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ON HIGHER-ORDER GENERALIZED EMDEN-FOWLER DIFFERENTIAL EQUATIONS
WITH DELAY ARGUMENT

A. Domoshnitsky1 and R. Koplatadze2 UDC 517.9

We consider a differential equation

u

.n/
.t/C p.t/ju.⌧.t//j�.t/signu.⌧.t// D 0: .⇤/

It is assumed that n � 3; p 2 Lloc.RCIR�/; � 2 C.RCI .0;C1//; ⌧ 2 C.RCIRC/; ⌧.t/  t for
t 2 RC and limt!C1 ⌧.t/ D C1: In the case �.t/ ⌘ const > 0; the oscillatory properties of equation
.⇤/ are extensively studied, whereas for �.t/ 6⌘ const; to the best of authors’ knowledge, problems of
this kind were not investigated at all. We also establish new sufficient conditions for the equation .⇤/ to
have Property B.

1. Introduction

The present work deals with the oscillatory properties of solutions of a functional differential equations of the
form

u

.n/
.t/C p.t/ju.⌧.t//j�.t/signu.⌧.t// D 0; (1.1)

where

n � 3; p 2 Lloc.RCIR�/; � 2 C.RCI .0;C1//; ⌧ 2 C.RCIRC/;

⌧.t/  t for t 2 RC and lim
t!C1

⌧.t/ D C1:

(1.2)

It is always assumed that the condition

p.t/  0 for t 2 RC (1.3)

is satisfied.
Let t0 2 RC: A function u W Œt0IC1/ ! R is said to be a proper solution of equation (1.1) if it is locally

absolutely continuous together with its derivatives up to the order n � 1; inclusively,

supfju.s/j W s 2 Œt;C1/g > 0
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for t � t0; and there exists a function u 2 C.RCIR/ such that u.t/ ⌘ u.t/ on Œt0;C1/ and the equality

u

.n/
.t/C p.t/ju.⌧.t//j�.t/signu.⌧.t// D 0

holds almost everywhere for t 2 Œt0;C1/: A proper solution u W Œt0;C1/ ! R of equation (1.1) is said to be
oscillatory if it has a sequence of zeros tending toC1: Otherwise, the solution u is said to be nonoscillatory.

Definition 1.1. We say that equation (1.1) has Property A if any proper solution u is oscillatory for even n

and is either oscillatory or satisfies

ju.i/
.t/j # 0 as t " C1; i D 0; : : : ; n � 1; (1.4)

for odd n:

Definition 1.2. We say that equation (1.1) has Property B if any proper solution u is either oscillatory, or
satisfies (1.4), or satisfies

ju.i/
.t/j " C1 as t " C1; i D 0; : : : ; n � 1; (1.5)

for even n and is either oscillatory or satisfies (1.5) for odd n.

Definition 1.3. We say that equation (1.1) is almost linear if the condition limt!C1 �.t/ D 1 is satisfied. At
the same time, if lim supt!C1 �.t/ ¤ 1 or lim inft!C1 �.t/ ¤ 1; then we say that the analyzed equation is an
essentially nonlinear differential equation.

The oscillatory properties of almost linear and essentially nonlinear differential equations with advanced ar-
gument were sufficiently well studied in [1–6]. For the Emden–Fowler differential equations with deviating argu-
ments, an essential contribution was made in [7–13]. In the present paper, sufficient conditions are established for
the equation (1.1) to have Property B. Analogous results for Property A are presented in [14].

2. Some Auxiliary Lemmas

The following notation is used throughout the work: e

C

n�1
loc .Œt0;C1// denotes the set of all functions u W

Œt0;C1/ ! R absolutely continuous in any finite subinterval of Œt0;C1/ together with their derivatives of the
orders up to and including n � 1;

˛ D inff�.t/; t 2 RCg; ˇ D supf�.t/; t 2 RCg; (2.1)

⌧.�1/.t/ D supfs � 0I ⌧.s/  tg; ⌧.�k/ D ⌧.�1/ ı ⌧.�.k�1//; k D 2; 3; : : : : (2.2)

Clearly, ⌧.�1/.t/ � t and ⌧.�1/ is nondecreasing and coincides with the inverse of � if the latter exists.

Lemma 2.1 [12]. Let u 2 e

C

n�1
loc .Œt0;C1//; u.t/ > 0; u

.n/
.t/ � 0 for t � t0 and let u.n/

.t/ 6⌘ 0 in any
neighborhood of C1: Then there exist t1 � t0 and ` 2 f0; : : : ; ng such that `C n is even and

u

.i/
.t/ > 0 for t � t1; i D 0; : : : ; ` � 1;

.�1/iC`
u

.i/
.t/ � 0 for t � t1; i D `; : : : ; n:

(2.3`)
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In the case ` D 0; only the second inequality in .2:3`/ holds. At the same time, for ` D n; only the first
inequality holds and u

.n/
.t/ � 0:

Lemma 2.2 [15]. Let u 2 e

C

n�1
loc .Œt0;C1//; let u.n/

.t/ � 0; and let .2:3`/ be satisfied for some ` 2
f1; : : : ; n � 2g; where `C n is even. Then

C1
Z

t0

t

n�`�1
u

.n/
.t/ dt < C1: (2.4)

Moreover, if

C1
Z

t0

t

n�`
u

.n/
.t/ dt D C1; (2.5`)

then there exists t1 � t0 such that

u.t/ � t

`�1

`ä

u

.`�1/
.t/ for t � t1; (2.6)

u

.i/
.t/

t

`�i

?

y

;

u

.i/
.t/

t

`�i�1

x

?

; i D 0; : : : ; ` � 1; (2.7i )

and

u

.`�1/
.t/ � t

.n � `/ä

C1
Z

t

s

n�`�1
u

.n/
.s/ ds C 1

.n � `/ä

t
Z

t1

s

n�`
u

.n/
.s/ ds: (2.8)

Definition 2.1. Let t0 2 RC: By U`;t0 we denote the set of all solutions of equation (1.1) satisfying the
condition .2:3`/:

Lemma 2.3. Let conditions (1.2), (1.3) be satisfied, let ` 2 f1; : : : ; n � 2g with even `C n; and let equation
(1.1) have a positive proper solution u W Œt0;C1/ ! .0;C1/ such that u 2 U`;t0 : Moreover, let ˛ � 1 and let

C1
Z

t0

t

n�`
.c ⌧

`�1
.t//

�.t/jp.t/jdt D C1 for c 2 .0; 1ç: (2.9`;c)

Then, for any � 2 .1;C1/; there exists t⇤ > t0 such that, for any k 2 N;

u

.`�1/
.t/ � ⇢

.˛/

k;`;t⇤.t/ for t � ⌧.�k/.t⇤/; (2.10)
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where

⇢

.˛/

1;`;t⇤.t/ D ` ä exp

8

ˆ

<

ˆ

:

�`.˛/

t
Z

⌧.�1/.t⇤/

C1
Z

s

⇠

n�`�2
.⌧.⇠//

1C.`�1/�.⇠/jp.⇠/jd⇠ ds

9

>

=

>

;

; (2.11`)

⇢

.˛/

i;`;t⇤.t/ D ` äC 1

.n � `/ä

t
Z

⌧.�1/.t⇤/

C1
Z

s

⇠

n�`�1
.⌧.⇠//

.`�1/�.⇠/

⇥
✓

1

` ä

⇢

.˛/

i�1;`;t⇤.⌧.⇠//

◆�.⇠/

jp.⇠/jd⇠ ds; i D 2; : : : ; k; (2.12`)

�`.˛/ D

8

ˆ

<

ˆ

:

1

` ä .n � `/ä

if ˛ D 1;

� if ˛ > 1;

(2.13`)

and ˛ is given by the first equality in (2.1).

Proof. Let t0 2 RC; ` 2 f1; : : : ; n � 2g with even ` C n and let u 2 U`;t0 : According to (1.1), (2.3`), and
(2.9`;c), it is clear that condition (2.5`) is satisfied. Indeed, by (2.3`), there exist t1 > t0 and c 2 .0; 1ç such that

u.⌧.t// � c.⌧.t//

`�1 for t � t1:

Thus, it follows from (1.1) that

t
Z

t1

s

n�`
u

.n/
.s/ds �

t
Z

t1

s

n�`
⇣

c ⌧

`�1
.s/

⌘�.s/
jp.s/jds for t � t1:

Passing to the limit in this inequality, by virtue of (2.9`;c), we get (2.5`).
According to Lemma 2.2, there exists t2 > t1 such that conditions (2.6)–(2.8) are satisfied for t � t2 and

u

.`�1/
.t/ � t

.n � `/ä

C1
Z

t

s

n�`�1
.u.⌧.s///

�.s/jp.s/jds

C 1

.n � `/ä

t
Z

t.�1/.t2/

s

n�`
.u.⌧.s///

�.s/jp.s/jds for t � ⌧.�1/.t2/:

Therefore, by (2.6), we find

u

.`�1/
.t/ � 1

.n � `/ä

t
Z

⌧.�1/.t2/

C1
Z

s

⇠

n�`�1
.⌧.⇠//

.`�1/�.⇠/
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⇥
✓

1

` ä

u

.`�1/
.⌧.⇠//

◆�.⇠/

jp.⇠/jd⇠ ds for t � ⌧.�1/.t2/: (2.14)

According to (2.7`�1) and (2.9`;c), we choose t⇤ > ⌧.�1/.t2/ such that

1

.n � `/ä

t⇤
Z

⌧.�1/.t2/

C1
Z

s

⇠

n�`�1
.⌧.⇠//

.`�1/�.⇠/

✓

1

` ä

u

.`�1/
.⌧.⇠//

◆�.⇠/

jp.⇠/jd⇠ ds > ` ä: (2.15)

By (2.14) and (2.15), we have

u

.`�1/
.t/ � ` äC 1

.n � `/ä

t
Z

t⇤

C1
Z

s

⇠

n�`�1
.⌧.⇠//

.`�1/�.⇠/

⇥
✓

1

` ä

u

.`�1/
.⌧.⇠//

◆�.⇠/

jp.⇠/jd⇠ ds for t � t⇤: (2.16)

Let ˛ D 1: Since u.`�1/
.t/=t is a nonincreasing function, from (2.16), we obtain

u

.`�1/
.t/ � ` äC 1

` ä.n � `/ä

t
Z

t⇤

C1
Z

s

⇠

n�`�2
.⌧.⇠//

1C.`�1/�.⇠/

⇥ u

.`�1/
.⇠/jp.⇠/jd⇠ ds for t � t⇤: (2.17)

By the second condition in (2.7`�1), it is obvious that

x

0
.t/ � u

.`�1/
.t/

` ä.n � `/ä

C1
Z

t

⇠

n�`�2
.⌧.⇠//

1C.`�1/�.⇠/jp.⇠/jd⇠; (2.18)

where

x.t/ D ` äC 1

` ä.n � `/ä

t
Z

t⇤

C1
Z

s

⇠

n�`�2
.⌧.⇠//

1C.`�1/�.⇠/
u

.`�1/
.⇠/jp.⇠/jd⇠ ds: (2.19)

Thus, according to (2.17), (2.18), and (2.19), we get

x

0
.t/ � x.t/

` ä.n � `/ä

C1
Z

t

⇠

n�`�2
.⌧.⇠//

1C.`�1/�.⇠/jp.⇠/jd⇠ for t � t⇤:
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Therefore, since x.t⇤/ D ` ä; we conclude that

x.t/ � ` ä exp

8

<

:

1

` ä.n � `/ä

t
Z

t⇤

C1
Z

s

⇠

n�`�2
.⌧.⇠//

1C.`�1/�.⇠/jp.⇠/jd⇠ ds

9

=

;

for t � t⇤:

Hence, by (2.16) and (2.19),

u

.`�1/
.t/ � ⇢

.1/

1;`;t⇤.t/ for t � t⇤; (2.20)

where

⇢

.1/

1;`;t⇤.t/ D ` ä exp

8

<

:

1

` ä.n � `/ä

t
Z

t⇤

C1
Z

s

⇠

n�`�2
.⌧.⇠//

1C.`�1/�.⇠/jp.⇠/jd⇠ ds

9

=

;

: (2.21)

Therefore, in view of (2.14) and (2.20),

u

.`�1/
.t/ � ⇢

.1/

i;`;t⇤.t/ for t � ⌧.�i/.t⇤/; i D 1; : : : ; k; (2.22)

where

⇢

.1/

i;`;t⇤.t/ D ` äC 1

.n � `/ä

t
Z

⌧.�i/.t⇤/

C1
Z

s

⇠

n�`�1
.⌧.⇠//

.`�1/�.⇠/

⇥
✓

1

` ä

⇢

.1/

i�1;`;t⇤.⌧.⇠//

◆�.⇠/

jp.⇠/jd⇠ ds i D 2; : : : ; k: (2.23)

We now assume that ˛ > 1 and � 2 .1;C1/: Since u.`�1/
.t/ " C1 as t " C1; without loss of generality,

we can assume that
✓

1

` ä

u

.`�1/
.⌧.t//

◆˛�1

� ` ä.n � `/ä �

for t � t⇤: It follows from (2.16) that

u

.`�1/
.t/ � ` äC �

t
Z

t⇤

C1
Z

s

⇠

n�`�1
.⌧.⇠//

.`�1/�.⇠/
u

.`�1/
.⇠/jp.⇠/jd⇠ ds for t � t⇤: (2.24)

By (2.24), as above, we can show that if ˛ > 1; then

u

.`�1/
.t/ � ⇢

.˛/

k;`;t⇤.t/ for t � ⌧.�k/.t⇤/; (2.25)

where
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⇢

.˛/

1;`;t⇤.t/ D ` ä exp

º

�

t
Z

⌧.�1/.t⇤/

C1
Z

s

⇠

n�`�2
.⌧.⇠//

1C.`�1/�.⇠/

⇥ jp.⇠/jd⇠ ds
Ω

for t � ⌧.�1/.t⇤/; (2.26)

⇢

.˛/

i;`;t⇤.t/ D ` äC 1

.n � `/ä

t
Z

⌧.�i/.t⇤/

C1
Z

s

⇠

n�`�1
.⌧.⇠//

.`�1/�.⇠/

⇥
✓

1

` ä

⇢

.˛/

i�1;`;t⇤.⌧.⇠//

◆�.⇠/

jp.⇠/jd⇠ ds for t � ⌧.�i/.t⇤/; i D 2; : : : ; k: (2.27)

In view of (2.20)–(2.23) and (2.25)–(2.27), it is clear that, for any ˛ � 1; k 2 N; and � 2 .1;C1/; there exists
t⇤ 2 RC such that (2.10) holds, where �`.˛/ is given by (2.13`), which proves the validity of the lemma.

Remark 2.1. It is obvious that if ˇ < C1 and (2.9`;1) holds, then, for any c 2 .0; 1ç; condition (2.9`;c) is
satisfied.

Remark 2.2. Condition (2.9`;1) is not sufficient for condition (2.5) to be satisfied. Therefore, in this case, it
may happen that Lemma 2.3 is incorrect. Indeed, let ı 2 .0; 1/: Consider equation (1.1), where n is odd and

⌧.t/ ⌘ t; p.t/ D � nä t

log1=ı t

t

nC1
.ıt � 1/

log1=ı t
; �.t/ D log1=ı t; t � 2

ı

:

It is clear that the function

u.t/ D ı � 1

t

is a solution of equation (1.1) and satisfies condition (2.31) for t �
2

ı

: On the other hand, condition (2.91;1) holds
but condition (2.51) is not satisfied.

3. Necessary Conditions for the Existence of Solutions of Type (2.3`)

Theorem 3.1. Let ` 2 f1; : : : ; n � 2g with even `C n; let conditions (1.2), (1.3), (2.9`;c) and

C1
Z

0

t

n�`�1
.⌧.t//

`�.t/jp.t/jdt D C1 (3.1`)

be satisfied, and let

U`;t0 ¤ ¿
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for some t0 2 RC: Then there exists t⇤ > t0 such that if ˛ D 1; then, for any k 2 N;

lim
t!C1

1

t

t
Z

⌧.�k/.t⇤/

C1
Z

s

⇠

n�`�1
.⌧.⇠//

.`�1/�.⇠/

✓

1

` ä

⇢

.1/

k;`;t⇤.⌧.⇠//

◆�.⇠/

jp.⇠/jd⇠ ds D 0 (3.2)

and if ˛ > 1; then, for any k 2 N; � 2 .1;C1/; and ı 2 .1; ˛ç;

C1
Z

⌧.�i/.t⇤/

C1
Z

s

⇠

n�`�1�ı
.⌧.⇠//

ıC.`�1/�.⇠/

✓

1

` ä

⇢

.˛/

k;`;t⇤.⌧.⇠//

◆�.⇠/�ı

jp.⇠/jd⇠ ds < C1; (3.3)

where ˛ is defined by the first equality in (2.1) and ⇢.˛/
k;`;t⇤ is given by (2.11)–(2.13).

Proof. Let t0 2 RC; ` 2 f1; : : : ; n � 2g; U`;t0 ¤ ¿; and � 2 .1;C1/: By the definition (see Definition
2.1), equation (1.1) has a proper solution u 2 U`;t0 satisfying condition (2.3`) with some t1 � t0: In view of (1.1),
(2.3`), and (2.9`;c), it is obvious that condition (2.5`) holds. Thus, by Lemma 2.2, there exists t1 > t0 such that
conditions (2.6) and (2.7i ) are satisfied. On the other hand, according to Lemma 2.3 (and its proof), there exist
t2 > t1 and t⇤ > t2 such that

u

.`�1/
.t/ � 1

.n � `/ä

t
Z

t2

C1
Z

s

⇠

n�`�1
.u.⌧.⇠///

�.⇠/jp.⇠/jd⇠ ds for t � t2 (3.4)

and relation (2.10) is true. Without loss of generality, we can assume that ⌧.t/ � t2 for t � t⇤: Therefore, by
.2:10/; it follows from (3.4) that

u

.`�1/
.t/ � 1

.n � `/ä

t
Z

⌧.�k/.t⇤/

C1
Z

s

⇠

n�`�1
.⌧.⇠//

.`�1/�.⇠/

✓

1

` ä

u

.`�1/
.⌧.⇠//

◆�.⇠/

jp.⇠/jd⇠ ds: (3.5)

Assume that ˛ D 1: Thus, by (2.10) and (3.5), we obtain

u

.`�1/
.t/ � 1

.n � `/ä

t
Z

⌧.�k/.t⇤/

C1
Z

s

⇠

n�`�1
.⌧.⇠//

.`�1/�.⇠/

⇥
✓

1

` ä

⇢

.1/

k;`;t⇤.⌧.⇠//

◆�.⇠/

jp.⇠/jd⇠ ds for t � ⌧.�k/.t⇤/: (3.6)

On the other hand, according to (2.7`�1) and (3.1`), it is clear that

u

.`�1/
.t/=t # 0 for t " C1: (3.7)

Therefore, by using (3.7), and (3.6), we get
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lim
t!C1

1

t

t
Z

⌧.�k/.t⇤/

C1
Z

s

⇠

n�`�1
.⌧.⇠//

.`�1/�.⇠/

✓

1

` ä

⇢

.1/

k;`;t⇤.⌧.⇠//

◆�.⇠/

jp.⇠/jd⇠ ds D 0: (3.8)

We now assume that ˛ > 1 and ı 2 .1; ˛ç: Then, by .2:7`�1/; (2.10), and (3.7) we obtain

u

.`�1/
.t/ � 1

.n � `/ä

t
Z

⌧.�k/.t⇤/

C1
Z

s

⇠

n�`�ı
.⌧.⇠//

ıC.`�1/�.⇠/

⇥
✓

1

` ä

⇢

.˛/

k;`;t⇤.⌧.⇠//

◆�.⇠/�ı ✓
1

` ä

u

.`�1/
.⇠/

◆ı

jp.⇠/jd⇠ ds

� 1

.n � `/ä

t
Z

⌧.�k/.t⇤/

✓

1

` ä

u

.`�1/
.⇠/

◆ı
C1
Z

s

⇠

n�`�1�ı
.⌧.⇠//

ıC.`�1/�.⇠/

⇥
✓

1

` ä

⇢

.˛/

k;`;t⇤.⌧.⇠//

◆�.⇠/�ı

jp.⇠/jd⇠ ds:

Thus, we get

.v.t//

ı � 1

.` ä.n � `/ä/

ı

0

B

@

t
Z

⌧.�k/.t⇤/

v

ı
.s/

C1
Z

s

⇠

n�`�1�ı
.⌧.⇠//

ıC.`�1/�.⇠/

⇥
✓

1

` ä

⇢

.˛/

k;`;t⇤.⌧.⇠//

◆�.⇠/�ı

jp.⇠/jd⇠ ds
!ı

; (3.9)

where

v.t/ D 1

` ä

u

.`�1/
.t/:

In view of .3:1`/; it is clear that there exists t1 > ⌧.�k/.t⇤/ such that

t
Z

⌧.�k/.t⇤/

v

ı
.s/

C1
Z

s

⇠

n�`�1�ı
.⌧.⇠//

ıC.`�1/�.⇠/

✓

1

` ä

⇢

.˛/

k;`;t⇤.⌧.⇠//

◆�.⇠/�ı

⇥ jp.⇠/jd⇠ ds > 0 for t � t1:

Therefore, it follows from (3.9) that
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t
Z

t1

'

0
.s/ds

.'.s//

ı
� 1

.` ä.n � `/ä/

ı

t
Z

t1

C1
Z

s

⇠

n�`�1�ı
.⌧.⇠//

ıC.`�1/�.⇠/

⇥
✓

1

` ä

⇢

.˛/

k;`;t⇤.⌧.⇠//

◆�.⇠/�ı

jp.⇠/jd⇠ ds for t � t1; (3.10)

where

'.t/D
t

Z

⌧.�k/.t⇤/

.v.s//

ı

C1
Z

s

⇠

n�`�1�ı
.⌧.⇠//

ıC.`�1/�.⇠/

✓

1

` ä

⇢

.˛/

k;`;t⇤.⌧.s//

◆�.⇠/�ı

jp.⇠/jd⇠ ds:

By using (3.10), we obtain

t
Z

t1

C1
Z

s

⇠

n�`�1�ı
.⌧.⇠//

ıC.`�1/�.⇠/

✓

1

` ä

⇢

.˛/

k;`;t⇤.⌧.⇠//

◆�.⇠/�ı

jp.⇠/jd⇠ ds

 .` ä.n � `/ä/

ı

ı � 1

⇣

'

1�ı
.t1/ � '

1�ı
.t/

⌘

 .` ä.n � `/ä/

ı

ı � 1

'

1�ı
.t1/ for t � t1:

Hence,

C1
Z

t1

C1
Z

s

⇠

n�`�1�ı
.⌧.⇠//

ıC.`�1/�.⇠/

✓

1

` ä

⇢

.˛/

k;`;t⇤.⌧.⇠//

◆�.⇠/�ı

jp.⇠/jd⇠ ds  C1: (3.11)

According to (3.8) and (3.11), conditions (3.2) and (3.3) are satisfied, which proves the validity of the theorem.

Corollary 3.1. Let ` 2 f1; : : : ; n � 1g with even `C n; let ˇ < C1; let conditions (1.2), (1.3), (2.9`;1), and
(3.1`) be satisfied, and let U`;t0 ¤ ¿ for some t0 2 RC: Then, for any � > 1 there exists t⇤ > t0 such that if ˛ D 1;

then relation (3.2) holds for any k 2 N and if ˛ > 1; then relation (3.3) holds for any k 2 N and ı 2 .1; ˛ç; where
˛ and ˇ are defined by (2.1) and ⇢

.˛/

k;`;t⇤ is given by (2.11)–(2.13).

Proof. According to Remark 2.1, it suffices to note that, since ˇ < C1; conditions (2.9`;c) is satisfied by
(2.9`;1) for any c 2 .0; 1ç.

4. Sufficient Conditions for the Nonexistence of Solutions of the Type (2.3`)

Theorem 4.1. Let ` 2 f1; : : : ; n � 2g with even `C n and let conditions (1.2), (1.3), (2.9`;c), and (3.1`) be
satisfied. Moreover, assume that, for ˛ D 1;

lim sup
t!C1

1

t

t
Z

⌧.�k/.t⇤/

C1
Z

s

⇠

n�`�1
.⌧.⇠//

.`�1/�.⇠/

✓

1

` ä

⇢

.˛/

k;`;t⇤.⌧.⇠//

◆�.⇠/

jp.⇠/jd⇠ ds > 0 (4.1`)
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for large t⇤ 2 RC and some k 2 N and, for ˛ > 1;

C1
Z

⌧.�k/.t⇤/

C1
Z

s

⇠

n�`�1�ı
.⌧.⇠//

ıC.`�1/�.⇠/

✓

1

` ä

⇢

.˛/

k;`;t⇤.⌧.⇠//

◆�.⇠/�ı

jp.⇠/jd⇠ ds D C1 (4.2`)

for some k 2 N and ı 2 .1; ˛ç: Then U`;t0 D ¿ for any t0 2 RC; where ˛ is defined by the first equality in (2.1),
and ⇢

.˛/

k;`;t⇤ is given by (2.11)–(2.13).

Proof. Assume the contrary, i.e., that there exists t0 2 RC such that U`;t0 6D ¿ (see Definition 2.1). Then
equation (1.1) has a proper solution u W Œt0;C1/ ! R satisfying condition (2.3`/: Since the conditions of Theorem
3.1 are satisfied, there exists t⇤ > t0 such that if ˛ D 1 (˛ > 1), then condition (3.2) [condition (3.3)] is satisfied,
which contradicts (4.1`/ [(4.2`/]. The obtained contradiction proves the validity of the theorem.

Theorem 4.10. Let ` 2 f1; : : : ; n�2g with even `Cn; let conditions (1.2), (1.3), (2.9`;1) and (3.1`) be satisfied,
and let ˇ < C1: Moreover, if ˛ D 1; ˛ > 1; for any large t⇤ 2 RC and, for some k 2 N .for some k 2 N and
ı 2 .1; ˛ç/; relation (4.1`) [(4.2`] holds, then U`;t0 D ¿; where ˛ and ˇ are given by (2.1).

Proof. It suffices to note that, since ˇ < C1; condition (2.9`;c) is satisfied by (2.9`;1) for any c 2 .0; 1ç:

Therefore, all conditions of Theorem 4.1 are satisfied, which proves the validity of the theorem.

Corollary 4.1. Let ` 2 f1; : : : ; n � 2g with even ` C n; let ˛ D 1; let conditions (1.2), (1.3), (2.9`;c), and
(3.1`) be satisfied, and let

lim sup
t!C1

1

t

t
Z

0

C1
Z

s

⇠

n�`�1
.⌧.⇠//

.`�1/�.⇠/jp.⇠/jd⇠ ds > 0: (4.3`)

Then, for any t0 2 RC; U`;t0 D ¿; where ˛ is defined by the first equality in (2.1).

Proof. Since

⇢

.1/

1;`;t⇤.⌧.t// � ` for large t;

it suffices to note that, by (4.3`), condition (4.1`) is satisfied for ˛ D 1 and k D 1.

Corollary 4.1

0
. Let ` 2 f1; : : : ; n � 2g with even ` C n and let conditions (1.2), (1.3), (4.3`), and (3.1`) be

satisfied. In this case, if ˛ D 1 and ˇ < C1; then U`;t0 D ¿ for any t0 2 RC; where ˛ and ˇ are given
by (2.1).

Proof. To prove the corollary, it suffices to note that, since ˇ < C1; condition (2.9`;c) holds by (4.3`).

Corollary 4.2. Let ` 2 f1; : : : ; n � 2g with even `C n; let conditions (1.2), (1.3) and (2.9`;c) be satisfied, let
˛ D 1; and let

lim inf
t!C1

t

C1
Z

t

s

n�`�2
.⌧.s//

1C.`�1/�.s/jp.⇠/jds D � > 0: (4.4`)
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If, in addition, for some " 2 .0; �/;

lim sup
t!C1

1

t

t
Z

0

C1
Z

s

⇠

n�`�1
.⌧.⇠//

�.⇠/
⇣

`�1C ��"
` ä.n�`/ä

⌘

jp.⇠/jd⇠ ds > 0; (4.5`)

then U`;t0 D ¿ for any t0 2 RC; where ˛ is given by the first equality in (2.1).

Proof. Let " 2 .0; �/: According to (4.4`), (2.11), and (2.13), it is clear that

⇢

.1/

1;`;t⇤.⌧.t// � ` ä.⌧.t//

��"
` ä.n�`/ä

for large t: Therefore, by (4.5`), relation (4.1`) holds for k D 1; which proves the validity of the corollary.

Corollary 4.2

0
. Let ` 2 f1; : : : ; n� 2g with even `C n and let conditions (1.2), (1.3), (3.1`), (4.4`), and (4.5`)

be satisfied. If, in addition, ˛ D 1 and ˇ < C1; then U`;t0 D ¿ for any t0 2 RC; where ˛ and ˇ are given
by (2.1).

Proof. To prove the corollary, it suffices to note that condition (2.9`;c) is satisfied because ˇ < C1 by
(4.4`).

Corollary 4.3. Let ` 2 f1; : : : ; n � 2g with even `C n and let conditions (1.2), (1.3), (2.9`;c), and (3.1`) be
satisfied. If, in addition, ˛ > 1 and, for some ı 2 .1; ˛ç;

C1
Z

0

C1
Z

s

⇠

n�`�1�ı
.⌧.⇠//

ıC.`�1/�.⇠/jp.⇠/jd⇠ ds D C1; (4.6`)

then U`;t0 D ¿; for any t0 2 RC; where ˛ is defined by the first condition in (2.1).

Proof. By virtue of (4.6`), condition (4.2`) holds for k D 1, which proves the validity of the corollary.

Corollary 4.3

0
. Let ` 2 f1; : : : ; n � 2g with even ` C n and let conditions (1.2), (1.3), (3.1`), (2.9`;1), and

(4.6`) be satisfied. If, in addition, ˛ > 1 and ˇ < C1; then U`;t0 D ¿ for any t0 2 RC; where ˛ and ˇ are given
by (2.1).

Proof. According to Corollary 4.3, it suffices to note that, since ˇ < C1 by (2.9`;1), condition (2.9`;c) holds
for any c 2 .0; 1ç:

Corollary 4.4. Let ` 2 f1; : : : ; n � 2g with even `C n and let conditions (1.2), (1.3), (2.9`;c), (3.1`), (4.4`),
and (4.6`) be satisfied. If, in addition, ˛ > 1 and there exists m 2 N such that

lim inf
t!C1

⌧

m
.t/

t

> 0; (4.7)

then U`;t0 D ¿ for any t0 2 RC; where ˛ is given by the first condition in (2.1).
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Proof. By virtue of (4.4`), there exist c > 0 and t1 2 RC such that

t

C1
Z

t

⇠

n�`�2
.⌧.⇠//

1C.`�1/�.⇠/jp.⇠/jd⇠ � c for t � t1: (4.8)

Let

ı D 1C ˛

2

and m0 D ı.m � 1/

c.˛ � ı/

:

Thus, by (4.8) and (2.26), there exists t⇤ > t1 such that

⇢

.˛/

1;`;t⇤.t/ � t

m0c for t � t⇤:

Therefore, for large t we find

✓

⌧.t/

t

◆ı ✓
1

` ä

⇢

.˛/

1;`;t⇤.⌧.t//

◆�.t/�ı

�
✓

⌧.t/

t

◆ı ✓
1

` ä

⌧

m0c
.t/

◆˛�ı

D 1

.` ä/

˛�ı

0

@

.⌧.t//

1Cm0c.˛�ı/

ı

t

1

A

ı

D .` ä/

ı�˛

✓

⌧

m
.t/

t

◆ı

:

Then, by (4.7) and (4.6`/, it is obvious that (4.2`/ holds, which proves the corollary.

Corollary 4.4

0
. Let ` 2 f1; : : : ; n � 2g with even `C n and let conditions (1.2), (1.3), (3.1`), (4.6`), and (4.7)

be satisfied. If, in addition, ˛ > 1 and ˇ < C1; then U`;t0 D ¿ for any t0 2 RC; where ˛ and ˇ are given
by (2.1).

Proof. Since ˇ < C1; it suffices to note that all conditions of Corollary 4.4 are satisfied.

In a similar way, one can prove the following corollary:

Corollary 4.5. Let ` 2 f1; : : : ; n � 2g with even ` C n; let conditions (1.2), (1.3), (3.1`) and (2.9`;c) be
satisfied, and let ˛ > 1: If, in addition,

lim inf
t!C1

t ln t

C1
Z

t

⇠

n�`�2
.⌧.⇠//

1C.`�1/�.⇠/jp.⇠/jd⇠ > 0 (4.9`)

and, for some ı 2 .1; ˛ç and m 2 N;

C1
Z

0

Z C1

s

⇠

n�`�1�ı
.⌧.⇠//

ıC.`�1/�.⇠/
.ln ⌧.⇠//mjp.⇠/jd⇠ ds D C1; (4.10`)

then U`;t0 D ¿ for any t0 2 RC; where ˛ is specified by the first equality in (2.1).
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Corollary 4.5

0
. Let ` 2 f1; : : : ; n � 2g with even ` C n and let conditions (1.2), (1.3), (2.9`;1), (4.9`), and

(4.10`) be satisfied. If, in addition, ˛ > 1 and ˇ < C1; then U`;t0 D ¿ for any t0 2 RC; where ˛ and ˇ are
given by (2.1).

Corollary 4.6. Let ˛ > 1; ` 2 f1; : : : ; n � 2g with even `C n and let conditions (1.2), (3.1`), and (2.9`;c) be
satisfied. If, in addition, there exist � 2 .0; 1/ and r 2 .0; 1/ such that

lim inf
t!C1

t

�

C1
Z

t

⇠

n�`�1
.⌧.⇠//

.`�1/�.⇠/jp.⇠/jd⇠ > 0; (4.11`)

lim inf
t!C1

⌧.t/

t

r
> 0 (4.12)

and, at least one of the conditions

r ˛ � 1 (4.13)

or r ˛ < 1 is satisfied and, for some " > 0 and ı 2 .1; ˛/;

C1
Z

0

C1
Z

s

⇠

n�`�1�ı�"C r.1��/.˛�ı/
1�˛ r

.⌧.⇠//

ıC.`�1/�.⇠/jp.⇠/jd⇠ ds D C1; (4.14`)

then U`;t0 D ¿ for any t0 2 RC; where ˛ is specified by the first equality in (2.1).

Proof. It suffices to show that condition (4.2`) is satisfied for some k 2 N: Indeed, according to (4.11`) and
(4.12), there exist � 2 .0; 1/; r 2 .0; 1/; c > 0; and t1 2 RC such that

t

�

C1
Z

t

⇠

n�`�1
.⌧.⇠//

.`�1/�.⇠/jp.⇠/jd⇠ � c for t � t1 (4.15)

and

⌧.t/ � c t

r for t � t1: (4.16)

By (2.12`), (2.11`), and (4.15), we obtain

⇢

.˛/

2;`;t⇤.t/ �
c

.n � `/ä

t
Z

⌧.�1/.t⇤/

s

��
ds D

c

⇣

t

1�� � ⌧

1��

.�1/
.t⇤/

⌘

.n � `/ä.1 � �/

for t � ⌧.�1/.t⇤/:

We now choose t2 > ⌧.�1/.t⇤/ and c1 2 .0; c/ such that

⇢

.˛/

2;`;t⇤.t/ � c1 t
1�� for t � t2:
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Therefore, in view of (4.15) and (4.16), we can find t3 > t2 and c2 2 .0; c1/ such that, according to (2.12), we
get

⇢

.˛/

3;`;t⇤.t/ � c2 t
.1��/.1C˛ r/ for t � t3:

Hence, for any k0 2 N; there exist tk0
and ck0�1 > 0 such that

⇢

.˛/

k0;`;t⇤.t/ � ck0�1 t
.1��/.1C˛ rC:::C.˛ r/k0�2/ for t � tk0

: (4.17)

Assume that (4.13) is satisfied. We choose k0 2 N such that

k0 � 1 � ı

r.˛ � ı/.1 � �/

:

Thus, by (4.16), (4.17), and (2.9`;1), condition (4.2`) holds for k D k0:

In this case, the validity of the corollary has already been proved.
Further, assume that ˛r < 1 and, for some " 2 .0; .1 � �.˛ � ı/r/; relation (4.14`) is satisfied. We choose

k0 2 N such that

1C ˛r C : : :C .˛r/

k0�2 � 1

1 � ˛r

� "

.1 � �/.˛ � ı/r

:

Thus, by (4.14`), (4.16), and (4.17), it is clear that (4.2`) holds for k D k0: The proof the corollary is complete.

5. Differential Equations with Property B

Theorem 5.1. Let conditions (1.2) and (1.3) be satisfied, let, for any ` 2 f1; : : : ; ngwith even `Cn; conditions
(2.9`;c) and (3.1`) hold, and let (2.91;c) be satisfied for even n: Moreover, let, for any large t⇤ 2 RC and ` 2
f1; : : : ; n�2g with even `Cn; condition (4.1`) be true for some k 2 N if ˛ D 1 or, for some k 2 N; � 2 .1;C1/;

and ı 2 .1; ˛ç; relation (4.2`) hold when ˛ > 1: Then equation (1.1) possesses Property B, where ˛ is defined by
the first condition in (2.1) and ⇢

˛/

k;`;t⇤ is given by (2.11)–(2.13).

Proof. Assume that equation (1.1) has a proper nonoscillatory solution u W Œt0;C1/ ! .0;C1/ [the case
u.t/ < 0 is similar]. Then, by (1.2), (1.3), and Lemma 2.1, there exists ` 2 f1; : : : ; ng such that ` C n is even
and condition (2.3`) holds. Since, for any ` 2 f1; : : : ; n � 2g with even `C n, the conditions of Theorem 4.1 are
satisfied, we have ` 62 f1; : : : ; n � 2g: Let ` D n: Thus, by (2.3n), it is clear that there exists c 2 .0; 1ç such that,
for large t;

u.⌧.t// � c⌧

n�1
.t/:

Hence, by (2.9n;c), it follows from (1.1) that

u

.n�1/
.t/ �

t
Z

t1

.c⌧

n�1
.s//

�.s/jp.s/jds ! C1 for t ! C1;

where t1 is a sufficiently large number. This means that condition (1.4) is satisfied. We now assume that ` D 0; n is
even, and there exists c 2 .0; 1ç such that u.t/ � c for t � t2; where t2 is a sufficiently large number. According
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to .2:30/; from (1.1), we get

n�1
X

iD0

.n � i � 1/ä t1ju.i/
.t1/j �

t
Z

t1

s

n�1
c

�.s/jp.s/jds for t � t2:

The last inequality contradicts conditions (2.91;c). The obtained contradiction proves that condition (1.5) holds
and, therefore, equation (1.1) possesses Property B.

Theorem 5.10. Let conditions (1.2) and (1.3) be satisfied, let conditions (2.9`;1) and (3.1`) be satisfied for any
` 2 f1; : : : ; ng with even ` C n; and let (2.91;1) hold for even n: Moreover, let ˇ < C1 and let, for any large
t⇤ 2 RC and ` 2 f1; : : : ; n� 2g with even `C n; condition (4.1`) be satisfied for some k 2 N if ˛ D 1 or relation
(4.2`) hold for some k 2 N; � 2 .1;C1/; and ı 2 .1; ˛ç if ˛ > 1: Then equation (1.1) possesses Property B,
where ˛ and ˇ are defined by the first condition in (2.1) and ⇢.˛/

k;`;t⇤ is given by (2.11`)–(2.13`).

Proof. Since ˇ < C1; by (2.9`;1) for any ` 2 f1; : : : ; ng with even ` C n , condition (2.9`;c) is satisfied.
This means that conditions of Theorem 5.1 are satisfied, which proves the validity of the theorem.

Theorem 5.2. Let ˛ > 1; let conditions (1.2), (1.3), (2.91;c), (3.11) be satisfied, and let

lim inf
t!C1

.⌧.t//

�.t/

t

> 0: (5.1)

If, in addition, for some ı 2 .1; ˛/;

C1
Z

0

C1
Z

s

⇠

n�2�ı
.⌧.⇠//

ı jp.⇠/jd⇠ ds D C1; (5.2)

when n is odd, or

C1
Z

0

C1
Z

s

⇠

n�3�ı
.⌧.⇠//

ıC�.⇠/jp.⇠/jd⇠ ds D C1; (5.3)

when n is even, then equation (1.1) possesses Property B, where ˛ is given by the first condition in (2.1).

Proof. According to (2.91;c), (3.11), and (5.1), it is obvious that, for any ` 2 f1; : : : ; ng; conditions (2.9`;c)
and (3.1`) hold. On the other hand, by (5.1), (5.2), and (5.3), for any ` 2 f1; : : : ; n� 2g with even `C n; condition
(4.2`) is satisfied. This means that if ˛ > 1; then all conditions of Theorem 5.1 hold, which proves the validity of
the theorem.

Theorem 5.20. Let ˛ > 1; let ˇ < C1; and let conditions (1.2), (1.3), (2.91;1), (3.11), and (5.1) be satisfied.
Moreover, assume that, for some ı 2 .1; ˛ç; condition (5.2) holds if n is odd and condition (5.3) holds if n is even.
Then equation (1.1) possesses Property B, where ˛ and ˇ are given by (2.1).

Proof. Since ˇ < C1; by virtue of (2.91;1), it is clear that, for any c 2 .0; 1ç; condition (2.91;c) is satisfied.
Thus, all conditions of Theorem 5.2 are satisfied, which proves the validity of the theorem.
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Corollary 5.1. Let ˛ > 1; let conditions (1.2), (1.3), (2.91;c), (3.11), and (5.1) be satisfied, and let

lim inf
t!C1

t

C1
Z

t

s

n�3
⌧.s/jp.s/jds > 0: (5.4)

Moreover, if, for some ı 2 .1; ˛ç and � > 0;

C1
Z

0

C1
Z

s

⇠

n�2�ı
.⌧.⇠//

ıC�.�.⇠/�ı/jp.⇠/jd⇠ ds D C1; (5.5)

then equation (1.1) possesses Property B, where ˛ is defined by the first condition in (2.1).

Proof. Since ˛ > 1; by (5.4), (2.111), and (2.131), for any � > 0; there exists t� 2 RC such that

⇢

.˛/
1;1;t⇤.t/ � ` ä t

�

for t � t� : Therefore, by (5.4), (5.5), and (5.1), for any ` 2 f1; : : : ; n�2g condition .4:2`/ holds. Thus, for ˛ > 1;

all conditions of Theorem 5.10 are satisfied. Hence, according to the same theorem, equation (1.1) has Property B.
By Corollary 5.1, Theorem 5.20 can be proved similarly.

Corollary 5.1

0
. Let ˛ > 1; let ˇ < C1; and let conditions (1.2), (1.3), (2.91;1), (3.11), (5.1), and (5.4) be

satisfied. Moreover, if, for some ı 2 .1; ˛ç and � > 0; condition (5.5) is true, then equation (1.1) has Property B,
where ˛ and ˇ are given by (2.1).

Corollary 5.2. Let ˛ > 1; let conditions (1.2), (1.3), (2.91;c), (3.11), (5.1), and (5.4) be satisfied, and let there
exist m 2 N such that condition (4.7) holds. Then equation (1.1) has Property B, where ˛ is defined by the first
condition in (2.1).

Proof. By (5.1), (2.91;c), (3.11), and (5.4), it is clear that, for any ` 2 f1; : : : ; ng; conditions (2.9`;c), (3.1`),
and (4.6`) are satisfied.

Assume that equation (1.1) has a nonoscillatory proper solution u W .t0;C1/ ! .0;C1/: Then, by (1.2),
(1.3), and Lemma 2.1, there exists ` 2 f1; : : : ; ng such that ` C n is even and condition (2.3`) is satisfied. By
Corollary 4.4, ` 62 f1; : : : ; n � 2g: If ` D n (if n is even and ` D 0), then, by (2.9n;c) [(2.91;c)] as in Theorem 5.1,
we can show that condition (1.4) [condition (1.5)] holds, i.e., equation (1.1) has Property B.

Corollary 5.2

0
. Let ˛ > 1 and ˇ < C1 and let conditions (1.2), (1.3), (2.91;1), (3.11), (5.1), and (5.4) be

satisfied. If, in addition, there exists m 2 N such that condition .4:10/ holds, then equation (1.1) has Property B,
where ˛ and ˇ are given by (2.1).

Corollary 5.3. Let ˛ > 1 and let conditions (1.2), (1.3), (2.91;c), (3.11), and (5.1) be satisfied. Assume,
moreover, that there exist � 2 .0; 1/ and r 2 .0; 1/ such that conditions (4.141) and (4.15) hold and, at least one
of the conditions (4.16) or r ˛ < 1 and, for some " > 0 and ı 2 .1; ˛/; (4.171) are satisfied. Then equation (1.1)
has Property B, where ˛ is given by the first condition in (2.1).
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Proof. Suppose that equation (1.1) has a proper nonoscillatory solution u W .t0;C1/ ! .0;C1/: Then, by
(1.2), (1.3), and Lemma 2.1, there exists ` 2 f1; : : : ; ng such that `Cn is even and condition (2.3`) holds. Since by
(2.91;c), (3.11), (4.141), and (5.1), for any ` 2 f1; : : : ; n � 2g; conditions (2.9`;c), (3.1`) and (4.14`) are satisfied,
according to Corollary 4.6, we get ` 62 f1; : : : ; n � 2g: On the other hand, by analogy with Theorem 5.1, we can
show that if ` D 0 (` D n), then condition (1.4) [(1.5)] is satisfied, i.e., equation (1.1) has Property B.

Corollary 5.3

0
. Let ˛ > 1 and ˇ < C1; let conditions (1.2), (1.3), (2.91;1), (3.11), and (5.1) be satisfied,

and let conditions (4.141) and (4.15) hold for some � 2 .0; 1/ and r 2 .0; 1/: Then equation (1.1) has Property B,
where ˛ and ˇ are given by (2.1).

Theorem 5.3. Let ˛ > 1; let conditions (1.2), (1.3), (2.9n;c), and (3.1n�1) be satisfied, and let

lim sup
t!C1

.⌧.t//

�.t/

t

< C1: (5.6)

If, in addition, for some ı 2 .1; ˛ç;

C1
Z

0

C1
Z

s

⇠

1�ı
.⌧.⇠//

ıC.n�3/�.⇠/jp.⇠/jd⇠ ds D C1; (5.7)

then equation (1.1) has Property B, where ˛ is given by the first condition in (2.1).

Proof. According to (2.9n;c), (3.1n�1), and (5.6), it is obvious that, for any ` 2 f1; : : : ; n � 1g; conditions
(2.9`;c) and (3.1`) are satisfied. On the other hand, by (5.6) and (5.7), for any ` 2 f1; : : : ; n � 2g with even `C n;

condition (4.2`) holds. Hence, if ˛ > 1; then all conditions of Theorem 5.1 are satisfied, which proves the validity
of the theorem.

Theorem 5.30. Let ˛ > 1; let ˇ < C1; let conditions (1.2), (1.3), (2.9n;1), (3.1n�1), and (5.6) be satisfied,
and let condition (5.7) hold for some ı 2 .1; ˛/: Then equation (1.1) has Property B, where ˛ and ˇ are given
by (2.1).

Proof. Since ˇ < C1; by (2.9n;1) it is obvious that, for any c 2 .0; 1ç; conditions (2.9n;c) hold. Thus, all
conditions of Theorem 5.3 are satisfied, which proves the validity of the theorem.

Corollary 5.4. Let ˛ > 1; let conditions (1.2), (1.3), (2.9n;c), (3.1n�1) and (5.6) be satisfied, and let

lim inf
t!C1

t

C1
Z

t

.⌧.s//

1C.n�3/�.s/jp.s/jds > 0: (5.8)

If, moreover,

C1
Z

0

C1
Z

s

⇠

�1�ı
.⌧.⇠//

ıC.n�3/�.⇠/C�.�.⇠/�ı/jp.⇠/jd⇠ ds D C1 (5.9)

for some ı 2 .1; ˛ç and � > 0; then equation (1.1) has Property B, where ˛ is given by the first condition in (2.1).
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Proof. Since ˛ > 1; by (5.8), (2.11n�2), and (2.13n�2), for any � > 0 there exists t⇤ 2 RC such that

⇢

.˛/
1;n�2;t⇤.t/ � ` ä t

�

for t � t� : Therefore, by (5.6), (5.8), and (5.9), for any ` 2 f1; : : : ; n � 2g conditions (4.2`) are satisfied. Hence,
according to the same theorem, equation (1.1) has Property B.

Corollary 5.4

0
. Let ˛ > 1; let ˇ < C1; and let conditions (1.2), (1.3), (2.9n;1), (3.1n�1), (5.8), and (5.9) be

satisfied. Then equation (1.1) has Property B, where ˛ and ˇ are given by (2.1).

In view of (5.6), by repeating the arguments used in Corollary 5.3, we easily prove that the following corollary
is true:

Corollary 5.5. Let ˛ > 1 and let conditions (1.2), (1.3), (2.9n;c), (3.1n�1), and (5.6) be satisfied. Moreover,
assume that there exist � 2 .0; 1/ and r 2 .0; 1/ such that conditions (4.14n�2), (4.15), and at least one of the
conditions (4.16) or r ˛ < 1 and, for some " > 0 and ı 2 .1; ˛ç; (4.17n�2) are satisfied. Then equation (1.1) has
Property B, where ˛ is given by the first condition in (2.1).

Corollary 5.5

0
. Let ˛ > 1; let ˇ < C1; and let conditions (1.2), (1.3), (2.9n;1), (3.1n�1), and (5.6) be

satisfied. Moreover, assume that there exist � 2 .0; 1/ and r 2 .0; 1/ such that conditions (4.14n�2), (4.15), and
at least one of conditions (4.16) or r ˛ < 1 and, for some " > 0 and ı 2 .1; ˛ç; (4.17n�2) are satisfied. Then
equation (1.1) has Property B, where ˛ and ˇ are given by (2.1).

Theorem 5.4. Let ˛ D 1 and let conditions (1.2), (1.3), (2.91;c), (3.11) and (5.1) be satisfied. If, in addition,

lim sup
t!C1

1

t

t
Z

0

C1
Z

s

⇠

n�2jp.⇠/jd⇠ ds > 0; (5.10)

when n is odd, and

lim sup
t!C1

1

t

t
Z

0

C1
Z

s

⇠

n�3
.⌧.⇠//

�.⇠/jp.⇠/jd⇠ ds > 0; (5.11)

when n is even, then equation (1.1) has Property B, where ˛ is given by the first condition in (2.1).

Proof. According to (2.91;c), (3.11), and (5.1), for any ` 2 f1; : : : ; ng; conditions (2.9`;c) and (3.1`) are
satisfied. On the other hand, by (5.1), (5.10), and (5.11), condition (4.1`) holds for any ` 2 f1; : : : ; n � 2g with
even ` C n: Hence, if ˛ D 1; then all conditions of Theorem 5.1 are satisfied, which proves the validity of the
theorem.

Theorem 5.40. Let ˛ D 1; let ˇ < C1; and let conditions (1.2), (1.3), (2.91;1), (3.11), (5.1), (5.10), and
(5.11) be satisfied. Then equation (1.1) has Property B, where ˛ and ˇ are given by (2.1).

Proof. Since ˇ < C1; by (2.91;1), condition (2.91;c) holds for any c 2 .0; 1ç: Thus, all conditions of
Theorem 5.4 are satisfied, which proves the validity of the theorem.
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Theorem 5.5. Let ˛ D 1 and let conditions (1.2), (1.3), (2.91;c), (3.11), and (5.1) be satisfied. If, in
addition,

lim inf
t!C1

t

t
Z

0

C1
Z

s

⇠

n�3
⌧.⇠/jp.⇠/jd⇠ ds > max

✓

` ä.n � `/ä

!

`�1
; ` 2 f1; 2; : : : ; n � 2g

◆

(5.12)

and

lim sup
t!C1

1

t

t
Z

0

C1
Z

s

⇠

n�2
.⌧.⇠//

�.⇠/jp.⇠/jd⇠ ds > 0; (5.13)

then equation (1.1) has Property B, where

! D lim inf
t!C1

.⌧.t//

�.t/

t

: (5.14)

Proof. By (5.12), (5.14), and (2.11`), it is obvious that, for large t; we get

⇢

.1/

1;`;t⇤.t/ � ` ä t; ` 2 f1; : : : ; n � 2g: (5.15)

On the other hand, according to (2.91;c), (3.11), (5.1), (5.14), (5.15), and (5.13), for any ` 2 f1; : : : ; n � 1g;
conditions (2.9`;c), (3.1`) and (4.1`) are satisfied. Thus, if ˛ D 1; then all conditions of Theorem 5.1 are true,
which proves the validity of the theorem.

The proof of Theorem 5.4 has been used as a guide in proving Theorem 5.40. In exactly the same way, the
proof of Theorem 5.5 is used as a guide in proving the next theorem .

Theorem 5.50. Let ˛ D 1; let ˇ < C1; and let conditions (1.2),(1.3), (2.91;1), (3.11), (5.1), (5.12), and (5.13)
be satisfied. Then equation (1.1) has Property B, where ! is given by condition (5.14).

Theorem 5.6. Let ˛ D 1 and let conditions (1.2), (1.3), (2.9n;c), (3.1n�1) and (5.6) be satisfied. If, in
addition,

lim sup
t!C1

1

t

t
Z

0

C1
Z

s

⇠.⌧.⇠//

.n�3/r.⇠/jp.⇠/jd⇠ ds > 0; (5.16)

then equation (1.1) has Property B, where ˛ is given by the first condition in (2.1).

Proof. According to (2.9n;c), (3.1n�1), and (5.6), conditions (2.9`;c) and (3.1`) hold for any ` 2 f1; : : : ; n�
1g. On the other hand, by (5.6) and (5.16), condition (4.1`) holds for any ` 2 f1; : : : ; n � 2g with even ` C n.
Hence, if ˛ D 1; then all conditions of Theorem 5.1 are satisfied, which proves the validity of the theorem.

Theorem 5.60. Let ˛ D 1; let ˇ < C1; and let conditions (1.2), (1.3), (2.9n;1), (3.1n�1), (5.6), and (5.16) be
satisfied. Then equation (1.1) has Property B, where ˛ and ˇ are given by (2.1).

Proof. Since ˇ < C1; it suffices to show that, by (2.9n;1), for any c 2 .0; 1ç condition (2.9n;c) is satisfied.
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Theorem 5.7. Let ˛ D 1 and let conditions (1.2), (1.3), (2.9n;c), (3.1n�1), and (5.6) be satisfied. If, in
addition,

lim inf
t!C1

t

t
Z

0

C1
Z

s

.⌧.⇠/

1C.n�3/�.⇠/jp.⇠/jd⇠ ds

> max
✓

` ä.n � `/ä

!

n�`�2
; ` 2 f1; 2; : : : ; n � 2g

◆

; (5.17)

then the condition

lim sup
t!C1

1

t

t
Z

0

C1
Z

s

⇠.⌧.⇠//

.n�2/�.⇠/jp.⇠/jd⇠ ds > 0; (5.18)

is sufficient for equation (1.1) to have Property B, where

! D lim inf
t!C1

t

.⌧.t//

�.t/
: (5.19)

Proof. By (5.17), (5.19), and (2.11), it is clear that, for large t; condition (5.15) holds.

On the other hand, according to (2.9n;c), (3.1n�1), (5.6), (5.15), (5.18), and (5.19), for any ` 2 f1; : : : ; n� 1g;
conditions (2.9`;c), (3.1`), and (4.1`) are satisfied. Thus, if ˛ D 1; then all conditions of Theorem 5.1 are true,
which proves the validity of the theorem.

Theorem 5.70. Let ˛ D 1; let ˇ < C1; and let conditions (1.2), (1.3), (2.9n;1), (3.1n�1), and (5.6) be
satisfied. If, moreover, conditions (5.17) and (5.18) hold, then equation (1.1) has Property B, where ˛; ˇ; and !

are given by (2.1) and (5.19).

Proof. Since ˇ < C1; it suffices to show that, by (2.9n;1), conditions (2.9n;c) are satisfied for any c 2
.0; 1ç.
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