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1 Introduction

An important role in the study of properties of a dynamical system with compact phase space

is played by the nonwandering set (cf. the definition in [1]). The nonwandering set of a skew

product of interval maps with a closed set of periodic points of the quotient map was studied in

[2]–[6]. The structure of the nonwandering sets of continuous skew products of interval maps with

a closed set of periodic points was independently studied in [7] and, in a particular case, in [8]. In

this paper, we obtain formulas that explain the mechanism of formation of the nonwandering set

of a C1-smooth skew product of interval maps with Ω-stable quotient map having a complicated

dynamics. We introduce some notions which will be used below. Basic facts from topology can

be found, for example, in [9].

We consider a skew product F : I → I of interval maps, i.e. a map of the form

F (x, y) = (f(x), gx(y)), gx(y) = g(x, y), (x; y) ∈ I, (1.1)

where I = I1 × I2 is a rectangle in the plane, I1 and I2 are segments. By (1.1), for any n > 1

Fn(x, y) = (fn(x), gx,n(y)), gx,n = gfn−1(x) ◦ . . . ◦ gx. (1.2)

A map gx,n, where x is a periodic point of f (x ∈ Per (f)) and n is its (least) period, will be

denoted by g̃x. Introduce the notation:

T 0(I) (T 1(I)) is the space of continuous (C1-smooth) skew products of maps of I with the

standard C0-norm (C1-norm),

C1(Ik), k = 1, 2, is the space of C1-smooth maps of Ik to itself,

C1
∂k
(Ik), k = 1, 2, is the subspace of C1(Ik) of maps ψ ∈ C1(Ik) satisfying the condition of

the ψ-invariance of the boundary ∂Ik of Ik, i.e., ψ(∂Ik) ⊂ ∂Ik,
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C1
ω(Ik), k = 1, 2, is the space of Ω-stable in C1

∂k
(Ik) maps of Ik into itself.

Proposition 1.1 (cf. [10]). If f ∈ C1
ω(I1), then one of the following assertions holds:

(a) f is a map of type ≺ 2∞ (i.e., the set of (least) periods of periodic points of the map f

coincides with the set {2i}i=μ
i=0 = {1, 2, . . . , 2μ} for some 0 � μ < +∞), where the nonwandering

set Ω(f) is finite and consists of hyperbolic periodic points,

(b) f is a map of type � 2∞ (i.e., there exists an f -periodic point x ∈ Per (f) of period

n(x) /∈ {2i}i�0), where the nonwandering set Ω(f) is the union of finitely many hyperbolic

periodic points and finitely many locally maximal quasiminimal (i.e., maximal quasiminimal

sets in some its neighborhood) hyperbolic perfect nowhere dense sets.

The set C1
ω(I1) is open and everywhere dense in C1

∂1
(I1).

Note that a map f ∈ C1
ω(I1) of type � 2∞ has complicated dynamics on any locally maximal

quasiminimal set. In particular, such a set contains an everywhere dense subset of periodic

points with an unbounded set, continuum of other quasiminimal sets, continuum of minimal

sets, etc.

Let T 1∗ (I) be the subspace of T 1(I) of skew products of interval maps with quotient maps in

C1
ω(I1), equipped with the C1-norm. In this paper, we describe the nonwandering set of a skew

product of maps in T 1∗ (I) with quotient map of type � 2∞. We use the technique developed in

[11]–[13] and based on the following multivalued functions:

the Ω-function of a skew product F ∈ T 0(I), i.e., the function whose graph in the phase

space I coincides with the nonwandering set Ω(F ) of F ,

the auxiliary function ηn : Ω(f) → 2I2 for the Ω-function of a map F ∈ T 1∗ (I), i.e., the
function defined for x ∈ Ω(f) by the equality ηn(x) = Ω(gx,n), where Ω(·) is the nonwandering

set and 2I2 is the space of closed subsets of I2 equipped with the exponential topology,

the suitable function ηn : Ω(f) → 2I2 , n � 1, to the Ω-function of a map F ∈ T 1∗ (I), i.e., the
function whose graph in I is the closure ηn of the graph of the auxiliary function ηn.

Following [13], we represent the iteration F n of a skew product F ∈ T 0(I) in the form

Fn = Fn, 1 ◦ Fn, (1.3)

where

Fn(x, y) = (id(x), gx, n(y)), (1.4)

Fn, 1(x, y) = (fn(x), id(y)). (1.5)

Here, id(x) and id(y) are the identity maps of I1 and I2 respectively.

After we have introduced the auxiliary functions ηn (the suitable functions ηn) for all n � 1,

we should move each point (x; y) ∈ ηn or ηn to the point (fn(x); y) by using the direct product

Fn, 1 (cf. (1.3)–(1.4)). In the natural way, we obtain the multifunctions ηn, 1 : Ω(f) → 2I2

(ηn,1 : Ω(f) → 2I2), n � 1, so that ηn, 1(x) = (Fn, 1(ηn))(x) (ηn, 1(x) = (Fn, 1(ηn))(x)) for any

x ∈ Ω(f), where ηn (ηn) is the graph of the corresponding multifunction in I and (Fn, 1(ηn))(x)

((Fn, 1(ηn))(x)) is the cut (the projection of the section to the Oy-axis) of the set Fn, 1(ηn)

(Fn, 1(ηn)) along a fiber over the point x ∈ Ω(f).

Let F ∈ T 1∗ (I) be an arbitrary skew product of interval maps with quotient map of type

� 2∞. By Proposition 1.1 (b), the perfect part Ωp(f) of the set Ω(f) is nonempty. In this paper,
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we give a description of the nonwandering set of a map F acting in the fibers over points in

Ωp(f). The possibility to solve this problem is provided by the decomposition theorem for the

space of skew products in T 1∗ (I) with quotient maps of type � 2∞ in the union of four nonempty

pairwise disjoint subspaces T 1
∗, j(I), j = 1, 2, 3, 4 (cf. [12, 13]). To describe these subspaces, one

uses the return times for the trajectories of points of the nonempty set Ωp(f) in an arbitrary

neighborhood of each of these points. These return times for the trajectories of points of the set

Ωp(f) are determined by periods of periodic points of f|Ωp(f). We denote by τ(f|Ωp(f)) the set of

(least) periods of periodic points of f|Ωp(f). There are natural numbers m∗, n∗, and i∗ such that

for any i � i∗
m∗n∗i ∈ τ(f|Ωp(f)) (1.6)

(we refer to [13] for details). We set

l∗i = m∗n∗i. (1.7)

Following [13], we introduce the following subspaces:

T 1∗, 1(I) is the subspace of skew products in T 1∗ (I) with quotient maps of type � 2∞ that

have continuous auxiliary functions ηl∗i for all i � i∗ and some i∗ � i∗,
T 1∗, 2(I) is the subspace of skew products that do not belong to T 1∗, 1(I) and have continuous

suitable functions ηl∗i for all i � i∗ and some i∗ � i∗,

T 1∗, 3(I) and T 1∗, 4(I) are the subspaces of maps in T 1∗ (I) such that a sequence of suitable

functions {ηli}i�0 contains countably many discontinuous functions, but the Ω-function of any

map in T 1∗, 3(I) is continuous, whereas the Ω-function of any map in T 1∗, 4(I) is discontinuous.
Theorems on the structure of the nonwandering set of maps in T 1∗, 1(I) (the result was an-

nounced in [14]) and in T 1∗, 2(I) are proved in Section 2. In Section 3, we describe the nonwan-

dering sets of skew products in the spaces T 1∗, 3(I) and T 1∗, 4(I).

2 Nonwandering Sets of Skew Products in T 1
∗, 1(I) and T 1

∗, 2(I)

Let F belong to T 1∗,1(I) or T 1∗,2(I). In both cases, we use the same subsequence {li}i�i∗ ,

li = m∗n∗i!, of the sequence of natural numbers {l∗i }i�i∗ defined by the equality (1.7). The

natural number i! for i > 1 can be represented in the form

i! = 2j(i)(2j′(i) + 1), j(i) � 0, j′(i) � 1.

To avoid difficulties caused by the possible failure of the identity (cf. [15])

Ω(g̃m∗n∗2j(2k+1)
x ) = Ω(g̃m∗n∗2j−1(2k+1)

x ),

we define the multivalued functions

η′li =
j(i)
⋃

γ=0

η2−γ li , η′li, 1 =
j(i)
⋃

γ=0

η2−γ li, 1 (2.1)

on the nonwandering set Ω(f) of f . The functions defined by (2.1) should be understood in the

following sense:

η′li(x) =
j(i)
⋃

γ=0

η2−γ li(x), η′li, 1(x) =
j(i)
⋃

γ=0

η2−γ li, 1(x) ∀ x ∈ Ω(f).

88



Let Perp(f) be the set of periodic points in Ωp(f) (in view of [10], we have Perp(f) = Ωp(f)),

and let Per∗p(f) be an arbitrary invariant everywhere dense in Ωp(f) subset of Perp(f) (possibly,

coinciding with Perp(f)). We use the notation (ηli)
P ∗

for the restriction of ηli on Per∗p(f) and

its graph I as well. We set

(ηli, 1)
P ∗

= Fli, 1|Per∗p(f)×I2
((ηli)

P ∗
). (2.2)

In (2.2), we used the graphs of functions (ηli)
P ∗

and (ηli, 1)
P ∗

. We denote by Perp(f, n)

(Per∗p(f, n)) a finite set of points in Perp(f) (Per
∗
p(f)) whose (least) periods divide n ∈ τ(f|Ωp(f)).

For any i � i∗ we use the restrictions of functions defined by (2.1):

η′li |Per∗p(f, li) =
j(i)
⋃

γ=0

η2−γ li |Per∗p(f, 2−γ li)
, (2.3)

(η′li, 1)
P ∗

|Per∗p(f, li) =
j(i)
⋃

γ=0

(η2−γ li, 1)
P ∗

|Per∗p(f, 2−γ li)
. (2.4)

The equalities (2.3) and (2.4) are understood in accordance to (2.1) (cf. also [13, 14]).

We note that the sequence of natural numbers {li, . . . 2−j(i)li}i�i∗ is a subsequence of {l∗i }i�i∗ .

Therefore, for any map F in T 1∗,1(I) or T 1∗, 2(I) the multivalued functions η2−γ li are continuous

on the set Ω(f) for every 0 � γ � j(i), i � i∗.
In what follows, it suffices to use the natural extensions ηexn and ηexn,1 of ηn and ηn,1 on I1

and fn(I1) respectively (in the case under consideration, Ω(f) �= I1). Then for all n � 1

ηexn (x) = Ω(gx,n) ∀ x ∈ I1,

ηexn,1(x) = (Fn, 1(η
ex
n ))(x) ∀ x ∈ fn(I1),

where ηexn (x) means the value of the function ηexn at the point x in the first identity and the

graph of the corresponding multivalued function in the second identity, whereas (Fn, 1(η
ex
n ))(x)

is the section of the set Fn, 1(η
ex
n ) along the fiber over the point x.

An important role will be played by the following functions defined on the set
j(i)
⋂

γ=0
f2−γ l∗i (I1):

ηex
′
l∗i ,1

=

j(i)
⋃

γ=0

ηex2−γ l∗i ,1
, (2.5)

where i = 2j(i)(2j
′
(i) + 1), j(i) � 0, j

′
(i) � 1. The equality (2.5) is understood as follows:

ηex
′
l∗i ,1

(x) =

j(i)
⋃

γ=0

ηex2−γ l∗i ,1
(x) ∀ x ∈

j(i)
⋂

γ=0

f2−γ l∗i (I1).

Theorem 2.1. Assume that F ∈ T 1∗, 1(I) and Per∗p(f) is an invariant everywhere dense in

Ωp(f) subset of the set Perp(f). Then the topological limit Lim
i→+∞

(η′li, 1)
P ∗

|Per∗p(f, li)
exists and is

independent of Per∗p(f); moreover,

ζ
Fm∗n∗
|Ω∗

p(F ) = Ls
i→+∞

η′li, 1 = Ls
i→+∞

(η′li, 1)
P ∗
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= Lim
i→+∞

(η′li, 1)
P ∗

|Per∗p(f, li) =
⋃

x∈Per∗p(f)
{x} × Ω(g̃x), (2.6)

where Ω∗
p(F ) = Ωp(f)× I2, ζ

Fm∗n∗
|Ω∗

p(F ) is the graph of the Ω-function of the map Fm∗n∗
|Ω∗

p(F ) in I, η′li, 1,

(η′li,1)
P ∗

, (η′li, 1)
P ∗

|Per∗p(f, li)
are the graphs of the corresponding functions in I, Ls

i→+∞
(·)i is the

upper topological limit of a sequence of sets. Furthermore, the value ζF
m∗n∗

(x) of the Ω-function

of the map Fm∗n∗ at any point x ∈ Ωp(f) is defined by

ζF
m∗n∗

(x) = Ls
i→+∞

ηex
′

m∗n∗i,1|U1, εi
(x)

, (2.7)

where U1, εi(x) is an arbitrary εi-neighborhood of the point x ∈ Ωp(f) in I1 and lim
i→+∞

εi = 0.

To prove Theorem 2.1, we need some auxiliary assertions.

Since the set Per∗p(f) is everywhere dense in Ωp(f) and the functions ηli, 1 are continuous for

i � i∗, from (2.2) we obtain the following assertion.

Lemma 2.1. If F ∈ T 1∗, 1(I) and an invariant set Per∗p(f) is everywhere dense in Ωp(f),

then the closure (ηli, 1)
P ∗ of the graphs of functions (ηli, 1)

P ∗
in I coincides with the graph of the

function ηli, 1, i � i∗.

From Lemma 2.1, the properties of the closure of a finite union of sets (cf. (2.1) and (2.2)),

and properties of the upper limit of a sequence of sets, we obtain the following assertion.

Corollary 2.1. For an arbitrary map F ∈ T 1∗, 1(I) satisfying the assumptions of Theorem 2.1

the following equality holds:

Ls
i→+∞

η′li, 1 = Ls
i→+∞

(η′li, 1)
P ∗

.

For any i � i∗ we consider the set (η′li, 1)
P ∗

|Per∗p(f, li)
. Let x be an arbitrary point in

Per∗p(f, 2−γli) for some 0 � γ � j(i). Then a unique preimage of x under the map (f|Per∗p(f))
li

coincides with x. Using this property and the identities (2.2), (2.4), we find

(η′li, 1)
P ∗

|Per∗p(f, li) = η′li |Per∗p(f, li). (2.8)

Lemma 2.2. Let the assumptions of Theorem 2.1 be satisfied. Then the topological limit

Lim
i→+∞

(η′li, 1)
P ∗

|Per∗p(f, li) exists and is independent of the choice of the set Per∗p(f); moreover,

Lim
i→+∞

(η′li, 1)
P ∗

|Per∗p(f, li) =
⋃

x∈Per∗p(f)
{x} × Ω(g̃x). (2.9)

Proof. By (2.8), it suffices to consider {η′li |Per∗p(f, li)}i�i∗ . Since li = m∗n∗i!, from (2.3) we

find

η′li |Per∗p(f, li) ⊂ η′li+1 |Per∗p(f, li+1)
, (2.10)

which implies the existence of the topological limit Lim
i→+∞

η′li |Per∗p(f, li) and the equality

Lim
i→+∞

η′li |Per∗p(f, li) =
⋃

x∈Per∗p(f)
{x} × Ω(g̃x).
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By (2.8), the topological limit Lim
i→+∞

(η′li, 1)
P ∗

|Per∗p(f, li) exists and the equality (2.9) holds. Since

Per∗p(f) is everywhere dense in Perp(f) and Perp(f) is everywhere dense in Ωp(f) (cf. [10]), from

(2.9) it follows that the topological limit Lim
i→+∞

(η′li, 1)
P ∗

|Per∗p(f, li) is independent of the choice of

the invariant set Per∗p(f) and coincides with
⋃

x∈Perp(f)
{x} × Ω(g̃x).

Lemma 2.3. Let the assumptions of Theorem 2.1 hold. Then

Ls
i→+∞

(η′li, 1)
P ∗

= Lim
i→+∞

(η′li, 1)
P ∗

|Per∗p(f, li). (2.11)

Proof. Since for any i � i∗

(η′li, 1)
P ∗

|Per∗p(f, li) ⊂ (η′li, 1)
P ∗

, (2.12)

we have

Lim
i→+∞

(η′li,1)
P ∗

|Per∗p(f, li) ⊆ Ls
i→+∞

(η′li, 1)
P ∗

. (2.13)

We prove the inverse inclusion

Ls
i→+∞

(η′li, 1)
P ∗ ⊆ Lim

i→+∞
(η′li,1)

P ∗
|Per∗p(f, li). (2.14)

Indeed, let (x; y) ∈ Ls
i→+∞

(η′li, 1)
P ∗

be an arbitrary point, i.e., there exists a sequence of points

(xiν , yiν ) ∈ (η′liν , 1)
P ∗

(ν � 1) converging to (x; y).

Using the compactness of I, we apply the Bolzano–Weierstrass lemma to the sequence of

sets {(η′liν , 1)P
∗}ν�1 (if it is not converging). From the above sequence we extract a converging

subsequence {(η′liν(s) , 1)
P ∗}s�1 (the limit of this subsequence can be the empty set). Lemma 2.2

and (2.12) imply

Lim
s→+∞ (η′liν(s) , 1)

P ∗ �= ∅, (x; y) ∈ Lim
s→+∞ (η′liν(s) , 1)

P ∗
.

We fix ε > 0. By the Cauchy criterion, for any ε > 0 there exists s0 � 1 such that for any

s′, s′′ � s0
distI((η

′
li
ν(s′) , 1

)P
∗
, (η′li

ν(s′′) , 1
)P

∗
) < ε, (2.15)

where distI is the Hausdorff metric in the space of closed subsets of I.

Let s � s0. Then (xiν(s) , yiν(s)) ∈ (η′liν(s) , 1)
P ∗

. By the choice of {li}i�i∗ ,

Per∗p(f) =
+∞
⋃

i=i∗
Per∗p(f, li).

Therefore, for any s � s0 there exists s′ � s such that

xiν(s) ∈ Per∗p(f, liν(s′)). (2.16)

Using the uniform continuity (with respect to the Hausdorff metric distI2 in the space of closed

subsets of I2) of the functions η′liν(s′) , 1
on the compact set Ωp(f), for any ε > 0 we can find

0 < δ(s′) � ε such that for any x′, x′′ ∈ Ωp(f), |x′ − x′′| < δ(s′),

distI2(η
′
liν(s′) , 1

(x′), η′liν(s′) , 1
(x′′)) < ε. (2.17)
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By (2.15), there exists a point (x′, y′) ∈ (η′li
ν(s′) , 1

)P
∗
such that |xiν(s) − x′| < δ(s′) � ε and

|yiν(s)−y′| < ε. Using (2.17), we find a point (xiν(s) , y
′′) ∈ η′liν(s′) , 1

such that |y′′−y′| < ε. We set

xiν(s) = xiν(s′) and y′′ = yiν(s′) . By (2.16), we have (xiν(s′) , yiν(s′)) ∈ (η′liν(s′) , 1
)P

∗

|Per∗p(f, liν(s′))
and

|yiν(s) − yiν(s′) | < 2ε. Thus, (x, y) = lim
s′→+∞

(xiν(s′) , yiν(s′)) and (x, y) ∈ Lim
i→+∞

(η′li,1)
P ∗

|Per∗p(f, li)
in

view of Lemma 2.2. The inclusion (2.14) is proved. From (2.14) and (2.13) we obtain (2.11).

Lemma 2.4. Let the assumptions of Theorem 2.1 be satisfied. Then

ζ
Fm∗n∗
|Ω∗

p(F ) = Lim
i→+∞

(η′li, 1)
P ∗

|Per∗p(f, li). (2.18)

Proof. By Lemma 2.2,

Lim
i→+∞

(η′li, 1)
P ∗

|Per∗p(f, li) ⊂ ζ
Fm∗n∗
|Ω∗

p(F ) . (2.19)

We show the opposite inclusion

ζ
Fm∗n∗
|Ω∗

p(F ) ⊂ Lim
i→+∞

(η′li, 1)
P ∗

|Per∗p(f, li). (2.20)

For this purpose we show that for points (x, y) ∈ Ω∗
p(F ) such that (x, y) �∈ Lim

i→+∞
(η′li, 1)

P ∗
|Per∗p(f, li)

we have (x, y) �∈ ζ
Fm∗n∗
|Ω∗

p(F ) . Indeed, let a neighborhood U((x, y)) of a point (x, y) ∈ Ω∗
p(F ) and a

neighborhood U(L∗) of the closed set L∗ = Lim
i→+∞

(η′li, 1)
P ∗

|Per∗p(f, li)
be such that

U((x, y))
⋂

U(L∗) = ∅.

Then U((x, y)) can intersect only a finite number of sets of the sequence {(η′li, 1)P
∗
|Per∗p(f, li)

}i�i∗ .

Using Corollary 2.1 and Lemma 2.3, we choose a neighborhood U ′((x, y)) ⊆ U((x, y)) of (x, y)

that does not intersect any set of the above sequence and any set of the sequence {η′li, 1}i�i∗ .

It can happen that F|Ω∗
p(F )

−m∗n∗˜i(U ′((x, y))) = ∅ for some ˜i � i∗ for the complete preimage

of order m∗n∗˜i of a neighborhood U ′((x, y)) under the map F|Ω∗
p(F ). Then for all i � ˜i

U ′((x, y)) ∩ F|Ω∗
p(F )

−m∗n∗i(U ′((x, y))) = ∅, (x, y) �∈ ζ
Fm∗n∗
|Ω∗

p(F ) .

Let F|Ω∗
p(F )

−m∗n∗i(U ′((x, y))) �= ∅ for all i � i∗. Then (Fli, 1|Ω∗
p(F ))

−1(U ′((x, y))) is nonempty

and open in Ω∗
p(F ). By the choice of the neighborhood U ′((x, y)), this set does not intersect η′li

for any i � i∗ and, consequently, consists of wandering points of each map Fli |Ω∗
p(F ). Therefore,

by the continuity of η′li , for i � i∗ there is a universal neighborhood U ′′((x, y)) = U ′′
1 (x)×U ′′

2 (y),

U ′′((x, y)) ⊆ U ′((x, y)), of the point (x, y) such that

(Fli, 1|Ω∗
p(F ))

−1(U ′′((x, y)))
⋂

Fli |Ω∗
p(F )((Fli, 1|Ω∗

p(F ))
−1(U ′′((x, y)))) = ∅. (2.21)

We apply the map Fli, 1|Ω∗
p(F ) to both sides of (2.21) and use formulas (1.4), (1.5). Then for all

x′′ ∈ Ωp(f) ∩ f−li(U ′′
1 (x)), x

′ = f li(x′′) (x′ ∈ Ωp(f)× U ′′
1 (x)), i � i∗,

U ′′
2 (y)

⋂

gx,′′ 2li(U
′′
2 (y)) = U ′′

2 (y)
⋂

gx′, li(U
′′
2 (y)) = ∅.

Hence (x, y) �∈ ζ
Fm∗n∗
|Ω∗

p(F ) . Thus, we have (2.20) which, together with (2.19), implies Lemma 2.4.
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Lemma 2.5. Let the assumptions of Theorem 2.1 be satisfied. Then the equality (2.7) holds.

Proof. Let us verify that for any x ∈ Ωp(f)

Ls
i→+∞

ηex
′

m∗n∗i,1|U1, εi
(x)

⊂ ζF
m∗n∗

(x). (2.22)

We have Ls
i→+∞

η′li,1 = ζ
Fm∗n∗
|Ω∗

p(F ) ⊆ ζF
m∗n∗

. Therefore, we assume that the set Ls
i→+∞

ηex
′

m∗n∗i,1|U1, εi
(x)

\
Ls

i→+∞
η′li,1 is nonempty. We prove (2.22) for points

(x, y) ∈ Ls
i→+∞

ηex
′

m∗n∗i,1|U1, εi
(x)

\ Ls
i→+∞

η′li,1, (2.23)

where x ∈ Ωp(f) and {εi}i�i∗ is an infinitely small sequence of positive numbers. We show that

for any neighborhood Uε((x, y)) of a point (x, y), x ∈ Ωp(f), in I there exists a natural number

r = r(ε) and a point (xr, yr) ∈ Uε((x, y)) such that for some j = j(r)

(xr, yr), F
m∗n∗j(xr, yr) ∈ Uε((x, y)). (2.24)

Indeed, by [10], Ωp(f) is a perfect nowhere dense invariant hyperbolic set such that there are

α = α(f) > 0 and c = c(f) > 1 such that |(fn(x))′| > αcn for any x ∈ Ωp(f) and n � 1.

Therefore, there exists i � i∗ such that

inf
x∈Ωp(f)

{|(f i(x))′|} > 1. (2.25)

Using the inequality (2.25) and C1-smoothness of f , we find a neighborhood U1(Ωp(f)) of the

set Ωp(f) such that for all k � 1

(f|U1(Ωp(f)))
−ki(U1(Ωp(f))) ⊂ U1(Ωp(f)). (2.26)

By (2.26), for k = m∗n∗i we have

+∞
⋂

i=i∗
(f|U1(Ωp(f)))

(−m∗n∗i)i(U1(Ωp(f)))

= Lim
i→+∞

(f|U1(Ωp(f)))
(−m∗n∗i)i(U1(Ωp(f))) = Ωp(f). (2.27)

Using (2.23) and (2.27), we find a sequence {(xir , yir)}r�1 converging to (x, y) and such that

xir �∈ Ωp(f),

xir ∈ (f|U1(Ωp(f)))
(−m∗n∗i)ir(U1(Ωp(f))), yir ∈ ηex

′
(m∗n∗i)ir ,1|U1, εir

(xir). (2.28)

By the uniform continuity of Fm∗n∗i on U1(Ωp(f)) × I2 with respect to ε > 0, there exists a

positive number δ such that for any (x′, y′), (x,′′ y′′) ∈ U1(Ωp(f))× I2, |x′ − x′′|, |y′ − y′′| < δ,

|fm∗n∗i(x′)− fm∗n∗i(x′′)|, |gx′,m∗n∗i(y
′)− gx,′′ m∗n∗i(y

′′)| < ε

3
. (2.29)

For the sake of definiteness, we assume that the first and second inequalities in (2.29) are valid

only for δ < ε/3 (for any ε > 0). For δ > 0 we find r � 1 such that (xir , yir) ∈ Uδ/3((x, y))
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for all r � r, where Uδ/3((x, y)) is a δ/3-neighborhood of the point (x, y) in I. By the second

relation in (2.28), we have yir ∈ Ω(gxir , k(r)
), where k(r) = 2−γ(r)(m∗n∗i)ir, ir = 2j(r)(2j

′
(r)+1)

(j(r) � 0, j
′
(r) � 1), 0 � γ(r) � j

′
(r) (cf. (2.5)). Using (1.6), we choose a sufficiently large

number r � r such that a δ/3-neighborhood U1, δ/3(x) of the point x in I1 contains a periodic

point x̃ with the (least) period m(x̃) that is a divisor of the number k(r), multiple to m∗n∗i.
Moreover,

|xir − x̃| < 2

3
δ < δ. (2.30)

By the choice of x̃, for any y ∈ I2 we have Fkr(x, y) = F
k(r)/m(x̃)
m(x̃) (x, y) (cf. (1.4)). Since

yir ∈ Ω(gxir , k(r)
), in any neighborhood U2, θ(yir) (0 < θ < δ/3) of the point yir in I2 there is a

point y′ir such that for some q = q(θ), q � 1,

gqxir , k(r)
(y′ir) = yir (2.31)

(cf. [16]). By (2.29)–(2.31) and the inequality δ < ε/3, there exist segments of the negative

semitrajectories of the points (xir , yir) and (x̃, yir) relative to Fkr that consist of preimages of

these points of order up to q and approximate each other up to ε/3.

Let a point ỹir ∈ I2 be such that gqx̃, k(r)(ỹir) = yir and |y′ir − ỹir | < ε/3. Since |y′ir − yir | < θ

and |yir − y| < ε/3 simultaneously, we have |ỹir − y| < ε. Thus, (x̃, ỹir) ∈ Uε((x, y)) and

F krq(x̃, ỹir) = (x̃, yir) ∈ Uε((x, y)), i.e., (2.24) holds for (xr, yr) = (x̃, ỹir) and j = 2−γ(r)iirq.

Consequently, (x, y) ∈ ζF
m∗n∗

and (2.22) is proved.

As in the proof of Lemma 2.4, we verify that for any x ∈ Ωp(f) the opposite inclusion to

(2.22) holds,ζF
m∗n∗

(x) ⊂ Ls
i→+∞

ηex
′

m∗n∗i,1|U1, εi
(x)

, which implies (2.7). Lemma 2.5 is proved.

Proof of Theorem 2.1. The equalities (2.6) follow from Lemmas 2.1–2.4 and Corollary 2.1.

The equality (2.7) is established in Lemma 2.5.

We note that Theorem 2.1 fails for maps in T 1∗, 2(I).
We introduce the notion of weakly nonwandering points with respect to the family of fiber

maps, which generalizes the definition in [6].

Definition 2.1. A point (x, y) ∈ I is weakly nonwandering relative to the family of maps

acting in the fibers over points of a set A ⊆ I1 of the skew product of F ∈ T 0(I) if x ∈ Ω(f)
⋂

A,

and for any neighborhood Uε((x, y)) = U1, ε(x) × U2, ε(y) of (x, y) in I there exists a point

(xε, yε) ∈ Uε((x, y)), xε ∈ A, and a natural number i = i(ε) such that gxε, i(yε) ∈ U2, ε(y) for

f i(xε) ∈ U1, ε(x).

We note that for any 1 � j � 4 there exists a skew product Fj ∈ T 1
∗, j(I) possessing weakly

nonwandering points with respect to the family of maps acting in the fibers over points of I1,

but nonwandering with respect to the family of maps acting in the fibers over points of Ω(f).

Theorem 2.2. Assume that F ∈ T 1∗, 2(I) and the set Per∗p(f) is the same as in Theorem 2.1.

Then the topological limit Lim
i→+∞

(η′li, 1)
P ∗

|Per∗p(f, li)
exists and is independent of Per∗p(f); moreover,

ζ
Fm∗n∗
|Ω∗

p(F ) = Ls
i→+∞

η′li, 1 = Ls
i→+∞

(η′li, 1)
P ∗

= Lim
i→+∞

(η′li, 1)
P ∗

|Per∗p(f, li) =
⋃

x∈Per∗p(f)
{x} ×BΩp(g̃x), (2.32)
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where ζ
Fm∗n∗
|Ω∗

p(F ), η′li, 1, (η
′
li, 1

)P
∗
, (η′li, 1)

P ∗
|Per∗p(f, li)

are the graphs of the corresponding functions

in I, BΩp(g̃x) is the set of points y ∈ I2 such that any point (x, y) is weakly nonwandering with

respect to the family of maps acting in the fibers over points in Ωp(f). Furthermore, the value

ζF
m∗n∗

(x) of the Ω-function of the map Fm∗n∗ at any point x ∈ Ωp(f) is defined by the equality

(2.7) for arbitrary neighborhoods U1, εi(x) of x ∈ Ωp(f) in I1, where lim
i→+∞

εi = 0.

To prove Theorem 2.2, we need a number of auxiliary results.

Lemma 2.6. Assume that F ∈ T 1∗, 2(I) and the set Per∗p(f) is the same as in Theorem 2.1.

Then

Ls
i→+∞

η′li, 1 = Ls
i→+∞

(η′li, 1)
P ∗

. (2.33)

Proof. We verify the identity

(ηli, 1)
P ∗ = ηli, 1. (2.34)

Since F ∈ T 1∗, 2(I), the functions ηli, 1 are continuous for any i � i∗. We choose a number i � i∗, a
point (x; y) on the graph ηli,1, and a rectangular ε-neighborhood Uε((x; y)) = U1, ε(x)×U2, ε(y)

of (x; y) in I. To prove (2.34), it suffices to verify that

(ηli, 1)
P ∗ ⋂

Uε((x; y)) �= ∅. (2.35)

Indeed, by the uniform continuity of Fli, 1 (cf. (1.5)), for ε > 0 there exists 0 < δi � ε such that

for any (x′; y′), (x′′; y′′) ∈ I, |x′ − x′′|, |y′ − y′′| < δi,

|f li(x′)− f li(x′′)| < ε (2.36)

(the inequality |id(y′)− id(y′′)| = |y′ − y′′| < ε is valid by the choice of δi).

By the uniform continuity of the fitting function ηli on the compact set Ωp(f), for δi > 0

there exists 0 < ϑi � δi such that for any x, x′ ∈ Ωp(f), |x− x′| < ϑi,

distI2(ηli(x), ηli(x
′)) < δi. (2.37)

Since the point (x; y) lies on the graph of the function ηli, 1, by the definition of ηli, 1, there is

the preimage (x; y) of the point (x; y) (under the map Fli, 1) such that x ∈ {(f|Ωp(f))
−li(x)},

y ∈ ηli(x). Since the set Per∗p(f) is everywhere dense in Ωp(f), for the point x′ such that

|x− x′| < ϑi we take an arbitrary point in Per∗p(f) lying in the ϑi-neighborhood of the point x.

Using (2.37), we find a point y′ ∈ ηli(x
′) such that |y − y′| < δi. We set x′ = x′, x′′ = x, y′′ = y.

Since ϑi � δi, from (2.36) it follows that Fli, 1(x
′, y′) ∈ Uε((x; y)). By the choice of the point

x′, we have Fli, 1(x
′, y′) ∈ (ηli, 1)

P ∗
(here, (ηli,1)

P ∗
is the graph of the corresponding multivalued

function). Thus, the inequality (2.35) and, consequently, the equality (2.34), is proved.

By (2.1)–(2.2) and (2.34), we have (η′li, 1)
P ∗ = η′li, 1. Taking into account properties of the

upper topological limit of a sequence of sets, we obtain (2.33).

The following assertion is proved in the same way as Lemmas 2.2–2.4.

Lemma 2.7. Let the assumptions of Theorem 2.2 be satisfied. Then the topological limit

Lim
i→+∞

(η′li, 1)
P ∗

|Per∗p(f, li) exists and is independent of the choice of the set Per∗p(f) and

ζ
Fm∗n∗
|Ω∗

p(F ) = Ls
i→+∞

(η′li, 1)
P ∗

= Lim
i→+∞

(η′li, 1)
P ∗

|Per∗p(f, li).
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Corollary 2.2. Under the assumptions of Theorem 2.2, the following equality holds:

Lim
i→+∞

(η′li, 1)
P ∗

|Per∗p(f, li) =
⋃

x∈Per∗p(f)
{x} ×BΩp(g̃x). (2.38)

Proof. It suffices to verify that for any x ∈ Per∗p(f, li), i � i∗,

η′li(x) = BΩp(g̃x). (2.39)

Let y be an arbitrary point of the set BΩp(g̃x). By Definition 2.1, we have (x, y) ∈ ζ
Fm∗n∗
|Ω∗

p(F ) . Using

Lemma 2.7 and the results of [13], we find a strictly increasing sequence of natural numbers

{i(k)}k�1 and for every k � 1 converging to (x, y) the sequence of points {(xn(k), yn(k))}n�1

such that (xn(k), yn(k)) ∈ (η′li(k),1)
P ∗

. Moreover, the sequence of (least) periods of points

xn(k) ∈ Per∗p(f) is not bounded [10] (with respect to n for every k � 1). Using Lemma 2.7, we

find a sequence of natural numbers {i′(k)}k�1 (i′(k) � i(k)) and converging (for every k � 1) to

(x, y) sequence of points {(xn(k), y′n(k))}n�1 such that (xn(k), y
′
n(k)) ∈ (η′li′(k), 1)

P ∗

|Per∗p(f, l′i(k))
.

By (2.8), (xn(k), y
′
n(k)) ∈ (η′li′(k))

P ∗

|Per∗p(f, l′i(k))
. Therefore, BΩp(g̃x) ⊆ η′li(x). At the same time,

we have η′li(x) ⊆ BΩp(g̃x). Hence (2.39) holds, which implies (2.38).

Proof of Theorem 2.2. The equalities (2.32) follows from Lemma 2.6, 2.7 and Corol-

lary 2.2. The equality (2.7) for an arbitrary map F ∈ T 1∗,2(I) is established in the same way as

in Lemma 2.5 for F ∈ T 1∗, 1(I). Theorem 2.2 is proved.

We note that Theorem 2.2 fails for skew products in T 1∗, 3(I) and T 1∗, 4(I).

3 Nonwandering Sets of Skew Products in T 1
∗, 3(I) and T 1

∗, 4(I)

Let F be an arbitrary skew product of interval maps in T 1∗, 3(I)
⋃

T 1∗, 4(I), and let {ηl∗ik , 1}k�1

be a subsequence of all discontinuous functions of the sequence {ηl∗i ,1}i�i∗ . We denote by

Sd(ηl∗ik ,1
) the set of points of discontinuity (of the first Baire category) of the upper semi-

continuous function ηl∗ik ,1
(k � 1) and by Sc(ηl∗i ) (Sc(ηl∗i , 1)) the set of points of continuity (of

the second Baire category) of the upper semicontinuous multivalued function ηl∗i (ηl∗i , 1) (i � i∗).
If a point x ∈ Ωp(f) is such that {(f|Ωp(f))

−l∗i (x)} ⊂ Sc(ηl∗i ), where {(f|Ωp(f))
−l∗i (x)} is the

complete preimage of the point x under the map (f|Ωp(f))
l∗i (consisting of finitely many points

for any map f ∈ C1
ω(I1)), then x ∈ Sc(ηl∗i , 1).

We construct the set of continuity points of all functions ηl∗i , 1 (i � i∗) which is independent

of i. For this purpose we introduce an everywhere dense in Ωp(f) nonempty set of the second

Baire category

Sc, P (f) =

+∞
⋂

i=i∗

(
+∞
⋂

r=0

(f|Ωp(f))
−l∗r (P (f l∗))

⋂

Sc(ηl∗i )
)

,

where l∗0 = 0, l∗1 = l∗ = m∗n∗, (f|Ωp(f))
−l∗r (P (f l∗)) is the complete preimage of order l∗r under

the map f|Ωp(f) of the set P (f l∗) of nonperiodic Poisson stable points of the map f l∗ . By the
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definition of the set Sc, P (f), the f l∗-trajectory of an arbitrary point x ∈ Sc, P (f) (denoted by

O(x, f l∗)) belongs to Sc(ηl∗i , 1) for any i � i∗. We set

S∗
c =

⋃

x∈Sc, P (f)

O(x, f l∗).

Theorem 3.1. Let F ∈ T 1∗, 3(I)
⋃

T 1∗, 4(I). Then

ζ
Fm∗n∗
|Ω∗

p(F ) = Ls
i→+∞

ηl∗i ,1 = Ls
k→+∞

ηl∗ik ,1|Sd(ηl∗
ik

,1)

⋃

Ls
i→+∞

ηl∗i ,1|S∗
c

= Ls
k→+∞

ηl∗ik ,1|Sd(ηl∗
ik

,1)

⋃ ⋃

x∈Perp(f)
{x} ×BS∗

c
(g̃x),

where ζ
Fm∗n∗
|Ω∗

p(F ), ηl∗ik ,1|Sd(ηl∗
ik

,1)
, ηl∗i ,1|S∗

c

are the graphs of the corresponding multivalued functions

in I and BS∗
c
(g̃x) is the set of points y ∈ I2 such that each point (x, y) is weakly nonwandering

with respect to the family of maps acting in the fibers over points of S∗
c . For any point x ∈ Ωp(f)

and a neighborhood U1, εi(x) such that lim
i→+∞

εi = 0 we have

ζF
m∗n∗

(x) = Ls
i→+∞

ηex
′

l∗i ,1|U1, εi
(x)

;

moreover, if F ∈ T 1∗,3(I), then

ζF
m∗n∗

=
⋃

x∈Per (f)
{x} ×BU1(Ωp(f))(g̃x),

where BU1(Ωp(f))(g̃x) is the set of points y ∈ I2 such that each point (x, y) is weakly nonwandering

with respect to the family of maps acting in the fibers over points of an arbitrary neighborhood

U1(Ωp(f)) of the set Ωp(f) in I1.

The proof of Theorem 3.1 is based on the same ideas as the proof of Theorems 2.1 and 2.2.
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