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DETERMINATION OF THE THERMOELASTIC STATES OF PIECEWISE
INHOMOGENEOUS THERMOSENSITIVE BODIES WITH
CYLINDRICAL INTERFACES

B. V. Protsyuk UDC 539.3

We suggest a method for the determination of the thermoelastic state caused by plane axisymmetric
temperature fields and surface loads in layered isotropic bodies with cylindrical interfaces. The temper-
ature and coordinate dependences of the moduli of elasticity, coefficients of linear temperature expan-
sion, and Poisson ratios are taken into account. The method is based on the solution of the systems of
integral-algebraic equations for radial displacements. In the case of a cylinder, these systems are ob-
tained from the integral representation of the solution of the problem for the ordinary differential equa-
tion with generalized derivatives. In this case, we use the Green function of the elasticity problem for
a homogeneous cylinder. In the cases of a layered space with cylindrical cavity, a continuous cylinder,
and the continuous space, the corresponding systems and the remaining relations required for the deter-
mination of the thermoelastic state are obtained as a result of the limit transitions. The relations for the
determination of thermal stresses in the corresponding single-layer bodies are presented. The numerical
investigations are performed for a three-layer cylinder with functionally gradient layer.

The solution of one-dimensional problems of elasticity and thermoelasticity for one- and multilayer cylin-
drical bodies with variable physicomechanical characteristics is often based on the application of analytic
and numerical-analytic methods [1-10, 12, 13, 15, 17-23], including the methods used for the reduction of the
corresponding problems to the solution of the integral equations for stresses. In the present work, we propose
a method for the determination of the thermoelastic state caused by plane axisymmetric temperature fields and
surface loads in isotropic thermosensitive inhomogeneous and piecewise inhomogeneous bodies with cylindrical
interfaces. The method is based on the solution of systems of integral-algebraic equations for the radial dis-
placements. Moreover, the required functions appear in the integral operators only in the integrands of single
integrals. The method is based on the use of generalized functions and the Green function of the elasticity prob-
lem for a homogeneous cylinder.

Statement of the Problem of Thermoelasticity

Consider an elastic body formed by concentric circular hollow isotropic cylinders with different physicome-
chanical characteristics. It is assumed that these cylinders are in perfect contact and that the bounding cylindri-
cal surfaces of the body are subjected to the action of uniformly applied loads ¢, and ©,, respectively.
The end faces are subjected to the action of loads whose resultant force is equal to P and the body is placed in
a temperature field described by the function
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n—1
1) = 4N+ Y, [t () = (OIS = 1), (1)
i=1

where ¢ p (r), p=1,...,n, are the known distributions of temperatures for Ip1 <r<ry; r, ry, and r,

respectively, the radial coordinate, the inner radius of the first layer, and the outer radius of the pth layer related
to the characteristic linear size ¢; n is the number of layers, and S({) is the Heaviside function.

are,

We now determine the thermoelastic state of the body by assuming that the physicomechanical characteris-
tics of the components are functions of temperature and coordinate. For this purpose, we use the equilibrium
equations
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where the radial displacement u(r) related to ¢ satisfies the equation with generalized derivatives

d du d u d(u d . .« dMr)
— — [+—| AMr)— [+2 — - | = — D(r)|— , 4
dr [c(r) dr } dr{ ") r } M) dr ( r ) dr e (D) - dr )
and the boundary conditions
G, r=n = —0Op, G, r=r = —0y. (5)

Here, the functions

c(r) = Mr)+2u(r),

_ E(t,ryv(t,r) _ Et,r)
Mr) = v mi-2van ) = 21+ v(t,r)]
vi(r) = M, and  ¢*(r) = _E@r)

1=v(t,r) 1-2v(t,r)

have the form (1); the functions E(¢,r), v(t,r), and ®(r) coincide (within the limits of the pth layer), respec-
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tively, with the modulus of elasticity E P (1 P r), Poisson’s ratio Vv p(t p,r) , and

1,(r)

©,0) = | o,@rdg;
0

O (tp,,r) are the coefficients of linear thermal expansion of the pth layer, and €, = const is the level of axial

strains (this parameter is now unknown).

Integral Representation of the Solution

We now pass from the differential statement of the problem of determination of displacements to its formu-
lation in the integral form with the help of the Green function obtained as a special case [11]:

1 Lo ki
G(r.p) = 2—{§S(p—r)+$S(r—p)+ P Z{V\Vo(pHM”, ©)

Co m —n

which is a solution of the problem

9°G 190G G 1
T = 80 -p), 7
Tt 9 T T o3P (7)
Tr|r:r0 = r |r:rn = O' (8)

Here and in what follows,

2
T dG(r, G(r,
VE@E=1-2vo£ ™ m=0,n; 1, =c z()rp)””(’ r-p),

k=1/0=2vo);

°

co = Ao + 2Ug, Ay, Wo, and vq are values from the ranges of Ay(r), W;(r), and vy(#,r), respectively,
and 9({) is the Dirac delta-function.

We now multiply Eq. (4) by rG(r,p). Integrating the obtained equation from ry to r,, in view of rela-
tion (7), we get

n

@O _ {66, -[ 2 oy 106 |
r

€o

+ .r [ra—G(dC(r)) +G(d7b(r)) }tdr
ar dr cl dr cl

+ Ky G|,:,i ]Mi(”i)

r=r;
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T o
+ [ =Gy (@) dr—e. | — (G dr, )
or or
o o
where
Kei=cim(n)—ci(r), Ky =K;—-2Ky, and Ky =W (n)—Wi05).
The index “cl” means that the corresponding derivative is classical.

System of Integral-Algebraic Equations for Displacements

We now replace the integrals over the thickness of the cylinder in (9) by the sum of integrals over the thick-
nesses of layers. After appropriate transformations, in view of the boundary conditions (5) and the Green func-
tion (6), we get the following system of integral-algebraic equations for the displacements u,(p) of the pth

layer:
1 V() +BiWi (P)
oM D) = )+ Ve (94 pVyp () + p LY @ TP (P
p h —h
n—1 )
+pUM)+ D, gD (i) + uy(p) = €ty (P)s  Tpoy <P<Tp, (10)
i=1
where

Vop(P) ) BopWn (P)+BapWd (p)

ugp(p) = ,
P Vnz—ro2
p
Vop(P) = jrAa,,(r)dr, oa=t,e,
I‘p,l

Ap(r) = cp(N®@p(r),  Agp(r) = Ap(r),

P_l n
Bap = X Vui(r),  Bop = O Veilr),
i=1 i=p

p p
1
Vo) = [ mipupdr. Vi) = [ 32y (ryr,

Tp-1 p-1

dpp(r)
:|’ y2p(r) = dpl‘ >

d [ W, (r)

Yipr) = —| ————
g dr| 1-2v,(t,.r)
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2 Vei () — ki 2 Vi (1),

i=1

Zvc,m) krnz i),

Y Ttk 5DV 6 (P) = Yorous (7 )W (P)

Up) =
(P) 22
uy(p) = pll Y0V (P) — n\lfo(P)’
kO(rn _rO)
2 2 1-2v
vo = By, oy, = B, gy = 20
ko k() I—VO
bni +( )’ Sl’
g(’)(p) _np Yo (p 4
w0 =T

boiWn(P), p>i,

by = Ke—kKywy(r), by = Ko —kKuwo@r).
In view of the structure of Egs. (10), we seek their solution in the form of a sum

up(p) = uh(P)+uy(p)—eup(p),

177

(1D

where (in view of the fact that the physicomechanical characteristics are variable) the first term describes the
displacements caused by the temperature field, whereas the second term corresponds to the surface loads o

and G, in the cylinder with fixed ends.

Substituting (11) in (10), we obtain the corresponding systems of equations for each function uls,(p),

s=1,y,€:
; 1| Ve g
un(p)——— +pVip(P)
)4 Cp(p) up
dopwn<p>+d,,w()<p> oo u » (p)
+ ) gup(Pu; (1)
P rnz _rO 2 P Cp(p)
where

s s s s s s
dOp = Bup_'YOrOul (1), dnp = Bup+annun(rn)’

(12)
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p-l p—1 n o
Bl = Vet —kig X Vi),  PBiy = Y V) —kniBi,
i=1 i=1

i=p

Bis = 2 (1), (13)

p p
1
V@) = | myip(ruyrydr, Vi) = | Y2 () dr

FP,| rp,]

up(P) = up(P),  ug,(P) = uy(P),  uGp(P) = ugy(p).

Relations for the Determination of Strains and Stresses

Under the assumption that the solution of Eqgs. (12) is known, we now write the relations for the other com-

ponents of the stress-strain state.
Differentiating (10) with regard for (11) and (13), we get the following formula for the radial strains:

cp(PER(P) = E1p(P)+ &7 (P) — €:E5,(P), (14)
where
. 5oy L ys ; n(0)+d ®) N s
e (P) = 5005 V) + )+ LopYn(B)+ Vo lp + 2 6 Pui ).
]
1 2 (P) +BepWo (p)
S0) =~ Vo) + Mgy (py+ LY@ TPV ®
p n —To
o n n
elp) = S0V (P) \Ifo(P)
kO(rn ) )
i 1
g9 = 5 )
'n =70 bOiWn (P), p> i
Substituting (10) and (14) in the dependences for the pth layer obtained on the basis of (3), we get
(15)

Oyp(P) = G4, (P)+05Y,(P)—€,05,(p), Y=r.0,2,

where

G5,(P) = G5 (P),  Og(p) = 65 (p),
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s 1 l b
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The axial strains can be found from the condition

Tn n p P
Ipczz(p)dp = 2 _[ Pczp(P)dP = E

1 p=l1 Tp-1
In view of relation (15), we find
e, = el +el +el, (16)
where
p P
7z T S
27d,

1 n n n 1 n n i
el = d—{anp%Zan—ZAﬁmw], el = —d—[ZZnﬁwZAzmp],
e\ p=1 p=1 p=1

€ p:l p=1

n n n
dg = an—22ﬂﬁp—2f‘§ﬂw
p=1 p=1 p=1

p

Tp "p
M = | PGLEP,dp. M = [ pvueVinedp. My, = [ pvi(p)dp,

rp,l rp,l rp,]

r],

M, = [ pChp)dp.

rp,l

Special Cases
If we let r, tend to infinity in (12)—(15) and set €, =0 and &, =0, then we get the corresponding rela-

tions for a layered space with cylindrical cavity. In this case, the systems of integral-algebraic equations for the

displacements uls,(p), s=t,y, take the form

1| Vo) +di,

uy(p)— &®) +pVir(P)
REs L F S s 15, (P)
— KB PYE(P) + D gl (P () | = —2—, (17)
i=1 Cp(p)

and the terms in formulas (14) and (15) are given by the expressions:
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n—1

C d l S
e5,(p) = e5(P)+ Vi, (P) — kBuswo (p) - —L—5—L ”(p) 0p +2g“(p>u,~ "),
_ _ A d
S P) = F37(0) 7 kop(p) 2P 0p
+ k(P () — kB Ws,(0) + 2 gy  (puf (),

ol,(P) = —L,(P)P,(p)+ 2v}2(p){ .+ Z gul )+, Ap)}

Sl (p) = 2v*p<p>{ B+ 2 gl 1)+ Vi (p)}

Here,
dop® = V@ 4Byl ) = B0
Op P p tpl> 0p k()p >
e e 1 s
B = [ —yauusrydr,
Tn—1 r
V + . 2
o) = PP w0, el = —;00‘;3,
_ Vp@)+Byp 1 .
(P) +k p(p) pi_g(l‘i‘l)cp(p)q)p(p) B
yF _rOZGO
) = +Fp2k0p(p)a

Sup . 8ep ,
boiti /- p=t —boi7i /P~ p>i,
- 2 . .
(l)+ _kKlea—p(p)/rl ’ p S L (l) _kK].ll/rl’ p S L,
Fhboikop(P)/P”, p>i, 0, p>i.

The other notation is the same as for the layered hollow cylinder.

l —kKipws (P, p<i, l —kKyiwo(P)/ri, p =i,
) = { g D) =
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For n=1, relations (12)—(18) yield the corresponding formulas for the determination of the components of
the thermoelastic state in the following one-component hollow inhomogeneous thermosensitive objects:

in a cylinder:

deK(p)‘Zoro“s(roWT(P) S m®) e

1|1
u’ _ 2 Cs +oV?S + ,
®) (P)+pVi(P)+p i s

cp)|p

s s 1 s s ds - _ K —
p n —n
ko1(p)

diWo (p) = Yorou' (r)W1 (p)
7‘12 - 7'02 ’

cr(p) = f(p)- T Ve (p) + ki (p)Vy (p) + (19)

k B0 o) — S Nt
L) = f3()+ 0‘;;9) VEO)+ k(o) + Vo (P FZOFOZZ (o)W1 (p)
=7

oL(p) = ~LP)D(P)+ 2V (PA’ +Vi(p)],

ol(p) = 2V (AT +Vi(P)].  oi(p) = ~C(P+2v (PIA*+Vi(p)],

where
1 V(n) 156oW (p) — iEo 1w (p)
up(P) = =Vi(P)+—=—5pYi(p), ujp) = p .
0 p ' -y ’ 0 ko (i = 13)
1% V. + p .
u(p) = 8;")+ SRV ) = [r iy
1 =170

o

p
Jldu(r)us(r) dr.
r o dr

o

: (ARG Sy
Ve(p) = ;[rg[m}u (rdr, Vip) =

di = V)= ki Vi) +yinu'(n),

Yo = 2U(rp)/ko —c(rp), Y1 = 2W(n)/ ko —c(r),

_1-2v(t,p) ~

ko1(p) = Tvip) | ki(p) = v’
_ _E@p) ey = _E@P)

“) = 1=v(t,p)’ - ® 1-v3(1,p)’
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1 V. (n
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P 1 —Vo
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) 1)



184 B.V.PROTSYUK

in the space:

K 1 Vcs (P) - YOrOuS(rO) K QEs + Mé (P)
— V —k u = 5 =LYy,
u’(p) ) - +pVi(p)— KBy’ pWo (p) @ t,y
s s s QES. — VCS B ’
eX(p) = € (p)+ Vi (p)— Ky (p) — L R2=Yort (o)
s _ S _ ko1(P) 1y, s s R¥S~—
cr(p) = £ (p) w2 Ve (P) = Yorou® (r)] + ki (P)V (P) — kB’ Wo (), (20)

k Q#S ~ +
Sh(0) = f3(p)+ °;§p) [VE () = Yorou' ()] + Ky (PIV, () — kB2 (),

oL(p) = ~LPIP(P)+V (PI-KBY +2Vi (P,

ol(p) = V(PI-KkBY +2Vi ()],

where

1 2 "’;;<S oold K
W@ = Vi) uwe) = 000 = LD g,
P 0! dr

kop
t 1 * y ro260
¢P) = ——=V,(p)+c (D). (p) = ~00
p kop
k 2
i) = 2@y o) ) = 1%,
p kop

1
fo(P) = km(p){p—sz(p)—c‘(p@(p)}, Cp(p) = G (p).

Substituting 7y =0 in the formulas for the analyzed hollow bodies, we obtain the corresponding formulas
for continuous bodies. In this case,as p — 0 (i.e., on their axis), we find

1 1 1 . 1
—ValP) = 0, —=Vaulp) = S0P (0), —Vup) — 0,
p p 2 p

1 1 1 1
—Va@) > 0, Vup) —> 0, —Va@p) — 0, —Val) > = 2A(0).
p p p 2

Note that, for the corresponding quasistatic problems, time appears in the obtained relations as a parameter.
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Numerical Results

For the variable and constant physicomechanical characteristics, we study the static thermoelastic state
of a hollow three-layer cylinder with fixed or free ends. We set a heat flux

qo=6- 10°W/m?
and a load

6o = 0.04947 GPa

on the inner surface, whereas the values of temperature
t. =20 °C
and the load

6, = 002249 GPa

are set on the outer surface. The dependences of the physicomechanical characteristics of the first and third lay-
ers are chosen as follows:

AP = (1714021-107°7 +0.116-10°T ) [W/(m - K)],
a’(1y) = (133:10°-189-107T; +12.7-10‘12T12) K],
E((T))=(1322-503-107T, — 8.1-107°T?) [GPa],
AP(T3) = (143+0.014T5) [W/(m-K))],
af¥(T5) = (14.854-107 +0.0033-107°T3 ) [K™'],
E5(T3) = (206.11-0.07T;) [GPal.

The dependences of the physicomechanical characteristics of the second layer are determined according to
the relation [16]

p2(T2,p) = l[Pl(Tz)— P3(T2)]COS(RmJ+1[P1(T2)+ p3(T)].
2 po—p1) 2

Here, p;(T) and p3(T) are the corresponding dependences for the first and third layers, kgi)(T,-) are the heat-
conduction coefficients, and T; = (¢;(p)+273) °C.
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The constant physicomechanical characteristics correspond to Poisson’s ratios v; =0.3, v, =0.23, and
v3 =0.35 (in what follows, this is combination 1 of Poisson’s ratios). We also take the following mean values
of the dependences presented above:

A = A, = 1945 W/(m-°C), A® = 13.18398 W/(m - °C),
AP = 2442 W/(m-°C),
al = o, = 0.88457-107° °C”!,  o!¥ = 130428107 °C™!,

al® = 172399107 °C!,
E; = E, = 89.95874 GPa, E, = 12272937 GPa, and E; = 155.5 GPa.

The distributions of temperatures #;(p) are obtained from the following system of integral equations [14]:

l3(p) = ) jék(3)[l3(§)]
1(p) = t3(n)+ty deﬁ (21)
2)
1(p) = tr(rn)+t5my .[ A dg,
w“[t ©)]
7\'s1

This system is solved, by analogy with system (12) (for n = 3), by the method of successive approxima-
tions for rp=0.8, =082, n =09, r3=1, and ¢=0.05 m. We choose the solution of the problem of
heat conduction for the three-layer cylinder with constant heat-conduction coefficients as the zero-order approx-
imation in the solution of Eqs. (21). At the same time, in the solution of Eqs. (12), the right-hand sides of the

corresponding equations are taken as the zero-order approximation.
For constant physicomechanical characteristics in the case of fixed ends (g, =0), in Table 1, we present

the values of displacements i = u/(0t,), strains €, =€, /(0 ts), and stresses G; =0 ;/(EgOgts), j=r,
¢,z , on the bounding and middle surfaces of the layers caused by the temperature f1e1d, in Table 2, we present

the corresponding values caused by the surface loads. At the same time, in Table 3, we present the third terms in
relations (11), (14), and (15) obtained under the simultaneous action of thermal and surface loads (the case of
free ends). Here, for the sake of comparison, we show the results of calculations carried out on the basis of the
exact solution [11] in the lower rows (under the bar). In this case, the values of axial strains ¢€,/(0l ;) com-
puted on the basis of (16) and on the basis of the exact solution are 0.0914444 and 0.0914443, respectively.
This reveals a high accuracy of determination of the quantities characterizing the thermoelastic state by using the
proposed method.
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Table 1
p ii-10 g,-10? G, 102 ¢ 10 G,-10
. 0.1370304 6464131 0.0 ~0.3654808 ~0.4972408
0 mmmmmmmmmmmm mmmmmmaoom e—moeoooooo TUSRMTOMNO L TEZIETYO L
0.1370305 6.464130 0.0 ~0.3654807 ~0.4972408
ntn 01425442 45715737 -0.0360969 02198995 ~ -0.3552692
2 0.1425443 45715730 -0.0360968 -0.2198993 -0.3552691
s 0.14618%0 - - 2.7256009 00537797  -0.0779015 ~ -0.2150395
! 0.1461891 2.7256002 -0.0537796 -0.0779014 -0.2150395
neo 01461890 - 3909923 00537798 02413138 ~ -0.4390568
! 0.1461891 3.909922 -0.0537796 -0.2413136 -0.4390567
nt+r, 01590021 - 2519231 -0.1270620  -0.0870617 = -0.2921329
2 0.1590022 2.519230 -0.1270616 -0.0870615 -0.2921392
b 01665094 1253597 -0.1284402 00533191~ -0.1518898
2 0.1665095 1.253597 —0.1284398 0.0533193 -0.1518898
poao 01665095 - 2.2012004 _ -0.1284405  -0.0577990  -0.2946906
2 0.1665095 2.2012001 —0.1284398 —0.0577988 -0.2946905
ntr; 01740122 0.8245205  -0.1048831 0.1184741 ~ -0.1160617
2 0.1740122 0.8245203 -0.1048823 0.1184743 -0.1160616
- 0.1749795 04170706 00 = 02774502 0.0534025
. 0.1749795 04170707 00 0.2774504 0.0534026
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We also compare the values of relative displacements, strains, and stresses computed on the basis of [12]
and the proposed method for v = v, =v3=0.3 (in what follows, this is combination 2 of Poisson’s ratios) and

the presented variable physicomechanical characteristics. It turns out that, in seven approximations, the corre-

sponding values differ by at most 107, Note that, for the identical constant Poisson’s ratios and the other vari-
able physicomechanical characteristics, the independence of the radial and circular stresses on the axial strains
was established in [12]. At the same time, the determination of the thermoelastic state of layered cylinders was

reduced to the solution of the systems of integral-algebraic equations for the normalized radial stresses.
The numerical data obtained for combination 1 and for the following Poisson’s ratios: v; =0.3, v, =0.27,

and v3 =0.33 (combination 3) and the same other variable physicomechanical characteristics demonstrate that
we need 32 and 11 approximations, respectively, in order to attain the same accuracy as for combination 2.

The largest differences between the maximum values of displacements, strains, and radial, circular, and
axial stresses for the combinations of Poisson’s ratios 1 and 2 do not exceed 2,9, 12, 20, and 3.7 %, respectively.
For the analyzed three combinations of Poisson’s ratios 1, 2, and 3, the radial changes of the investigated param-
eters caused by the temperature field in a cylinder with fixed ends are characterized by curves 1, 2, and 3
in Figs. 1-5, respectively. In the same figures, we also illustrate the behavior of the indicated parameters caused
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Table 2
P ii-10° g,-10? G, 102 5o -10° 5,102
; 04845818 —0.5592011 04033127 04927860 0.0268419
0 0.4845822 ~0.5592013  —-0.4033127 0.4927865 0.0268421
ntn 04790617 - ~0.5449081 03923181 04817913~ 0.0268419
2 0.4790621 ~0.5449083  —-0.3923180 0.4817919 0.0268421
q_o Q04736819 —0.5311347 03817232 04711965 0.0268419
: 0.4736823 ~0.5311349  —0.3817232 04711197 0.0268421
qro  OA736819 —0.413%004 ~ -0.3817232 0.7180916  0.0773647
1 0.4736823 ~0.4139005  -0.3817232 0.7180923 0.0773649
ntrn 04580482 - —0.3688538 03317587 0.6681270  0.0773647
2 0.4580486 -0.3688539  —0.3317586 0.6681277 0.0773649
g 04440954 —0.3296789 ~ -0.2883068 0.6246752  0.0773647
: 0.4440958 ~0.3296790  —0.2883067 0.6246759 0.0773649
gy 04440954 —0.3696206 ~ -0.2883069 08167744  0.1849636
: 0.4440958 ~0.3696208  —0.2883067 0.8167753 0.1849639
ntrs 04267500 -0.3253918  -0.2316753 0.7601428  0.1849636
2 0.4267503 ~0.3253919  -0.2316751 0.7601439 0.1849639
; 04114487 —0.2876299 = -0.1833242 07117917 0.1849636
: 0.4114490 ~0.2876300  —-0.1833239 0.7117925 0.1849639
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Table 3

P i-10 g 10 &,-10° Gy 10 5.

. -022588481 = -0.2708948 00 00088162 ~ 00911799
0 -0.22588479  —0.2708944 0.0 ~0.0088165 0.0911798
htn 022859446 = -02710354 ~ 00108171 =~ -0.0087081 ~ 00911799
2 -0.22859445 02710351  -0.0108174  —0.0087083 0.0911798
p—g 923130550 - —02711709 = 00212409 ~ -0.0086038 ~ 00911793
1 -0.23130548 02711706  -0.0212416  —0.0086041 0.0911798
p+0Q 023130547 = -0.1850222 = -00212361 = -0.1034294 ~ 0.1223724
1 -0.23130548  —0.1890220  —0.0212416  —0.1034298 0.1223723
ntrn -023895293 - -0.1932498 = 04301579 = 00987403~ 0.1223724
2 -0.23895293  —0.1932496 04901511  -0.0987406 0.1223723
pooo 024675812 - -0.1969264 ~ -08979445 = -0.0946624  0.1223724
? -0.24675811  —0.1969261  -0.8979524  —0.0946627 0.1223723
4@ 024675812 - 03479965 = -08979451 = 00855424 = 01607477
? -0.24675811 03479961  —0.8979524 0.0855417 0.1607475
ntrs 7020406081 ~ -0.3442135 = 04135531 = 00806985 ~ 0.1607477
2 -0.26406079 03442131  —0.4135634 0.0806978 0.1607475

, 028118867 = -0.3409836 ~ 00 | 00765628 01607477
: -0.28118862  —0.3409832 0.0 0.0765622  0.1607475
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by the temperature field in a cylinder with free ends for the combination of Poisson’s ratios 1 with variable
(dash-dotted lines) and constant (dashed lines) moduli of elasticity and the coefficients of linear thermal expan-
sion. It is easy to see that the displacements are negative in a cylinder with free ends, unlike the case of a cylin-
der with fixed ends (Fig. 1). In other words, under the action of the temperature field, the inner and outer diame-
ters of the analyzed hollow cylinder decrease and the axial stresses are tensile (Fig. 5). In the cases of free or
fixed ends of the cylinder, the difference between the strains and the radial and circular stresses may be more
than twofold (Figs. 2-4). The analysis of the variations of physicomechanical characteristics leads, in particular,
to noticeably different distributions of strains and circular stresses in the middle layer (Figs. 2 and 4).

CONCLUSIONS

The problem of determination of the thermoelastic state caused by plane axisymmetric temperature fields
and surface loads in piecewise inhomogeneous thermosensitive isotropic cylindrical bodies is reduced to the
solution of the corresponding systems of integral-algebraic equations for radial displacements. The obtained
relations are approved for the static problems of thermoelasticity for hollow three-layer cylinders with fixed or
free ends and variable or constant physicomechanical characteristics. We demonstrate high accuracy of deter-
mination of the parameters of thermoelastic state by using the proposed method and a noticeable effect of varia-
tions of the physicomechanical characteristics and the conditions imposed at the ends on their thermomechanical
behavior.

The present work was partially financially supported within the framework of the joint scientific project
of the Ukrainian National Academy of Sciences and the Russian Foundation for Fundamental Research
(No. 0112U005002).
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