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We study the elliptic problem with p-Laplacian and construct a system of Galerkin ap-

proximations. We estimate the difference between an exact and approximate solutions

in the case of constant or variable exponent p. Bibliography: 3 titles.

1 Constant Exponent. Estimates

We consider the Dirichlet problem

−div (|∇u|p−2∇u) = f, u
∣
∣
∂Ω

= 0, (1.1)

in a bounded smooth domain Ω ⊂ R
d, where p > 1, X = W 1,p

0 is the Sobolev space, u ∈ X,

and f is a linear continuous functional on X, i.e., f ∈ X∗. The left-hand side of the equation in

(1.1) is called the p-Laplacian and is denoted by Δpu. The norm in the space X is defined by

‖u‖X = ‖∇u‖p =
(

∫

Ω

|∇u|p dx
) 1

p

.

Definition 1.1. By a solution to the problem (1.1) we mean a function u ∈ X such that
∫

Ω

|∇u|p−2∇u · ∇ϕdx = (f, ϕ) ∀ϕ ∈ X. (1.2)

As is known, the problem (1.2) is the Euler equation for the variational problem

min
u∈X

∫

Ω

( |∇u|p
p

− g · u
)

dx.
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A solution to this problem exists and is unique.

To prove the solvability of the problem (1.2), it is convenient to write it in the operator form.

For this purpose we consider the operator A : X → X∗ from a space X to the dual X∗ such that

(Au,ϕ) =

∫

Ω

|∇u|p−2∇u · ∇ϕdx ∀ϕ ∈ X.

The functional Au is continuous since |∇u|p−2∇u ∈ Lp′(Ω) and ∇ϕ ∈ Lp(Ω). Thus, the problem

(1.2) can be written as

Au = f.

Since the operator A is monotone and coercive, we can apply the method of monotone

operators. We construct approximate solutions by the Galerkin method. Let X1 ⊂ X2 ⊂ . . . ⊂
Xn be an expanding sequence of finite-dimensional subspaces of X such that their union is dense

in X. The Galerkin approximations are found as solutions un ∈ Xn to the system

un ∈ Xn,

∫

Ω

|∇un|p−2∇un · ∇ϕdx = (f, ϕ) ∀ϕ ∈ Xn. (1.3)

Similarly, we introduce the operator An : Xn → X∗
n by the rule

(Anu, ϕ) =

∫

Ω

|∇u|p−2∇u · ∇ϕdx ∀ϕ ∈ Xn.

Then the problem (1.3) for Galerkin approximations can be written as

Anun = f,

where the operator An is monotone.

To solve the problems (1.2) and (1.3), we derive some estimates. Setting ϕ = u in (1.2) and

ϕ = un in (1.3), we get

∫

Ω

|∇u|p dx = (f, u) � ‖f‖X∗ ‖u‖X ,

‖u‖X � ‖f‖
1

p−1

X∗ (1.4)

‖un‖X � ‖f‖
1

p−1

X∗ . (1.5)

Theorem 1.1. The following estimate holds:

‖u− un‖X

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

= dist (u,Xn), p = 2,

� C(dist (u,Xn))
p
2 ‖f‖

2−p
2(p−1)

X∗ , 1 < p � 2,

� C(dist (u,Xn))
2
p ‖f‖

p−2
p(p−1)

X∗ , p � 2,

where C is a constant depending only on p and d.
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Proof. 1. Case p = 2. In this case, it is obvious that the p-Laplacian is the Laplace operator.

Equations (1.2) and (1.3) take the form
∫

Ω

∇u · ∇ϕdx = (f, ϕ) ∀ϕ ∈ X,

∫

Ω

∇un · ∇ϕdx = (f, ϕ) ∀ϕ ∈ Xn.

Subtracting the second identity from the first one, we get
∫

Ω

(∇u−∇un) · ∇ϕdx = 0 ∀ϕ ∈ Xn. (1.6)

Since ϕ is arbitrary, we can set ϕ = un and write
∫

Ω

(∇u−∇un) · ∇un dx = 0.

Subtracting

∫

Ω

(∇u−∇un) · ∇u dx from both sides of the last equality, we find

∫

Ω

(∇u−∇un)
2 dx =

∫

Ω

(∇u−∇un) · ∇u dx. (1.7)

By the definition of distance, there exists wn ∈ Xn such that ‖u− wn‖X = dist (u,Xn). Setting

ϕ = wn in (1.6) and subtracting from (1.7), we get
∫

Ω

|∇u−∇un|2 dx =

∫

Ω

(∇u−∇un)(∇u−∇wn) dx

�
(

∫

Ω

|∇u−∇un|2dx
) 1

2
(

∫

Ω

|∇u−∇wn|2dx
) 1

2

,

where we used the Cauchy–Bunyakowsky inequality at the last step. Therefore,
∫

Ω

|∇u−∇un|2 dx �
∫

Ω

|∇u−∇wn|2 dx,

‖u− un‖X � dist (u,Xn).

By the definition of dist (u,Xn), the last estimate implies the equality ‖u− un‖X = dist (u,Xn).

In the case p �= 2, the identities
∫

Ω

|∇u|p−2∇u · ∇ϕdx = (f, ϕ) ∀ϕ ∈ X,

∫

Ω

|∇un|p−2∇un · ∇ϕdx = (f, ϕ) ∀ϕ ∈ Xn
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imply
∫

Ω

(|∇u|p−2∇u− |∇un|p−2∇un) · ∇ϕdx = 0 ϕ ∈ Xn, (1.8)

∫

Ω

(|∇u|p−2∇u− |∇un|p−2∇un) · (∇u−∇un) dx

=

∫

Ω

(|∇u|p−2∇u− |∇un|p−2∇un) · ∇u dx. (1.9)

There exists wn ∈ Xn such that ‖u− wn‖X = dist (u,Xn). Setting ϕ = wn in (1.8) and

subtracting from (1.9), we find
∫

Ω

(|∇u|p−2∇u− |∇un|p−2∇un)(∇u−∇un) dx

=

∫

Ω

(|∇u|p−2∇u− |∇un|p−2∇un)(∇u−∇wn) dx. (1.10)

Denoting

l(a) = |a|p−2 a, a ∈ R
d, D = D(a, b) = (l(b)− l(a)) · (b− a), (1.11)

we can write the identity (1.10) in the form
∫

Ω

D(∇u,∇un) dx =

∫

Ω

(l(∇u)− l(∇un)) · (∇u−∇wn) dx. (1.12)

2. Case 1 < p < 2. We use the following inequalities proved in [1, 2]:

|l(b)− l(a)|p′ � D(a, b) = D ∀a, b ∈ R
d, (1.13)

|b− a|2 � CD(a, b)(|a|2−p + |b|2−p) ∀a, b ∈ R
d (1.14)

By the Hölder inequality, from (1.12) it follows that

∫

Ω

Ddx �
(

∫

Ω

(l(∇u)− l(∇un))
p′dx

) 1
p′

(|∇u−∇wn|p)
1
p .

By (1.13),
∫

Ω

Ddx �
(

∫

Ω

Ddx

) 1
p′

dist (u,Xn),

∫

Ω

Ddx � (dist (u,Xn))
p (1.15)

By (1.14),

|b− a|p � CD
p
2 (|a|2−p + |b|2−p)

p
2 � CD

p
2 (|a| (2−p)p

2 + |b| (2−p)p
2 )

which, together with the Hölder inequality with exponents 2/p and 2/(2− p), implies

∫

Ω

|∇u−∇un|p dx � C

(
∫

Ω

Ddx

) p
2
(

∫

Ω

(|∇u|p + |∇un|p)dx
) 2−p

2

� Cdist (u,Xn)
p p
2 ‖f‖

p(2−p)
2(p−1)

X∗ , (1.16)
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where we used the estimates (1.15), (1.5), and (1.6). It remains to take the pth degree root:

‖u− un‖X � Cdist (u,Xn)
p
2 ‖f‖

2−p
2(p−1)

X∗ .

3. Case p > 2. In this case, we have (cf. the proof in [1])

C|b− a|p � D, (1.17)

|l(b)− l(a)| � CD
1
2 (|a|+ |b|) p−2

2 . (1.18)

From (1.12) it follows that

∫

Ω

Ddx =

∫

Ω

(l(∇u)− l(∇un))(∇u−∇wn) dx � C

∫

Ω

D
1
2 (|∇u|+ |∇un|)

p−2
2 |∇u−∇wn| dx.

We apply the Hölder inequality with exponents 2, 2p/(p− 2), and p:

∫

Ω

Ddx � C

(
∫

Ω

Ddx

) 1
2
(

∫

Ω

|∇u|p + |∇un|pdx
) p−2

2p

dist (u,Xn),

∫

Ω

Ddx � C

(
∫

Ω

|∇u|p + |∇un|pdx
) p−2

p

(dist (u,Xn))
2 ⇒

‖u− un‖pX �
∫

Ω

Ddx � C

(
∫

Ω

|∇u|p + |∇un|pdx
) p−2

p

(dist (u,Xn))
2 ⇒ (1.9)

‖u− un‖X � C ‖f‖
p−2

p(p−1)

X∗ (dist (u,Xn))
2
p .

If the union of Xn is dense in X, then dist (u,Xn) → 0 as n → ∞.

2 Variable Exponent. The Sobolev–Orlicz Space

We consider the functional

F [u] =

∫

Ω

f(x,∇u) dx, (2.1)

where Ω is a bounded Lipschitz domain in R
d, f(x, ξ) is measurable in x ∈ Ω, convex in ξ ∈ R

d

and satisfies the standard growth condition

c1|ξ|α − 1 � f(x, ξ) � c2|ξ|α + 1 (α > 0, c1 > 0). (2.2)

The functional F on the Sobolev space W 1,α
0 is convex, lower semicontinuous, and coercive:

F [u] � c1

∫

Ω

|∇u|α dx− |Ω|.
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Consequently, the variational Dirichlet problem (Problem E1)

E1 = min
u∈W 1,α

0

F [u] (2.3)

has a solution, which is guaranteed by the left estimate in (2.2). From the right estimate in (2.2)

it follows that the functional F is locally bounded and, consequently, is continuous on W 1,α
0 .

Therefore, for Problem E1 there exists a smooth minimizing sequence, i.e.,

E1 = inf
u∈C∞

0

F [u]. (2.4)

We replace the standard growth condition with the following more general one:

−c0(x) + c1|ξ|α � f(x, ξ) � c0(x) + c2|ξ|β , (2.5)

where c0 ∈ L1(Ω), 1 < α � β. As above, the functional F is convex, lower semicontinuous, and

coercive on W 1,α
0 . Hence Problem E1 has a solution in W 1,α

0 . However, the functional F is not

necessarily continuous on W 1,α
0 , and (2.4) is not guaranteed. It can happen that

E1 = min
u∈W 1,α

0

F [u] < inf
u∈C∞

0

F [u] = E2. (2.6)

Similar inequalities are referred to as the Lavrent’ev gap. Thus, no sufficiently smooth minimizing

sequence exists for Problem E1. Therefore, in addition to the original problem, it is necessary

to study the minimization problem, referred to as the relaxation problem, over only smooth

functions.

In what sequel, we need the Sobolev spaces with variable exponent: the Sobolev–Orlicz

spaces. We denote by Lp( · )(Ω) the class of measurable vector-valued functions v : Ω → R
d such

that ∫

Ω

|v(x)|p(x) dx < ∞

and introduce the Luxemburg norm

‖v‖p(·) = inf

{

λ > 0,

∫

Ω

∣
∣
∣
v

λ

∣
∣
∣

p
� 1

}

. (2.7)

Let 1 < α � p(x) � β < ∞. Then

‖v‖αp(·) − 1 �
∫

Ω

|v|pdx � ‖v‖βp(·) + 1. (2.8)

In the variable Lp(·) Sobolev–Orlicz spaces, the Hölder inequality takes the form
∫

Ω

fgdx � 2 ‖f‖Lp(·) ‖g‖Lp′(·) (2.9)

We introduce the Sobolev–Orlicz space

W
1,p(·)
0 =

{

u ∈ W 1,1
0 ,

∫

Ω

|∇u|pdx < ∞
}

(2.10)
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equipped with the norm ‖u‖
W

1,p(·)
0

= ‖∇u‖p(·).
In what follows, H = H

1,p(·)
0 is the closure of the set C∞

0 (Ω) in W
1,p(·)
0 .

Definition 2.1. An exponent p(x) is regular if C∞
0 (Ω) is dense in the space W

1,p(·)
0 .

Theorem 2.1 (cf. [3]). If the logarithmic condition

|p(x)− p(y)| � w(|x− y|) ≡ k

ln 1
|x−y|

, x, y ∈ Ω, |x− y| � 1

4

holds, then the exponent p is regular.

3 Variable Exponent. Estimates

We consider the Dirichlet problem

−div (|∇u|p(x)−2∇u) = f, u
∣
∣
∂Ω

= 0 (3.1)

in a bounded smooth domain Ω ⊂ R
d, where the exponent p is a measurable function, 1 < α �

p(x) � β < ∞. The right-hand side is a linear functional on H, i.e., f ∈ H∗.
Definition 3.1. By a solution to the problem (3.1) we mean a function u ∈ H such that

∫

Ω

|∇u|p(x)−2∇u · ∇ϕdx = (f, ϕ) ∀ϕ ∈ H. (3.2)

As in the case of a constant exponent p, one can show that (3.2) is the Euler equation for

the variational problem

min
u∈H

∫

Ω

( |∇u|p
p

− g · u
)

dx

which has a unique solution.

To write the problem (3.2) in the operator form, we define the operator A : H → H∗ from

a space H to the dual H∗ by the formula

(Au,ϕ) =

∫

Ω

|∇u|p(x)−2∇u · ∇ϕdx ∀ϕ ∈ H.

The functional Au is continuous. Indeed, |∇u|p(x)−2∇u ∈ Lp′( · )(Ω), ∇ϕ ∈ Lp( · )(Ω). Applying

the Hölder inequality, we obtain the estimate

|(Au,ϕ)| � 2 ‖∇u‖p(·) · ‖∇ϕ‖p(·) .

Thus, the problem (3.2) can be written as

Au = f.

Since the operator A is monotone and coercive, we can apply the method of monotone

operators. Let H1 ⊂ H2 ⊂ . . . ⊂ Hn be an expanding sequence of finite-dimensional subspaces
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of H such that their union is dense in H. Galerkin approximations are found as solutions

un ∈ Hn to the system

un ∈ Hn,

∫

Ω

|∇un|p(x)−2∇un · ∇ϕdx = (f, ϕ) ∀ϕ ∈ Hn. (3.3)

As above, we introduce the operator An : Hn → H∗
n by the rule

(Anu, ϕ) =

∫

Ω

|∇u|p(x)−2∇u · ∇ϕdx ∀ϕ ∈ Hn.

Then the problem (3.3) can be written as

Anun = f,

where the operator An is monotone. Setting ϕ = u in (3.2) and ϕ = un in (3.3), we find
∫

Ω

|∇u|pdx = (f, u) � ‖f‖H∗ ‖u‖H , (3.4a)

∫

Ω

|∇un|pdx = (f, un) � ‖f‖H∗ ‖un‖H . (3.4b)

Introduce the notation

l(ψ) = |ψ|p(·)−2 ψ, l(ψ) = |ψ|p′(·)−2 ψ,

D(a, b) = (|b|p(x)−2 b− |a|p(x)−2 a, b− a) = (l(b)− l(a), b− a),

D(a, b) = (|b|p′(·)−2 b− |a|p′(·)−2 a, b− a) = (l(b)− l(a), b− a).

(3.5)

In this problem, the value of p(x) depends on points of Ω. We divide Ω into two subdomains

Ω+ = {x | p(x) � 2} and Ω− = {x | p(x) < 2}. It suffices to consider the case p > 2 on

Ω+ and use similar arguments with the exponent p′ in the case of Ω−. We introduce the flow

z = |∇u|p(·)−2∇u. Then

∇u = |z|
2−p(·)
p(·)−1 z = |z|p′(·)−2z = l(z). (3.6)

Since p′(x) > 2 on Ω−, the replacement of gradients with flows leads to the dual relation
∫

Ω−

(l(∇u)− l(∇un)) · (∇u−∇un)dx =

∫

Ω−

(z − zn) · (l(z)− l(zn))dx. (3.7)

Theorem 3.1. Let α > 1 satisfy (2.8), and let p > 1. Then
∫

Ω+

|∇u−∇un|pdx+

∫

Ω−

|z − zn|p′dx

� 2(M +M)([1 + ‖f‖
H∗ ‖u‖H ]

1
α + [1 + ‖f‖

H∗ ‖un‖H ]
1
α )dist (u,Hn),

where z = |∇u|p(·)−2∇u, zn = |∇un|p(·)−2∇un, M =
∥
∥2p−2

∥
∥
p′(·), and M = ‖2p′−2‖.
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Proof. For u and un we have
∫

Ω+

l(∇u)∇ϕdx+

∫

Ω−

l(∇u)∇ϕdx = (f, ϕ), ϕ ∈ H,

∫

Ω+

l(∇un)∇ϕdx+

∫

Ω−

l(∇un)∇ϕdx = (f, ϕ), ϕ ∈ Hn.

Subtracting, we find
∫

Ω

(l(∇u)− l(∇un)) · ∇ϕdx = 0, ϕ ∈ Hn, (3.8)

∫

Ω

(l(∇u)− l(∇un)) · ∇un dx = 0.

Subtracting

∫

Ω

(l(∇u)− l(∇un)) · ∇u dx from the last equality, we get

∫

Ω

(l(∇u)− l(∇un)) · (∇u−∇un) dx =

∫

Ω

(l(∇u)− l(∇un)) · ∇u dx. (3.9)

There is wn ∈ Hn such that ‖u− wn‖H = dist (u,Hn). We substitute ϕ = wn into (3.8) and

subtract the obtained expression from (3.9):
∫

Ω

(l(∇u)− l(∇un))(∇u−∇un) dx =

∫

Ω

(l(∇u)− l(∇un))(∇u−∇wn) dx. (3.10)

Using (3.5), we can write (3.10) in the form
∫

Ω

D(∇u,∇un) dx =

∫

Ω

(l(∇u)− l(∇un))(∇u−∇wn) dx. (3.11)

We use the inequalities (cf. the proof in [1])

|∇u−∇un|p � 2p−2 ·D(∇u,∇un), p � 2.

By (3.11) and (3.7), we have
∫

Ω+

|∇u−∇un|p dx+

∫

Ω−

|z − zn|p′ dx �
∫

Ω+

2p−2 D(∇u,∇un) dx+

∫

Ω−

2p
′−2 D(z, zn) dx. (3.12)

Let us estimate the integral over Ω+:
∫

Ω+

2p−2 D(∇u,∇un) dx =

∫

Ω+

2p−2 (l(∇u)− l(∇un))(∇u−∇un) dx

=

∫

Ω+

2p−2 (l(∇u)− l(∇un))(∇u−∇wn) dx

� 2
∥
∥2p−2 (l(∇u)− l(∇un))

∥
∥
p′(·) · ‖∇u−∇wn‖p(·) .
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Setting M =
∥
∥2p−2

∥
∥
p′(·), we get

2M ‖(l(∇u)− l(∇un))‖p′(·) dist (u,Hn) � 2M ‖(l(∇u) + l(∇un))‖p′(·) dist (u,Hn)

� 2M(‖l(∇u)‖p′(·) + ‖l(∇un)‖p′(·))dist (u,Hn).

By (2.8), we have

‖l(∇u)‖αp′(·) − 1 �
∫

Ω+

|∇u|(p−1)p′ dx =

∫

Ω+

|∇u|p dx � ‖f‖
H∗ ‖u‖H ,

‖l(∇u)‖p′(·) � [1 + ‖f‖
H∗ ‖u‖H ]

1
α . (3.13a)

Similarly,

‖l(∇un)‖p′(·) � [1 + ‖f‖
H∗ ‖un‖H ]

1
α . (3.13b)

We have
∫

Ω+

2p−2 D(∇u,∇un) dx � 2M
(

[1 + ‖f‖
H∗ ‖u‖H ]

1
α + [1 + ‖f‖

H∗ ‖un‖H ]
1
α
)

dist (u,Hn). (3.14)

For the integral over Ω− the required estimate is proved in a similar way. Namely, setting

θn = l(∇wn) and M = ‖2p′−2‖, we find
∫

Ω+

2p
′−2 D(z, zn) dx =

∫

Ω−

2p
′−2 (z − zn)(l(z)− l(θn)) dx � 2M(‖z‖p′(·) + ‖zn‖p′(·))dist (u,Hn)

� 2M
(

[1 + ‖f‖
H∗ ‖u‖H ]

1
α + [1 + ‖f‖

H∗ ‖un‖H ]
1
α
)

dist (u,Hn). (3.15)

Adding (3.14) and (3.15), we obtain the required estimate.

4 Estimates in Anisotropic Case

The above results can be extended to a larger class of elliptic problems. Let us consider the

Dirichlet problem

−div (|∇u|p−2A∇u) = f, u
∣
∣
∂Ω

= 0 (4.1)

in a bounded smooth domain Ω ⊂ R
d, where p > 1 is a constant and A = A(x) is a measurable

bounded positive definite matrix. The right-hand side f is a linear functional on X = W 1,p
0 , i.e.,

f ∈ X∗.
Definition 4.1. By a solution to the problem (4.1) we mean a function u ∈ X such that

∫

Ω

|∇u|p−2A∇u · ∇ϕdx = (f, ϕ) ∀ϕ ∈ X. (4.2)

We denote
lA(ψ) = |ψ|p−2Aψ, l∗A(ζ) = |ζ|p′−2A−1ζ,

DA(ψ, ζ) = (lA(ψ)− lA(ζ)) · (ψ − ζ),

D∗
A(ψ, ζ) = (l∗A(ψ)− l∗A(ζ)) · (ψ − ζ).

(4.3)

108



Then a solution to the problem (4.1) is a function u ∈ X such that
∫

Ω

lA(∇u) · ∇ϕdx = (f, ϕ) ∀ϕ ∈ X.

Let lA satisfy the boundedness and coercivity conditions

|lA(ζ)| � C0|ζ|p−1 (4.4)

lA(ζ) · ζ � C1|ζ|p, p > 1, (4.5)

To prove the uniqueness of a solution to the problem (4.2), we need the monotonicity of lA:

DA(ζ, η) = (lA(ζ)− lA(η)) · (ζ − η) � 0. (4.6)

To provide these properties, we impose additional conditions on the matrix A.

Lemma 4.1. Let A be a positive definite symmetric matrix, and let

μ(A) = sup
|x|=1

|Ax|
(Ax, x)

.

If μ(A) < p/(|p− 2|), then
|lA(b)− lA(a)|p′ � CDA(b, a), 1 < p < 2; (4.7a)

C|b− a|p � DA(b, a), p > 2, (4.7b)

|lA(b)− lA(a)|2 � CDA(b, a) · (|a|+ |b|)p−2, p > 2, (4.7c)

where C = C(A, p, d) > 0 (cf. [2]). Furthermore, the relation (4.6) holds.

The coefficient C in Lemma 4.1 depends on the maximal and minimal eigenvalues of the

matrix A and on μ(A), which allows us to deal with flows of the form lA with a bounded

measurable symmetric positive definite matrix A such that μ(A) < p/|p− 2|.
It is important to note that even a simple monotonicity condition (4.6) for flows lA can fail

if the above conditions on the matrix A are not satisfied. Indeed (cf. [2]), let A = diag (λ1, λ2),

η(t, 0), ζ(1, 1). Then DA(ζ, η) = λ1(2
p−2
2 − tp−1)(1− t) + 2

p−2
2 λ2. It is easy to see that the first

term is negative for t ∈ (2
p−2
2p−2 , 1) if p < 2 and for t ∈ (1, 2

p−2
2p−2 ) if p > 2. Dividing the expression

by λ2, we find DA(ζ, η) < 0.

By the coercivity condition (4.4), we have
∫

Ω

|∇u|p dx � 1

C1

∫

Ω

lA(∇u) · ∇u dx � 1

C1
‖f‖X∗ ‖u‖X ,

‖∇u‖pX � 1

C1
‖f‖p′X∗ . (4.8a)

Let X1 ⊂ X2 ⊂ . . . ⊂ Xn be an expanding sequence of finite-dimensional subspaces of X such

that their union is dense in X. The Galerkin approximations are found as solutions un ∈ Xn to

the system

un ∈ Xn,

∫

Ω

lA(∇un) · ∇ϕdx = (f, ϕ) ∀ϕ ∈ Xn. (4.9)
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It is obvious that the solvability of the problem (4.9) can be established in different ways.

Furthermore,

‖∇un‖pX � 1

C1
‖f‖p′X∗ . (4.8b)

For the sake of brevity we write z instead of lA.

In the case 1 < p < 2, we estimate the norm with respect to the flow z and conjugate

exponent p′. Therefore, we have

μ∗(A−1) = sup
|z|=1

|A−1z|
(A−1z, z)

<
p′

|p′ − 2| (4.10)

and the monotonicity property in p′:

|ψ − ζ|p′ � C∗(l∗A(ψ)− l∗A(ζ), ψ − ζ), (4.11)

where C∗ = C(A−1, p′, n).
We note that for conjugate exponents p and p′

p

p− 2
≡ p′

2− p′
, p �= 2.

We show that μ∗(A−1) = sup
|z|=1

|A−1z|
(A−1z,z)

can be expressed in terms of the matrix A.

Lemma 4.2. Under the assumptions of Lemma 4.1,

μ∗(A−1) = sup
|x|=1

1

(Ax, x)
.

Proof. In the above notation, z = |x|p(·)−2Ax and x = |z|p′(·)−2A−1z. Then A−1z =

A−1(|x|p(·)−2Ax) = |x|p(·)−2 Ix = |x|p(·)−2 x and |A−1z| = |x|p(·)−1. We write the denominator

in the expression for μ(A−1) as follows:

(A−1z, z) = |x|p(·)−2 x · |x|p(·)−2Ax = |x|2(p(·)−2)(Ax, x).

Thus,

μ∗(A−1) = sup
|z|=1

|A−1z|
(A−1z, z)

= sup
|z|=1

|x|p(·)−1

|x|2(p(·)−2)(Ax, x)
= sup

|z|=1

1

|x|p(·)−3(Ax, x)
.

For |x| = 1 we get μ∗(A−1) = sup
|x|=1

1
(Ax,x) , which is required.

There is wn ∈ Hn such that ‖u− wn‖H = dist (u,Hn). Arguing as above, we find
∫

Ω

(lA(∇u)− lA(∇un)) · (∇u−∇un)dx =

∫

Ω

(lA(∇u)− lA(∇un)) · (∇u−∇wn)dx. (4.12)

Theorem 4.1. Under the assumptions of Lemma 4.1 on the matrix A,
∫

Ω

|z − zn|p′ dx � C∗ ‖f‖
p′−2

p′(p′−1)

X∗ (dist (u,Xn))
2
p′ , 1 < p < 2,

‖∇u−∇un‖X � C ‖f‖
p−2

p(p−1)

X∗ (dist (u,Xn))
2
p , p � 2,

where C(A, p, d), C∗(A−1, p′, d), z = |∇u|p−2A∇u, and zn = |∇un|p−2A∇un.
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Proof. 1. Case p � 2. Without loss of generality we can apply estimates in Lemma 4.1. We

can verify the following estimate of type (1.19):

‖∇u−∇un‖pX �
∫

Ω

C DA dx � C

(
∫

Ω

|∇u|p + |∇un|p dx
) p−2

p

(dist (u,Xn))
2,

where C = C(A, p, d). By (4.8a) and (4.8b),

‖∇u−∇un‖X � C
1
p ‖f‖

p−2
p(p−1)

X∗ (dist (u,Xn))
2
p .

2. Case 1 < p < 2. From Lemma 4.1 for the exponent p′ and flows z, zn we have

∫

Ω

|z − zn|p′ dx �
∫

Ω

C∗ D∗
A dx � C

(
∫

Ω

|z|p′ + |zn|p′ dx
) p′−2

p′

(dist (u,Xn))
2,

where C∗ = C(A−1, p′, d). By (4.7a) and (4.7b),

∫

Ω

|z − zn|p′ dx � (C∗)
1
p′ ‖f‖

p′−2
p′(p′−1)

X∗ (dist (u,Xn))
2
p′ .

The theorem is proved.
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