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ON THE INVARIANT SOLUTIONS OF SOME FIVE-DIMENSIONAL  
D’ALEMBERT EQUATIONS 

V. І. Fedorchuk  UDC 519.46: 517.944 

By using the invariants of nonconjugate subgroups of the Poincaré group  P(1, 4)   [conjugation is con-
sidered with respect to the group  P(1, 4) ],  we propose ansatzes that reduce some linear and nonlinear 
five-dimensional d’Alembert equations to ordinary differential equations.  On the basis of the solutions 
of the reduced equations, we construct the invariant solutions of these five-dimensional d’Alembert 
equations. 

Introduction 

In the solution of various problems of differential geometry, theory of nonlinear waves, and theoretical and 
mathematical physics in the spaces of different dimensions, it is customary to use linear and nonlinear Klein–
Gordon equations, sine-Gordon equations, sinh-Gordon equations, and Liouville equations, etc.  

The linear and nonlinear Klein–Gordon equations in spaces of different dimensions are used for the con-
struction and investigation of the models of field theory. 

In the monograph [7], one can find various applications of the Klein–Gordon equations to the five-dimen-
sional field theory.  In the five-dimensional Minkowski space  M (1,4),  linear Klein–Gordon equations appear 
in the theory of fields with fundamental length [5]. 

The translation-invariant and spherically symmetric analytic solutions of the nonlinear multidimensional 
Klein–Gordon equations with polynomial nonlinearities were constructed and analyzed in [22]. 

Some other models of the field theory connected with nonlinear multidimensional Klein–Gordon equations 
were described in [20, 21]. 

The sine-Gordon equations in spaces of different dimensions are extensively used in physics and mathemat-
ics.  Thus, the two-dimensional sine-Gordon equation is applied, in particular, to the description of propagation 
of dislocations in crystals, of the motion of Bloch walls in magnetic crystals, and of the surfaces with constant 
negative curvature.  It is also used in the unitary theory of elementary particles, in the Thirring model of the 
classical and quantum field theories, etc. (see [1, 4, 11, 25, 29, 34] and the references therein). 

In the spaces of higher dimensions, the sine-Gordon equation is also used in physics.  It has been thoroughly 
investigated in [10, 12, 26, 35]. 

The soliton solutions of the two-dimensional sine-Gordon equations are well known [6].  
The multiparameter families of exact solutions of the sine-Gordon equations in spaces of different dimen-

sions were constructed in [14, 17–20]. 
The sinh-Gordon equation in spaces of different dimensions is extensively used in physics and mathematics.  

In particular, this equation appears in analyzing some problems of the field theory [27]. 

                                                        
Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, Ukrainian National Academy of Sciences, Lviv, Ukraine. 

 
Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 57, No. 4, pp. 27–34, October–December, 2014.  Original 
article submitted July 3, 2014. 

  1072-3374/17/2201–0027      ©  2017     Springer Science+Business Media New York 27 

DOI 10.1007/s10958-016-3165-7



28 V. І. FEDORCHUK 

The analysis and physical interpretation of the solutions of two-dimensional sinh-Gordon equation can be 
found in [32]. 

The multiparameter families of exact solutions for the sinh-Gordon equation in the spaces of different di-
mensions are constructed in [16, 18]. 

Singular solutions of essentially nonlinear Liouville and sinh-Gordon equations were constructed and stud-
ied in [33].  A physical interpretation of singular solutions was also proposed in the cited work. 

The Liouville equation appears in the problems of differential geometry, theory of nonlinear waves, and 
quantum field theory [3]. 

The general solution of the Liouville equation in the two-dimensional case was constructed by Liouville 
in 1853. 

The symmetry reduction for the three-dimensional Liouville equation was carried out and some exact solu-
tions of this equation were obtained in [17, 18]. 

The symmetry reduction for the Liouville equation in the Minkowski space   R1,n   was carried out in [2].  
Some exact solutions of this equation were constructed in the same paper. 

Singular solutions of the Liouville equation were constructed and investigated in [13, 23, 33]. 
In the present work, we consider the following five-dimensional partial differential equations: 

   5u = λu, λ ∈R , (1) 

  !5u = sinu , (2) 

  !5u = eu , (3) 

  !5u = sinhu , (4) 

where   

 
 
!5≡

∂2

∂x0
2 − ∂2

∂x1
2 − ∂2

∂x2
2 − ∂2

∂x3
2 − ∂2

∂x4
2  

is the d’Alembert operator in the five-dimensional Minkowski space  M (1,4). 
To study these equations, we use the regular method of construction of (partial) exact solutions of differen-

tial equations discovered many years ago by S. Lie (see, e.g., [30, 31]). 
Equations (1)–(4) are invariant under the generalized Poincaré group P(1,4). The group P(1,4) is a group of 

rotations and translations of the space M (1,4). The nonconjugate subalgebras of the Lie algebra of the group 
P(1,4) [the operation of conjugation was considered with respect to the group P(1,4)] were described in [8, 9, 15]. 

In the present work, we apply the subgroup structure of the group  P(1,4)  and the invariants of its noncon-
jugate subgroups to perform the symmetry reduction of Eqs. (1)–(4) and construct some classes of their invariant 
solutions.  These solutions are presented in next sections without details of calculations.  

1.  Some Invariant Solutions of the Linear Five-Dimensional d’Alembert Equation 

Consider an equation 

   !5u = λu, λ ∈R . 



ON THE INVARIANT SOLUTIONS OF SOME FIVE-DIMENSIONAL D’ALEMBERT EQUATIONS 29 

In what follows, we present some invariant solutions of this equation. 

(а)  Case  λ ≠ 0 . 

 1. u(x) = c1 exp
λ
k ω⎛

⎝
⎞
⎠ + c2 exp − λ

k ω⎛
⎝

⎞
⎠ , 

where ω  are the one-dimensional invariants of nonconjugate subgroups of the group P(1,4) and k  is a constant. 
The following ω   and  k   are possible:  

 ω = x0 , k = 1, ω = x2 , k = −1,  

 ω = x3, k = −1, ω = x4 , k = −1,  

 ω = x2 − a ln(x0 + x4 ), k = −1,  

 ω = x3 − a ln(x0 + x4 ), k = −1,  

 ω = 2x2 − (x0 + x4 )
2 , k = − 4,  

 ω = (x0 + x4 )
2 + 2α0x3, k = − 4α0

2 , 

  ω = µ((x0 + x4 )
2 − 2x1)+ 2x3, k = − 4(µ2 +1) , 

 ω = 2(δx2 − γx3 )− δ(x0 + x4 )
2 , k = − 4(δ2 + γ 2 ) . 

 2.  u(x) = c1J0( −λε ω)+ c2Y0( −λε ω) , 

where J  and Y  are Bessel functions of the first and second kind, respectively.  The following invariants ω  and 
parameters ε  are possible: 

  ω = (x0
2 − x4

2 )1/2 , ε = 1,  

  ω = (x1
2 + x2

2 )1/2 , ε = −1 , 

  ω = (x3
2 + x4

2 )1/2 , ε = −1. 

 3. 
 
u(x) =

c1
ω sinh( λε ω)+

c2
ω cosh( λε ω), 

where  ω   and  ε   have the following form: 
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  ω = (x0
2 − x3

2 − x4
2 )1/2 , ε = 1,  

  ω = (x1
2 + x2

2 + x3
2 )1/2 , ε = −1.  

 4. 
 
u(x) =

c1
ω J1( −λε ω)+

c2
ω Y1( −λε ω), 

where  ω   and  ε   have the following form: 

  ω = (x0
2 − x1

2 − x2
2 − x4

2 )1/2 , ε = 1, 

  ω = (x0
2 − x1

2 − x2
2 − x3

2 )1/2 , ε = 1, 

  ω = (x1
2 + x2

2 + x3
2 + x4

2 )1/2 , ε = −1. 

 5. 
 
u x( ) = c1

ω3 exp( λ ω)( λ − λω)+
c2
ω3 exp(− λ ω)(λω + λ), 

where 

  ω = (x0
2 − x1

2 − x2
2 − x3

2 − x4
2 )1/2 . 

 6.  u(x) = f1(ω2 )sin( λ ω1)+ f2 (ω2 )cos( λ ω1), 

where 

 ω1 = x2 , ω2 = x0 + x4 ,  

 ω1 = x3, ω2 = x0 + x4 .  

 7. u(x) = f1(ω1)sin
λ ω1ω2

ω1
2 +1

⎛

⎝
⎜

⎞

⎠
⎟ + f2 (ω1)cos

λ ω1ω2

ω1
2 +1

⎛

⎝
⎜

⎞

⎠
⎟ , 

where 

 ω1 = x0 + x4 , ω2 =
x3

x0 + x4
+ x2 , 

 ω1 = x0 + x4 , ω2 = x3 +
x1

x0 + x4
. 

 8.  u(x) = f1(ω2 )J0( λ ω1)+ f2 (ω2 )Y0( λ ω1), 

where  f1  and  f2   are arbitrary smooth functions,  J   and  Y   are the Bessel functions of the first and second 
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kind,  respectively,  and  ω1   and  ω2   are the two-dimensional invariants of nonconjugate subgroups of the 
group  P(1,4).  These invariants are given by the formulas 

  ω1 = (x1
2 + x2

2 )1/2 , ω2 = x0 + x4 . 

 9. 
 
u(x) =

f1(ω1)
ω2

sinh( −λ ω2 )+
f2 (ω1)
ω2

cosh( −λ ω2 ), 

where 

  ω1 = x0 + x4 , ω2 = (x1
2 + x2

2 + x3
2 )1/2 . 

(b)  Case  λ = 0 . 

 1. u(x) = c1ω + c2 , 

where  c1   and  c2   are arbitrary constants and  ω   are the one-dimensional invariants of nonconjugate subgroups 
of the group  P(1,4)  given by the formulas  

 x0 , x2 , x3, x4 , x2 − a ln(x0 + x4 ), x3 − a ln(x0 + x4 ) , 

  2x2 − (x0 + x4 )
2 , (x0 + x4 )

2 + 2α0x3, µ((x0 + x4 )
2 − 2x1)+ 2x3 , 

 2(δx2 − γx3 )− δ(x0 + x4 )
2 . 

 2. u(x) = c1 ln(ω)+ c2 , 

where ω  is one of the one-dimensional invariants of nonconjugate subgroups of the group  P(1,4)  given by the 
formulas 

  (x0
2 − x4

2 )1/2 , (x1
2 + x2

2 )1/2 , (x3
2 + x4

2 )1/2 . 

 3. u(x) =
c1
ω + c2 , 

where  ω   is one of the invariants 

  (x0
2 − x3

2 − x4
2 )1/2 , (x1

2 + x2
2 + x3

2 )1/2 . 

 4. u(x) =
c1
ω2 + c2 , 

where  ω   is one of the following invariants: 

  (x0
2 − x1

2 − x2
2 − x4

2 )1/2 , (x0
2 − x1

2 − x2
2 − x3

2 )1/2 , (x1
2 + x2

2 + x3
2 + x4

2 )1/2 . 
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 5. u(x) =
c1
ω3 + c2 , 

where 

  ω = (x0
2 − x1

2 − x2
2 − x3

2 − x4
2 )1/2 . 

 6. u(x) = ω1 f1(ω2 )+ f2 (ω2 ) , 

where  f1  and  f2   are arbitrary smooth functions and  ω1   and  ω2   are the two- dimensional invariants of non-
conjugate subgroups of the group  P(1,4)   given by the formulas 

 ω1 = x2 , ω2 = x0 + x4 ,  

 ω1 = x3, ω2 = x0 + x4 ,  

 ω1 =
x3

x0 + x4
+ x2 , ω2 = x0 + x4 , 

 ω1 = x3 +
x1

x0 + x4
, ω2 = x0 + x4 . 

 7. u(x) = ln(ω1) f1(ω2 )+ f2 (ω2 ) , 

where 

  ω1 = (x1
2 + x2

2 )1/2 , ω2 = x0 + x4 . 

 8. u(x) = 1
ω2

f1(ω1)+ f2 (ω1) , 

where 

  ω1 = x0 + x4 , ω2 = (x1
2 + x2

2 + x3
2 )1/2 . 

2.  Some Invariant Solutions of the Five-Dimensional Sine-Gordon Equation 

Consider an equation 

  !5u = sinu . 

Some invariant solutions of this equation have the form:  

 1. u(x) = 4 arctan(αeε0ω )− 1
2 (1− ε)π. 
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 2. 
 
u(x) = 2arccos[dn(ω +α,m)]+ 1

2 (1+ ε)π,     0 < m < 1. 

 3. u(x) = 2arccos cn ω +α
m ,m( )⎡

⎣⎢
⎤
⎦⎥ +

1
2 (1+ ε)π, 0 < m < 1, α = const , 

where  dn(ω +α,m)   and  cn ω +α
m ,m⎛

⎝
⎞
⎠   are the Jacobi elliptic functions,  ε0 = ±1 ,  ε = ±1 ,    α ∈RR ,  and  ω   

and  ε   have the form 

 ω = x0 , ε = 1, ω = x2 , ε = −1,  

 ω = x3, ε = −1, ω = x4 , ε = −1,  

 ω = x2 − a2 ln(x0 + x4 ), ε = −1,  

 ω = x3 − a ln(x0 + x4 ), ε = −1. 

 4. u(x) = 4 arctan tanhω2
⎛
⎝⎜

⎞
⎠⎟ , 

where  ω   takes one of the following forms: 

 x2 , x3, x4 , x2 − a2 ln(x0 + x4 ), x3 − a ln(x0 + x4 ) . 

Solutions of the indicated form were obtained for the sine-Gordon equations in spaces of different dimen-
sions in [14, 17, 20].  In particular, solutions 1–3 with  ω = x0   and  ε = 1   can be found in [18, 20]. 

3.  Some Invariant Solutions of Five-Dimensional Liouville Equation 

Consider an equation 

  !5u = eu . 

We now present some invariant solutions for this equation. 

 1. u(x) = ln
c1
2 tan2

c1
4k (ω + c2 )

⎛
⎝⎜

⎞
⎠⎟
+1

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

, 

where  

 ω = x0 , k = 1, ω = x2 , k = −1,  

 ω = x3, k = −1, ω = x4 , k = −1,  
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 ω = x2 − a2 ln(x0 + x4 ), k = −1,  

 ω = x3 − a3 ln(x0 + x4 ), k = −1, , 

 ω = 2x2 − (x0 + x4 )
2 , k = − 4,  

 ω = (x0 + x4 )
2 + 2a0x3, k = − 4α0

2 , α0 < 0 , 

  ω = µ((x0 + x4 )
2 − 2x1)+ 2x3, k = − 4(µ2 +1), µ > 0 , 

 ω = 2(δx2 − γx3 )− δ(x0 + x4 )
2 , k = − 4(δ2 + γ 2 ), γ > 0 . 

 2. u(x) = ln
ε(c1 − 4)
2ω2 tan2 1

2ε c1 − 4 (lnω − c2 )
⎛
⎝

⎞
⎠ +1

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ , 

where 

  ω = (x0
2 − x4

2 )1/2 , ε = 1,  

  ω = (x1
2 + x2

2 )1/2 , ε = −1,  

  ω = (x3
2 + x4

2 )1/2 , ε = −1. 

 3. u(x) = ln − 1
2 f1

2 (ω2 )
tanh2

f2 (ω2 )+ω1
2 f1(ω2 )

⎛
⎝⎜

⎞
⎠⎟ −1

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
, 

where 

 ω1 = x2 , ω2 = x0 + x4 , ω1 = x3, ω2 = x0 + x4 . 

 4. 
 

u(x) = ln −
f1(ω1)
2ω1

2 tanh2
f1(ω1)( f2 (ω1)+ω2 )

2 ω1
2 +1

⎛

⎝
⎜

⎞

⎠
⎟ −1

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ , 

where 

 ω1 = x0 + x4 , ω2 =
x3

x0 + x4
+ x2 , 

 ω1 = x0 + x4 , ω2 = x3 +
x1

x0 + x4
. 
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 5. 
 
u(x) = ln

4 − f1(ω2 )
2ω1

2 tan2 1
2 f1(ω2 )− 4 ( f2 (ω2 )− ln(ω1))

⎛
⎝⎜

⎞
⎠⎟ +1

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
, 

where 

  ω1 = (x1
2 + x2

2 )1/2 , ω2 = x0 + x4 . 

4.  Some Invariant Solutions of the Five-Dimensional Sinh-Gordon Equation 

The next equation under consideration has the form 

  !5u = sinhu . 

We now present some invariant solutions of this equation: 

 1. u(x) = 2arctanh(sinω). 

 2. u(x) = 2arctanh(sn(z,k)), z = c + 2
2 ω, k2 = c − 2

c + 2 , c > 2 , 

where  sn(z,k)   is the Jacobi elliptic function. 

 3. u(x) = 4arctanh(eω ), c = 2 , 

where  ω = x0 . 

 4. u(x) = arccosh c
2 cn

2 (z,k)+ sn2 (z,k)⎛
⎝⎜

⎞
⎠⎟ , 

 z = c + 2
2 ω, k2 = c − 2

c + 2 , c > 2 , 

where  ω   is one of the following functions: 

 x2 , x3, x4 , x2 − a ln(x0 + x4 ), x3 − a ln(x0 + x4 ) . 

The multiparameter families of the exact solutions of the sinh-Gordon equations in spaces of different di-
mensions were constructed in [16, 18].  In particular, solutions 1–3 with  ω = x0   can be found in [18]. 

Hence, it is shown that some results established in [16, 18] by using the generalized Lie approach can be  
obtained within the framework of the classical Lie method for the sinh-Gordon equation in the (1+ 4 )-dimen-
sional Minkowski space  M (1,4). 
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Final Remarks 

In the present work, we present a collection of invariant solutions of Eqs. (1)–(4).  These solutions are ob-
tained by using the standard Lie algorithm and the invariants of nonconjugate subalgebras of the Lie algebra of 
the group  P(1,4).  Some of these solutions can be useful for the construction of five-dimensional relativistic 
models.  Information about the exact solutions of Maxwell equations and equations of axion electrodynamics 
can be found in [24] and [28].  
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