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ON THE SPECTRAL DENSITY OF STATIONARY
PROCESSES AND RANDOM FIELDS

M. A. Lifshits∗ and M. Peligrad† UDC 519.2

In this note, we show that a stationary sequence obtained by applying a fixed deterministic function
to shifts of a stationary sequence (satisfying a mild regularity condition) has a spectral density.
In the multiparametric setting, we obtain a similar result for a function of a shifted i.i.d. field.
Bibliography: 7 titles.

1. Introduction

Stationary processes are an important tool for modeling time series appearing in theoretical
probability theory and also in real life evolutions. In many situations, correlations between
variables could be viewed as a measure of dependence, and, in the Gaussian setting, they deter-
mine the distribution. Condensed information about the correlation structure of a stochastic
process is contained in the so-called “spectral measure,” and, when it exists, in its density
called the “spectral density function.” Then, covariances between variables are obtained as
the Fourier coefficients of this function. Because the spectral density function encapsulates all
the information about covariances of a stochastic process, its study occupies a central place
in their theory. In this note, our investigation is centered around the existence of a spectral
density. Let (Xn)n∈Z be a sequence of complex-valued mean zero random variables defined
on a probability space (Ω,K,P). We call this sequence weakly stationary (or second order
stationary) if there exist complex numbers γ(n), n ∈ Z, such that

cov(Xj ,Xk) = E(XjXk) = γ(j − k)

for all j, k ∈ Z. Note that γ(−n) = γ(n).
By the Birkhoff–Herglotz Theorem (see, e.g., Brockwell and Davis [3]), there exists a unique

measure on the unit circle, or, equivalently, a nondecreasing function F, called the spectral
distribution function on [0, 2π), such that

γ(n) =

2π∫

0

eintF (dt) for all n ∈ Z . (1)

If F is absolutely continuous with respect to the Lebesgue measure λ on [0, 2π), then the
Radon–Nikodym derivative f of F with respect to the Lebesgue measure is called the spectral
density; in other words, F (dt) = f(t) dt and

γ(n) =

2π∫

0

eintf(t) dt for all n ∈ Z .

The most common situation where the existence of the spectral density may be established
is the case of a regular process, cf., e.g. [4, Chap. 7]. Recall that a process (Xn)n∈Z is called
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mikhail@lifshits.org.

†University of Cincinnati, Cincinnati, USA, e-mail: peligrm@ucmail.uc.edu.

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 441, 2015, pp. 274–285. Original article sub-
mitted October 21, 2015.

1072-3374/16/2195-0789 ©2016 Springer Science+Business Media New York 789

DOI 10.1007/s10958-016-3147-9



regular if the tail space
GX

−∞ :=
⋂
n∈Z

GX
n

is trivial, where GX
n is the closed linear span of {Xk}k≤n.

The regularity of the process is equivalent (cf. [3, Chap. 5] or [4, Chap. 7, Theorem 13]) to
the existence of the Wold representation, i.e.,

Xk =
∞∑

j=0

ajηk−j,

where {aj}j≥0 is a square summable deterministic sequence of complex numbers and {ηn}n∈Z
is an uncorrelated, zero mean, unit variance sequence of random variables such that Gη

n = GX
n .

In this case, (Xk)k∈Z has the same scalar product (covariance) structure in L2(Ω,K,P) as the
sequence of functions (xk)k∈Z in L2([0, 2π), λ), where

xk(t) := (2π)−1/2
∞∑

j=0

ajei(k−j)t = eiktx0(t);

therefore,

γ(k) =

2π∫

0

xk(t)x0(t) dt =

2π∫

0

eikt |x0(t)|2 dt.

It follows that X has the spectral density

f(t) = |x0(t)|2 =
1
2π

∣∣∣
∞∑

j=0

aje−ijt
∣∣∣2, t ∈ [0, 2π),

cf. [4, Chap. 7, Corollary 5]. Moreover, by the Kolmogorov criterion [4, Chap. 7, Theorem 15],
the process (Xn)n∈Z is regular iff it has a spectral density f satisfying the condition

2π∫

0

log f(t) dt > −∞.

It is not clear, however, what can we say about the density existence when a regularity
condition is not necessarily satisfied, as, for example, in the case of functions of a two-sided
sequence of i.i.d. random variables.

More generally, we also study the existence of a spectral density for random fields. For
simplicity, we discuss only Z

2-indexed random fields. Extension to the index set Zd with d > 2
is easy.

In the sequel, where necessary, we use the standard coordinate notation, e.g., k = (k1, k2)
for k ∈ Z

2 and k · t = k1t1 + k2t2 for k ∈ Z
2, t ∈ R

2.
We call a collection of complex-valued mean zero random variables (Xk)k∈Z2 weakly sta-

tionary (or second order stationary) if there exist complex numbers γ(n), n ∈ Z
2, such that

cov(Xj,Xk) = E(XjXk) = γ(j− k)

for all j,k ∈ Z
2. In the context of weakly stationary random fields, it is known that there

exists a unique measure F on [0, 2π)2 such that

cov(Xk,X0) =
∫

[0,2π)2

eik·tF (dt1, dt2) for all k ∈ Z
2 .
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If F is absolutely continuous with respect to Lebesgue measure λ2 on [0, 2π)2, then there exists
the Radon–Nikodym derivative f of F with respect to λ2, i.e., F (dt1, dt2) = f(t1, t2) dt1 dt2.
This function f is called spectral density, and we have the equalities

cov(Xk,X0) =
∫

[0,2π)2

eik·tf(t1, t2) dt1 dt2 for all k ∈ Z
2 .

For the sake of clarity, we treat separately first processes and then random fields.

1.1. Results for stationary processes. We start by pointing out a well-known character-
ization of the existence of a spectral density.

Theorem 1. Let X := (Xk)k∈Z be a mean zero, complex-valued, second order, stationary
stochastic process. Then the following statements are equivalent:

(1) X has a spectral density.
(2) There are complex numbers (aj)j∈Z with

∑
j∈Z

|aj |2 < ∞ such that

γ(k) := cov(Xk,X0) =
∑
j∈Z

ajaj+k, k ∈ Z.

(3) There exists a stationary process X̃ := (X̃k)k∈Z equidistributed with X and such that X̃
admits a representation

X̃k =
∑
j∈Z

aj ηj+k for all k ∈ Z, (2)

where (aj)j∈Z satisfies
∑
j∈Z

|aj |2 < ∞ and (ηj)j∈Z is a sequence of mean zero, unit variance,

uncorrelated random variables. In this case, the spectral density is

f(t) =
1
2π

∣∣∣∑
j∈Z

aj eijt
∣∣∣2.

Remark 2. If a second order, stationary stochastic process (Xk)k∈Z is real-valued, Theorem 1
holds with a sequence (an)n∈Z of real numbers and the density f is a symmetric function.

Furthermore, if the process (Xk)k∈Z is Gaussian, then the variables (ηj)j∈Z in (2) are i.i.d.
standard normal. For this latter statement, see also Varadhan lectures [6, Chap. 6, Sec. 6.6].

Let (ξj)j∈Z be a strictly stationary sequence of random variables defined on (Ω,K,P) and
for g : RZ → C construct

X0 = g(. . . , ξ−1, ξ0, ξ1 . . . ), Xk = X0 ◦ T k, (3)

where T is the shift operator on R
Z.

Define
Fk = σ(ξj : j ≤ k), F−∞ =

⋂
k∈Z

Fk, and F = σ((ξj)j∈Z). (4)

We assume the following regularity condition:

E(X0|F−∞) = 0 a.s., (5)

which implies that E(X0) = 0.

Theorem 3. Define the strictly stationary sequence (Xk) by (3). Assume that condition (5)
is satisfied and E|X0|2 < ∞. Then the sequence (Xk)k∈Z has a spectral density.
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Let us mention that condition (5) is satisfied when the left tail sigma field F−∞ of (ξk)k∈Z
is trivial. This happens, for instance, when (ξk)k∈Z is a sequence of i.i.d. random variables.
Other examples are provided by conditions imposed on mixing coefficients.

The strong mixing coefficient is defined in the following way:

α(A,B) = sup{|P(A ∩ B) −P(A) P(B)| : A ∈ A, B ∈ B},
where A and B are two sigma fields.

The ρ-mixing coefficient, also known as the maximal coefficient of correlation, is defined as

ρ(A,B) = sup{E(XY )/‖X‖2‖Y ‖2 : X ∈ L
2(A), Y ∈ L

2(B), EX = EY = 0}.
For a stationary sequence of real-valued random variables (ξj)j∈Z, Fn denotes the σ-field
generated by ξj with indices j ≥ n, and Fk, as before, denotes the σ-field generated by ξj with
indices j ≤ k. Then we define the sequences of mixing coefficients

αn = α(F0,Fn) and ρn = ρ(F0,Fn) .

A sequence is called strongly mixing if αn → 0. It is well known that for strongly mixing
sequences, the left tail sigma field is trivial; see Claim 2.17a in Bradley [2]. Examples of this
type include Harris recurrent Markov chains.

If ρn < 1 for some n ≥ 1, then the tail sigma field is also trivial according to Sec. 2.5 in
Bradley [1].

Therefore, the result of Theorem 3 holds for functions of a sequence (ξj)j∈Z if it is strongly
mixing or satisfies the condition ρn < 1 for some n ≥ 1.

1.2. Results for stationary random fields. Similar results hold for random fields. Below,
indices are in Z

2, but we can easily formulate the results for indices in Z
d with d integer. Here

is a generalization of Theorem 1 for random fields.

Theorem 4. A second order, stationary, complex-valued random field (Xk)k∈Z2 has a spectral
density if and only if there exist numbers (ak)k∈Z2 satisfying the condition

∑
k∈Z2

|ak|2 < ∞ such

that cov(Xk,X0) =
∑
j∈Z2

aj aj+k.

Our Remark 2 can be extended to random fields in an obvious way, just replacing indices
in Z by indices in Z

2. The extension of Theorem 3 is more delicate, because, in the multi-
index setting, there is no unique interpretation of past and future. Here we restrict our
considerations to functions of an i.i.d. random field. As the reader will see, this setting
provides some additional useful commutativity properties for the related projection operators.

Let (ξk)k∈Z2 be an i.i.d. random field defined on a probability space (Ω,K,P) and define a
random variable

X0 = g((ξk)k∈Z2),

where g : RZ
2 → C is a measurable function.

Moreover, define two translation operators on R
Z
2
:

T1((xu)u∈Z2) = (xu1+1,u2)u∈Z2

and
T2((xu)u∈Z2) = (xu1,u2+1)u∈Z2 .

Finally, let
Xu = g(T u1

1 T u2
2 (ξk)) = g((ξk+u)k∈Z2). (6)

Theorem 5. Let the stationary sequence (Xk)k∈Z2 be defined by (6) and assume that E(X0)=0
and E|X0|2 < ∞. Then the sequence (Xk)k∈Z2 has a spectral density.
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This theorem has immediate applications, for example, to Volterra-type random fields, which
play an important role in the nonlinear system theory. For any k ∈ Z

2, define the Volterra-type
expansion as follows:

Xk =
∑

u,v∈Z2

bu,v ξk−u ξk−v ,

where bu,v are real numbers satisfying

bu,v = 0 if u = v
∑

u,v∈Z2

b2u,v < ∞ ,

and (ξk)k∈Z2 is an i.i.d. random field of centered and square integrable random variables.
Under the above conditions, the random field (Xk)k∈Z2 exists, is stationary, zero mean, and
square integrable. By Theorem 5, this random field has a spectral density since it is a function
of an i.i.d. field.

2. Proofs

Proof of Theorem 1. (1) ⇒ (2). Let f be the spectral density of X. Since
√

f(x) is square
integrable, by the Carleson Theorem (cf. [5]), we have an expansion

√
f(t) =

1√
2π

∑
j∈Z

ajeijt a.s. and in L2([0, 2π), λ)

with Fourier coefficients

aj :=
1√
2π

2π∫

0

√
f(t)e−ijt dt, j ∈ Z,

satisfying
∑
j∈Z

|aj |2 < ∞. Therefore, by (1),

γ(k) =

2π∫

0

eiktf(t) dt =
1
2π

2π∫

0

eikt
∣∣∣ ∑

j∈Z
ajeijt

∣∣∣2 dt

=
1
2π

2π∫

0

( ∑
j1∈Z

aj1 ei(j1+k)t
)( ∑

j2∈Z
aj2 e−ij2t

)
dt =

∑
j∈Z

aj aj+k ,

as required in (2).

(2) ⇒ (1). Let

f(t) =
1
2π

∣∣∣ ∑
j∈Z

ajeijt
∣∣∣2.

Then
2π∫

0

eiktf(t) dt =
1
2π

2π∫

0

eikt
∣∣∣∑

j∈Z
ajeijt

∣∣∣2 dt

=
1
2π

2π∫

0

( ∑
j1∈Z

aj1e
i(j1+k)t

)( ∑
j∈Z

aj2e
−ij2t

)
dt =

∑
j∈Z

aj aj+k = γ(k),

as required in the definition of spectral density.
(3) ⇒ (2) is obvious.
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For (1) ⇒ (3) see [4, Chap. 7, Theorem 10]. �

Proof of Theorem 3. For every 
 ∈ Z we define the projection operator P� by letting

P�X = E(X|F�) −E(X|F�−1)

for any integrable random variable X ∈ L1(Ω,K,P).
Since we assumed that E(X0|F−∞) = 0 a.s., by stationarity, E(Xk|F−∞) = 0 for all k ∈ Z.

Furthermore, since all the Xk are F-measurable, we have the representation

Xk =
∑
�∈Z

P�Xk.

Let us compute the covariances. We have the equalities

cov(Xk,X0) =
∑

�1,�2∈Z
cov(P�1Xk,P�2X0).

Since the projections are orthogonal,

cov(Xk,X0) =
∑
�∈Z

cov(P�Xk,P�X0) =
∑
�∈Z

cov(P0Xk−�,P0X−�), (7)

where, in the last equality, we used the fact that (Xk) is strictly stationary.
Let us denote Y� = P0X�. Note that the stationarity and orthogonality of the projections

imply that ∑
�∈Z

E |Y�|2 =
∑
�∈Z

E |P0X�|2 =
∑
�∈Z

E |P−�X0|2 = E |X0|2 < ∞. (8)

Consider the function

f(t) =
1
2π

E
∣∣∣∑

�∈Z
Y−� ei�t

∣∣∣2, t ∈ [0, 2π).

By the Fubini theorem and (8),
2π∫

0

f(t) dt =
1
2π

E

2π∫

0

∣∣∣∑
�∈Z

Y−� ei�t
∣∣∣2 dt = E

∑
�∈Z

|Y−�|2 < ∞.

Let us now compute Fourier coefficients of f . For every k ∈ Z,
2π∫

0

eiktf(t) dt =
1
2π

E

2π∫

0

( ∑
�1∈Z

Y−�1 ei(k+�1)t
)( ∑

�2∈Z
Y−�2 e−i�2t

)
dt

=
∑

�1,�2∈Z
E

(
Y−�1 Y−�2

)
1{k+�1=�2} =

∑
�∈Z

E
(
Yk−� Y−�

)
.

By comparing this expression with (7), we see that f is the spectral density for (Xk)k∈Z. �
Proof. Proof of Theorem 4 is completely identical to that of Theorem 1, and therefore, is
omitted. We only notice that the spectral density for the process satisfying

cov(Xk,X0) =
∑
j∈Z2

aj aj+k

has the form
f(t) =

1
(2π)2

∣∣∣ ∑
j∈Z2

aj ei j·t
∣∣∣2, t ∈ [0, 2π)2. �
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Proof of Theorem 5. Define the sigma fields

Fk1,k2 = σ(ξj : j1 ≤ k1, j2 ≤ k2).

Next, for k ∈ Z, denote Fk,∞ = ∨k2∈ZFk,k2 and F∞,k = ∨k1∈ZFk1,k.
We introduce the projection operators by letting

Pu,∞X = E(X|Fu,∞) −E(X|Fu−1,∞)

and

P∞,uX = E(X|F∞,u) −E(X|F∞,u−1)

for any integrable random variable X ∈ L1(Ω,K,P). Furthermore, we define the iterated
operator by

Pu1,u2X = (Pu1,∞ ◦ P∞,u2)X.

Since the variables (ξk) are independent,

E (E(X|Fp1,p2)|Fu1,u2) = E(X|Fp1∧u1,p2∧u2) a.s.

for all −∞ ≤ p1, p2, u1, u2 ≤ ∞. Using this property and the definition of the iterated operator,
we see that for all u1, u2 ∈ Z, almost surely,

Pu1,u2X = E(X|Fu1,u2) −E(X|Fu1,u2−1) −E(X|Fu1−1,u2) + E(X|Fu1−1,u2−1).

We also obtain the same expression for (P∞,u2 ◦ Pu1,∞) X; thus, we see that the operators
Pu1,∞ and P∞,u2 commute.

Next, we borrow an idea from Volnỳ and Wang [7, Lemma 2.4(ii)] by claiming that (u1, u2) 
=
(p1, p2) yields the equality

cov(Pu1,u2X,Pp1,p2Y ) = E[(Pu1,u2X)(Pp1,p2Y )] = 0

for all mean zero X and Y in L2(Ω,K,P). Indeed, assume, without loss of generality, that
p1 < u1. For any X, the variable Pu1,∞X is orthogonal to the space H = L2(Ω,Fu1−1,∞,P).
Hence, Pu1,u2X is also orthogonal to H, while Pp1,p2Y belongs to H due to the assumption
p1 < u1.

Note that for all u ∈ Z, the corresponding tail sigma fields defined as Fu,−∞ =
⋂

u2∈Z
Fu,u2,

F−∞,u =
⋂

u1∈Z
Fu1,u, and F−∞,−∞ =

⋂
u∈Z

Fu,−∞ are trivial. Therefore,

E(X|Fu,−∞) = 0 a.s., E(X|F−∞,u) = 0 a.s., and E(X|F−∞,−∞) = 0 a.s.

It follows that for any mean zero X in L2(Ω,K,P) we have the following orthogonal represen-
tation:

X =
∑
u1∈Z

Pu1,∞X =
∑
u1∈Z

Pu1,∞
( ∑

u2∈Z
P∞,u2X

)
=

∑
u1,u2∈Z

Pu1,u2X a.s. (9)

Let us compute the covariances of Xk and X0. By using the above projection decomposition
written for both Xk and X0, together with the orthogonality of the projections and stationarity,
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we see that

cov(Xk,X0) = cov
(∑
j∈Z2

Pj1,j2Xk,
∑
u∈Z2

Pu1,u2X0

)

=
∑
j∈Z2

cov(Pj1,j2Xk,Pj1,j2X0)

=
∑
j∈Z2

cov(P0,0Xk−j,P0,0X−j)

=
∑
j∈Z2

cov(Yk−j, Y−j) (10)

for all k ∈ Z
2, where we used the notation Yu = P0,0Xu. Observe also that, by taking into

account (9) and stationarity, we have the relations
∑
u∈Z2

E|Yu|2 =
∑
u∈Z2

E|Pu1,u2X0|2 = E|X0|2 < ∞. (11)

Consider the function

f(t) =
1

(2π)2
E

∣∣∣ ∑
j∈Z2

Y−j ei j·t
∣∣∣2, t ∈ [0, 2π)2.

By the Fubini theorem and (11),
∫

[0,2π)2

f(t) dt1 dt2 =
1

(2π)2
E

∫

[0,2π)2

∣∣∣ ∑
j∈Z2

Y−j ei j·t
∣∣∣2 dt1 dt2 = E

∑
j∈Z2

|Y−j|2 < ∞.

Let us now compute the Fourier coefficients of f . For every k ∈ Z
2,

∫

[0,2π)2

eik·tf(t) dt1 dt2 =
1

(2π)2
E

∫

[0,2π)2

A1(t)A2(t) dt1 dt2,

where

A1(t) =
∑
j∈Z2

Y−j ei (k+j)·t and A2(t) =
∑
u∈Z2

Y−u e−iu·t.

By using the orthogonality of the exponential functions, we obtain the equalities
∫

[0,2π)2

eik·tf(t) dt1 dt2 =
∑

j,u∈Z2

E
(
Y−j Y−u

)
1{k+j=u} =

∑
u∈Z2

E
(
Yk−u Y−u

)
.

By comparing this expression with (10), we see that f is the spectral density for (Xk)k∈Z2 . �
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