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We consider the problem for a distributed control with compromise quality functional for

systems whose states are described by evolution equations that are unsolved with respect

to the higher order time derivative. We establish the solvability of the problem for linear

and quasilinear equations. The results are illustrated by an example. Bibliography: 12

titles.

1 Introduction

We assume that X , Y , U are Banach spaces, B ∈ L (U ;Y ), L ∈ L (X ;Y ) are linear con-

tinuous operators such that ker L �= {0}, M ∈ C l(X ;Y ), i.e., the operator M is linear, closed

and densely defined in X , and N : [t0, T ] ×X m → Y is a nonlinear operator. We study the

solvability of the control problem

u ∈ U∂ , (1.1)

J(x, u) =
1

2
‖x− x̃‖2W 1

2 (t0,T ;X ) +
C

2
‖u− ũ‖2L2(t0,T ;U ) → inf (1.2)

for a distributed system whose states are described by the quasilinear degenerate equation

Lx(m)(t) = Mx(t) +N(t, x(t), x(1)(t) . . . , x(m−1)(t)) +Bu(t), t ∈ (t0, T ), (1.3)

with the initial conditions

P (x(k)(t0)− xk) = 0, k = 0, 1, . . . ,m− 1. (1.4)

Here, u : (t0, T ) → U is the control function, U∂ is the set of admissible controls, x̃ ∈
W 1

2 (t0, T ;X ) and ũ ∈ L2(t0, T ;U ) are given functions, xk ∈ X , k = 0, 1, . . . ,m − 1, are

given vectors, C > 0 is a constant, and P is the projection along the degeneracy subspaces for

Equation (1.3) which will be introduced in terms of the operators L and M .

Many problems in mathematical physics can be reduced to the problem (1.3), (1.4); more-

over, instead of the Cauchy initial condition, it is more convenient to consider the generalized
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Showalter–Sidorov conditions (1.4) (cf. [1, 2]) if the initial data are given only for the projection

of the sought function onto the subspace im P (cf. [3]).

The solvability of initial-boundary value problems for different classes of quasilinear degener-

ate evolution equations was studied in numerous works. We note that our investigation is close

to the results of [4]. In this paper, to prove the existence of a strong solution to the problem

(1.3), (1.4), we use the schemes of [5]. As in [6]–[10], we use [11, Theorem 1.2.4] for proving

the existence of a solution to the problem (1.1)–(1.4). In Section 5, we describe an example of

an optimal control problems for a model system of partial differential equations unsolved with

respect to the time derivatives.

2 Solvability of Degenerate Equation

To study the degenerate equation, we use the results of the theory of degenerate operator

semigroups (cf. [3] for details).

We assume that X , Y are Banach spaces and L (X ;Y ) is the Banach space of linear

continuous operators from X to Y . We denote by C l(X ;Y ) the set of linear closed operators

with dense domains in the space X acting in Y . For Y = X we write L (X ) and C l(X )

respectively. Denote by DM the domain of the operator M with the graph norm ‖ · ‖DM
=

‖ · ‖X + ‖M · ‖Y .

We assume that L ∈ L (X ;Y ) and M ∈ C l(X ;Y ). We introduce the L-resolvent set

ρL(M) = {μ ∈ C : (μL − M)−1 ∈ L (Y ;X )} and the L-spectrum σL(M) = C\ρL(M) of an

operator M . We also denote RL
μ(M) = (μL−M)−1L, LL

μ = L(μL−M)−1.

An operator M is said to be (L, σ)-bounded if the L-spectrum σL(M) is bounded, i.e.,

∃a > 0 ∀μ ∈ C (|μ| > a) ⇒ (μ ∈ ρL(M)).

Lemma 2.1 (cf. [3]). We assume that M is (L, σ)-bounded and γ = {μ ∈ C : |μ| = r > a}.
Then the following operators are projections:

P =
1

2πi

∫

γ

RL
μ(M)dμ ∈ L (X ), Q =

1

2πi

∫

γ

LL
μ(M)dμ ∈ L (Y ).

We set X 0 = ker P , Y 0 = ker Q, X 1 = im P , and Y 1 = im Q. Denote by Lk (Mk) the

restriction of the operator L (M) onto X k (DMk
= DM ∩X k), k = 0, 1.

Theorem 2.1 (cf. [3]). Let an operator M be (L, σ)-bounded. Then

(i) M1 ∈ L (X 1;Y 1), M0 ∈ C l(X 0;Y 0), Lk ∈ L (X k;Y k), k = 0, 1,

(ii) the operators M−1
0 ∈ L (Y 0;X 0) and L−1

1 ∈ L (Y 1;X 1) exist.

We set N0 = {0} ∪ N and H = M−1
0 L0. For p ∈ N0 an operator M is (L, p)-bounded if it is

(L, σ)-bounded, Hp �= O, Hp+1 = O.

We consider a nonlinear operator N : [t0, T ] × X m → Y . By a strong solution to the

problem

Lx(m)(t) = Mx(t) +N(t, x(t), x(1)(t), . . . , x(m−1)(t)) + f(t) (2.1)

P (x(k)(t0)− xk) = 0, k = 0, 1, . . . ,m− 1, (2.2)
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we mean a function x ∈ Wm
q (t0, T ;X ), q ∈ (1,∞), such that (2.2) holds and (2.1) is satisfied

for almost all t ∈ (t0, T ). Arguing in the same way as in [5], we obtain the conditions of the

existence and uniqueness of a strong solution to the problem (2.1), (2.2).

In the linear case, the following assertion holds.

Theorem 2.2. We assume that M is an (L, p)-bounded operator, N ≡ 0, Qf ∈ Lq(0, T ;V),

HkM−1
0 (I −Q)f ∈ W

m(k+1)
q (0, T ;X ), k = 0, 1, . . . , p. Then for any x0, x1, . . . , xm−1 ∈ X the

problem (2.1), (2.2) has a unique strong solution on (t0, T ).

A mapping S(t0, T ) × X m → Y with variables t, v0, v1, . . . , vm−1 is said to be uniformly

Lipschitz with respect to v = (v0, v1, . . . , vm−1) if there exists l > 0 such that for all v =

(v0, v1, . . . , vm−1), w = (w0, w1, . . . , wm−1) ∈ X m and almost all t ∈ (t0, T )

‖N(t, v0, v1, . . . , vm−1)−N(t, w0, w1, . . . , wm−1)‖2Y � l2
m−1
∑

k=0

‖vk − wk‖2X .

In the nonlinear case, the following assertion holds.

Theorem 2.3. We assume that p ∈ N0, M is an (L, p)-bounded operator, and N : [t0, T ]×
X m → Y is such that QN ∈ Cm(p+1)−1([t0, T ] × X m;Y ) is uniformly Lipschitz with respect

to v = (v0, . . . , vm−1), H
kM−1

0 (I − Q)N ∈ Cm(k+1)([t0, T ] ×X m;X ), k = 0, 1, . . . , p, and for

all (t, v) ∈ [t0, T ]×X m

N(t, v0, v1, . . . , vm−1) = N(t, Pv0, Pv1, . . . , Pvm−1), (2.3)

Qf ∈ W
m(p+1)−1
q (t0, T ;Y ), HkM−1

0 (I −Q)f ∈ W
m(k+1)
q (t0, T ;X ) for k = 0, 1, . . . , p. Then for

any x0, x1, . . . , xm−1 ∈ X the problem (2.1), (2.2) has a unique strong solution on (t0, T ).

If the condition (2.3) fails, but im N ⊂ Y 1, the following assertion holds.

Theorem 2.4. We assume that p ∈ N0, M is an (L, p)-bounded operator, N : (t0, T ) ×
X m → Y for all v0, v1, . . . , vm−1 ∈ X is measurable on (t0, T ), and uniformly Lipschitz

with respect to v for some z ∈ X m N(·, z) ∈ Lq(t0, T ;Y ), im N ⊂ Y 1, Qf ∈ Lq(t0, T ;Y ),

HkM−1
0 (I −Q)f ∈ W

m(k+1)
q (t0, T ;X ), k = 0, 1, . . . , p. Then for any x0, x1, . . . , xm−1 ∈ X the

problem (2.1), (2.2) has a unique strong solution on (t0, T ).

3 Linear Equation

We assume that U , X , Y are Hilbert spaces, L ∈ L (X ;Y ), B ∈ L (U ;Y ), and M ∈
C l(X ;Y ). We consider the problem for a distributed control

Lx(m)(t) = Mx(t) +Bu(t) + y(t), t ∈ (0, T ), (3.1)

P (x(k)(t0)− xk) = 0, k = 0, 1, . . . ,m− 1, (3.2)

u ∈ U∂ , (3.3)

J(x, u) =
1

2
‖x− x̃‖2Wm

2 (t0,T ;X ) +
C

2
‖u− ũ‖2L2(t0,T ;U ) → inf . (3.4)
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Here, the nonempty convex closed subset U∂ of the space of controls L2(t0, T ;U ) is the set of

admissible controls, y ∈ L2(t0, T ;Y ), x̃ ∈ Wm
2 (t0, T ;X ), ũ ∈ L2(t0, T ;U ) are given functions,

and xk, k = 0, 1, . . . ,m− 1, are given vectors.

Lemma 3.1. Let X and Y be Banach spaces. Then Z = {z ∈ Wm
2 (t0, T ;X ) : Lx(m) −

Mx ∈ L2(t0, T ;Y )} is a Banach space with respect to the norm ‖x‖2Z = ‖x‖2Wm
2 (t0,T ;X ) +

‖Lx(m) −Mx‖2L2(t0,T ;Y ).

Proof. It is obvious that the norm axioms hold. We show that the space Z is complete

relative to this norm. We choose a Cauchy sequence {xn} in Z . Since the space Wm
2 (t0, T ;X )

is complete, there exists x ∈ Wm
2 (t0, T ;X ) such that ‖xn − x‖Wm

2 (t0,T ;X ) → 0. Furthermore,

there exists z = lim
n→∞(Lx

(m)
n −Mxn) in L2(t0, T ;Y ). Since Lx

(m)
n → Lx(m) in L2(t0, T ;Y ) as

n → ∞, we have Mxn → Lx(m) − z in L2(t0, T ;Y ) as n → ∞.

Thus, the set of t ∈ (t0, T ) such that xn(t) does not converge to x(t) in X or Mxn(t)

does not converge to Lx(m)(t) − z(t) in Y has measure zero. Since M is a closed operator, we

can conclude that for almost all t ∈ (0, T ) we have x(t) ∈ dom M and Mx = Lx(m) − z in

L2(t0, T ;Y ). Hence Lx(m) −Mx = z ∈ L2(t0, T ;Y ).

Remark 3.1. If X and Y are Hilbert spaces, then Z is also al Hilbert space equipped

with the inner product 〈x, z〉Z = 〈x, z〉Wm
2 (t0,T ;X ) + 〈Lx(m) −Mx,Lz(m) −Mz〉L2(t0,T ;Y ).

We introduce the operators γk : Wm
2 (t0, T ;X ) → X , γkx = x(k)(0), k = 0, 1, . . . ,m− 1. By

the Sobolev embedding theorem, the operators γk : Wm
2 (t0, T ;X ) → X , k = 0, 1, . . . ,m − 1,

are continuous. Therefore, γk : Z → X , k = 0, 1, . . . ,m− 1, are also continuous.

The set W of pairs (x, u) ∈ Z2 × L2(t0, T ;U ) satisfying (3.1)–(3.3) is called the set of

admissible pairs for the problem (3.1)–(3.4). The problem (3.1)–(3.4) consists in finding pairs

(x̂, û) ∈ W minimizing the cost functional J(x, u):

J(x̂, û) = inf
(x,u)∈W

J(x, u).

We recall that a functional J(x, u) is coercive if for any R > 0 the set {(x, u) ∈ W : J(x, u) � R}
is bounded in Z × L2(t0, T ;U ).

Theorem 3.1. We assume that M is strongly (L, p)-bounded and U∂ ∩W
m(p+1)
2 (t0, T ;U ) �=

∅. Then there exists a unique solution (x̂, û) ∈ Z × U∂ to the problem (3.1)–(3.4).

Proof. We use Theorem 1.2.3 in [11]. We set U = L2(t0, T ;U ), V = L2(t0, T ;Y ) ×X m,

Y = Wm
2 (t0, T ;X ), Y1 = Z , and F0 = (−y,−x0,−x1, . . . ,−xm−1) ∈ V. As was already noted,

the continuous embedding of Y1 into Y follows from the construction of Z . It is obvious that

the operator L : Y1 × U → V is linear and L(x, u) = (Lx(m) −Mx − Bu, γ0x, γ1x, . . . , γm−1x).

Let us prove the continuity of this operator. We have

‖(Lx(m) −Mx−Bu, γ0x, γ1x, . . . , γm−1x)‖2L2(t0,T ;Y )×X m

= ‖Lx(m) −Mx−Bu‖2L2(t0,T ;Y ) +
m−1
∑

k=0

‖γkx‖2X

� 2‖Lx(m) −Mx‖2L2(t0,T ;Y ) + 2‖Bu‖2L2(t0,T ;Y ) + C1‖x‖2Z
� (2 + C1)‖x‖2Z + 2‖B‖2L (U ;Y )‖u‖2L2(t0,T ;U ) = C‖(x, u)‖2Z×L2(t0,T ;U ).
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It is obvious that J is strictly convex and continuous. Let us prove that J is coercive. We have

‖x‖2Z + ‖u‖2L2(t0,T ;U ) = ‖x‖2Wm
2 (t0,T ;X ) + ‖Bu+ y‖2L2(t0,T ;Y ) + ‖u‖2L2(t0,T ;U )

� ‖x‖2Wm
2 (t0,T ;X ) + C2‖u‖2L2(t0,T ;U ) + 2‖y‖2L2(t0,T ;Y ) � C3J(x, u) + C4 � C3R+ C4,

where we used the fact that x is a solution to Equation (3.1).

Since U∂ ∩W
m(p+1)
2 (t0, T ;U ) is nonempty, there exists a control u ∈ U∂ ∩W

m(p+1)
2 (t0, T ;U )

such that f ≡ Bu satisfies the assumptions of Theorem 2.2 on the solvability of the problem

(3.1), (3.2). Thus, all the assumptions of Theorem 1.2.3 in [11] hold.

Remark 3.2. A sufficient condition for the relation U∂ ∩ W
m(p+1)
2 (t0, T ;U ) �= ∅ is the

existence of an interior point of the set U∂ in the topology of the space L2(t0, T ;U ).

Remark 3.3. The condition that the spaces U , X , and Y are Hilbert spaces was used

only for proving the strict convexity of the quality functional, which sufficient for the uniqueness

of a solution. The existence of a solution in Z ×L2(t0, T ;U ) can be proved in the same way as

in the case of Banach spaces U , X , and Y .

4 Quasilinear Degenerate Equation of Higher Order

We assume that U , X , Y are Banach spaces, L ∈ L (X ;Y ), B ∈ L (U ;Y ), M ∈
C l(X ;Y ), N : [t0, T ]×X m → Y , m ∈ N. We consider the optimal control problem

Lx(m)(t) = Mx(t) +N(t, x(t), x(1)(t), . . . , x(m−1)(t)) +Bu(t), (4.1)

P (x(k)(t0)− xk) = 0, k = 0, 1, . . . ,m− 1, (4.2)

u ∈ U∂ , (4.3)

J(x, u) =
1

2
‖x− x̃‖2Wm

2 (t0,T ;X ) +
C

2
‖u− ũ‖2L2(t0,T ;U ) → inf . (4.4)

Theorem 4.1. We assume that p ∈ N0, M is an (L, p)-bounded operator, N : [t0, T ] ×
X m → Y is such that QN ∈ Cm(p+1)−1([t0, T ] × X m;Y ) is uniformly Lipschitz with respect

to v = (v0, . . . , vm−1), H
kM−1

0 (I − Q)N ∈ Cm(k+1)([t0, T ] × X m;X ), k = 0, 1, . . . , p, for all

(t, v) ∈ [t0, T ] × X m we have the equality N(t, v0, v1, . . . , vm−1) = N(t, Pv0, Pv1, . . . , Pvm−1),

U∂ is a nonempty closed convex subset of the space L2(t0, T ;U ), U∂ ∩ W
m(p+1)
2 (t0, T ;U ), x0,

x1, . . . , xm−1 ∈ X . Then there exists a solution (x̂, û) ∈ Z × U∂ to the problem (4.1)–(4.4).

Proof. By Theorem 2.3, the Cauchy problem (4.1), (4.2) has a unique solution for every u ∈
U∂ ∩W

m(p+1)
2 (t0, T ;U ). Therefore, the set W of admissible pairs is nonempty. We use Theorem

1.2.4 in [11]. We set Y = Wm
2 (t0, T ;X ), Y1 = Z , U = L2(t0, T ;U ), V = L2(t0, T ;Y ) ×

X m, F(x(·)) = (−N(t, x(t), x(1)(t), . . . , x(m−1)(t)), x0, x1, . . . , xm−1), L(x, u) = (Lx(m) −Mx −
Bu, γ0x, γ1x, . . . , γm−1x). The continuity and linearity of the operator L : Y1 × U → V are

proved in Theorem 3.1.

Using the Sobolev embedding theorem the joint continuity of N , we find

‖x‖2Z + ‖u‖2L2(t0,T ;U ) = ‖x‖2Wm
2 (t0,T ;X ) + ‖Lx(m) −Mx‖2L2(t0,T ;Y ) + ‖u‖2L2(t0,T ;U )

� ‖x‖2Wm
2 (t0,T ;X ) + 2‖N(·, x(·), x(1)(·), . . . , x(m−1)(·))‖2L2(t0,T ;Y ) + 2‖Bu‖2L2(t0,T ;Y )
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+ ‖u‖2L2(t0,T ;U ) � ‖x‖2Wm
2 (t0,T ;X ) + C2‖u‖2L2(t0,T ;U )

+ 2(T − t0) max
t∈[t0,T ]

‖N(t, x(t), x(1)(t), . . . , x(m−1)(t))‖2Y � C3J(x, u) + C4.

From ‖vn − v0‖Z → 0 it follows that

T
∫

t0

‖N(t, vn(t), v
(1)
n (t), . . . , v(m−1)

n (t))−N(t, v0(t), v
(1)
0 (t), . . . , v

(m−1)
0 (t))‖2Y dt

� l2‖vn − v‖2
Wm−1

2 (t0,T ;X)
→ 0, n → ∞.

Therefore, the operator F : Z → L2(t0, T ;Y ) × X m is continuous. We choose Y−1 =

Wm−1
2 (t0, T ;X ) and verify the assumptions of Theorem 1.2.4 in [11]. The conditions (1.2.20),

(1.2.21) in this theorem are satisfied by the compactness of the embedding of Wm
2 (t0, T ;X ) into

Wm−1
2 (t0, T ;X ) and the continuity of the embedding of Z into Wm

2 (t0, T ;X ).

To verify the condition (1.2.22) in [11], we consider the dense subspace S = L2(t0, T ;Y ) of

Wm−1
2 (t0, T ;X ). Since N is uniformly Lipschitz with respect to v, for w ∈ L2(t0, T ;Y ) we have

〈N(·, vn(·), . . . , v(m−1)
n (·))−N(·, v(·), . . . , v(m−1)(·)), w(·)〉L2(t0,T ;Y )

� l‖w‖L2(t0,T ;Y )‖vn − v‖Wm
2 (t0,T ;X ),

which implies the continuity of the extended functional 〈F(·), v〉 from Z to Wm−1
2 (t0, T ;X ).

Theorem 4.2. We assume that M is (L, p)-bounded, N : (t0, T ) × X m → Y for all

v0, v1, . . . , vm−1 ∈ X is measurable on (t0, T ) and uniformly Lipschitz with respect to v for

some z ∈ X m N(·, z) ∈ L2(t0, T ;Y ), im N ⊂ Y 1, U∂ is a nonempty convex closed subset of

the space L2(t0, T ;U ), U∂ ∩W
m(p+1)
2 (t0, T ;U ) �= ∅, x0, x1, . . . , xm−1 ∈ X 1. Then there exists

a solution (x̂, û) ∈ Z × U∂ to the problem (4.1)–(4.4).

Proof. By Theorem 2.4, the set of admissible pairs is nonempty, The remaining part of the

proof differs by only the arguments concerning the coercivity of the functional J .

For almost all t ∈ (t0, T ) and all x = (x0, x1, . . . , xm−1) ∈ X m we have

‖N(t, x)‖2Y � 2‖N(t, x)−N(t, z)‖2Y + 2‖N(t, z)‖2Y
� 2l2‖x− z‖2X m + 2‖N(t, z)‖2Y � C1(1 + ‖x‖2X m) + 2‖N(t, z)‖2Y .

Hence N(·, x(·), x(1)(·), . . . , x(m−1)(·)) ∈ L2(t0, T ;Y ), x ∈ Wm−1
2 (t0, T ;X ). Using this inequal-

ity, we obtain

‖x‖2Z + ‖u‖2L2(t0,T ;U ) = ‖x‖2Wm
2 (t0,T ;X ) + ‖Lx(m) −Mx‖2L2(t0,T ;Y ) + ‖u‖2L2(t0,T ;U )

� ‖x‖2Wm
2 (t0,T ;X ) + 2‖N(·, x(·), x(1)(·), . . . , x(m−1)(·))‖2L2(t0,T ;Y )

+ 2‖Bu‖2L2(t0,T ;Y ) + ‖u‖2L2(t0,T ;U )

� ‖x‖2Wm
2 (t0,T ;X ) + C2‖u‖2L2(t0,T ;U ) + 2C1((T − t0) + ‖x‖2Wm

2 (t0,T ;X )) + 4‖N(t, z)‖2L2(t0,T ;Y )

� C3J(x, u) + C4.

The theorem is proved.
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5 Example

Let Ω ⊂ R
n be a bounded domain with boundary ∂Ω of class C∞, and let ν ∈ R. We

consider the initial-boundary value problem

∂k

∂tk
x1(s, t0) = xk10(s), s ∈ Ω, k = 0, 1, . . . ,m− 1, (5.1)

xi(s, t) = 0, (s, t) ∈ ∂Ω× (t0, T ), i = 1, 2, 3, (5.2)

∂m

∂tm
x1 = x1 + g1

(

s, t, x1, x2, x3,
∂

∂t
x1, . . . ,

∂m−1

∂tm−1
x3

)

, (s, t) ∈ Ω× (t0, T ),

� ∂m

∂tm
x3 = x2 + g2

(

s, t, x1, x2, x3,
∂

∂t
x1, . . . ,

∂m−1

∂tm−1
x3

)

, (s, t) ∈ Ω× (t0, T ), (5.3)

0 = �x3 + g3

(

s, t, x1, x2, x3,
∂

∂t
x1, . . . ,

∂m−1

∂tm−1
x3

)

, (s, t) ∈ Ω× (t0, T ),

where the functions gi, i = 1, 2, 3, depend on the sought functions x1 = x1(s, t), x2 = x2(s, t),

x3 = x3(s, t) and on their derivatives with respect to t of order up to m− 1.

We denote by A the Laplace operator with the domain W 2
2,0(Ω) = {z ∈ W 2

2 (Ω) : z(s) =

0, s ∈ ∂Ω} ⊂ L2(Ω) and by {ϕk} the orthonormal in L2(Ω) system of their eigenfunctions

corresponding to the system {λk} of the eigenvalues of the operator A enumerated in non-

ascending order with taken into account their multiplicity.

We reduce the problem (5.1)–(5.3) to the problem (4.1), (4.2). For this purpose we set

X = W 2
2,0(Ω)× L2(Ω)×W 2

2,0(Ω), Y = (L2(Ω))
3,

L =

⎛

⎝

� 0 0

0 0 �
0 0 0

⎞

⎠ , M =

⎛

⎝

1 0 0

0 1 0

0 0 �

⎞

⎠ .

It is easy to verify that

(μL−M)−1 =

∞
∑

k=1

⎛

⎝

1/μλk − 1 0 0

0 −1 −μ

0 0 −1/λk

⎞

⎠ 〈·, ϕk〉L2(Ω)ϕk ∈ L (Y ;X )

for |μ| > |λ1|−1, and the projections take the form

P = Q =

⎛

⎝

1 0 0

0 0 0

0 0 0

⎞

⎠ .

Hence X 1 = W 2
2,0(Ω) × {0} × {0}, X 0 = {0} × L2(Ω) × W 2

2,0(Ω), Y
1 = L2(Ω) × {0} × {0},

Y 0 = {0} × L2(Ω)× L2(Ω),

H =

∞
∑

k=1

(

0 λk

0 0

)

〈·, ϕk〉L2(Ω)ϕk.
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Consequently, H2 = O and the operator M is (L, 1)-bounded. It is clear that (5.1) implies (4.2).

In this case, Theorem 4.1 can be used for control systems of the form

� ∂m

∂tm
x1 = x1 + g1

(

s, t, x1,
∂

∂t
x1, . . . ,

∂m−1

∂tm−1
x1

)

+ u1(s, t), (s, t) ∈ Ω× (t0, T ),

� ∂m

∂tm
x3 = x2 + g2

(

s, t, x1,
∂

∂t
x1, . . . ,

∂m−1

∂tm−1
x1

)

+ u2(s, t), (s, t) ∈ Ω× (t0, T ),

0 = �x3 + g3

(

s, t, x1,
∂

∂t
x1, . . . ,

∂m−1

∂tm−1
x1

)

+ u3(s, t), (s, t) ∈ Ω× (t0, T ),

(5.4)

if its nonlinear part depends only on the function x1 and its derivatives with respect to t of order

up to m− 1. We consider the optimal control problem

3
∑

i=1

‖ui‖2L2(t0,T ;L2(Ω)) � R2, (5.5)

1

2

∑

i=1,3

‖xi − x̃i‖2W 1
2 (t0,T ;W 2

2 (Ω)) +
1

2
‖x2 − x̃2‖2W 1

2 (t0,T ;L2(Ω))

+
C

2

3
∑

i=1

‖ui − ũi‖2L2(t0,T ;L2(Ω)) → inf . (5.6)

In this problem, Z = Wm
2 (t0, T ;W

2
2,0(Ω)×L2(Ω)×W 2

2,0(Ω)). We denote by BR(v0;V ) the ball

of radius R and center v0 ∈ V in the Banach space V .

Theorem 5.1. We assume that n = 1, gi ∈ C∞(Ω × [t0, T ] × R
m;R) is uniformly with

respect to (t, x) ∈ Ω × [t0, T ] and Lipschitz with respect to v = (v0, . . . , vm−1) ∈ R
m, i = 1, 2, 3,

xk10 ∈ W 2
2,0(Ω), k = 0, 1, . . . ,m − 1. Then there exists a solution (x̂1, x̂2, x̂3, û1, û2, û3) ∈ Z ×

BR(0, L2(t0, T ; (L2(Ω))
3)) to the problem (5.1), (5.2), (5.4)–(5.6).

Proof. It suffices to prove the assumption of Theorem 4.1 concerning the smoothness of the

operator N defined by the functions gi, i = 1, 2, 3. Since the last m arguments of these functions

belong, at least, to W 1
2 (Ω), from [12] it follows that N ∈ C∞([t0, T ]×(W 1

2 (Ω))
m; (W 1

2 (Ω))
3).

Remark 5.1. If gi, i = 1, 2, 3, are independent of the derivative of order m − 1, then

N ∈ C∞([t0, T ] × (W 2
2 (Ω))

m; (W 2
2 (Ω))

3) for n < 4. If gi, i = 1, 2, 3, are independent of the

derivatives of the (m− 2)th and (m− 1)th order, then N ∈ C∞([t0, T ]× (W 3
2 (Ω))

m; (W 3
2 (Ω))

3)

for n < 6 and so on.

Similarly, using Theorem 4.2, one can study the optimal control problem (5.5), (5.6) for the

distributed system described by the equations

� ∂m

∂tm
x1 = x1 + g1

(

s, t, x1, x2, x3,
∂

∂t
x1, . . . ,

∂m−1

∂tm−1
x3

)

+ u1(s, t),

� ∂m

∂tm
x3 = x2 + u2(s, t),

0 = �x3 + u3(s, t).

The nonlinear function is contained only in the first equation (corresponds to the condition

im N ⊂ Y 1), but depends on x1, x2, x3 and their derivatives of order up to m− 1 with respect

to t.
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