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ON THE CONVEX HULL AND WINDING NUMBER OF
SELF-SIMILAR PROCESSES

Yu. Davydov∗ UDC 519

It is well known that for a standard Brownian motion (BM) {B(t), t ≥ 0} with values in Rd,
its convex hull V (t) = conv{B(s), s ≤ t} with probability 1 for each t > 0 contains 0 as an
interior point. We also know that the winding number of a typical path of a two-dimensional
BM is equal to +∞. The aim of this paper is to show that these properties are not specifically
“Brownian,” but hold for a much larger class of d-dimensional self-similar processes. This class
contains, in particular, d-dimensional fractional Brownian motions and (concerning convex hulls)
strictly stable Lévy processes. Bibliography: 10 titles.

1. Introduction

Let (Ω,F ,P) be a basic probability space. Consider a d-dimensional random process X =
{X(t), t ≥ 0} defined on Ω that is self-similar of index H > 0. This means that for each
constant c > 0, the process {X(ct), t ≥ 0} has the same distribution as {cHX(t), t ≥ 0}.

Let L = {L(u), u ∈ R1} be the strictly stationary process obtained from X by the Lamperti
transformation:

L(u) = e−HuX(eu), u ∈ R1. (1)
Equivalently,

X(t) = tHL(log t), t ∈ R+
∗ .

Let Θ = {0, 1}d be the set of all dyadic sequences of length d. Denote by Dθ, θ ∈ Θ, the
quadrant

Dθ =
d∏

i=1

Rθi
,

where Rθi
= [0,∞) if θi = 1 and Rθi

= (−∞, 0] if θi = 0. The positive quadrant D(1,1,...,1) for
simplicity is denoted by D.

We say that the process X is nondegenerate if

P{X(1) ∈ Dθ} > 0

for all θ ∈ Θ.
Two important examples of self-similar processes are fractional Brownian motion and

stable Lévy process.

Definition 1. We call a self-similar (of index H > 0) process BH fractional Brownian motion
(FBM) if for each e ∈ Rd, the scalar process t → 〈BH(t), e〉 is a standard one-dimensional
FBM of index H up to a constant c(e).

It is easy to see that in this case, c2(e) = 〈Qe, e〉, where Q is the covariance matrix of BH(1),
and hence,

E〈BH(t), e〉〈BH (s), e〉 = 〈Qe, e〉1
2
(t2H + s2H − |t − s|2H), t, s ≥ 0; e ∈ Rd.
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The process BH is nondegenerate iff the rank of the matrix Q is equal to d. If H = 1
2 and

Q = Id, then BH is a standard Brownian motion.

(See Xiao [8], Račkauskas and Suquet [6], and Lavancier et al. [4] and references therein for
more general definitions of an operator self-similar FBM.)

Definition 2. We call S = {S(t), t ∈ R+} an α-strictly stable Lévy process (StS) if
(1) S(1) has a α-strictly stable distribution in Rd;
(2) it has independent and stationary increments;
(3) it is continuous in probability.

Then for each t ∈ R+, the random variable S(t) has the same distribution as t
1
α S(1).

The cadlag version of S on [0, 1] can be obtained with the help of LePage series representation
(see [7] for more details). If α ∈ (0, 1) or if α ∈ (1, 2) and EX(1) = 0, then

{S(t), t ∈ [0, 1]} L= {c
∞∑

1

Γ−1/α
k εk1[0,t](ηk), t ∈ [0, 1]}, (2)

where L= means equality in law, c is a constant, Γk =
∑k

1 γj, {γj} is a sequence of i.i.d. random
variables with common standard exponential distribution, {εk} is a sequence of i.i.d. random
variables with common distribution σ concentrated on the unit sphere Sd−1, {ηk} is a sequence
of [0, 1]-uniformly distributed i.i.d. random variables, and the three sequences {γj}, {εk}, {ηk}
are assumed to be independent.

The measure σ is called a spectral measure of S. It is easy to see that if (2) takes place,
then the process X is nondegenerate iff vect{supp σ} = Rd.

In Sec. 2, the object of our interest is the convex hull process V = {V (t)} associated with X.
We show that under very sharp conditions, with probability 1 for all t > 0, the convex set
V (t) contains 0 as its interior point. From this result some interesting corollaries are deduced.

Section 3 is devoted to studying the winding numbers of two-dimensional self-similar pro-
cesses. As a corollary of our main result, we show that for a typical path of a standard
two-dimensional FBM, the number of its clockwise and anti-clockwise winds around 0 in a
neighborhood of zero or at infinity is equal to ∞.

2. Convex hulls

For a Borel set A ⊂ Rd we denote by conv(A) the closed convex hull of A and define the
convex hull process related to X:

V (t) = conv{X(s), s ≤ t}.
Theorem 1. Let X be a nondegenerate self-similar process such that the strictly stationary
process L generating X is ergodic. Then with probability 1 for all t > 0, the point 0 is an
interior point of V (t).

Application to FBM. Let BH be a FBM with index H. The next properties follow from
the definition without difficulties.

(1) Continuity. The process X has a continuous version.
Below we always assume BH to be continuous.

(2) Reversibility. If the process Y is defined by

Y (t) = BH(1) − BH(1 − t), t ∈ [0, 1],

then {Y (t), t ∈ [0, 1]} L= {BH(t), t ∈ [0, 1]}.
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(3) Ergodicity. Let L = {L(u), u ∈ R1} be the strictly stationary Gaussian process
obtained from BH by the Lamperti transformation (1).

Then L is ergodic (see Cornfeld et al. [1], Chap. 14, Sec. 2, Theorems 1 and 2).
It is assumed below that the process BH is nondegenerate.

Corollary 1. Let V be the convex hull process related to BH . Then with probability 1 for all
t > 0, the point 0 is an interior point of V (t).

This follows immediately from Theorem 1.

Corollary 2. Let V be the convex hull process related to BH . Then for each t > 0 with
probability 1, the point BH(t) is an interior point of V (t).

Proof of Corollary 2. Denote by A◦ the interior of A. By the self-similarity of the process
BH , it is sufficient to state this property for t = 1. Then, due to the reversibility of BH , by
Theorem 1, a.s.

0 ∈ [conv{BH(1) − BH(1 − t), t ∈ [0, 1]}]◦. (3)
Since

conv{BH(1) − BH(1 − t), t ∈ [0, 1]}=BH (1) − conv{BH(1 − s), s ∈ [0, 1]},
relation (3) is equivalent to

BH(1) ∈ [conv{BH(s), s ∈ [0, 1]}]◦,
which concludes the proof. �

Let Kd be the family of all compact convex subsets of Rd. It is well known that Kd equipped
with the Hausdorff metric is a Polish space.

We say that a function f : [0, 1] → Kd is increasing if f(t) ⊂ f(s) for 0 ≤ t < s ≤ 1.

We say that a function f : [0, 1] → Kd is almost everywhere constant if f is such that for
almost every t ∈ [0, 1] there exists an interval (t − ε, t + ε) on which f is constant.

We say that a function f : [0, 1] → Kd is a Cantor-staircase (C-S) if f is continuous,
increasing, and almost everywhere constant.

The next statement follows easily from Corollary 2.

Corollary 3. Let V be the convex hull process related to BH. Then with probability 1, the
paths of the process t → V (t) are C-S functions.

Remark 1. Let h : K → R1 be an increasing continuous function. Then almost all paths of
the process t → h(V (t)) are C-S real-valued functions. This obvious fact may be applied to
all reasonable geometrical characteristics of V (t), such as volume, surface area, diameter, . . . .

Application to StS. Let now S be an StS process with exponent α < 2. The following
properties are more or less known.

(1) Right continuity. The process S has a cadlag version (see the remark above just
after the definition).

(2) Reversibility. Let

Y (t) = S(1) − S(1 − t), t ∈ [0, 1].

Then {Y (t), t ∈ [0, 1]} L= {S(t), t ∈ [0, 1]}.
(3) Self-similarity. The process S is self-similar of index H = 1

α .
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(4) Ergodicity. Let L = {L(u), u ∈ R1} be the strictly stationary process obtained from
S by the Lamperti transformation (1). Then L is ergodic.

We assume that the law of S(1) is nondegenerate.

Corollary 4. Let V be the convex hull process related to S. Then with probability 1 for all
t > 0, the point 0 is an interior point of V (t).

Corollary 5. Let V be the convex hull process related to S. Then for each t > 0 with proba-
bility 1, the point X(t) is an interior point of V (t).

Corollary 6. Let V be the convex hull process related to S. Then with probability 1, the paths
of the process t → V (t) are right continuous almost everywhere constant functions.

We omit proofs of these statements since they are similar to those of Corollaries 1–3.

Proof of Theorem 1. We first show that

p
def= P{ there exists t ∈ (0, 1] | X(t) ∈ D◦} = 1. (4)

Remark that p is strictly positive:

p ≥ P{X(1) ∈ D◦} > 0 (5)

due to the hypothesis that the law of X(1) is nondegenerate.
By the self-similarity,

P
{
D◦ ∩ {X(t), t ∈ [0, T ]} = ∅

}
= 1 − p

for every T > 0. Since the sequence of events (An)n∈N ,

An =
{
D◦ ∩ {X(t), t ∈ [0, n]} = ∅

}
,

is decreasing, it follows that

1 − p = limP(An) = P(∩nAn) = P{X(t) /∈ D◦ for all t ≥ 0}.
In terms of the stationary process L from the Lamperti representation, this means that

P{L(s) /∈ D◦ for all s ∈ R1} = 1 − p.

Since this event is invariant, by the ergodicity of L and due to (5), we see that the value p = 1
is the only one possible.

Applying similar arguments to another quadrants Dθ, θ ∈ Θ, we conclude that with proba-
bility 1 there exist points tθ ∈ (0, 1] such that X(tθ) ∈ D◦

θ , θ ∈ Θ. Now, to complete the proof,
it is sufficient to remark that

V (1)◦ = conv{X(t), t ∈ [0, 1]}◦ ⊃ conv{X(tθ), θ ∈ Θ}◦
and that the last set obviously contains 0. �

3. Winding numbers

Let now X = {X(t), t ≥ 0} be a two-dimensional self-similar process. It is assumed that
the following properties are fulfilled:

(1) The process X is continuous.
(2) The process X is nondegenerate.
(3) The process X is symmetric: X and −X have the same law.
(4) The stationary process L associated with X is ergodic.
(5) Starting from 0, the process X with probability 1 never comes back:

P{X(t) �= 0 for all t > 0} = 1. (6)
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Due to the last hypothesis, considering R2 as the complex plane, we can define the winding
numbers (around 0) ν[s, t], 0 < s < t, in the usual way (see [5, Chap. 5]):

ν[s, t] = arg (X(t)) − arg (X(s)).

We set
ν+(0, t] = lim sup

s↓0
ν[s, t], ν−(0, t] = lim inf

s↓0
ν[s, t],

ν+[s,∞) = lim sup
t→∞

ν[s, t], ν−[s,∞) = lim inf
t→∞ ν[s, t].

The values ν+(0, t] and −ν−(0, t] represent, respectively, the number of clockwise and anti-
clockwise winds around 0 in a neighborhood of the starting point, while ν+[s,∞) and −ν−[s,∞)
are the similar winding numbers at infinity.

Theorem 2. Let X be a two-dimensional self-similar process with properties (1)–(5) mentioned
above. Then, with probability one for all t > 0,

ν+(0, t] = ν+[t,∞) = −ν−(0, t] = −ν−[t,∞) = +∞. (7)

Corollary 7. Let BH be a two-dimensional standard FBM and assume that H ∈ [1/2, 1).
Then with probability one for all t > 0, equalities (7) take place.

Proof. The case H = 1/2 is well known, see [5, Chap. 5], which give us exhaustive information
on Brownian winding numbers.

If H ∈ (1/2, 1), we apply Theorem 2 since all the hypotheses (1)–(5) are fulfilled; indeed,
properties (1)–(3) are obvious; the ergodicity of L, L(t) = (L1(t), L2(t)), follows from the fact
that EL1(t)L1(0) → 0 as t → ∞ (see [1, Chap. 14, Sec. 2, Theorem 2]). Property (5) can be
deduced from Theorem 11 of [8] (see also [9, Theorem 4.2] and [10, Theorem 2.6]). �
Remark 2. If H ∈ (0, 1

2), the process t → arg BH(t) − arg BH(0) is not continuous with
positive probability since the set {t ∈ (0, 1] | BH(t) = 0} is not empty (see [8, Theorem 11)]).
This means that in this case, the winding numbers can only be defined for the excursions of
BH , and we need more sophisticated methods for their study.

Proof of Theorem 2. By (5),

P
{
L(t) �= 0 for all t ∈ R1

}
= 1.

Hence, as above, we can define for L the winding numbers νL
+−
(−∞, t] and νL

+−
[t,∞), and, in

addition,
νL
+−
(−∞, t] = ν+−

(0, et] and νL
+−
[t,∞) = ν+−

[et,∞).

Therefore, from now on we can work with the process L and omit the index L in the notation
of winding numbers.

Let us show that
P

{|ν+−
[t,∞)| = ∞ for all t ∈ R1

}
= 1. (8)

By symmetry (property (3)), it is sufficient to state that

P
{
ν+[t,∞) = ∞ for all t ∈ R1

}
= 1. (9)

Using the arguments from the proof of Theorem 1, we remark that the process L visits infinitely
often each of four basic quadrants. It follows by continuity that at least one of the two events
A and B,

A =
{
there exists t > 0 such that arg X(t) − arg X(0) > π/2

}
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and
B =

{
there exists t > 0 such that arg X(t) − arg X(0) < π/2

}
,

has probability 1. By the symmetry (property (3)), P(A) = P(B). Thus,

P
{
there exists t > 0 such that arg X(t) − arg X(0) > π/2

}
= 1.

From this it follows by the stationarity that for all s ∈ R1,

P
{
there exists t > s such that arg X(t) − arg X(s) > π/2

}
= 1.

The set

E =
{
(s, ω) ∈ R1 × Ω | there exists t > s such that arg X(t) − arg X(s) > π/2

}

is measurable since the process s → supt>s(arg X(t) − arg X(s)) is continuous.
Based on the aforementioned and due to the Fubini theorem, the set E is such that

λ ×P(E�) = 0,

where λ is the Lebesgue measure. Therefore, there exists Ω′ ⊂ Ω, P(Ω′) = 1, such that for
each ω ∈ Ω′ and for almost all s ∈ R1 there exists t > s for which arg X(t) − arg X(s) > π/2.
Take ω ∈ Ω′. Let us denote by Eω the corresponding ω-section of E. Without loss of generality,
we may assume that for each ω ∈ Ω′, the point 0 belongs to Eω. Since λ(E�

ω) = 0, Eω is dense
in R1. Let u > 0 be such that arg X(u)−arg X(0) > π/2. By continuity, arg X(t)−arg X(0) >
π/2 for all t in a sufficiently small neighborhood of u and, therefore, there exists t1 ∈ Eω for
which arg X(t1) − arg X(0) > π/2. Repeating this reasoning, we can construct an increasing
sequence (tn) such that t1 = 0 and tn ∈ Eω. Since arg X(tn)− arg X(tn−1) > π/2 for each n,
we get the relation

sup
t>0

(arg X(t) − arg X(0)) = ∞.

Thus, it is proved that for each t,

P
{
ν+[t,∞) = ∞}

= 1. (10)

Now to show that
P

{
ν+[t,∞) = ∞ for all t ∈ R1

}
= 1,

it is sufficient to remark that for each ω from Ω′, the ω-section Eω = R1. Indeed, assuming
that there exists u ∈ E�

ω, we should have

arg X(s) − arg X(u) ≤ π/2

for each s > t, but that is in contradiction with the existence of t ∈ Eω, t > u, for which (10)
holds. Thus, (9) is proved. Applying the previous reasonings to the process {L(−t), t ∈ R1},
we prove the remaining equalities in (7). �
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