds, \quad i = 2,\dots,k,
$$
 (2.12_{\ell})

$$
\gamma_{\ell}(\alpha) = \begin{cases} \frac{1}{\ell!(n-\ell)!} & \text{if } \alpha = 1, \\ \gamma & \text{if } \alpha > 1, \end{cases}
$$
 (2.13_{\ell})

and α is given by the first equality in (2.1).

Proof. Let $t_0 \in R_+$, $\ell \in \{1, ..., n-2\}$ with even $\ell + n$ and let $u \in U_{\ell,t_0}$. According to (1.1), (2.3 $_{\ell}$), and $(2.9_{\ell,c})$, it is clear that condition (2.5_{ℓ}) is satisfied. Indeed, by (2.3_{ℓ}) , there exist $t_1 > t_0$ and $c \in (0, 1]$ such that

$$
u(\tau(t)) \ge c(\tau(t))^{l-1}
$$
 for $t \ge t_1$.

Thus, it follows from (1.1) that

$$
\int_{t_1}^t s^{n-\ell} u^{(n)}(s) ds \ge \int_{t_1}^t s^{n-\ell} \left(c \tau^{\ell-1}(s) \right)^{\mu(s)} |p(s)| ds \quad \text{for} \quad t \ge t_1.
$$

Passing to the limit in this inequality, by virtue of $(2.9_{\ell,c})$, we get (2.5_{ℓ}) .

According to Lemma 2.2, there exists $t_2 > t_1$ such that conditions (2.6)–(2.8) are satisfied for $t \ge t_2$ and

$$
u^{(\ell-1)}(t) \ge \frac{t}{(n-\ell)!} \int_{t}^{+\infty} s^{n-\ell-1} (u(\tau(s)))^{\mu(s)} |p(s)| ds
$$

+
$$
\frac{1}{(n-\ell)!} \int_{t_{(-1)}(t_2)}^{t} s^{n-\ell} (u(\tau(s)))^{\mu(s)} |p(s)| ds \text{ for } t \ge \tau_{(-1)}(t_2)
$$

Therefore, by (2.6) , we find

$$
u^{(\ell-1)}(t) \ge \frac{1}{(n-\ell)!} \int_{\tau_{(-1)}(t_2)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)}
$$

464

ON HIGHER-ORDER GENERALIZED EMDEN-FOWLER DIFFERENTIAL EQUATIONS WITH DELAY ARGUMENT 465

$$
\times \left(\frac{1}{\ell!}u^{(\ell-1)}(\tau(\xi))\right)^{\mu(\xi)}|p(\xi)|d\xi ds \quad \text{for} \quad t \ge \tau_{(-1)}(t_2). \tag{2.14}
$$

According to $(2.7_{\ell-1})$ and $(2.9_{\ell,c})$, we choose $t_* > \tau_{(-1)}(t_2)$ such that

$$
\frac{1}{(n-\ell)!} \int_{\tau_{(-1)}(t_2)}^{t_*} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!} u^{(\ell-1)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi ds > \ell!.
$$
 (2.15)

By (2.14) and (2.15), we have

$$
u^{(\ell-1)}(t) \ge \ell! + \frac{1}{(n-\ell)!} \int_{t_*}^t \int_s^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)}
$$

$$
\times \left(\frac{1}{\ell!} u^{(\ell-1)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi ds \text{ for } t \ge t_*.
$$
 (2.16)

Let $\alpha = 1$. Since $u^{(\ell-1)}(t)/t$ is a nonincreasing function, from (2.16), we obtain

$$
u^{(\ell-1)}(t) \ge \ell! + \frac{1}{\ell!(n-\ell)!} \int_{t_*}^t \int_{s}^{+\infty} \xi^{n-\ell-2} (\tau(\xi))^{1+(\ell-1)\mu(\xi)}
$$

$$
\times u^{(\ell-1)}(\xi) |p(\xi)| d\xi ds \quad \text{for} \quad t \ge t_*.
$$
 (2.17)

By the second condition in $(2.7_{\ell-1})$, it is obvious that

$$
x'(t) \ge \frac{u^{(\ell-1)}(t)}{\ell!(n-\ell)!} \int\limits_{t}^{+\infty} \xi^{n-\ell-2} (\tau(\xi))^{1+(\ell-1)\mu(\xi)} |p(\xi)| d\xi,
$$
 (2.18)

where

$$
x(t) = \ell! + \frac{1}{\ell!(n-\ell)!} \int_{t_*}^t \int_{s}^{+\infty} \xi^{n-\ell-2} (\tau(\xi))^{1+(\ell-1)\mu(\xi)} u^{(\ell-1)}(\xi) |p(\xi)| d\xi ds.
$$
 (2.19)

Thus, according to (2.17), (2.18), and (2.19), we get

$$
x'(t) \geq \frac{x(t)}{\ell!(n-\ell)!} \int\limits_{t}^{+\infty} \xi^{n-\ell-2}(\tau(\xi))^{1+(\ell-1)\mu(\xi)} |p(\xi)| d\xi \quad \text{for} \quad t \geq t_*.
$$

Therefore, since $x(t_*) = \ell$!, we conclude that

$$
x(t) \geq \ell \log \left\{ \frac{1}{\ell!(n-\ell)!} \int\limits_{t_*}^t \int\limits_s^{+\infty} \xi^{n-\ell-2} (\tau(\xi))^{1+(\ell-1)\mu(\xi)} |p(\xi)| d\xi ds \right\} \text{ for } t \geq t_*.
$$

Hence, by (2.16) and (2.19),

$$
u^{(\ell-1)}(t) \ge \rho_{1,\ell,t_*}^{(1)}(t) \quad \text{for} \quad t \ge t_*,
$$
\n(2.20)

where

$$
\rho_{1,\ell,t_*}^{(1)}(t) = \ell \,!\exp\left\{ \frac{1}{\ell \,!(n-\ell)!} \int\limits_{t_*}^t \int\limits_s^{+\infty} \xi^{n-\ell-2} (\tau(\xi))^{1+(\ell-1)\mu(\xi)} |p(\xi)| d\xi \,ds \right\}.
$$
 (2.21)

Therefore, in view of (2.14) and (2.20) ,

$$
u^{(\ell-1)}(t) \ge \rho_{i,\ell,t_*}^{(1)}(t) \quad \text{for} \quad t \ge \tau_{(-i)}(t_*), \quad i = 1,\dots,k,
$$
\n(2.22)

where

$$
\rho_{i,\ell,t_*}^{(1)}(t) = \ell! + \frac{1}{(n-\ell)!} \int_{\tau_{(-i)}(t_*)}^{t} \int_s^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)}
$$

$$
\times \left(\frac{1}{\ell!} \rho_{i-1,\ell,t_*}^{(1)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi ds \quad i = 2, ..., k. \tag{2.23}
$$

We now assume that $\alpha > 1$ and $\gamma \in (1, +\infty)$. Since $u^{(\ell-1)}(t) \uparrow +\infty$ as $t \uparrow +\infty$, without loss of generality, we can assume that

$$
\left(\frac{1}{\ell!}u^{(\ell-1)}(\tau(t))\right)^{\alpha-1} \geq \ell!(n-\ell)!\gamma
$$

for $t \geq t_*$. It follows from (2.16) that

$$
u^{(\ell-1)}(t) \ge \ell! + \gamma \int\limits_{t_*}^t \int\limits_s^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)} u^{(\ell-1)}(\xi) |p(\xi)| d\xi ds \quad \text{for} \quad t \ge t_*.
$$
 (2.24)

By (2.24), as above, we can show that if $\alpha > 1$, then

$$
u^{(\ell-1)}(t) \ge \rho_{k,\ell,t_*}^{(\alpha)}(t) \quad \text{for} \quad t \ge \tau_{(-k)}(t_*), \tag{2.25}
$$

where

466

$$
\rho_{1,\ell,t*}^{(\alpha)}(t) = \ell! \exp\left\{\gamma \int\limits_{\tau_{(-1)}(t_*)}^t \int\limits_s^{+\infty} \xi^{n-\ell-2}(\tau(\xi))^{1+(\ell-1)\mu(\xi)} \times |p(\xi)| d\xi ds \right\} \text{ for } t \ge \tau_{(-1)}(t_*), \tag{2.26}
$$

$$
\rho_{i,\ell,t_*}^{(\alpha)}(t) = \ell! + \frac{1}{(n-\ell)!} \int\limits_{\tau_{(-i)}(t_*)}^{t} \int\limits_s^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)}
$$

$$
\times \left(\frac{1}{\ell!} \rho_{i-1,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi ds \quad \text{for} \quad t \ge \tau_{(-i)}(t_*), \quad i = 2,\dots,k. \tag{2.27}
$$

In view of (2.20)–(2.23) and (2.25)–(2.27), it is clear that, for any $\alpha \ge 1$, $k \in N$, and $\gamma \in (1, +\infty)$, there exists $t_* \in R_+$ such that (2.10) holds, where $\gamma_\ell(\alpha)$ is given by (2.13 $_\ell$), which proves the validity of the lemma.

Remark 2.1. It is obvious that if $\beta < +\infty$ and $(2.9_{\ell,1})$ holds, then, for any $c \in (0, 1]$, condition $(2.9_{\ell,c})$ is satisfied.

Remark 2.2. Condition $(2.9_{l,1})$ is not sufficient for condition (2.5) to be satisfied. Therefore, in this case, it may happen that Lemma 2.3 is incorrect. Indeed, let $\delta \in (0, 1)$. Consider equation (1.1), where *n* is odd and

$$
\tau(t) \equiv t, \quad p(t) = -\frac{n! \, t^{\log_{1/\delta} t}}{t^{n+1} (\delta t - 1)^{\log_{1/\delta} t}}, \quad \mu(t) = \log_{1/\delta} t, \quad t \geq \frac{2}{\delta}.
$$

It is clear that the function

$$
u(t) = \delta - \frac{1}{t}
$$

is a solution of equation (1.1) and satisfies condition (2.3₁) for $t \geq \frac{2}{8}$ $\frac{1}{\delta}$. On the other hand, condition (2.9_{1,1}) holds but condition $(2.5₁)$ is not satisfied.

3. Necessary Conditions for the Existence of Solutions of Type (2.3)

Theorem 3.1. *Let* $l \in \{1, ..., n-2\}$ *with even* $l + n$, *let conditions* (1.2), (1.3), (2.9_{l,c}) and

$$
\int_{0}^{+\infty} t^{n-\ell-1} (\tau(t))^{\ell \mu(t)} |p(t)| dt = +\infty
$$
\n(3.1_{\ell})

be satisfied, and let

$$
U_{\ell,t_0}\neq\varnothing
$$

for some $t_0 \in R_+$. *Then there exists* $t_* > t_0$ *such that if* $\alpha = 1$ *, then, for any* $k \in N$,

$$
\lim_{t \to +\infty} \frac{1}{t} \int_{\tau(-k)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1} (\tau(\xi))^{(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(1)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi ds = 0 \tag{3.2}
$$

and if $\alpha > 1$ *, then, for any* $k \in N$, $\gamma \in (1, +\infty)$ *, and* $\delta \in (1, \alpha]$ *,*

$$
\int_{\tau_{(-i)}(t_*)}^{+\infty} \int_s^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta} |p(\xi)| d\xi ds < +\infty, \tag{3.3}
$$

where α *is defined by the first equality in* (2.1) and $\rho_{k,\ell,t_*}^{(\alpha)}$ *is given by* (2.11)–(2.13).

Proof. Let $t_0 \in R_+$, $\ell \in \{1, ..., n-2\}$, $U_{\ell,t_0} \neq \emptyset$, and $\gamma \in (1, +\infty)$. By the definition (see Definition 2.1), equation (1.1) has a proper solution $u \in U_{\ell,t_0}$ satisfying condition (2.3 $_\ell$) with some $t_1 \ge t_0$. In view of (1.1), (2.3_{ℓ}) , and $(2.9_{\ell,c})$, it is obvious that condition (2.5_{ℓ}) holds. Thus, by Lemma 2.2, there exists $t_1 > t_0$ such that conditions (2.6) and (2.7 $_i$) are satisfied. On the other hand, according to Lemma 2.3 (and its proof), there exist</sub> $t_2 > t_1$ and $t_* > t_2$ such that

$$
u^{(\ell-1)}(t) \ge \frac{1}{(n-\ell)!} \int_{t_2}^t \int_{s}^{+\infty} \xi^{n-\ell-1} (u(\tau(\xi)))^{\mu(\xi)} |p(\xi)| d\xi ds \quad \text{for} \quad t \ge t_2
$$
 (3.4)

and relation (2.10) is true. Without loss of generality, we can assume that $\tau(t) \ge t_2$ for $t \ge t_*$. Therefore, by (2.10) , it follows from (3.4) that

$$
u^{(\ell-1)}(t) \ge \frac{1}{(n-\ell)!} \int_{\tau_{(-k)}(t_*)}^t \int_s^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!} u^{(\ell-1)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi ds. \tag{3.5}
$$

Assume that $\alpha = 1$. Thus, by (2.10) and (3.5), we obtain

$$
u^{(\ell-1)}(t) \geq \frac{1}{(n-\ell)!} \int_{\tau_{(-k)}(t_*)}^t \int_s^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)}
$$

$$
\times \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(1)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi ds \text{ for } t \geq \tau_{(-k)}(t_*).
$$
 (3.6)

On the other hand, according to $(2.7_{\ell-1})$ and (3.1_{ℓ}) , it is clear that

$$
u^{(\ell-1)}(t)/t \downarrow 0 \quad \text{for} \quad t \uparrow +\infty. \tag{3.7}
$$

Therefore, by using (3.7), and (3.6), we get

ON HIGHER-ORDER GENERALIZED EMDEN-FOWLER DIFFERENTIAL EQUATIONS WITH DELAY ARGUMENT 469

$$
\lim_{t \to +\infty} \frac{1}{t} \int_{\tau_{(-k)}(t_*)}^{t} \int_s^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(1)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi ds = 0.
$$
 (3.8)

We now assume that $\alpha > 1$ and $\delta \in (1, \alpha]$. Then, by $(2.7_{\ell-1}), (2.10)$, and (3.7) we obtain

$$
u^{(\ell-1)}(t) \geq \frac{1}{(n-\ell)!} \int_{\tau_{(-k)}(t_*)}^t \int_s^{+\infty} \xi^{n-\ell-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)}
$$

$$
\times \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta} \left(\frac{1}{\ell!} u^{(\ell-1)}(\xi)\right)^{\delta} |p(\xi)| d\xi ds
$$

$$
\geq \frac{1}{(n-\ell)!} \int_{\tau_{(-k)}(t_*)}^t \left(\frac{1}{\ell!} u^{(\ell-1)}(\xi)\right)^{\delta} \int_s^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)}
$$

$$
\times \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta} |p(\xi)| d\xi ds.
$$

Thus, we get

$$
(v(t))^{\delta} \ge \frac{1}{(\ell!(n-\ell)!)^{\delta}} \left(\int_{\tau_{(-k)}(t_*)}^{t} v^{\delta}(s) \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} \times \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(\alpha)}(\tau(\xi)) \right)^{\mu(\xi)-\delta} |p(\xi)| d\xi ds \right)^{\delta}, \tag{3.9}
$$

where

$$
v(t) = \frac{1}{\ell!} u^{(\ell-1)}(t).
$$

In view of (3.1_ℓ) , it is clear that there exists $t_1 > \tau_{(-k)}(t_*)$ such that

$$
\int_{\tau(-k)}^t v^{\delta}(s) \int_s^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta}
$$

$$
\times |p(\xi)| d\xi ds > 0 \text{ for } t \ge t_1.
$$

Therefore, it follows from (3.9) that

$$
\int_{t_1}^t \frac{\varphi'(s)ds}{(\varphi(s))^{\delta}} \ge \frac{1}{(\ell!(n-\ell)!)^{\delta}} \int_{t_1}^t \int_s^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)}
$$
\n
$$
\times \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta} |p(\xi)| d\xi ds \quad \text{for} \quad t \ge t_1,
$$
\n(3.10)

where

$$
\varphi(t) = \int\limits_{\tau_{(-k)}(t_*)}^t (\nu(s))^{\delta} \int\limits_s^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(\alpha)}(\tau(s))\right)^{\mu(\xi)-\delta} |p(\xi)| d\xi ds.
$$

By using (3.10) , we obtain

$$
\int_{t_1}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta} |p(\xi)| d\xi ds
$$
\n
$$
\leq \frac{(\ell!(n-\ell)!)^{\delta}}{\delta-1} \left(\varphi^{1-\delta}(t_1) - \varphi^{1-\delta}(t)\right) \leq \frac{(\ell!(n-\ell)!)^{\delta}}{\delta-1} \varphi^{1-\delta}(t_1) \quad \text{for} \quad t \geq t_1.
$$

Hence,

$$
\int_{t_1}^{+\infty+\infty} \int_{s}^{\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta} |p(\xi)| d\xi ds \leq +\infty.
$$
 (3.11)

According to (3.8) and (3.11) , conditions (3.2) and (3.3) are satisfied, which proves the validity of the theorem.

Corollary 3.1. Let $l \in \{1, ..., n-1\}$ with even $l + n$, let $\beta < +\infty$, let conditions (1.2), (1.3), (2.9_{l ,1}), and (3.1_ℓ) be satisfied, and let $U_{\ell,t_0} \neq \emptyset$ for some $t_0 \in R_+$. Then, for any $\gamma > 1$ there exists $t_* > t_0$ such that if $\alpha = 1$, then relation (3.2) holds for any $k \in N$ and if $\alpha > 1$, then relation (3.3) holds for any $k \in N$ and $\delta \in (1, \alpha]$, where α and β are defined by (2.1) and $\rho_{k,\ell,t_*}^{(\alpha)}$ is given by (2.11)–(2.13).

Proof. According to Remark 2.1, it suffices to note that, since $\beta < +\infty$, conditions (2.9_{ℓ ,c}) is satisfied by $(2.9_{\ell,1})$ for any $c \in (0,1]$.

4. Sufficient Conditions for the Nonexistence of Solutions of the Type (2.3)

Theorem 4.1. Let $\ell \in \{1,\ldots,n-2\}$ with even $\ell+n$ and let conditions (1.2), (1.3), (2.9_{ℓ,ϵ}), and (3.1 ℓ) be satisfied. Moreover, assume that, for $\alpha = 1$,

$$
\limsup_{t \to +\infty} \frac{1}{t} \int_{\tau(-k)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi ds > 0 \tag{4.1}_{\ell}
$$

470

for large $t_* \in R_+$ *and some* $k \in N$ *and, for* $\alpha > 1$,

$$
\int_{\tau_{(-k)}(t_*)}^{+\infty} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta} |p(\xi)| d\xi ds = +\infty \tag{4.2}_{\ell}
$$

for some $k \in N$ *and* $\delta \in (1, \alpha]$. *Then* $U_{\ell, t_0} = \emptyset$ *for any* $t_0 \in R_+$, *where* α *is defined by the first equality in* (2.1), and $\rho_{k,\ell,t_*}^{(\alpha)}$ is given by (2.11)–(2.13).

Proof. Assume the contrary, i.e., that there exists $t_0 \in R_+$ such that $U_{\ell,t_0} \neq \emptyset$ (see Definition 2.1). Then equation (1.1) has a proper solution $u : [t_0, +\infty) \to R$ satisfying condition (2.3_{ℓ}). Since the conditions of Theorem 3.1 are satisfied, there exists $t_* > t_0$ such that if $\alpha = 1$ ($\alpha > 1$), then condition (3.2) [condition (3.3)] is satisfied, which contradicts (4.1_ℓ) [(4.2_ℓ)]. The obtained contradiction proves the validity of the theorem.

Theorem 4.1'. Let $\ell \in \{1, ..., n-2\}$ with even $\ell+n$, let conditions (1.2), (1.3), (2.9_{ℓ ,1}) and (3.1_{ℓ}) be satisfied, *and let* $\beta < +\infty$. Moreover, if $\alpha = 1$, $\alpha > 1$, for any large $t_* \in R_+$ and, for some $k \in N$ (for some $k \in N$ and $\delta \in (1,\alpha]$), relation (4.1_ℓ) [(4.2_ℓ] holds, then $U_{\ell,t_0} = \emptyset$, where α and β are given by (2.1).

Proof. It suffices to note that, since $\beta < +\infty$, condition $(2.9_{\ell,c})$ is satisfied by $(2.9_{\ell,1})$ for any $c \in (0,1]$. Therefore, all conditions of Theorem 4.1 are satisfied, which proves the validity of the theorem.

Corollary 4.1. Let $\ell \in \{1, ..., n-2\}$ with even $\ell + n$, let $\alpha = 1$, let conditions (1.2), (1.3), (2.9_{ℓ, c}), and (3.1) be satisfied, and let

$$
\limsup_{t \to +\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1} (\tau(\xi))^{(\ell-1)\mu(\xi)} |p(\xi)| d\xi ds > 0.
$$
 (4.3_l)

Then, for any $t_0 \in R_+$, $\mathbf{U}_{\ell, t_0} = \emptyset$, *where* α *is defined by the first equality in (2.1).*

Proof. Since

$$
\rho_{1,\ell,t_*}^{(1)}(\tau(t)) \ge \ell \quad \text{for large} \quad t,
$$

it suffices to note that, by (4.3 $_{\ell}$), condition (4.1 $_{\ell}$) is satisfied for $\alpha = 1$ and $k = 1$.

Corollary 4.1'. Let $\ell \in \{1, ..., n-2\}$ with even $\ell + n$ and let conditions (1.2), (1.3), (4.3_{ℓ}), and (3.1 $_{\ell}$) be *satisfied. In this case, if* $\alpha = 1$ *and* $\beta < +\infty$, *then* $U_{\ell,t_0} = \emptyset$ *for any* $t_0 \in R_+$, *where* α *and* β *are given by (2.1).*

Proof. To prove the corollary, it suffices to note that, since $\beta < +\infty$, condition (2.9 $_{\ell,c}$) holds by (4.3 $_{\ell}$).

Corollary 4.2. Let $\ell \in \{1, \ldots, n-2\}$ *with even* $\ell + n$, *let conditions* (1.2), (1.3) and (2.9_{ℓ}, *c*) *be satisfied, let* $\alpha = 1$, and let

$$
\liminf_{t \to +\infty} t \int_{t}^{+\infty} s^{n-\ell-2} (\tau(s))^{1+(\ell-1)\mu(s)} |p(\xi)| ds = \gamma > 0.
$$
 (4.4_l)

If, in addition, for some $\varepsilon \in (0, \gamma)$,

$$
\limsup_{t \to +\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1} (\tau(\xi))^{\mu(\xi) \left(\ell-1+\frac{\gamma-\varepsilon}{\ell!(n-\ell)!}\right)} |p(\xi)| d\xi ds > 0, \tag{4.5e}
$$

then $U_{\ell,t_0} = \emptyset$ *for any* $t_0 \in R_+$, *where* α *is given by the first equality in (2.1).*

Proof. Let $\varepsilon \in (0, \gamma)$. According to $(4.4_{\ell}), (2.11)$, and (2.13), it is clear that

$$
\rho_{1,\ell,t_*}^{(1)}(\tau(t)) \geq \ell \, !(\tau(t))^{\frac{\gamma-\varepsilon}{\ell!(n-\ell)!}}
$$

for large t. Therefore, by (4.5 $_{\ell}$), relation (4.1 $_{\ell}$) holds for $k = 1$, which proves the validity of the corollary.

Corollary 4.2'. Let $\ell \in \{1, ..., n-2\}$ with even $\ell + n$ and let conditions (1.2), (1.3), (3.1_{ℓ}), (4.4_{ℓ}), and (4.5 ℓ) *be satisfied. If, in addition,* $\alpha = 1$ *and* $\beta < +\infty$ *, then* $U_{\ell,t_0} = \emptyset$ *for any* $t_0 \in R_+$ *, where* α *and* β *are given by (2.1).*

Proof. To prove the corollary, it suffices to note that condition $(2.9_{\ell,c})$ is satisfied because $\beta < +\infty$ by (4.4_{ℓ}) .

Corollary 4.3. Let $\ell \in \{1, ..., n-2\}$ *with even* $\ell + n$ *and let conditions (1.2), (1.3), (2.9*_{ℓ},*c), and (3.1* ℓ *) be satisfied. If, in addition,* $\alpha > 1$ *and, for some* $\delta \in (1, \alpha]$ *,*

$$
\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta} (\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} |p(\xi)| d\xi ds = +\infty, \tag{4.6e}
$$

then $U_{\ell,t_0} = \emptyset$, *for any* $t_0 \in R_+$, *where* α *is defined by the first condition in (2.1).*

Proof. By virtue of (4.6) , condition (4.2) holds for $k = 1$, which proves the validity of the corollary.

Corollary 4.3'. Let $\ell \in \{1, ..., n-2\}$ with even $\ell + n$ and let conditions (1.2), (1.3), (3.1_{ℓ}), (2.9_{ℓ ,1}), and *(4.6_t)* be satisfied. If, in addition, $\alpha > 1$ and $\beta < +\infty$, then $U_{\ell,t_0} = \emptyset$ for any $t_0 \in R_+$, where α and β are given *by (2.1).*

Proof. According to Corollary 4.3, it suffices to note that, since $\beta < +\infty$ by (2.9_{ℓ ,1}), condition (2.9_{ℓ ,c}) holds for any $c \in (0, 1]$.

Corollary 4.4. Let $l \in \{1, ..., n-2\}$ *with even* $l + n$ *and let conditions (1.2), (1.3), (2.9*_{*i,c}), (3.1_{<i>i*}), (4.4*_{<i>i*}),</sub> *and* (4.6_{ℓ}) be satisfied. If, in addition, $\alpha > 1$ and there exists $m \in N$ such that

$$
\liminf_{t \to +\infty} \frac{\tau^m(t)}{t} > 0,\tag{4.7}
$$

then $U_{\ell,t_0} = \emptyset$ *for any* $t_0 \in R_+$ *, where* α *is given by the first condition in (2.1).*

Proof. By virtue of (4.4_{ℓ}) , there exist $c>0$ and $t_1 \in R_+$ such that

$$
t \int_{t}^{+\infty} \xi^{n-\ell-2} (\tau(\xi))^{1+(\ell-1)\mu(\xi)} |p(\xi)| d\xi \ge c \quad \text{for} \quad t \ge t_1.
$$
 (4.8)

Let

$$
\delta = \frac{1+\alpha}{2} \quad \text{and} \quad m_0 = \frac{\delta(m-1)}{c(\alpha-\delta)}.
$$

Thus, by (4.8) and (2.26), there exists $t_* > t_1$ such that

$$
\rho_{1,\ell,t_*}^{(\alpha)}(t) \ge t^{m_0 c} \quad \text{for} \quad t \ge t_*.
$$

Therefore, for large t we find

$$
\left(\frac{\tau(t)}{t}\right)^{\delta} \left(\frac{1}{\ell!} \rho_{1,\ell,t_*}^{(\alpha)}(\tau(t))\right)^{\mu(t)-\delta} \ge \left(\frac{\tau(t)}{t}\right)^{\delta} \left(\frac{1}{\ell!} \tau^{m_0 c}(t)\right)^{\alpha-\delta}
$$

$$
= \frac{1}{(\ell!)^{\alpha-\delta}} \left(\frac{(\tau(t))^{1+\frac{m_0 c(\alpha-\delta)}{\delta}}}{t}\right)^{\delta} = (\ell!)^{\delta-\alpha} \left(\frac{\tau^m(t)}{t}\right)^{\delta}.
$$

Then, by (4.7) and (4.6 $_{\ell}$), it is obvious that (4.2 $_{\ell}$) holds, which proves the corollary.

Corollary 4.4'. Let $\ell \in \{1, ..., n-2\}$ with even $\ell + n$ and let conditions (1.2), (1.3), (3.1_{ℓ}), (4.6_{ℓ}), and (4.7) *be satisfied. If, in addition,* $\alpha > 1$ *and* $\beta < +\infty$ *, then* $U_{\ell,t_0} = \emptyset$ *for any* $t_0 \in R_+$ *, where* α *and* β *are given by (2.1).*

Proof. Since $\beta < +\infty$, it suffices to note that all conditions of Corollary 4.4 are satisfied.

In a similar way, one can prove the following corollary:

Corollary 4.5. Let $\ell \in \{1, ..., n-2\}$ *with even* $\ell + n$, *let conditions (1.2), (1.3), (3.1* $_{\ell}$ *) and (2.9* $_{\ell,c}$ *) be satisfied, and let* $\alpha > 1$ *. If, in addition,*

$$
\liminf_{t \to +\infty} t \ln t \int_{t}^{+\infty} \xi^{n-\ell-2} (\tau(\xi))^{1+(\ell-1)\mu(\xi)} |p(\xi)| d\xi > 0 \tag{4.9e}
$$

and, for some $\delta \in (1, \alpha]$ *and* $m \in N$,

$$
\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta} (\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} (\ln \tau(\xi))^m |p(\xi)| d\xi ds = +\infty, \tag{4.10}_{\ell}
$$

then $U_{\ell,t_0} = \emptyset$ *for any* $t_0 \in R_+$ *, where* α *is specified by the first equality in (2.1).*

Corollary 4.5'. Let $\ell \in \{1, ..., n-2\}$ with even $\ell + n$ and let conditions (1.2), (1.3), (2.9_{ℓ ,1}), (4.9_{ℓ}), and *(4.10_t)* be satisfied. If, in addition, $\alpha > 1$ and $\beta < +\infty$, then $U_{\ell,t_0} = \emptyset$ for any $t_0 \in R_+$, where α and β are *given by (2.1).*

Corollary 4.6. Let $\alpha > 1, \ell \in \{1, \ldots, n-2\}$ *with even* $\ell + n$ *and let conditions (1.2), (3.1_{* ℓ *}), and (2.9* $_{\ell,c}$ *) be satisfied. If, in addition, there exist* $\gamma \in (0, 1)$ *and* $r \in (0, 1)$ *such that*

$$
\liminf_{t \to +\infty} t^{\gamma} \int_{t}^{+\infty} \xi^{n-\ell-1} (\tau(\xi))^{(\ell-1)\mu(\xi)} |p(\xi)| d\xi > 0,
$$
\n(4.11_{\ell})

$$
\liminf_{t \to +\infty} \frac{\tau(t)}{t^r} > 0 \tag{4.12}
$$

and, at least one of the conditions

$$
r \alpha \ge 1 \tag{4.13}
$$

or $r \alpha < 1$ *is satisfied and, for some* $\varepsilon > 0$ *and* $\delta \in (1, \alpha)$,

$$
\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta-\varepsilon+\frac{r(1-\gamma)(\alpha-\delta)}{1-\alpha r}} (\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} |p(\xi)| d\xi ds = +\infty, \tag{4.14}_{\ell}
$$

then $U_{\ell,t_0} = \emptyset$ *for any* $t_0 \in R_+$ *, where* α *is specified by the first equality in (2.1).*

Proof. It suffices to show that condition (4.2 $_{\ell}$) is satisfied for some $k \in N$. Indeed, according to (4.11 $_{\ell}$) and (4.12), there exist $\gamma \in (0, 1), r \in (0, 1), c > 0$, and $t_1 \in R_+$ such that

$$
t^{\gamma} \int\limits_{t}^{+\infty} \xi^{n-\ell-1} (\tau(\xi))^{(\ell-1)\mu(\xi)} |p(\xi)| d\xi \ge c \quad \text{for} \quad t \ge t_1
$$
 (4.15)

and

$$
\tau(t) \geq c \, t^r \quad \text{for} \quad t \geq t_1. \tag{4.16}
$$

By (2.12_ℓ) , (2.11_ℓ) , and (4.15) , we obtain

$$
\rho_{2,\ell,t_*}^{(\alpha)}(t) \ge \frac{c}{(n-\ell)!} \int\limits_{\tau_{(-1)}(t_*)}^t s^{-\gamma} ds = \frac{c\left(t^{1-\gamma} - \tau_{(-1)}^{1-\gamma}(t_*)\right)}{(n-\ell)!(1-\gamma)} \quad \text{for} \quad t \ge \tau_{(-1)}(t_*)
$$

We now choose $t_2 > \tau_{(-1)}(t_*)$ and $c_1 \in (0, c)$ such that

$$
\rho_{2,\ell,t_*}^{(\alpha)}(t) \ge c_1 t^{1-\gamma} \quad \text{for} \quad t \ge t_2.
$$

Therefore, in view of (4.15) and (4.16), we can find $t_3 > t_2$ and $c_2 \in (0, c_1)$ such that, according to (2.12), we get

$$
\rho_{3,\ell,t_*}^{(\alpha)}(t) \ge c_2 t^{(1-\gamma)(1+\alpha r)} \quad \text{for} \quad t \ge t_3.
$$

Hence, for any $k_0 \in N$, there exist t_{k_0} and $c_{k_0-1} > 0$ such that

$$
\rho_{k_0,\ell,t_*}^{(\alpha)}(t) \ge c_{k_0-1} t^{(1-\gamma)(1+\alpha r + \dots + (\alpha r)^{k_0-2})} \quad \text{for} \quad t \ge t_{k_0}.\tag{4.17}
$$

Assume that (4.13) is satisfied. We choose $k_0 \in N$ such that

$$
k_0-1\geq \frac{\delta}{r(\alpha-\delta)(1-\gamma)}.
$$

Thus, by (4.16), (4.17), and (2.9 $_{\ell,1}$), condition (4.2 $_{\ell}$) holds for $k = k_0$.

In this case, the validity of the corollary has already been proved.

Further, assume that $\alpha r < 1$ and, for some $\varepsilon \in (0, (1 - \gamma(\alpha - \delta)r))$, relation (4.14_ℓ) is satisfied. We choose $k_0 \in N$ such that

$$
1 + \alpha r + \ldots + (\alpha r)^{k_0 - 2} \ge \frac{1}{1 - \alpha r} - \frac{\varepsilon}{(1 - \gamma)(\alpha - \delta)r}.
$$

Thus, by (4.14 $_{\ell}$), (4.16), and (4.17), it is clear that (4.2 $_{\ell}$) holds for $k = k_0$. The proof the corollary is complete.

5. Differential Equations with Property B

Theorem 5.1. Let conditions (1.2) and (1.3) be satisfied, let, for any $\ell \in \{1, \ldots, n\}$ with even $\ell+n$, conditions $(2.9\ell.c)$ and (3.1ℓ) hold, and let $(2.9\ell.c)$ be satisfied for even n. Moreover, let, for any large $t_* \in R_+$ and $\ell \in R_+$ $\{1,\ldots,n-2\}$ with even $\ell+n$, condition $(4.l_\ell)$ be true for some $k \in N$ if $\alpha=1$ or, for some $k \in N$, $\gamma \in (1,+\infty)$, α and $\delta \in (1,\alpha]$, relation (4.2_c) hold when $\alpha > 1$. Then equation (1.1) possesses Property **B**, where α is defined by *the first condition in* (2.1) and $\rho_{k,\ell,t_*}^{\alpha}$ *is given by (2.11)–(2.13).*

Proof. Assume that equation (1.1) has a proper nonoscillatory solution $u : [t_0, +\infty) \to (0, +\infty)$ [the case $u(t) < 0$ is similar]. Then, by (1.2), (1.3), and Lemma 2.1, there exists $\ell \in \{1, \ldots, n\}$ such that $\ell + n$ is even and condition (2.3_t) holds. Since, for any $\ell \in \{1, \ldots, n - 2\}$ with even $\ell + n$, the conditions of Theorem 4.1 are satisfied, we have $\ell \neq \{1, \ldots, n-2\}$. Let $\ell = n$. Thus, by (2.3_n) , it is clear that there exists $c \in (0, 1]$ such that, for large t ,

$$
u(\tau(t)) \geq c \tau^{n-1}(t).
$$

Hence, by $(2.9_{n,c})$, it follows from (1.1) that

$$
u^{(n-1)}(t) \ge \int_{t_1}^t (c\tau^{n-1}(s))^{\mu(s)} |p(s)| ds \to +\infty \quad \text{for} \quad t \to +\infty,
$$

where t_1 is a sufficiently large number. This means that condition (1.4) is satisfied. We now assume that $\ell = 0$, n is even, and there exists $c \in (0, 1]$ such that $u(t) \ge c$ for $t \ge t_2$, where t_2 is a sufficiently large number. According to $(2.3₀)$, from (1.1) , we get

$$
\sum_{i=0}^{n-1} (n-i-1)! t_1 |u^{(i)}(t_1)| \ge \int_{t_1}^t s^{n-1} c^{\mu(s)} |p(s)| ds \quad \text{for} \quad t \ge t_2.
$$

The last inequality contradicts conditions $(2.9_{1,c})$. The obtained contradiction proves that condition (1.5) holds and, therefore, equation (1.1) possesses Property B.

Theorem 5.1'. Let conditions (1.2) and (1.3) be satisfied, let conditions (2.9_{ℓ ,1}) and (3.1_{ℓ}) be satisfied for any $\ell \in \{1, \ldots, n\}$ with even $\ell + n$, and let (2.9_{1,1}) hold for even n. Moreover, let $\beta < +\infty$ and let, for any large $t_* \in R_+$ and $\ell \in \{1, \ldots, n-2\}$ with even $\ell + n$, condition (4.1_ℓ) be satisfied for some $k \in N$ if $\alpha = 1$ or relation (4.2_{ℓ}) hold for some $k \in N$, $\gamma \in (1, +\infty)$, and $\delta \in (1, \alpha]$ if $\alpha > 1$. Then equation (1.1) possesses Property **B**, *where* α *and* β *are defined by the first condition in* (2.1) *and* $\rho_{k,\ell,t_*}^{(\alpha)}$ *is given by* (2.11_ℓ)–(2.13_ℓ).

Proof. Since $\beta < +\infty$, by $(2.9_{\ell,1})$ for any $\ell \in \{1, ..., n\}$ with even $\ell + n$, condition $(2.9_{\ell,c})$ is satisfied. This means that conditions of Theorem 5.1 are satisfied, which proves the validity of the theorem.

Theorem 5.2. Let $\alpha > 1$, let conditions (1.2), (1.3), (2.9_{1,c}), (3.1₁) be satisfied, and let

$$
\liminf_{t \to +\infty} \frac{(\tau(t))^{\mu(t)}}{t} > 0.
$$
\n(5.1)

If, in addition, for some $\delta \in (1, \alpha)$,

$$
\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-2-\delta} (\tau(\xi))^{\delta} |p(\xi)| d\xi ds = +\infty, \tag{5.2}
$$

when n *is odd, or*

$$
\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-3-\delta} (\tau(\xi))^{\delta+\mu(\xi)} |p(\xi)| d\xi ds = +\infty,
$$
\n(5.3)

when n is even, then equation (1.1) possesses Property **B**, where α is given by the first condition in (2.1).

Proof. According to (2.9_{1,c}), (3.1₁), and (5.1), it is obvious that, for any $\ell \in \{1, \ldots, n\}$, conditions (2.9_{ℓ ,c}) and (3.1_ℓ) hold. On the other hand, by (5.1), (5.2), and (5.3), for any $\ell \in \{1, \ldots, n-2\}$ with even $\ell + n$, condition (4.2_{ℓ}) is satisfied. This means that if $\alpha > 1$, then all conditions of Theorem 5.1 hold, which proves the validity of the theorem.

Theorem 5.2'. Let $\alpha > 1$, let $\beta < +\infty$, and let conditions (1.2), (1.3), (2.9_{1,1}), (3.1₁), and (5.1) be satisfied. *Moreover, assume that, for some* $\delta \in (1, \alpha]$ *, condition* (5.2) holds if n is odd and condition (5.3) holds if n is even. *Then equation (1.1) possesses Property* **B***, where* α *and* β *are given by (2.1).*

Proof. Since $\beta < +\infty$, by virtue of $(2.9_{1,1})$, it is clear that, for any $c \in (0,1]$, condition $(2.9_{1,c})$ is satisfied. Thus, all conditions of Theorem 5.2 are satisfied, which proves the validity of the theorem.

Corollary 5.1. Let $\alpha > 1$ *, let conditions (1.2), (1.3), (2.9*_{1*,c}), (3.1*₁*), and (5.1) be satisfied, and let*</sub>

$$
\liminf_{t \to +\infty} t \int_{t}^{+\infty} s^{n-3} \tau(s) |p(s)| ds > 0.
$$
\n(5.4)

Moreover, if, for some $\delta \in (1, \alpha]$ *and* $\gamma > 0$,

$$
\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-2-\delta} (\tau(\xi))^{\delta+\gamma(\mu(\xi)-\delta)} |p(\xi)| d\xi ds = +\infty, \tag{5.5}
$$

then equation (1.1) possesses Property **B***, where* α *is defined by the first condition in (2.1).*

Proof. Since $\alpha > 1$, by (5.4), (2.11₁), and (2.13₁), for any $\gamma > 0$, there exists $t_{\gamma} \in R_+$ such that

$$
\rho_{1,1,t_*}^{(\alpha)}(t) \ge \ell! t^{\gamma}
$$

for $t \ge t_\nu$. Therefore, by (5.4), (5.5), and (5.1), for any $\ell \in \{1, \ldots, n-2\}$ condition (4.2_ℓ) holds. Thus, for $\alpha > 1$, all conditions of Theorem 5.1' are satisfied. Hence, according to the same theorem, equation (1.1) has Property \bf{B} . By Corollary 5.1, Theorem $5.2[′]$ can be proved similarly.

Corollary 5.1'. Let $\alpha > 1$ *, let* $\beta < +\infty$ *, and let conditions (1.2), (1.3), (2.9*_{1,1}*), (3.1*₁*), (5.1), and (5.4) be satisfied. Moreover, if, for some* $\delta \in (1,\alpha]$ *and* $\gamma > 0$ *, condition* (5.5) *is true, then equation* (1.1) has Property **B**, *where* α *and* β *are given by (2.1).*

Corollary 5.2. Let $\alpha > 1$ *, let conditions (1.2), (1.3), (2.9_{1,c}), (3.1₁), (5.1), and (5.4) be satisfied, and let there exist* $m \in N$ *such that condition (4.7) holds. Then equation (1.1) has Property* **B***, where* α *is defined by the first condition in (2.1).*

Proof. By (5.1), (2.9_{1,c}), (3.1₁), and (5.4), it is clear that, for any $\ell \in \{1, ..., n\}$, conditions (2.9_{*t,c*}), (3.1_{*t*}), and (4.6) are satisfied.

Assume that equation (1.1) has a nonoscillatory proper solution $u : (t_0, +\infty) \to (0, +\infty)$. Then, by (1.2), (1.3), and Lemma 2.1, there exists $\ell \in \{1, \ldots, n\}$ such that $\ell + n$ is even and condition (2.3_{ℓ}) is satisfied. By Corollary 4.4, $\ell \notin \{1, \ldots, n-2\}$. If $\ell = n$ (if n is even and $\ell = 0$), then, by $(2.9_{n,c})$ [(2.9_{1,c})] as in Theorem 5.1, we can show that condition (1.4) [condition (1.5)] holds, i.e., equation (1.1) has Property **B**.

Corollary 5.2'. Let $\alpha > 1$ *and* $\beta < +\infty$ *and let conditions (1.2), (1.3), (2.9*_{1,1}*), (3.1*₁*), (5.1), and (5.4) be satisfied. If, in addition, there exists* $m \in N$ *such that condition* (4.10) *holds, then equation* (1.1) *has Property* **B**, *where* α *and* β *are given by (2.1).*

Corollary 5.3. Let $\alpha > 1$ *and let conditions (1.2), (1.3), (2.9*_{1*c}), (3.1*₁*), and (5.1) be satisfied. Assume,*</sub> *moreover, that there exist* $\gamma \in (0,1)$ *and* $r \in (0,1)$ *such that conditions* (4.14₁) *and* (4.15) *hold and, at least one of the conditions (4.16) or* $r \alpha < 1$ *and, for some* $\varepsilon > 0$ *and* $\delta \in (1, \alpha)$, (4.17_1) *are satisfied. Then equation (1.1) has Property* **B***, where* α *is given by the first condition in (2.1).*

Proof. Suppose that equation (1.1) has a proper nonoscillatory solution $u : (t_0, +\infty) \rightarrow (0, +\infty)$. Then, by (1.2), (1.3), and Lemma 2.1, there exists $\ell \in \{1, \ldots, n\}$ such that $\ell + n$ is even and condition (2.3 $_{\ell}$) holds. Since by $(2.9_{1,c})$, (3.1_1) , (4.14_1) , and (5.1) , for any $\ell \in \{1, \ldots, n-2\}$, conditions $(2.9_{\ell,c})$, (3.1_{ℓ}) and (4.14_{ℓ}) are satisfied, according to Corollary 4.6, we get $\ell \neq \{1, \ldots, n-2\}$. On the other hand, by analogy with Theorem 5.1, we can show that if $\ell = 0$ ($\ell = n$), then condition (1.4) [(1.5)] is satisfied, i.e., equation (1.1) has Property **B**.

Corollary 5.3'. Let $\alpha > 1$ *and* $\beta < +\infty$, *let conditions* (1.2), (1.3), (2.9_{1,1}), (3.1₁), *and* (5.1) *be satisfied*, *and let conditions (4.14₁) and (4.15) hold for some* $\gamma \in (0, 1)$ *and* $r \in (0, 1)$ *. Then equation (1.1) has Property* **B**, *where* α *and* β *are given by (2.1).*

Theorem 5.3. Let $\alpha > 1$, let conditions (1.2), (1.3), (2.9_{n,c}), and (3.1_{n-1}) be satisfied, and let

$$
\limsup_{t \to +\infty} \frac{(\tau(t))^{\mu(t)}}{t} < +\infty. \tag{5.6}
$$

If, in addition, for some $\delta \in (1, \alpha]$,

$$
\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{1-\delta}(\tau(\xi))^{\delta + (n-3)\mu(\xi)} |p(\xi)| d\xi ds = +\infty,
$$
\n(5.7)

then equation (1.1) has Property **B**, where α *is given by the first condition in (2.1).*

Proof. According to $(2.9_{n,c})$, (3.1_{n-1}) , and (5.6) , it is obvious that, for any $l \in \{1, ..., n-1\}$, conditions $(2.9_{\ell,c})$ and (3.1_{ℓ}) are satisfied. On the other hand, by (5.6) and (5.7), for any $\ell \in \{1, \ldots, n - 2\}$ with even $\ell + n$, condition (4.2 $_\ell$) holds. Hence, if $\alpha > 1$, then all conditions of Theorem 5.1 are satisfied, which proves the validity of the theorem.

Theorem 5.3'. Let $\alpha > 1$, let $\beta < +\infty$, let conditions (1.2), (1.3), (2.9_{n,1}), (3.1_{n-1}), and (5.6) be satisfied, *and let condition (5.7) hold for some* $\delta \in (1,\alpha)$ *. Then equation (1.1) has Property* **B***, where* α *and* β *are given by (2.1).*

Proof. Since $\beta < +\infty$, by $(2.9_{n,1})$ it is obvious that, for any $c \in (0,1]$, conditions $(2.9_{n,c})$ hold. Thus, all conditions of Theorem 5.3 are satisfied, which proves the validity of the theorem.

Corollary 5.4. Let $\alpha > 1$ *, let conditions (1.2), (1.3), (2.9_{n,c}), (3.1_{n-1}) and (5.6) be satisfied, and let*

$$
\liminf_{t \to +\infty} t \int_{t}^{+\infty} (\tau(s))^{1 + (n-3)\mu(s)} |p(s)| ds > 0.
$$
 (5.8)

If, moreover,

$$
\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{-1-\delta} (\tau(\xi))^{\delta+(n-3)\mu(\xi)+\gamma(\mu(\xi)-\delta)} |p(\xi)| d\xi ds = +\infty
$$
\n(5.9)

for some $\delta \in (1, \alpha]$ *and* $\gamma > 0$ *, then equation* (1.1) has Property **B***, where* α *is given by the first condition in* (2.1).

Proof. Since $\alpha > 1$, by (5.8), (2.11_{n-2}), and (2.13_{n-2}), for any $\gamma > 0$ there exists $t_* \in R_+$ such that

$$
\rho_{1,n-2,t_*}^{(\alpha)}(t) \ge \ell! t^{\gamma}
$$

for $t \ge t_\gamma$. Therefore, by (5.6), (5.8), and (5.9), for any $\ell \in \{1, \ldots, n-2\}$ conditions (4.2 ℓ) are satisfied. Hence, according to the same theorem, equation (1.1) has Property B.

Corollary 5.4'. Let $\alpha > 1$ *, let* $\beta < +\infty$ *, and let conditions (1.2), (1.3), (2.9_{n,1}), (3.1_{n-1}), (5.8), and (5.9) be satisfied. Then equation* (1.1) has Property **B**, where α and β are given by (2.1).

In view of (5.6), by repeating the arguments used in Corollary 5.3, we easily prove that the following corollary is true:

Corollary 5.5. Let $\alpha > 1$ *and let conditions (1.2), (1.3), (2.9_{n,c}), (3.1_{n-1}), and (5.6) be satisfied. Moreover, assume that there exist* $\gamma \in (0,1)$ *and* $r \in (0,1)$ *such that conditions* (4.14_{n-2}), (4.15), *and at least one of the conditions (4.16) or* $r \alpha < 1$ *and, for some* $\varepsilon > 0$ *and* $\delta \in (1, \alpha]$, (4.17_{n-2}) *are satisfied. Then equation (1.1) has Property* **B***, where* α *is given by the first condition in (2.1).*

Corollary 5.5'. Let $\alpha > 1$, *let* $\beta < +\infty$, *and let conditions (1.2), (1.3), (2.9_{n,1}), (3.1_{n-1}), <i>and* (5.6) *be satisfied. Moreover, assume that there exist* $\gamma \in (0,1)$ *and* $r \in (0,1)$ *such that conditions* (4.14_{n-2}), (4.15), *and at least one of conditions (4.16) or* $r \alpha < 1$ *and, for some* $\varepsilon > 0$ *and* $\delta \in (1, \alpha]$, (4.17_{n-2}) are satisfied. Then *equation* (1.1) has Property **B**, where α and β are given by (2.1).

Theorem 5.4. Let $\alpha = 1$ and let conditions (1.2), (1.3), (2.9_{1,c}), (3.1₁) and (5.1) be satisfied. If, in addition,

$$
\limsup_{t \to +\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi^{n-2} |p(\xi)| d\xi ds > 0,
$$
\n(5.10)

when n *is odd, and*

$$
\limsup_{t \to +\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi^{n-3} (\tau(\xi))^{\mu(\xi)} |p(\xi)| d\xi ds > 0,
$$
\n(5.11)

when n is even, then equation (1.1) has Property **B**, where α *is given by the first condition in* (2.1).

Proof. According to $(2.9_{1,c})$, (3.1_1) , and (5.1) , for any $\ell \in \{1, \ldots, n\}$, conditions $(2.9_{\ell,c})$ and (3.1_{ℓ}) are satisfied. On the other hand, by (5.1), (5.10), and (5.11), condition (4.1 $_{\ell}$) holds for any $\ell \in \{1, ..., n - 2\}$ with even $\ell + n$. Hence, if $\alpha = 1$, then all conditions of Theorem 5.1 are satisfied, which proves the validity of the theorem.

Theorem 5.4'. Let $\alpha = 1$, let $\beta < +\infty$, and let conditions (1.2), (1.3), (2.9_{1,1}), (3.1₁), (5.1), (5.10), and (5.11) be satisfied. Then equation (1.1) has Property **B**, where α and β are given by (2.1).

Proof. Since $\beta < +\infty$, by (2.9_{1,1}), condition (2.9_{1,c}) holds for any $c \in (0, 1]$. Thus, all conditions of Theorem 5.4 are satisfied, which proves the validity of the theorem.

Theorem 5.5. Let $\alpha = 1$ and let conditions (1.2), (1.3), (2.9_{1,c}), (3.1₁), and (5.1) be satisfied. If, in *addition,*

$$
\liminf_{t \to +\infty} t \int_{0}^{t} \int_{s}^{+\infty} \xi^{n-3} \tau(\xi) |p(\xi)| d\xi ds > \max\left(\frac{\ell!(n-\ell)!}{\omega^{\ell-1}}, \ell \in \{1, 2, ..., n-2\}\right)
$$
(5.12)

and

$$
\limsup_{t \to +\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi^{n-2} (\tau(\xi))^{\mu(\xi)} |p(\xi)| d\xi ds > 0,
$$
\n(5.13)

then equation (1.1) has Property B*, where*

$$
\omega = \liminf_{t \to +\infty} \frac{(\tau(t))^{\mu(t)}}{t}.
$$
\n(5.14)

Proof. By (5.12), (5.14), and (2.11 $_{\ell}$), it is obvious that, for large t, we get

$$
\rho_{1,\ell,t_*}^{(1)}(t) \ge \ell \, !\,t, \quad \ell \in \{1,\ldots,n-2\}.\tag{5.15}
$$

On the other hand, according to $(2.9_{1,c})$, $(3.1₁)$, (5.1) , (5.14) , (5.15) , and (5.13) , for any $\ell \in \{1, \ldots, n-1\}$, conditions $(2.9_{\ell,c})$, (3.1_{ℓ}) and (4.1_{ℓ}) are satisfied. Thus, if $\alpha = 1$, then all conditions of Theorem 5.1 are true, which proves the validity of the theorem.

The proof of Theorem 5.4 has been used as a guide in proving Theorem 5.4'. In exactly the same way, the proof of Theorem 5.5 is used as a guide in proving the next theorem .

Theorem 5.5'. Let $\alpha = 1$, let $\beta < +\infty$, and let conditions (1.2),(1.3), (2.9_{1,1}), (3.1₁), (5.1), (5.12), and (5.13) *be satisfied. Then equation (1.1) has Property* **B***, where* ω *is given by condition (5.14).*

Theorem 5.6. Let $\alpha = 1$ and let conditions (1.2), (1.3), (2.9_{n,c}), (3.1_{n-1}) and (5.6) be satisfied. If, in *addition,*

$$
\limsup_{t \to +\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi(\tau(\xi))^{(n-3)r(\xi)} |p(\xi)| d\xi ds > 0,
$$
\n(5.16)

then equation (1.1) has Property **B**, where α *is given by the first condition in* (2.1).

Proof. According to $(2.9_{n,c}), (3.1_{n-1}),$ and (5.6) , conditions $(2.9_{\ell,c})$ and (3.1_{ℓ}) hold for any $\ell \in \{1, \ldots, n - \ell\}$ 1}. On the other hand, by (5.6) and (5.16), condition (4.1_ℓ) holds for any $\ell \in \{1, \ldots, n - 2\}$ with even $\ell + n$. Hence, if $\alpha = 1$, then all conditions of Theorem 5.1 are satisfied, which proves the validity of the theorem.

Theorem 5.6'. Let $\alpha = 1$, let $\beta < +\infty$, and let conditions (1.2), (1.3), (2.9_{n,1}), (3.1_{n-1}), (5.6), and (5.16) be *satisfied. Then equation* (1.1) has Property **B**, where α and β are given by (2.1).

Proof. Since $\beta < +\infty$, it suffices to show that, by $(2.9_{n,1})$, for any $c \in (0,1]$ condition $(2.9_{n,c})$ is satisfied.

Theorem 5.7. Let $\alpha = 1$ and let conditions (1.2), (1.3), (2.9_{n,c}), (3.1_{n-1}), and (5.6) be satisfied. If, in *addition,*

$$
\liminf_{t \to +\infty} t \int\limits_0^t \int\limits_s^{+\infty} (\tau(\xi)^{1 + (n-3)\mu(\xi)} |p(\xi)| d\xi ds
$$

> max
$$
\left(\frac{\ell!(n-\ell)!}{\omega^{n-\ell-2}}, \ell \in \{1, 2, ..., n-2\} \right)
$$
, (5.17)

then the condition

$$
\limsup_{t \to +\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi(\tau(\xi))^{(n-2)\mu(\xi)} |p(\xi)| d\xi ds > 0,
$$
\n(5.18)

is sufficient for equation (1.1) to have Property B*, where*

$$
\omega = \liminf_{t \to +\infty} \frac{t}{(\tau(t))^{\mu(t)}}.
$$
\n(5.19)

Proof. By (5.17) , (5.19) , and (2.11) , it is clear that, for large t, condition (5.15) holds.

On the other hand, according to $(2.9_{n,c})$, (3.1_{n-1}) , (5.6) , (5.15) , (5.18) , and (5.19) , for any $\ell \in \{1, \ldots, n-1\}$, conditions $(2.9\ell,c)$, (3.1ℓ) , and (4.1ℓ) are satisfied. Thus, if $\alpha = 1$, then all conditions of Theorem 5.1 are true, which proves the validity of the theorem.

Theorem 5.7'. Let $\alpha = 1$, let $\beta < +\infty$, and let conditions (1.2), (1.3), (2.9_{n,1}), (3.1_{n-1}), and (5.6) be *satisfied. If, moreover, conditions (5.17) and (5.18) hold, then equation (1.1) has Property* **B**, where α , β , and ω *are given by (2.1) and (5.19).*

Proof. Since $\beta < +\infty$, it suffices to show that, by $(2.9_{n,1})$, conditions $(2.9_{n,c})$ are satisfied for any $c \in$ $(0, 1].$

The present work was supported by the Rustaveli Science Foundation (Grant No. 31/09).

REFERENCES

- 1. I. Graef, R. Koplatadze, and G. Kvinikadze, "Nonlinear functional differential equations with Properties A and B," *J. Math. Anal. Appl.* 306, No. 1, 136–160 (2005).
- 2. R. Koplatadze, "On oscillatory properties of solutions of generalized Emden–Fowler type differential equations," *Proc. Razmadze Math. Inst.* 145, 117–121 (2007).
- 3. R. Koplatadze, "Quasilinear functional differential equations with property A," *J. Math. Anal. Appl.* 330, No. 1, 483–510 (2007).
- 4. R. Koplatadze, "On asymptotic behavior of solutions of "almost linear" and essentially nonlinear differential equations," *Nonlin. Anal.: Theory, Methods and Appl.* 71, No. 12, 396–400 (2009).
- 5. R. Koplatadze and E. Litsyn, "Oscillation criteria for higher order "almost linear" functional differential equation," *Funct. Different. Equat.* 16, No. 3, 387–434 (2009).
- 6. R. Koplatadze, "On higher order functional differential equations with Property A," *Georg. Math. J.* 11, No. 2, 307–336 (2004).
- 7. R. Koplatadze and T. Chanturia, *On Oscillatory Properties of Differential Equations with Deviating Argument* [in Russian], Tbilisi State Univ. Press, Tbilisi (1977).
- 8. G. S. Ladd, V. Lakshmikantham, and B. G. Zhang, *Oscillation Theory of Differential Equations with Deviating Arguments,* Dekker, New York (1987).

- 9. R. Koplatadze, "On oscillatory properties of solutions of functional differential equations," *Mem. Different. Equat. Math. Phys.* 3, 3–179 (1994).
- 10. Y. H. Erbe, Q. Kong, and B. G. Zhang, *Oscillation Theory for Functional Differential Equations,* Dekker, New York (1995).
- 11. R. P. Agarval, S. R. Grace, and D. O'Regan, *Oscillation Theory for Second Order Linear, Half-Linear, Singular, and Sublinear Dynamic Equations,* Kluwer Acad. Publ., Dordrecht (2002).
- 12. I. Kiguradze and I. Stavroulakis, "On the solutions of higher order Emden–Fowler advanced differential equations," *Appl. Anal.* 70, 97–112 (1998).
- 13. R. Koplatadze, "On asymptotic behavior of solutions of nth order Emden–Fowler differential equations with advanced argument," *Czechoslovak Math. J.* 60(135), No. 3, 817–833 (2010).
- 14. A. Domoshnitski and R. Koplatadze, "On asymptotic behavior of solutions of generalized Emden–Fowler differential equations with delay argument," in: *Abstr. Appl. Anal.,* Art. ID 168425 (2014).
- 15. M. K. Gramatikopoulos, R. Koplatadze, and G. Kvinikadze, "Linear functional differential equations with Property A," *J. Math. Anal. Appl.* 284, No. 1, 294–314 (2003).