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DETERMINATION OF THE THERMOELASTIC STATES OF PIECEWISE 
INHOMOGENEOUS THERMOSENSITIVE BODIES WITH 
CYLINDRICAL INTERFACES 

B. V. Protsyuk  UDC 539.3 

We suggest a method for the determination of the thermoelastic state caused by plane axisymmetric 
temperature fields and surface loads in layered isotropic bodies with cylindrical interfaces.  The temper-
ature and coordinate dependences of the moduli of elasticity, coefficients of linear temperature expan-
sion, and Poisson ratios are taken into account.  The method is based on the solution of the systems of 
integral-algebraic equations for radial displacements.  In the case of a cylinder, these systems are ob-
tained from the integral representation of the solution of the problem for the ordinary differential equa-
tion with generalized derivatives. In this case, we use the Green function of the elasticity problem for 
a homogeneous cylinder.  In the cases of a layered space with cylindrical cavity, a continuous cylinder, 
and the continuous space, the corresponding systems and the remaining relations required for the deter-
mination of the thermoelastic state are obtained as a result of the limit transitions.  The relations for the 
determination of thermal stresses in the corresponding single-layer bodies are presented.  The numerical 
investigations are performed for a three-layer cylinder with functionally gradient layer.  

The solution of one-dimensional problems of elasticity and thermoelasticity for one- and multilayer cylin-
drical bodies with variable physicomechanical characteristics is often based on the application of analytic 
and numerical-analytic methods [1–10, 12, 13, 15, 17–23], including the methods used for the reduction of the 
corresponding problems to the solution of the integral equations for stresses. In the present work, we propose 
a method for the determination of the thermoelastic state caused by plane axisymmetric temperature fields and 
surface loads in isotropic thermosensitive inhomogeneous and piecewise inhomogeneous bodies with cylindrical 
interfaces.  The method is based on the solution of systems of integral-algebraic equations for the radial dis-
placements.  Moreover, the required functions appear in the integral operators only in the integrands of single 
integrals.  The method is based on the use of generalized functions and the Green function of the elasticity prob-
lem for a homogeneous cylinder. 

Statement of the Problem of Thermoelasticity  

Consider an elastic body formed by concentric circular hollow isotropic cylinders with different physicome-
chanical characteristics.  It is assumed that these cylinders are in perfect contact and that the bounding cylindri-
cal surfaces of the body are subjected to the action of uniformly applied loads  σ0   and  σn ,  respectively.  
The end faces are subjected to the action of loads whose resultant force is equal to  P   and the body is placed in 
a temperature field described by the function  
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t(r) = t1(r) + [ti+1(r) − ti (r)]S(r − ri )

i=1

n−1

∑ , (1) 

where  t p (r) ,   p = 1,…, n ,  are the known distributions of temperatures for  rp−1 < r < rp ;  r ,  r0 ,  and  rp  are, 
respectively, the radial coordinate, the inner radius of the first layer, and the outer radius of the p th layer related 
to the characteristic linear size    ;  n   is the number of layers, and  S(ζ)  is the Heaviside function.  

We now determine the thermoelastic state of the body by assuming that the physicomechanical characteris-
tics of the components are functions of temperature and coordinate.  For this purpose, we use the equilibrium 
equations  

 ∂σr
∂r

+
σr − σϕ

r
= 0 , (2) 

the relations 

 σr = c(r) du
dr

+ ν∗(r)c(r) u
r
+ εz

⎛
⎝⎜

⎞
⎠⎟ − c∗(r)Φ(r), 

 σϕ = ν∗(r)c(r) du
dr

+ εz
⎛
⎝⎜

⎞
⎠⎟ + c(r) u

r
− c∗(r)Φ(r) , 

 σ z = c(r)εz + ν∗(r)c(r) du
dr

+ u
r

⎛
⎝⎜

⎞
⎠⎟ − c∗(r)Φ(r), (3) 

where the radial displacement  u(r)   related to      satisfies the equation with generalized derivatives 

 
 

d
dr

c(r) du
dr

⎡
⎣⎢

⎤
⎦⎥
+ d
dr

λ(r) u
r

⎡
⎣⎢

⎤
⎦⎥
+ 2µ(r) d

dr
u
r

⎛
⎝⎜

⎞
⎠⎟ = d

dr
[c∗(r)Φ(r)]− εz

dλ(r)
dr

, (4) 

and the boundary conditions 

 σr r=r0
= −σ0 ,      σr r=rn

= −σn . (5) 

Here, the functions  

 c(r) = λ(r) + 2µ(r),  

 
 
λ(r) = E(t, r)ν(t, r)

[1+ ν(t, r)][1− 2ν(t, r)]
,      

 
µ(r) = E(t, r)

2[1+ ν(t, r)]
, 

 ν∗(r) = ν(t, r)
1− ν(t, r)

,       and       c∗(r) = E(t, r)
1− 2ν(t, r)

 

have the form (1); the functions  E(t, r) ,  ν(t, r),  and  Φ(r)  coincide (within the limits of the p th layer), respec-
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tively, with the modulus of elasticity  Ep (t p , r),  Poisson’s ratio  ν p (t p , r) ,  and  

 Φ p (r) = αtp (ζ, r) dζ
0

t p (r)

∫ ;  

αtp (t p , r)   are the coefficients of linear thermal expansion of the p th layer, and  εz = const   is the level of axial 
strains (this parameter is now unknown).  

Integral Representation of the Solution  

We now pass from the differential statement of the problem of determination of displacements to its formu-
lation in the integral form with the help of the Green function obtained as a special case [11]: 

 G(r,ρ) = 1
2c0

r
ρ
S(ρ − r) + ρ

r
S(r − ρ) + ρ

rn2 − r02
rψ0

+ (ρ) + kr02ψn
+ (ρ)
r

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, (6) 

which is a solution of the problem 

 ∂2G
∂r2

+ 1
r
∂G
∂r

− G
r2

= − 1
c0ρ

δ(r − ρ) , (7) 

 τr r=r0
= τr r=rn

= 0 . (8) 

Here and in what follows,   

 ψm
± (ρ) = 1− 2ν0 ±

rm2

ρ2
,    m = 0, n ;      τr = c0

∂G(r,ρ)
∂r

+ λ0
G(r,ρ)

r
;       k = 1/(1− 2ν0 ) ;   

c0  = λ0  + 2µ0 ,  λ0 ,  µ0 ,  and  ν0   are values from the ranges of  λ1(r) ,  µ1(r) ,  and  ν1(t1, r),  respectively, 
and  δ(ζ)   is the Dirac delta-function. 

We now multiply Eq. (4) by  rG(r,ρ) .  Integrating the obtained equation from  r0   to  rn ,  in view of rela-
tion (7), we get  

 c(ρ)u(ρ)
c0

= rGσr − r ∂G
∂r

c(r) + λ(r)G⎡
⎣⎢

⎤
⎦⎥
u⎧

⎨
⎩

⎫
⎬
⎭ r0

rn
  

  + r ∂G
∂r

dc(r)
dr

⎛
⎝⎜

⎞
⎠⎟ cl

+G dλ(r)
dr

⎛
⎝⎜

⎞
⎠⎟ cl

⎡
⎣⎢

⎤
⎦⎥
u dr

r0

rn

∫  

  + Kciri
∂G
∂r r=ri

+ Kλi G r=ri

⎛

⎝⎜
⎞

⎠⎟
ui (ri )

i=1

n−1

∑   
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  + ∂
∂r

(rG)c∗(r)Φ(r) dr
r0

rn

∫ − εz
∂
∂r

(rG)λ(r) dr
r0

rn

∫ , (9) 

where   

 Kci = ci+1(ri ) − ci (ri ) ,      Kλi = Kci − 2Kµi ,      and      Kµi = µi+1(ri ) − µi (ri ).   

The index “cl” means that the corresponding derivative is classical. 

System of Integral-Algebraic Equations for Displacements 

We now replace the integrals over the thickness of the cylinder in (9) by the sum of integrals over the thick-
nesses of layers.  After appropriate transformations, in view of the boundary conditions (5) and the Green func-
tion (6), we get the following system of integral-algebraic equations for the displacements  up (ρ)   of the p th 
layer:  

 cp (ρ)up (ρ) = utp (ρ) +
1
ρ
Vcp (ρ) + ρVµp (ρ) + ρ

βupψn
+ (ρ) + βup

∗ ψ0
+ (ρ)

rn2 − r02
 

  + ρU(ρ) + gup(i)(ρ)ui (ri )
i=1

n−1

∑ + uy(ρ) − εzuεp (ρ),      rp−1 < ρ < rp , (10) 

where 

 uαp (ρ) =
Vαp (ρ)

ρ
+ ρ

βαpψn
+ (ρ) + βαp∗ ψ0

+ (ρ)
rn2 − r02

, 

 Vαp (ρ) = rΛαp (r) dr
rp−1

ρ

∫ ,      α = t, ε , 

 Λtp (r) = cp∗ (r)Φ p (r) ,      Λεp (r) = λ p (r) , 

 βαp = Vαi (ri )
i=1

p−1

∑ ,      βαp∗ = Vαi (ri )
i= p

n

∑ , 

 Vcp (ρ) = ry1p (r)up (r) dr
rp−1

ρ

∫ ,      Vµp (ρ) = 1
r
y2 p (r)up (r) dr

rp−1

ρ

∫ , 

 y1p (r) = d
dr

µ p (r)
1− 2ν p (t p , r)

⎡

⎣
⎢

⎤

⎦
⎥ ,      y2 p (r) =

dµ p (r)
dr

, 
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 βup = Vci (ri )
i=1

p−1

∑ − kr02 Vµi (ri )
i=1

p−1

∑ , 

 βup
∗ = Vci (ri )

i= p

n

∑ − krn2 Vµi (ri )
i= p

n

∑ , 

 U(ρ) = γ nrnun (rn )ψ0
+ (ρ) − γ 0r0u1(r0 )ψn

+ (ρ)
rn2 − r02

, 

 uy(ρ) = ρ r02σ0ψn
+ (ρ) − rn2σnψ0

+ (ρ)
k0(rn2 − r02 )

, 

 γ 0 = 2µ1(r0 )
k0

− c1(r0 ),      γ n = 2µn (rn )
k0

− cn (rn ) ,      k0 = 1− 2ν0
1− ν0

, 

 gup(i)(ρ) = riρ
rn2 − r02

bniψ0
+ (ρ), p ≤ i,

b0iψn
+ (ρ), p > i,

⎧
⎨
⎪

⎩⎪
 

 bni = Kci − kKµiψn
+ (ri ),      b0i = Kci − kKµiψ0

+ (ri ) . 

In view of the structure of Eqs. (10), we seek their solution in the form of a sum 

 up (ρ) = up
t (ρ) + up

y (ρ) − εzup
ε (ρ) , (11) 

where (in view of the fact that the physicomechanical characteristics are variable) the first term describes the 
displacements caused by the temperature field, whereas the second term corresponds to the surface loads  σ0   
and  σn   in the cylinder with fixed ends.  

Substituting (11) in (10), we obtain the corresponding systems of equations for each function up
s (ρ) ,  

s = t, y, ε : 

 up
s (ρ) − 1

cp (ρ)
Vcps (ρ)

ρ
+ ρVµps (ρ)

⎡

⎣
⎢
⎢

 

  + ρ
d0 ps ψn

+ (ρ) + dnps ψ0
+ (ρ)

rn2 − r02
+ gup(i)(ρ)uis (ri )

i=1

n−1

∑
⎤

⎦
⎥
⎥
=

u0 ps (ρ)
cp (ρ)

, (12) 

where  

 d0 ps = βup
s − γ 0r0u1s (r0 ) ,      dnps = βup

∗s + γ nrnuns (rn ) , 
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 βup
s = Vcis (ri )

i=1

p−1

∑ − kr02 Vµis (ri )
i=1

p−1

∑ ,      
 
βup
∗s = Vcis (ri )

i= p

n

∑ − krn2 βup
∗s , 

 
 

βup
∗s = Vµis (ri )

i= p

n

∑ , (13) 

 Vcps (ρ) = ry1p (r)up
s (r) dr

rp−1

ρ

∫ ,      Vµps (ρ) = 1
r
y2 p (r)up

s (r) dr
rp−1

ρ

∫ , 

 u0 pt (ρ) = utp (ρ),      u0 p
y (ρ) = uy(ρ) ,      u0 pε (ρ) = uεp (ρ) . 

Relations for the Determination of Strains and Stresses 

Under the assumption that the solution of Eqs. (12) is known, we now write the relations for the other com-
ponents of the stress-strain state. 

Differentiating (10) with regard for (11) and (13), we get the following formula for the radial strains:  

 cp (ρ)εrp (ρ) = εrpt (ρ) + εrpy (ρ) − εzεrpε (ρ), (14) 

where 

 εrps (ρ) = eps (ρ) −
1
ρ2

Vcps (ρ) +Vµps (ρ) +
d0 ps ψn

− (ρ) + dnps ψ0
− (ρ)

rn2 − r02
+ gεp(i)(ρ)uis (ri )

i=1

n−1

∑ , 

 epα (ρ) = − 1
ρ2

Vαp (ρ) + Λαp (ρ) +
βαpψn

− (ρ) + βαp∗ ψ0
− (ρ)

rn2 − r02
,      α = t, ε , 

 epy (ρ) = r02σ0ψn
− (ρ) − rn2σnψ0

− (ρ)
k0(rn2 − r02 )

,  

 gεp(i)(ρ) = ri
rn2 − r02

bniψ0
− (ρ), p ≤ i,

b0iψn
− (ρ), p > i.

⎧
⎨
⎪

⎩⎪
 

Substituting (10) and (14) in the dependences for the p th layer obtained on the basis of (3), we get 

 σγ p (ρ) = σγ p
t (ρ) + σγ p

y (ρ) − εzσγ p
ε (ρ),    γ = r,ϕ, z , (15) 

where 

 σrp
s (ρ) = σ p

s− (ρ) ,      σϕp
s (ρ) = σ p

s+ (ρ) , 
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σ p
s (ρ) = f ps (ρ) 

k0 p (ρ)Vcps (ρ)
ρ2

+ kp (ρ)Vµps (ρ) 

  + 
 

d0 ps ψnp
 (ρ) + dnps ψ0 p

 (ρ)
rn2 − r02

+ gp(i) (ρ)uis (ri )
i=1

n−1

∑ , 

 k0 p (ρ) =
1− 2ν p (t p ,ρ)
1− ν p (t p ,ρ)

,      kp (ρ) = 1
1− ν p (t p ,ρ)

, 

 

 

gp(i) (ρ) = ri
rn2 − r02

bni ψ0 p
 (ρ), p ≤ i,

b0i ψnp
 (ρ), p > i,

⎧
⎨
⎪

⎩⎪
 

 
 
f pα (ρ) = 

k0 p (ρ)
ρ2

Vαp (ρ) −
1
2
k0 p (ρ)(1  1)Λαp (ρ)  

  + 
 

βαp ψnp
 (ρ) + βαp∗ ψ0 p

 (ρ)
rn2 − r02

,      α = t, ε , 

 
 
f py (ρ) =

r02σ0 ψnp
 (ρ) − rn2σn ψ0 p

 (ρ)
k0(rn2 − r02 )

, 

 
 
ψmp
 (ρ) = (1− 2ν0 )kp (ρ)  k0 p (ρ)

rm2

ρ2
,      m = 0, n , 

  σ zp
t (ρ) = −ζ p (ρ)Φ p (ρ) + 2ν p

∗ (ρ)[Ap
t +Vµpt (ρ)], 

  σ zp
y (ρ) = 2ν p

∗ (ρ)[Ap
y +Vµpy (ρ)], 

  σ zp
ε (ρ) = −ζ p

∗ (ρ) + 2ν p
∗ (ρ)[Ap

ε +Vµpε (ρ)], 

 kAp
s = 1

rn2 − r02
βs1
∗ + βup

s + βup
∗s + γ nrnuns (rn ) − γ 0r0u1s (r0 ) + gzp(i)uis (ri )

i=1

n−1

∑
⎡

⎣
⎢

⎤

⎦
⎥ , 

 ζ p (ρ) =
Ep (t p ,ρ)

1− ν p (t p ,ρ)
,      ζ p

∗ (ρ) =
Ep (t p ,ρ)

1− ν p
2 (t p ,ρ)

, 

 gzp(i) = ri
bni , p ≤ i,

b0i , p > i,

⎧
⎨
⎪

⎩⎪
      βy1

∗ = r02σ0 − rn2σn
k0

. 
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The axial strains can be found from the condition 

 ρσ zz (ρ) dρ
r0

rn

∫ = ρσ zp (ρ) dρ
rp−1

rp

∫ = P
2πp=1

n

∑ . 

In view of relation (15), we find  

 εz = εzP + εzt + εzy , (16) 

where 

 εzP = P
2πdε

,  

 εzt = 1
dε

ηtp
p=1

n

∑ − 2 ηµpt
p=1

n

∑ − Ap
t ηνp

p=1

n

∑
⎛

⎝
⎜

⎞

⎠
⎟ ,      εzy = − 1

dε
2 ηµpy
p=1

n

∑ + Ap
yηνp

p=1

n

∑
⎛

⎝
⎜

⎞

⎠
⎟ , 

 dε = ηp
p=1

n

∑ − 2 ηµpε
p=1

n

∑ − Ap
εηνp

p=1

n

∑ ,  

 ηtp = ρζ p (ρ)Φ p (ρ) dρ
rp−1

rp

∫ ,      ηµps = ρν p
∗ (ρ)Vµps (ρ) dρ

rp−1

rp

∫ ,       ηνp = ρν p
∗ (ρ) dρ

rp−1

rp

∫ ,  

 ηp = ρζ p
∗ (ρ) dρ

rp−1

rp

∫ . 

Special Cases 

If we let  rn   tend to infinity in (12)–(15) and set  εz = 0   and  σn = 0 ,  then we get the corresponding rela-
tions for a layered space with cylindrical cavity.  In this case, the systems of integral-algebraic equations for the 
displacements  up

s (ρ) ,  s = t, y ,  take the form  

 up
s (ρ) − 1

cp (ρ)
Vcps (ρ) + d0 ps

ρ
⎡

⎣
⎢
⎢

+ ρVµps (ρ)  

  –  k
βup
∗sρψ0

+ (ρ)  + gup(i)(ρ)uis (ri )
i=1

n−1

∑
⎤

⎦
⎥ =

u0 ps (ρ)
cp (ρ)

, (17) 

and the terms in formulas (14) and (15) are given by the expressions: 
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εrps (ρ) = eps (ρ) +Vµps (ρ) − k βup

∗sψ0
− (ρ) −

Vcps (ρ) + d0 ps

ρ2
+ gεp(i)(ρ)uis (ri )

i=1

n−1

∑ , 

 
 
σ p
s (ρ) = f ps (ρ)  k0 p (ρ)

Vcps (ρ) + d0 ps

ρ2
 

  + kp (ρ)Vµps (ρ)  – 
 
k βup

∗s ψ0 p
 (ρ) + gp(i) (ρ)uis (ri )

i=1

n−1

∑ , (18) 

 
 
σ zp
t (ρ) = −ζ p (ρ)Φ p (ρ) + 2ν p

∗ (ρ) − βup
∗t + gzp(i)uit (ri )

i=1

n−1

∑ +Vµpt (ρ)
⎡

⎣
⎢

⎤

⎦
⎥ , 

 
 
σ zp
y (ρ) = 2ν p

∗ (ρ) − βup
∗y + gzp(i)ui

y(ri )
i=1

n−1

∑ +Vµpy (ρ)
⎡

⎣
⎢

⎤

⎦
⎥ . 

Here, 

 
 
u0 pt (ρ) = 1

ρ
[Vtp (ρ) + βtp ],      u0 p

y (ρ) = r02σ0
k0ρ

, 

 
 

βun
∗s = 1

r
y2n (r)uns (r) dr

rn−1

∞

∫ , 

 ept (ρ) = −
Vtp (ρ) + βtp

ρ2
+ cp∗ (ρ)Φ p (ρ),      epy (ρ) = − r0

2σ0

k0ρ2
, 

 
 
f pt (ρ) = k0 p (ρ)

Vtp (ρ) + βtp
ρ2

− 1
2
(1  1)cp∗ (ρ)Φ p (ρ)

⎡

⎣
⎢

⎤

⎦
⎥, 

 
 
f py (ρ) =  r0

2σ0

k0ρ2
k0 p (ρ), 

 
 
gup(i)(ρ) =

−kKµiρψ0
+ (ρ)/ri , p ≤ i,

b0iri/ρ, p > i,

⎧
⎨
⎪

⎩⎪
        

 

gεp(i)(ρ) =
−kKµiψ0

− (ρ)/ri , p ≤ i,

−b0iri/ρ2, p > i,

⎧
⎨
⎪

⎩⎪
 

 

  

gp(i) (ρ) =
−kKµi ψ0 p

 (ρ)/ri2, p ≤ i,

b0ik0 p (ρ)/ρ2, p > i,

⎧
⎨
⎪

⎩⎪
        

 
gzp(i) =

−kKµi/ri , p ≤ i,

0, p > i.

⎧
⎨
⎪

⎩⎪
 

The other notation is the same as for the layered hollow cylinder. 
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For  n = 1 ,  relations (12)–(18) yield the corresponding formulas for the determination of the components of 
the thermoelastic state in the following one-component hollow inhomogeneous thermosensitive objects: 

  in a cylinder: 

 us (ρ) − 1
c(ρ)

1
ρ
Vcs (ρ) + ρVµs (ρ) + ρ d1sψ0

+ (ρ) − γ 0r0us (r0 )ψ1
+ (ρ)

r12 − r02
⎡

⎣
⎢

⎤

⎦
⎥ = u0s (ρ)

c(ρ)
,    s = t, y, ε , 

 εrs (ρ) = es (ρ) − 1
ρ2

Vcs (ρ) +Vµs (ρ) +
d1sψ0

− (ρ) − γ 0r0us (r0 )ψ1
− (ρ)

r12 − r02
, 

 
 
σr
s (ρ) = frs (ρ) −

k01(ρ)
ρ2

Vcs (ρ) + k1(ρ)Vµs (ρ) +
d1s ψ0

− (ρ) − γ 0r0us (r0 ) ψ1
− (ρ)

r12 − r02
, (19) 

 
 
σϕ
s (ρ) = fϕs (ρ) +

k01(ρ)
ρ2

Vcs (ρ) + k1(ρ)Vµs (ρ) +
d1s ψ0

+ (ρ) − γ 0r0us (r0 ) ψ1
+ (ρ)

r12 − r02
, 

  σ z
t (ρ) = −ζ(ρ)Φ(ρ) + 2ν∗(ρ)[At +Vµt (ρ)], 

  σ z
y(ρ) = 2ν∗(ρ)[Ay +Vµy(ρ)],       σ z

ε (ρ) = −ζ∗(ρ) + 2ν∗(ρ)[Aε +Vµε (ρ)], 

where 

 u0t (ρ) = 1
ρ
Vt (ρ) +

Vt (r1)
r12 − r02

ρψ0
+ (ρ) ,      u0

y(ρ) = ρ r02σ0ψ1
+ (ρ) − r12σ1ψ0

+ (ρ)
k0(r12 − r02 )

, 

 u0ε (ρ) = Vε (ρ)
ρ

+ Vε (r1)ρψ0
+ (ρ)

r12 − r02
,      Vt (ρ) = rc∗(r)Φ(r) dr

r0

ρ

∫ , 

 Vcs (ρ) = r d
dr

µ(r)
1− 2ν(t, r)

⎡
⎣⎢

⎤
⎦⎥
us (r) dr

r0

ρ

∫ ,      Vµs (ρ) = 1
r
dµ(r)
dr

us (r) dr
r0

ρ

∫ , 

 d1
s = Vc

s (r1) − kr12  Vµ
s (r1) + γ1r1us (r1) ,  

  γ 0 = 2µ(r0 )/k0 − c(r0 ),       γ1 = 2µ(r1)/k0 − c(r1), 

 k01(ρ) = 1− 2ν(t,ρ)
1− ν(t,ρ)

,      k1(ρ) = 1
1− ν(t,ρ)

, 

 ζ(ρ) = E(t,ρ)
1− ν(t,ρ)

,      ζ∗(ρ) = E(t,ρ)
1− ν2(t,ρ)

, 
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 et (ρ) = − 1
ρ2

Vt (ρ) + c∗(ρ)Φ(ρ) + Vt (r1)ψ0
− (ρ)

r12 − r02
, 

 ey(ρ) = r02σ0ψ1
− (ρ) − r12σ1ψ0

− (ρ)
k0(r12 − r02 )

,      eε (ρ) = −Vε (ρ)
ρ2

+ λ(ρ) + Vε (r1)ψ0
− (ρ)

r12 − r02
, 

 
 
frt (ρ) = − k01(ρ)

ρ2
Vt (ρ) +

Vt (r1) ψ0
− (ρ)

r12 − r02
, 

 
 
fry(ρ) = r02σ0 ψ1

− (ρ) − r12σ1 ψ0
− (ρ)

k0(r12 − r02 )
, 

 
 
frε (ρ) = − k01(ρ)

ρ2
Vε (ρ) +

Vε (r1) ψ0
− (ρ)

r12 − r02
, 

 
 
fϕt (ρ) = k01(ρ)

ρ2
Vt (ρ) − k01(ρ)c∗(ρ)Φ(ρ) + Vt (r1) ψ0

+ (ρ)
r12 − r02

, 

 
 
fϕε (ρ) = k01(ρ)

ρ2
Vε (ρ) − k01(ρ)λ(ρ) +

Vε (r1) ψ0
+ (ρ)

r12 − r02
, 

 
 
fϕy(ρ) = r02σ0 ψ1

+ (ρ) − r12σ1 ψ0
+ (ρ)

k0(r12 − r02 )
, 

 As =
Vs (r1) +Vcs (r1) − kr12Vµs (r1) + γ1r1us (r1) − γ 0r0us (r0 )

k(r12 − r02 )
, 

 Vy(ρ) = r02σ0 − r12σ1
k0

, 

 εzt = 1
dε

(ηt − 2ηµt − Atην ),      εzy = − 1
dε

(2ηµy + Ayην ) , 

 dε = η− 2ηµε − Aεην, 

 ηt = ρζ(ρ)Φ(ρ) dρ
r0

r1

∫ ,      ηµs = ρν∗(ρ)Vµs (ρ) dρ
r0

r1

∫ , 

 ην = ρν∗(ρ) dρ
r0

r1

∫ ,      η = ρζ∗(ρ) dρ
r0

r1

∫ ; 
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  in the space: 

 
 
us (ρ) − 1

c(ρ)
Vcs (ρ) − γ 0r0us (r0 )

ρ
+ ρVµs (ρ) − k βu

∗sρψ0
+ (ρ)

⎡

⎣
⎢

⎤

⎦
⎥ = u0s (ρ)

c(ρ)
,      s = t, y, 

 
 
εrs (ρ) = es (ρ) +Vµs (ρ) − k βu

∗sψ0
− (ρ) − Vcs (ρ) − γ 0r0us (r0 )

ρ2
, 

 
  
σr
s (ρ) = frs (ρ) −

k01(ρ)
ρ2

[Vcs (ρ) − γ 0r0us (r0 )]+ k1(ρ)Vµs (ρ) − k βu
*s ψ0

− (ρ) , (20) 

 
  
σϕ
s (ρ) = fϕs (ρ) +

k01(ρ)
ρ2

[Vcs (ρ) − γ 0r0us (r0 )]+ k1(ρ)Vµs (ρ) − k βu
∗s ψ0

+ (ρ), 

   σ z
t (ρ) = −ζ(ρ)Φ(ρ) + ν∗(ρ)[−k βu

∗t + 2Vµt (ρ)], 

   σ z
y(ρ) = ν∗(ρ)[−k βu

∗y + 2Vµy(ρ)], 

where 

 u0t (ρ) = 1
ρ
Vt (ρ),      u0

y(ρ) = r02σ0
k0ρ

,      
 

βu
∗s = 1

r
dµ(r)
dr

us (r) dr
r0

∞

∫ , 

 et (ρ) = − 1
ρ2

Vt (ρ) + c∗(ρ)Φ(ρ),      ey(ρ) = − r0
2σ0

k0ρ2
, 

 frt (ρ) = − k01(ρ)
ρ2

Vt (ρ) ,      fry(ρ) = − r0
2σ0

k0ρ2
k01(ρ), 

 fϕt (ρ) = k01(ρ)
1
ρ2

Vt (ρ) − c∗(ρ)Φ(ρ)
⎧
⎨
⎩

⎫
⎬
⎭

,      σϕ
y (ρ) = −σr

y(ρ) . 

Substituting  r0 = 0  in the formulas for the analyzed hollow bodies, we obtain the corresponding formulas 
for continuous bodies.  In this case, as  ρ→ 0   (i.e., on their axis), we find  

 1
ρ
Vt1(ρ) → 0 ,      1

ρ2
Vt1(ρ) → 1

2
c1∗(0)Φ1(0),      

1
ρ
Vc1(ρ) → 0 , 

 1
ρ2

Vc1(ρ) → 0,      Vµ1(ρ) → 0,      1
ρ
Vε1(ρ) → 0 ,      1

ρ2
Vε1(ρ) → 1

2
λ1(0). 

Note that, for the corresponding quasistatic problems, time appears in the obtained relations as a parameter. 
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Numerical Results 

For the variable and constant physicomechanical characteristics, we study the static thermoelastic state 
of a hollow three-layer cylinder with fixed or free ends.  We set a heat flux   

 q0 = 6 ⋅105W/m2   

and a load   

 σ0 = 0.04947  GPa   

on the inner surface, whereas the values of temperature   

 tc = 20 °C   

and the load   

 σn = 0.02249  GPa   

are set on the outer surface.  The dependences of the physicomechanical characteristics of the first and third lay-
ers are chosen as follows: 

 λt
(1)(T1) = 1.71+ 0.21 ⋅10−3T1 + 0.116 ⋅10−6T12( )  [W/(m ⋅ K)], 

 αt
(1)(T1) = 13.3 ⋅10−6 − 18.9 ⋅10−9T1 + 12.7 ⋅10−12T12( ) [K–1], 

  E1(T1) = (132.2 − 50.3 ⋅10−3T1 − 8.1 ⋅10−6T12) [GPa], 

  λt
(3)(T3) = (14.3+ 0.014 T3) [W/(m ⋅ K))], 

 αt
(3)(T3) = 14.854 ⋅10−6 + 0.0033 ⋅10−6T3( ) [K–1], 

  E3(T3) = (206.11− 0.07T3) [GPa]. 

The dependences of the physicomechanical characteristics of the second layer are determined according to 
the relation [16]  

 
 
p2(T2,ρ) = 1

2
[p1(T2 ) − p3(T2 )]cos π ρ − ρ1

ρ2 − ρ1
⎛
⎝⎜

⎞
⎠⎟
+ 1
2

[p1(T2 ) + p3(T2 )]. 

Here,  p1(T )  and  p3(T )  are the corresponding dependences for the first and third layers,  λt
(i)(Ti )  are the heat-

conduction coefficients, and   Ti = (ti (ρ) + 273) °C.  
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The constant physicomechanical characteristics correspond to Poisson’s ratios  ν1 = 0.3 ,  ν2 = 0.23,  and  
ν3 = 0.35   (in what follows, this is combination 1 of Poisson’s ratios).  We also take the following mean values 
of the dependences presented above: 

 λt
(1) = λ s1 = 1.945  W/(m ⋅ °C),      λt

(2) = 13.18398  W/(m ⋅ °C), 

 λt
(3) = 24.42  W/(m ⋅ °C), 

 αt
(1) = α s1 = 0.88457 ⋅10−5  °C–1,      αt

(2) = 1.30428 ⋅10−5  °C–1, 

 αt
(3) = 1.72399 ⋅10−5  °C–1, 

 E1 = Es1 = 89.95874  GPa,      E2 = 122.72937  GPa,      and      E3 = 155.5 GPa. 

The distributions of temperatures  ti (ρ)   are obtained from the following system of integral equations [14]: 

 
 
t3(ρ) = tc + tsr0

λ s1

ξλt
(3)[t3(ξ)]

dξ
ρ

r3

∫ , 

 
 
t2(ρ) = t3(r2 ) + tsr0

λ s1

ξλt
(2)[t2(ξ), ξ]

dξ
ρ

r2

∫ , (21) 

 
 
t1(ρ) = t2(r1) + tsr0

λ s1

ξλt
(1)[t1(ξ)]

dξ
ρ

r1

∫ ,  

 
 
ts = q0

λ s1
. 

This system is solved, by analogy with system (12) (for  n = 3) ,  by the method of successive approxima-
tions for  r0 = 0.8 ,  r1 = 0.82 ,  r2 = 0.9 ,  r3 = 1,  and    = 0.05  m.  We choose the solution of the problem of 
heat conduction for the three-layer cylinder with constant heat-conduction coefficients as the zero-order approx-
imation in the solution of Eqs. (21).  At the same time, in the solution of Eqs. (12), the right-hand sides of the 
corresponding equations are taken as the zero-order approximation. 

For constant physicomechanical characteristics in the case of fixed ends  (εz = 0) ,  in Table 1, we present 
the values of displacements    u = u/(α s1ts ),  strains    εr = εr /(α s1ts ),  and stresses    σ j = σ j /(Es1α s1ts ),  j = r,  
ϕ, z ,  on the bounding and middle surfaces of the layers caused by the temperature field; in Table 2, we present 
the corresponding values caused by the surface loads.  At the same time, in Table 3, we present the third terms in 
relations (11), (14), and (15) obtained under the simultaneous action of thermal and surface loads (the case of 
free ends).  Here, for the sake of comparison, we show the results of calculations carried out on the basis of the 
exact solution [11] in the lower rows (under the bar).  In this case, the values of axial strains   εz/(α s1ts )   com-
puted on the basis of (16) and on the basis of the exact solution are  0.0914444   and  0.0914443,  respectively.  
This reveals a high accuracy of determination of the quantities characterizing the thermoelastic state by using the 
proposed method. 
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Table 1 

ρ  u ⋅10   εr ⋅10
2   σr ⋅102   σϕ ⋅10   σ z ⋅10 

r0  0.1370304 
0.1370305 

 6.464131 
 6.464130 

 0.0 
 0.0 

 –0.3654808 
 –0.3654807 

 –0.4972408 
 –0.4972408 

r0 + r1
2

 0.1425442 
0.1425443 

 4.5715737 
 4.5715730 

 –0.0360969 
 –0.0360968 

 –0.2198995 
 –0.2198993 

 –0.3552692 
 –0.3552691 

r1 − 0  0.1461890 
0.1461891 

 2.7256009 
 2.7256002 

 –0.0537797 
 –0.0537796 

 –0.0779015 
 –0.0779014 

 –0.2150395 
 –0.2150395 

r1 + 0  0.1461890 
0.1461891 

 3.909923 
 3.909922 

 –0.0537798 
 –0.0537796 

 –0.2413138 
 –0.2413136 

 –0.4390568 
 –0.4390567 

r1 + r2
2

 0.1590021 
0.1590022 

 2.519231 
 2.519230 

 –0.1270620 
 –0.1270616 

 –0.0870617 
 –0.0870615 

 –0.2921329 
 –0.2921392 

r2 − 0  0.1665094 
0.1665095 

 1.253597 
 1.253597 

 –0.1284402 
 –0.1284398 

 0.0533191 
 0.0533193 

 –0.1518898 
 –0.1518898 

r2 + 0  0.1665095 
0.1665095 

 2.2012004 
 2.2012001 

 –0.1284405 
 –0.1284398 

 –0.0577990 
 –0.0577988 

 –0.2946906 
 –0.2946905 

r2 + r3
2

 0.1740122 
0.1740122 

 0.8245205 
 0.8245203 

 –0.1048831 
 –0.1048823 

 0.1184741 
 0.1184743 

 –0.1160617 
 –0.1160616 

r3 0.1749795 
0.1749795 

 –0.4170706 
 –0.4170707 

 0.0 
 0.0 

 0.2774502 
 0.2774504 

 0.0534025 
 0.0534026 

We also compare the values of relative displacements, strains, and stresses computed on the basis of [12] 
and the proposed method for  ν1 = ν2 = ν3 = 0.3  (in what follows, this is combination 2 of Poisson’s ratios) and 
the presented variable physicomechanical characteristics.  It turns out that, in seven approximations, the corre-
sponding values differ by at most  10−5 .  Note that, for the identical constant Poisson’s ratios and the other vari-
able physicomechanical characteristics, the independence of the radial and circular stresses on the axial strains 
was established in [12].  At the same time, the determination of the thermoelastic state of layered cylinders was 
reduced to the solution of the systems of integral-algebraic equations for the normalized radial stresses.  

The numerical data obtained for combination 1 and for the following Poisson’s ratios:  ν1 = 0.3 ,  ν2 = 0.27 ,  
and  ν3 = 0.33  (combination 3) and the same other variable physicomechanical characteristics demonstrate that 
we need 32 and 11 approximations, respectively, in order to attain the same accuracy as for combination 2. 

The largest differences between the maximum values of displacements, strains, and radial, circular, and  
axial stresses for the combinations of Poisson’s ratios 1 and 2 do not exceed 2, 9, 12, 20, and 3.7 %,  respectively.  
For the analyzed three combinations of Poisson’s ratios 1, 2, and 3, the radial changes of the investigated param-
eters caused by the temperature field in a cylinder with fixed ends are characterized by curves 1, 2, and 3 
in Figs. 1–5,  respectively.  In the same figures,  we also illustrate the behavior of the indicated parameters caused  
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Fig. 1 

Table 2 

ρ  u ⋅102   εr ⋅10
2   σr ⋅102   σϕ ⋅102   σ z ⋅102  

r0  0.4845818 
0.4845822 

–0.5592011 
–0.5592013 

–0.4033127 
–0.4033127 

0.4927860 
0.4927865 

0.0268419 
0.0268421 

r0 + r1
2

 0.4790617 
0.4790621 

–0.5449081 
–0.5449083 

–0.3923181 
–0.3923180 

0.4817913 
0.4817919 

0.0268419 
0.0268421 

r1 − 0  0.4736819 
0.4736823 

–0.5311347 
–0.5311349 

–0.3817232 
–0.3817232 

0.4711965 
0.4711197 

0.0268419 
0.0268421 

r1 + 0  0.4736819 
0.4736823 

–0.4139004 
–0.4139005 

–0.3817232 
–0.3817232 

0.7180916 
0.7180923 

0.0773647 
0.0773649 

r1 + r2
2

 0.4580482 
0.4580486 

–0.3688538 
–0.3688539 

–0.3317587 
–0.3317586 

0.6681270 
0.6681277 

0.0773647 
0.0773649 

r2 − 0  0.4440954 
0.4440958 

–0.3296789 
–0.3296790 

–0.2883068 
–0.2883067 

0.6246752 
0.6246759 

0.0773647 
0.0773649 

r2 + 0  0.4440954 
0.4440958 

–0.3696206 
–0.3696208 

–0.2883069 
–0.2883067 

0.8167744 
0.8167753 

0.1849636 
0.1849639 

r2 + r3
2

 0.4267500 
0.4267503 

–0.3253918 
–0.3253919 

–0.2316753 
–0.2316751 

0.7601428 
0.7601439 

0.1849636 
0.1849639 

r3 0.4114487 
0.4114490 

–0.2876299 
–0.2876300 

–0.1833242 
–0.1833239 

0.7117917 
0.7117925 

0.1849636 
0.1849639 
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Fig. 2 

Table 3 

ρ  u ⋅10   εr ⋅10  σr ⋅103  σϕ ⋅10   σ z  

r0  –0.22588481 
–0.22588479 

–0.2708948 
–0.2708944 

 0.0 
 0.0 

 –0.0088162 
 –0.0088165 

0.0911799 
0.0911798 

r0 + r1
2

 –0.22859446 
–0.22859445 

–0.2710354 
–0.2710351 

–0.0108171 
–0.0108174 

 –0.0087081 
 –0.0087083 

0.0911799 
0.0911798 

r1 − 0  –0.23130550 
–0.23130548 

–0.2711709 
–0.2711706 

–0.0212409 
–0.0212416 

 –0.0086038 
 –0.0086041 

0.0911799 
0.0911798 

r1 + 0  –0.23130547 
–0.23130548 

–0.1890222 
–0.1890220 

 –0.0212361 
 –0.0212416 

 –0.1034294 
 –0.1034298 

0.1223724 
0.1223723 

r1 + r2
2

 –0.23895293 
–0.23895293 

–0.1932498 
–0.1932496 

 –0.4901579 
 –0.4901511 

 –0.0987403 
 –0.0987406 

0.1223724 
0.1223723 

r2 − 0  –0.24675812 
–0.24675811 

–0.1969264 
–0.1969261 

 –0.8979445 
 –0.8979524 

 –0.0946624 
 –0.0946627 

0.1223724 
0.1223723 

r2 + 0  –0.24675812 
–0.24675811 

–0.3479965 
–0.3479961 

 –0.8979451 
 –0.8979524 

 0.0855424 
 0.0855417 

0.1607477 
0.1607475 

r2 + r3
2

 –0.26406081 
–0.26406079 

–0.3442135 
–0.3442131 

 –0.4135531 
 –0.4135634 

 0.0806985 
 0.0806978 

0.1607477 
0.1607475 

r3 –0.28118867 
–0.28118862 

–0.3409836 
–0.3409832 

 0.0 
 0.0 

 0.0765628 
 0.0765622 

0.1607477 
0.1607475 
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Fig. 3 

 

Fig. 4 

 

Fig. 5 
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by the temperature field in a cylinder with free ends for the combination of Poisson’s ratios 1 with variable 
(dash-dotted lines) and constant (dashed lines) moduli of elasticity and the coefficients of linear thermal expan-
sion.  It is easy to see that the displacements are negative in a cylinder with free ends, unlike the case of a cylin-
der with fixed ends (Fig. 1).  In other words, under the action of the temperature field, the inner and outer diame-
ters of the analyzed hollow cylinder decrease and the axial stresses are tensile (Fig. 5).  In the cases of free or 
fixed ends of the cylinder, the difference between the strains and the radial and circular stresses may be more 
than twofold (Figs. 2–4).  The analysis of the variations of physicomechanical characteristics leads, in particular, 
to noticeably different distributions of strains and circular stresses in the middle layer (Figs. 2 and 4).  

  CONCLUSIONS 

The problem of determination of the thermoelastic state caused by plane axisymmetric temperature fields 
and surface loads in piecewise inhomogeneous thermosensitive isotropic cylindrical bodies is reduced to the  
solution of the corresponding systems of integral-algebraic equations for radial displacements.  The obtained 
relations are approved for the static problems of thermoelasticity for hollow three-layer cylinders with fixed or 
free ends and variable or constant physicomechanical characteristics.  We demonstrate high accuracy of deter-
mination of the parameters of thermoelastic state by using the proposed method and a noticeable effect of varia-
tions of the physicomechanical characteristics and the conditions imposed at the ends on their thermomechanical 
behavior. 

The present work was partially financially supported within the framework of the joint scientific project 
of the Ukrainian National Academy of Sciences and the Russian Foundation for Fundamental Research 
(No. 0112U005002). 
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