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BOOLEAN-VALUED ANALYSIS OF ORDER-BOUNDED OPERATORS

A. G. Kusraev and S. S. Kutateladze UDC 517.98+512.8

Abstract. This is a survey of some recent applications of Boolean-valued models of set theory to the
study of order-bounded operators in vector lattices.

Introduction

The term Boolean-valued analysis signifies the technique of studying properties of an arbitrary math-
ematical object by comparison between its representations in two different set-theoretic models whose
construction utilizes principally distinct Boolean algebras. As these models, we usually take the classical
Cantorian paradise in the shape of the von Neumann universe and a specially-trimmed Boolean-valued
universe in which the conventional set-theoretic concepts and propositions acquire bizarre interpretations.
Use of two models for studying a single object is a family feature of the so-called nonstandard methods of
analysis. For this reason, Boolean-valued analysis means an instance of nonstandard analysis in common
parlance.

Proliferation of Boolean-valued analysis stems from the celebrated achievement of P. J. Cohen who
proved at the beginning of the 1960s that the negation of the continuum hypothesis, CH, is consistent with
the axioms of Zermelo–Fraenkel set theory, ZFC. This result by Cohen, together with the consistency of
CH with ZFC established earlier by K. Gödel, proves that CH is independent of the conventional axioms
of ZFC.

The first applications of Boolean-valued models to functional analysis were given by E. I. Gordon
for Dedekind complete vector lattices and positive operators in [22–24] and G. Takeuti for self-adjoint
operators in Hilbert spaces and harmonic analysis in [72–74]. The further developments and corresponding
references are presented in [46,47].

The aim of the paper is to survey some recent applications of Boolean-valued models of set theory
to the study of order-bounded operators in vector lattices. Section 1 contains a sketch of the adaptation
of the main constructions and principles of Boolean-valued models of set theory to analysis. The three
subsequent sections treat the classes of operators in vector lattices: multiplication type operators, weighted
shift type operators, and conditional expectation type operators.

The reader can find the necessary information on Boolean algebras in [68,76], on the theory of vector
lattices, in [10,34,39,77,80], on Boolean-valued models of set theory, in [11,32,75], and on Boolean-valued
analysis, in [45–47].

Everywhere below, B denotes a complete Boolean algebra, while V
(B) stands for the corresponding

Boolean-valued universe (the universe of B-valued sets). A partition of unity in B is a family (bξ)ξ∈Ξ ⊂ B

with
∨

ξ∈Ξ

bξ = 11 and bξ ∧ bη = 0 for ξ �= η.

By a vector lattice throughout the sequel we will mean a real Archimedean vector lattice, unless
specified otherwise. We let := denote the assignment by definition, while N, Q, R, and C symbolize
the natural numbers, the rationals, the reals, and the complex numbers. We denote the Boolean algebras of
bands and band projections in a vector lattice X by B(X) and P(X); and we let Xu stand for the universal
completion of a vector lattice X.
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The ideal center Z (X) of a vector lattice X is an f -algebra. Let Orth(X) and Orth∞(X) stand for
the f -algebras of orthomorphisms and extended orthomorphisms, respectively. Then Z (X) ⊂ Orth(X) ⊂
Orth∞(X). The space of all order-bounded linear operators from X to Y is denoted by L∼(X, Y ). The
Riesz–Kantorovich theorem tells us that if Y is a Dedekind complete vector lattice, then so is L∼(X, Y ).

1. Boolean-Valued Analysis

1.1. Boolean-Valued Models. We start by recalling some auxiliary facts about the construction and
treatment of Boolean-valued models. Some more detailed presentation can be found in [11,46,47]. In the
sequel, ZFC := ZF + AC, where ZF stands for the Zermelo–Fraenkel set theory and AC for the axiom of
choice. A formula of the language of the Zermelo–Fraenkel set theory is referred to as “a formula of ZFC”
and a formula of ZFC provable in ZFC is phrased as “a theorem of ZFC.”

1.1.1. Let B be a complete Boolean algebra. Given an ordinal α, put

V
(B)
α :=

{
x : x is a function ∧ (∃β)

(
β < α ∧ dom(x) ⊂ V

(B)
β ∧ Im(x) ⊂ B

)}
.

After this recursive definition, the Boolean-valued universe V
(B) or, in other words, the class of B-sets is

introduced by
V

(B) :=
⋃

α∈On

V
(B)
α ,

with On standing for the class of all ordinals.
In the case of the two-element Boolean algebra 2 := {0, 11}, this procedure yields a version of the

classical von Neumann universe
V :=

⋃

α∈On

,

where
V0 := ∅, Vα+1 := P(Vα), Vβ :=

⋃

α<β

Vα,

β is a limit ordinal (see [47, Theorem 4.2.8]).

1.1.2. Let ϕ(u1, . . . , un) be an arbitrary formula of ZFC. Then for arbitrary x1, . . . , xn ∈ V
(B) Boolean

truth value [[ϕ(x1, . . . , xn)]] ∈ B is introduced by induction on the complexity of ϕ by naturally interpret-
ing the propositional connectives and quantifiers in the Boolean algebra B (for instance, [[∀x ϕ(x)]] :=
∧{

[[ϕ(x)]] : x ∈ V
(B)

}
and [[ϕ1 ∨ ϕ2]] := [[ϕ1]]∨ [[ϕ2]]) and taking into consideration the way in which a for-

mula is built up from atomic formulas. The Boolean truth values of the atomic formulas x ∈ y and x = y
(with x, y assumed to be elements of V

(B)) are defined by means of the following recursion schema:

[[x ∈ y]] =
∨

t∈dom(y)

(y(t) ∧ [[t = x]]), [[x = y]] =
∨

t∈dom(x)

(x(t) ⇒ [[t ∈ y]]) ∧
∨

t∈dom(y)

(y(t) ⇒ [[t ∈ x]]).

The sign ⇒ symbolizes the implication in B; i.e., (a ⇒ b) := (a∗ ∨ b), where a∗ is as usual the complement
of a in B. The universe V

(B) with the Boolean truth value of a formula is a model of set theory in the
sense that the following is fulfilled.

1.1.3. The transfer principle. Whenever ϕ(u1, . . . , un) is a theorem of ZFC, then

(∀x1, . . . , xn ∈ V
(B))[[ϕ(x1, . . . , xn)]] = 11

is also a theorem of ZFC. This is also phrased by saying that V
(B) is a Boolean-valued model of ZFC or,

in short, V
(B) |= ZFC.

We enter into the next agreement. If ϕ(x) is a formula of ZFC, then, on assuming x to be an element
of V

(B), the phrase “x satisfies ϕ inside V
(B)” or, briefly, “ϕ(x) is true inside V

(B)” means that [[ϕ(x)]] = 11.
This is sometimes written as V

(B) |= ϕ(x).
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1.1.4. There is a natural equivalence relation x ∼ y ⇐⇒ [[x = y]] = 11 in the class V
(B). Choosing a rep-

resentative of the least rank in each equivalence class or, more exactly, using the so-called “Frege–Rus-
sell–Scott trick,” we obtain a separated Boolean-valued universe V̄

(B) for which x = y ⇐⇒ [[x = y]] = 11.
It is easy to see that the Boolean truth value of a formula remains unaltered if we replace in it each
element of V

(B) by one of its equivalents (see [47, Sec. 4.5]). In this connection, from now on we take
V

(B) := V̄
(B) without further specification.

1.1.5. Given x ∈ V
(B) and b ∈ B, define the function bx : z → b ∧ x(z) (z ∈ dom(x)). Here we presume

that b∅ :=∅ for all b ∈ B. Observe that in V
(B) the element bx is defined correctly for x ∈ V

(B) and b ∈ B

(see [47, Sec. 4.3]).

1.1.6. The mixing principle. Let (bξ)ξ∈Ξ be a partition of unity in B, i.e., sup
ξ∈Ξ

bξ = 11 and ξ �= η =⇒
bξ∧bη = 0. For each family (xξ)ξ∈Ξ in V

(B) there exists a unique element x in V
(B) such that [[x = xξ]] ≥ bξ

for all ξ ∈ Ξ.

This x is called the mixing of (xξ)ξ∈Ξ by (bξ)ξ∈Ξ and is denoted by mixξ∈Ξ bξxξ.

1.1.7. The maximum principle. For a formula ϕ(u0, u1, . . . , un) of ZFC the following is a theorem of
ZFC: for every collection x1, . . . , xn ∈ V

(B) there exists x0 ∈ V
(B) satisfying

[[(∃x) ϕ(x, x1, . . . , xn)]] = [[ϕ(x0, x1, . . . , xn)]].

In particular, if it is true within V
(B) that “there is an x for which ϕ(x),” then there is an element x0

in V
(B) (in the sense of V) with [[ϕ(x0)]] = 11. In symbols,

(
V

(B) |= (∃x) ϕ(x)
)

=⇒ (
(∃x0) V

(B) |= ϕ(x0)
)
.

1.2. Escher Rules. Now, we present a remarkable interplay between V and V
(B), which is based on the

operations of canonical embedding, descent, and ascent.

1.2.1. We start with the canonical embedding of the von Neumann universe into the Boolean-valued
universe. Given x ∈ V, we denote by x∧ the standard name of x in V

(B), i.e., the element defined by the
following recursion schema:

∅
∧ := ∅, dom(x∧) := {y∧ : y ∈ x}, Im(x∧) := {11}.

Henceforth, working in the separated universe V̄
(B), we agree to preserve the symbol x∧ for the distin-

guished element of the class corresponding to x. The map x → x∧ is called canonical embedding.
A formula is bounded or restricted provided that each bound variable in it is restricted by a bounded

quantifier, i.e., a quantifier ranging over a particular set. The latter means that each bound variable x is
restricted by a quantifier of the form (∀x ∈ y) or (∃x ∈ y).

1.2.2. The restricted transfer principle. Let ϕ(u1, . . . , un) be a bounded formula of ZFC. Then the
following is also a theorem of ZFC: for every collection x1, . . . , xn ∈ V the equivalence

ϕ(x1, . . . , xn) ⇐⇒ V
(B) |= ϕ(x∧

1 , . . . , x∧
n)

holds.

1.2.3. Given an arbitrary element x of the Boolean-valued universe V
(B), define the class x↓ by

x↓ := {y ∈ V
(B) : [[y ∈ x]] = 11}.

This class is called the descent of x. Moreover, x↓ is a set, i.e., x↓ ∈ V for every element x ∈ V
(B). If

[[x �= ∅]] = 11, then x↓ is a nonempty set.
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1.2.4. Suppose that f is a map from X to Y within V
(B). More precisely, f , X, and Y are in V

(B)

and [[f : X → Y ]] = 11. There exist a unique map f↓ from X↓ to Y ↓ (in the sense of the von Neumann
universe V) such that

[[f↓(x) = f(x)]] = 11 (x ∈ X↓).
Moreover, for a nonempty subset A of X within V

(B) (i.e., [[∅ �= A ⊂ X]] = 11) we have f↓(A↓) = f(A)↓.
The map f↓ from X↓ to Y ↓ is called the descent of f from V

(B). The descent f↓ of every internal map f
is extensional :

[[x = x′]] ≤ [[f↓(x) = f↓(x′)]] (x, x′ ∈ X↓).
For the descents of composite, inverse, and identity map we have

(g ◦ f)↓ = g↓ ◦ f↓, (f−1)↓ = (f↓)−1, (IX)↓ = IX↓.

By virtue of these rules, we can consider the descent operation as a functor from the category of B-valued
sets and mappings to the category of the standard sets and mappings (i.e., those in the sense of V).

1.2.5. Given x1, . . . , xn ∈ V
(B), denote by (x1, . . . , xn)B the corresponding ordered n-tuple inside V

(B).
Assume that P is an n-ary relation on X inside V

(B), i.e., X, P ∈ V
(B) and [[P ⊂ Xn∧

]] = 11. Then there
exists an n-ary relation P ′ on X↓ such that (x1, . . . , xn) ∈ P ′ ⇐⇒ [[(x1, . . . , xn)B ∈ P ]] = 11. Slightly
abusing notation, we denote P ′ by the occupied symbol P↓ and call P↓ the descent of P .

1.2.6. Let x ∈ V and x ⊂ V
(B), i.e., let x be some set composed of B-valued sets or, symbolically,

x ∈ P
(
V

(B)
)
. Put ∅↑ := ∅ and dom(x↑) := x, Im(x↑) := {11} if x �= ∅. The element x↑ (of the

nonseparated universe V̄
(B), i.e., the distinguished representative of the class {y ∈ V̄

(B) : [[y = x↑]] = 11})
is the ascent of x. For the corresponding element in the separated universe V

(B) the same name and
notation are preserved.

1.2.7. Let X, Y, f ∈ P
(
V

(B)
)

and let f be a mapping from X to Y . There exists a mapping f↑ from X↑
to Y ↑ within V

(B) satisfying
[[f↑(x) = f(x)]] = 11 (x ∈ X)

if and only if f is extensional, i.e., the relation

[[x = x′]] ≤ [[f(x) = f(x′)]] (x, x′ ∈ X)

holds. The map f↑ with the above property is unique and satisfies the relation f↑(A↑) = f(A)↑ (A ⊂ X).
The composite of extensional maps is extensional. Moreover, the ascent of a composite is equal to the
composite of the ascents inside V

(B):

V
(B) |= (g ◦ f)↑ = g↑ ◦ f↑.

Observe also that if f and f−1 are extensional then (f↑)−1 = (f−1)↑.
1.2.8. Suppose that X ∈ V, X �= ∅, i.e., X is a nonempty set. Let ι := ιX denote the standard name
embedding x → x∧ (x ∈ X). Then ι(X)↑ = X∧ and X = ι−1(X∧↓). Take Y ∈ V

(B) with [[Y �= ∅]] = 11.
Using the above relations, we can extend the ascent operation to the case of a map f from X to Y ↓ and
descent operation to the case of an internal map g from X∧ to Y , i.e., [[g : X∧ → Y ]] = 11.

The maps f↑ := (f ◦ ι−1)↑ and g↓ := (g↓) ◦ ι are called modified ascent of f and modified descent of g,
respectively. (Sometimes, when there is no ambiguity, we speak of ascents and descents, using simple
arrows.) It is easy to see that g↓ is the unique map from X to Y ↓ satisfying

[[g↓(x) = g(x∧)]] = 11 (x ∈ X)

and f↑ is the unique map from X∧ to Y within V
(B) satisfying

[[f↑(x∧) = f(x)]] = 11 (x ∈ X).
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1.2.9. Given X ⊂ V
(B), we denote by mix(X) the set of all mixtures of the form mix(bξxξ), where

(xξ) ⊂ X and (bξ) is an arbitrary partition of unity. The following assertions are referred to as the
rules for canceling arrows or the Escher rules. Let X and X ′ be subsets of V

(B) and let f : X → X ′ be
an extensional mapping. Suppose that Y, Y ′, g ∈ V

(B) are such that [[Y, Y ′ �= ∅]] = [[g : Y → Y ′]] = 11.
Then

X↑↓ = mix(X), Y ↓↑ = Y ;
f↑↓ = f, g↓↑ = g.

There are some other cancellation rules.

1.3. Boolean-Valued Reals and Vector Lattices. The main results of the section tells us that the
Boolean-valued interpretation of the field of reals (complex numbers) is a real (complex) universally
complete vector lattice. Everywhere below, B is a complete Boolean algebra and V

(B) is the corresponding
Boolean-valued universe.

1.3.1. By virtue of the transfer and maximum principles, there exists an element R ∈ V
(B) for which

[[R is a field of reals]] = 11. Note also that ϕ(x), formally presenting the expressions of the axioms of an
Archimedean ordered field x, is bounded; therefore, by the restricted transfer principle [[ϕ(R∧)]] = 11, i.e.,
[[R∧ is an Archimedean ordered field]] = 11. Thus, we will assume that R

∧ is a dense subfield of R, while
the elements 0 := 0∧ and 1 := 1∧ are the zero and unity of R within the model V

(B).

1.3.2. Let ©R be the underlying set of the field R, on which the addition ©+ , multiplication ©× , and
ordering ©≤ are given. Then R is a 6-tuple (©R ,©+ ,©× ,©≤ , 0∧, 1∧) within V

(B); in symbols, V
(B) |= R =

(©R ,©+ ,©× ,©≤ , 0∧, 1∧).
The descent R↓ of the field R is the descent of the underlying set R:=©R ↓ together with the descended

operations + := ©+ ↓, · := ©· ↓, order relation � := ©≤ ↓, and distinguished elements 0 := 0∧ and 11 := 1∧;
in symbols, R↓ = (R, +, ·, �, 0, 11). Also, we can introduce multiplication by the standard reals in R↓ by
the rule

y = λx ⇐⇒ [[y = λ∧ ©· x]] = 11 (λ ∈ R, x, y ∈ R).

1.3.3. The Gordon theorem. Let R be the reals within V
(B). Then R↓ (with the descended operations

and order) is a universally complete vector lattice with a weak order unit 11. Moreover, there exists
a Boolean isomorphism χ of B onto the Boolean algebra of projection P(R↓) such that for all x, y ∈ R↓
and b ∈ B we have

χ(b)x = χ(b)y ⇐⇒ b ≤ [[x = y]], χ(b)x ≤ χ(b)y ⇐⇒ b ≤ [[x ≤ y]]. (G)

1.3.4. A vector lattice is an f-algebra if it is simultaneously a real algebra and satisfies, for all a, x, y ∈ X+,
the following conditions:

(1) x ≥ 0 and y ≥ 0 imply xy ≥ 0;
(2) x ⊥ y = 0 implies that (ax) ⊥ y and (xa) ⊥ y.

The multiplication in every (Archimedean) f -algebra is commutative and associative. An f -algebra is
called semi-prime if xy = 0 implies x ⊥ y for all x and y. The universally complete vector lattice R↓
with the descended multiplications is a semiprime f -algebra with ring unit 11 = 1∧.

1.3.5. By the maximum principle, there is an element C ∈ V
(B) for which

[[C is the set of complex numbers]] = 11.

Since the equality C = R⊕iR is expressed by a bounded set-theoretic formula, from the restricted transfer
principle we obtain

[[C∧ = R
∧ ⊕ i∧R

∧]] = 11.

Moreover, R
∧ is assumed to be a dense subfield of R; therefore, we can also assume that C

∧ is a dense
subfield of C . If 1 is the unity of C, then 1∧ is the unity of C inside V

(B). We write i instead of i∧ and
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11 instead of 1∧. By the Gordon theorem C ↓ = R↓ ⊕ iR↓; consequently, C ↓ is a universally complete
complex vector lattice, i.e., the complexification of a vector lattice R↓. Moreover, C ↓ is a complex
f -algebra defined as the complexification of a real f -algebra with a ring unit 11 := 1∧.

1.3.6. Let A be an f -algebra. A vector lattice X is said to be an f-module over A if the following holds:
(1) X is a module over A (with respect to a multiplication A × X � (a, x) → ax ∈ X);
(2) ax ≥ 0 for all a ∈ A+ and x ∈ X+;
(3) x ⊥ y implies ax ⊥ y for all a ∈ A+ and x, y ∈ X.
A vector lattice X has a natural f -module structure over Orth(X), i.e., πx := π(x) for all x ∈ X and

π ∈ Orth(X). Clearly, X is an f -module over an arbitrary f -submodule A ⊂ Orth(X) and, in particular,
over Z (X).

1.3.7. Theorem. Let X be an f-module over Z (Y ) with Y a Dedekind complete vector lattice and
B = P(Y ). Then there exists X ∈ V

(B) such that [[X is a vector lattice over R]] = 11, X ↓ is an f-module
over Au, and there is an f-module isomorphism h from X to X ↓ satisfying X ↓ = mix

(
h(X)

)
.

1.3.8. The Gordon theorem was established in [22]. The concept of an f -module was introduced in [57].

1.4. Boolean-Valued Functionals. We will demonstrate in this section how Boolean-valued analysis
works by transferring some results from order-bounded functionals to operators. Below, X and Y stand
for vector lattices, where Y is an order dense sublattice in R↓.
1.4.1. Let B be a complete Boolean algebra and let R be the field of reals in V

(B). The fact that X is
a vector lattice over the ordered field R can be rewritten as a restricted formula, say, ϕ(X, R). Hence,
recalling the restricted transfer principle, we come to the identity [[ϕ(X∧, R∧)]] = 11, which amounts to
saying that X∧ is a vector lattice over the ordered field R

∧ inside V
(B).

Let X∧∼ := L∼(X∧,R) be the space of order-bounded R
∧-linear functionals from X∧ to R. More

precisely, R is considered as a vector space over the field R
∧ and by the maximum principle there exists

X∧∼ ∈ V
(B) such that

[[X∧∼ is a vector space over R of R
∧-linear

order-bounded functionals from X∧ to R ordered by the cone of positive functionals]] = 11.

A functional τ ∈ X∧∼ is positive if [[(∀x ∈ X∧) τ(x) ≥ 0]] = 11.

1.4.2. It can easily be seen that the Riesz–Kantorovich theorem remains true if X is a vector lattice over
a dense subfield P ⊂ R and Y is a Dedekind complete vector lattices (over R) and L∼(X, Y ) is replaced
by L∼

P
(X, Y ), the vector spaces over R of all P-linear order-bounded operators from X to Y , ordered

by the cone of positive operators: L∼
P
(X, Y ) is a Dedekind complete vector lattice. The Boolean-valued

interpretation of this fact yields that X∧∼ :=L∼
R∧(X∧, R) is a Dedekind complete vector lattice within V

(B)

with B := P(Y ). In particular, the descent X∧∼↓ of the space X∧∼ is a Dedekind complete vector lattice.
Let L∼

dp(X, Y ) and Hom(X, T ) stand respectively for the space of disjointness preserving order-bounded
operators and the set of all lattice homomorphisms from X to Y . The following is based on the construction
from 1.2.8.

1.4.3. Theorem. Let X and Y be vector lattices with Y universally complete and presented as Y = R↓.
Given T ∈ L∼(X, Y ), the modified ascent T↑ is an order-bounded R

∧-linear functional on X∧ within V
(B),

i.e., [[T↑ ∈ X∧∼]] = 11. The mapping T → T↑ is a lattice isomorphism between the Dedekind complete
vector lattices L∼(X, Y ) and X∧∼↓.
1.4.4. Corollary. Given operators R, S ∈ L∼(X, Y ), put σ := S↑ and τ := T↑. The following are true:

(1) S ≤ T ⇐⇒ [[σ ≤ τ ]] = 11;
(2) S = |T | ⇐⇒ [[σ = |τ |]] = 11;
(3) S ⊥ T ⇐⇒ [[σ ⊥ τ ]] = 11;
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(4) [[T ∈ Hom(X, Y )]] ⇐⇒ [[τ ∈ Hom(X∧,R)]] = 11;
(5) T ∈ L∼

dp(X, Y ) ⇐⇒ [[τ ∈ (X∧∼)dp]] = 11.

1.4.5. Consider a vector lattice X, and let D be an order ideal in X. A linear operator T from D into X
is band preserving provided that x ⊥ y implies Tx ⊥ y for all x ∈ D and y ∈ X, or, equivalently,
Tx ∈ {x}⊥⊥ for all x ∈ D (the disjoint complements are taken in X). If X is a vector lattice with the
principal projection property and D ⊂ X is an order dense ideal, then a linear operator T : D → X is
band preserving if and only if T commutes with band projections: πTx = Tπx for all π ∈ P(X) and
x ∈ D.

1.4.6. Let EndN (XC) be the set of all band preserving endomorphisms of XC with X := R↓. Clearly,
EndN (XC) is a complex vector space. Moreover, EndN (XC) becomes a faithful unitary module over the
ring XC on letting gT be equal to gT : x → g ·Tx for all x ∈ XC. This is immediate since the multiplication
by an element of XC is band preserving and the composite of band preserving operators is band preserving
too.

1.4.7. By EndC∧(C ) we denote the element of V
(B) that represents the space of all C

∧-linear operators
from C into C . Then EndC∧(C ) is a vector space over C inside V

(B), and EndC∧(C )↓ is a faithful unitary
module over a complex f -algebra XC.

1.4.8. Proposition. A linear operator T on a universally complete vector lattice X or XC is band
preserving if and only if T is extensional.

Proof. Take a linear operator T : X → X. By the Gordon theorem the extensionality condition [[x = y]] ≤
[[Tx = Ty]] (x, y ∈ X = R↓) amounts to saying that the identity πx = πy implies πTx = πTy for all
x, y ∈ X and π ∈ P(X). By linearity of T the latter is equivalent to πx = 0 =⇒ πTx = 0 (x ∈ X,
π ∈ P(X)). Substituting y :=π⊥y yields πTπ⊥ = 0 or, which is the same, πT = πTπ. According to 1.4.5,
T is band preserving. The complex case is treated by complexification.

1.4.9. Theorem. The modules EndN (XC) and EndC∧(C )↓ are isomorphic. The isomorphy can be
established by sending a band preserving operator to its ascent. The same remains true when C and C

are replaced by R and R, respectively.

Proof. By virtue of Proposition 1.4.8, we can apply the constructions of 1.2.4 and 1.2.7, as well as the
cancellation rules 1.2.9.

2. Band Preserving Operators

2.1. Wickstead’s Problem and Cauchy’s Functional Equation. In this section, we demonstrate
that the band preserving operators in universally complete vector lattices are solutions in disguise of the
Cauchy functional equation and the Wickstead problem amounts to that of regularity of all solutions to
the equation.

2.1.1. The Wickstead problem. When are we so happy in a vector lattice that all band preserving
linear operators turn out to be order-bounded?

This question was raised by Wickstead in [79]. Further progress is presented in [4, 5, 28, 41, 42, 62].
The approach combining logical, algebraical, and analytical tools was presented in [41–43]. See a survey
of the main ideas and results on the problem and its modifications in [30].

The answer depends on the vector lattice in which the operator in question acts. Therefore, the
problem can be reformulated as follows: Characterize the vector lattices in which every band preserving
linear operators is order-bounded.

Let X be a universally complete vector lattice, and let T be a band preserving linear operator in X.
By the Gordon theorem we can assume that X = R↓, where R is the field of reals within V

(B) and
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B = P(X). Moreover, according to Theorem 1.4.9, we can assume further that T = τ↓, where τ ∈ V
(B) is

an internal R
∧-linear function from R to R. It can easily be seen that T is order-bounded if and only if

[[τ is order-bounded (i.e., τ is bounded on every intervals [a, b] ⊂ R)]] = 11.

2.1.2. By F we denote either R or C. The Cauchy functional equation with unknown function f : F → F

has the form
f(x + y) = f(x) + f(y) (x, y ∈ F).

It is easy that a solution to the equation is automatically Q-homogeneous, i.e., it satisfies another func-
tional equation:

f(qx) = qf(x) (q ∈ Q, x ∈ F).
In the sequel we will be interested in a more general situation. Namely, we will consider the simultaneous
functional equations {

f(x + y) = f(x) + f(y) (x, y ∈ F),
f(px) = pf(x) (p ∈ P, x ∈ F),

(L)

where P is a subfield of F that includes Q. Denote by FP the field F, which is considered as a vector
space over P. Clearly, solutions to the simultaneous equations (L) are precisely P-linear functions from
FP to FP.

2.1.3. Let E be a Hamel basis for a vector space FP, and let F (E , F) be the space of all functions from E
to F. The solution set of (L) is a vector space over F isomorphic with F (E , F). Such an isomorphism
can be implemented by sending a solution f to the restriction f |E of f to E . The inverse isomorphism
ϕ → fϕ (ϕ ∈ F (E , F)) is defined by

fϕ(x) :=
∑

e∈E
ϕ(e)ψ(e) (x ∈ FP),

where x =
∑

e∈E
ψ(e)e is the expansion of x with respect to Hamel basis E .

2.1.4. Theorem. Each solution of (L) is either F-linear or everywhere dense in F
2:=F×F. In particular,

fϕ is continuous if and only if ϕ(e)/e = const (e ∈ E ).

2.1.5. Now assume that F = C and P := P0 + iP0 with P0 a subfield in R. Then the space of solutions of
the system (L) is a complexification of the space of solution of the same system with P := P0. In more
detail, if g : R → R is a P0-linear function, then we have the unique P-linear function g̃ : C → C defined as

g̃(z) = g(x) + ig(y) (z = x + iy ∈ C).

Conversely, if f : C → C is a P-linear function, then there is a unique pair of P0-linear functions
g1, g2 : R → R such that f(z) = g̃1(z) + ig̃2(z) (z ∈ C). Thus, every solution f of (L) can be repre-
sented in the form f = f1 + if2, where f1, f2 : C → C are P0-linear and fi(R) ⊂ R (i = 1, 2). We say that
f is monotone or bounded if so are f1 and f2.

2.1.6. Proposition. Let P be a subfield of F, while P :=P0 + iP0 for some dense subfield P0 ⊂ R, in case
F = C. The following are equivalent :

(1) F = P;
(2) every solution to (L) is order-bounded.

Proof. The implication (1) =⇒ (2) is trivial. Prove the converse by way of contradiction. The assumption
that F �= P implies that each Hamel basis E for the vector space FP contains at least two nonzero
distinct elements e1, e2 ∈ E . Define the function ψ : E → F so that ψ(e1)/e1 �= ψ(e2)/e2. Then the
P-linear function f = fψ : F → F, coinciding with ψ on E , would exist by 2.1.2 and be discontinuous by
Theorem 2.1.4.
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2.1.7. Add to the system (L) the equation f(xy) = f(x)f(y) (or f(xy) = f(x)y + xf(y)) (x, y ∈ F).
A solution of the resulting system is called P-endomorphism (P-derivation). The existence of the nontrivial
P-endomorphism and P-derivation can be obtained similarly, but using a transcendental basis instead of
a Hamel basis (see [6, 35]). Interpreting such existence results in a Boolean-valued model yields the
existence of band preserving endomorphism and derivations of a universally complete f -algebra (see
[42,43], as well as [47]).

2.2. Locally One-Dimensional Vector Lattices. Boolean-valued representation of a vector lattice
is a vector sublattice in R considered as a vector lattice over R

∧. It stands to reason to find out what
construction in a vector lattice corresponds to a Hamel basis for its Boolean-valued representation.

2.2.1. A vector lattice X is said to have a cofinal family of band projections if for each nonzero band B
in X there exists a nonzero band projection π on X such that π(X) ⊂ B (see [2]).

Let X be a vector lattice with a cofinal family of band projections. We will say that x, y ∈ X differ
at π ∈ P(X) provided that π|x − y| is a weak order unit in π(X) or, equivalently, if π(X) ⊂ |x − y|⊥⊥.
Clearly, x and y differ at π whenever ρx = ρy implies πρ = 0 for all ρ ∈ P(X). A subset E of X is
said to be locally linearly independent provided that, for an arbitrary nonzero band projection π in X
and each collection of the elements e1, . . . , en ∈ E that are pairwise different at π, and each collection of
reals λ1, . . . , λn ∈ R, the condition π(λ1e1 + · · · + λnen) = 0 implies that λk = 0 for all k := 1, . . . , n. In
other words, E is locally linearly independent if for every band projection π ∈ P(X) any subset of π(E )
consisting of nonzero members pairwise different at π is linearly independent.

An inclusion-maximal locally linearly independent subset of X is called a local Hamel basis for X.

2.2.2. Proposition. Each vector lattice X with a cofinal family of band projections has a local Hamel
basis for X.

2.2.3. A locally linearly independent set E in G is a local Hamel basis if and only if for every x ∈ G there
exist a partition of unity (πξ)ξ∈Ξ in P(G) and a family of reals (λξ,e)ξ∈Ξ, e∈E such that

x = o-
∑

ξ∈Ξ

( ∑

e∈E
λξ,eπξe

)

and for every ξ ∈ Ξ the set {e ∈ E : λξ,e �= 0} is finite and consists of nonzero elements pairwise different
at πξ. Moreover, the representation is unique up to refinements of the partition of unity (see [2, Sec. 6;
39, Sec. 5.1]). The following result of [37, Proposition 4.6(1)] explains why and how the concept of local
Hamel basis is such a useful technical tool (see [2]).

2.2.4. Proposition. Assume that E ,X ∈ V
(B), [[E ⊂ X ]] = 11, [[X is a vector subspace of RR]] = 11, and

X := X ↓. Then
[[E is a Hamel basis for the vector space X (over R

∧)]] = 11
if and only if E ↓ is a local Hamel basis for X.

2.2.5. A vector lattice X is said to be locally one-dimensional if for any two nondisjoint x1, x2 ∈ X there
exist nonzero components u1 and u2 of x1 and x2, respectively, such that u1 and u2 are proportional
(see [2, Definition 11.1]). Equivalent definitions see in [39, Proposition 5.1.2].

2.2.6. Proposition. Let X be a laterally complete vector lattice, and let X ∈ V
(B) be its Boolean-valued

representation with B := P(X). Then X is locally one-dimensional if and only if X is one-dimensional
vector lattice over R

∧ in V
(B), i.e., [[R = R

∧]] = 11.

2.2.7. Proposition. A universally complete vector lattice is locally one-dimensional if and only if every
band preserving linear operator in it is order-bounded.

Proof. By the Gordon theorem we can assume that X = R↓ with R ∈ V
(B) and B � P(X). Thus, the

problem reduces to existence of a discontinuous solution to the Cauchy functional equation (L) and the
claim follows from Proposition 2.1.6.
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2.2.8. Proposition. Let R is a transcendental extension of a subfield P ⊂ R. There exists an P-linear
subspace X in R such that X and R are isomorphic vector spaces over P but they are not isomorphic as
ordered vector spaces over P.

Proof. Let E be a Hamel basis of a P-vector space R. Since E is infinite, we can choose a proper subset
E0 � E of the same cardinality: |E0| = |E |. If X denotes the P-subspace of R generated by E0, then
X0 � R and X and R are isomorphic as vector spaces over P. If X and R were isomorphic as ordered
vector spaces over P, then X would be order complete and, in consequence, we would have X = R,
a contradiction.

2.2.9. Theorem. Let X be a nonlocally one-dimensional universally complete vector lattice. Then there
exist a vector sublattice X0 ⊂ X and a band preserving linear bijection T : X0 → X such that T−1 is also
band preserving but X0 and X are not lattice isomorphic.

Proof. We can assume, without loss of generality, that X = R↓ and [[R �= R
∧]] = 11. By Proposition 2.2.8

there exist an R
∧-linear subspace X in R and R

∧-linear isomorphism τ from X onto R, while X and R
are not isomorphic as ordered vector spaces over R

∧. Put X0 := X ↓, T := τ↓, and S := τ−1↓. The
maps S and T are band preserving and linear. Moreover, S = (τ↓)−1 = T−1. It remains to observe that
X0 and X are lattice isomorphic if and only if X and R are isomorphic as ordered vector spaces.

2.2.10. Let γ be a cardinal. A vector lattice X is said to be Hamel γ-homogeneous whenever there exists
a local Hamel basis of cardinality γ in X consisting of strongly distinct weak order units. Two elements
x, y ∈ X are said to be strongly distinct if |x − y| is a weak order unit in X.

2.2.11. Proposition. Let X be a universally complete vector lattice. There is a band X0 in X such
that X⊥

0 is locally one-dimensional and there exists a partition of unity (πγ)γ∈Γ in P(X0) with Γ a set of
infinite cardinals such that πγX0 is Hamel γ-homogeneous for all γ ∈ Γ.

2.2.12. A local Hamel basis is also called a d-basis. This concept stems from [17], but for the first time
in the context of disjointness preserving operators in [4, 5]. Various aspects of the concept can be found
in [2, 3]. Theorem 2.2.6 was established in [28], while Proposition 2.2.7 in [5, 62]. Theorem 2.2.9 was
proved in [3] not involving Boolean-valued approach. Theorem 2.2.11 was never published.

2.3. Algebraic Band Preserving Operators. In this section, some description of algebraic orthomor-
phisms on a vector lattice is given and the Wickstead problem for algebraic operators is examined.

2.3.1. Let P[x] be a ring of polynomials in variable x over a field P. An operator T on a vector space X
over a field P is said to be algebraic if there exists a nonzero ϕ ∈ P[x], a polynomial with coefficients in P,
for which ϕ(T ) = 0.

For an algebraic operator T , there exists a unique polynomial ϕT such that ϕT (T ) = 0, the leading
coefficient of ϕT equals to 1, and ϕT divides each polynomial ψ with ψ(T ) = 0. The polynomial ϕT is
called the minimal polynomial of T . The simple examples of algebraic operators yield a projection P (an
idempotent operator, P 2 = P ) in X with ϕP (λ) = λ2−λ whenever P �= 0, IX , and a nilpotent operator S
(Sm = 0 for some m ∈ N) in X with ϕS(λ) = λk, k ≤ m.

For an operator T on X, the set of all eigenvalues of T will be denoted throughout by σp(T ). A real
number λ is a root of ϕT if and only if λ ∈ σp(T ). In particular, σp(T ) is finite. If b − a2 > 0 for some
a, b ∈ R, then T 2 + 2aT + bI is a weak order unit in Orth(X) for every T ∈ Orth(X) (see [14]).

2.3.2. Proposition. Let X be a vector lattice, and let T in Orth(X) be algebraic. Then

ϕT (x) =
∏

λ∈σp(T )

(x − λ).

2.3.3. Proposition. Consider the universally complete vector lattice X = R↓. Let T be a band preserving
linear operator on X and τ an R

∧-linear function on R. For ϕ ∈ R[x], ϕ(x) = a0 + a1x + · · · + anxn,
define ϕ̂ ∈ R

∧[x] by ϕ̂(x) = a∧
0 + a∧

1x + · · · + a∧
nxn∧

. Then

ϕ̂(τ)↓ = ϕ(τ↓), ϕ(T )↑ = ϕ̂(T↑).
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Proof. It follows from 1.2.4 and 1.2.7 that (τn∧
)↓ = (τ↓)n and (Tn)↑ = (T↑)n∧

. Thus, it remains to apply
Theorem 1.4.9.

2.3.4. A linear operator T on a vector lattice X is said to be diagonal if T = λ1P1 + · · · + λmPm for
some collections of reals λ1, . . . , λm and projection operators P1, . . . , Pm on X with Pi ◦ Pj = 0 (i �= j).
In the equality above, we can and will assume that P1 + · · · + Pn = IX and that λ1, . . . , λm are pairwise
different. An algebraic operator T is diagonal if and only if the minimal polynomial of T has the form
ϕT (x) = (x − λ1) · . . . · (x − λm) with pairwise different λ1, . . . , λm ∈ R.

We call an operator T on X strongly diagonal if there exist pairwise disjoint band projections
P1, . . . , Pm and real numbers λ1, . . . , λm such that T = λ1P1 + · · · + λmPm. In particular, every strongly
diagonal operator on X is an orthomorphism.

2.3.5. Proposition. Let T = λ1P1 + · · · + λmPm be a diagonal operator on a vector lattice X. Then T
is band preserving if and only if the projection operators P1, . . . , Pm are band preserving.

Proof. The sufficiency is obvious. To prove the necessity, observe first that if T is band preserving, then
so is Tn for all n ∈ N and thus ϕ(T ) is band preserving for every polynomial ϕ ∈ R[x]. Next, make use
of the representation Pj = ϕj(T ) (j := 1, . . . , m), where ϕj ∈ R[x] is an interpolation polynomial defined
by ϕj(λk) = δjk with δjk the Kronecker symbol.

2.3.6. Theorem. Let X be a universally complete vector lattice. The following are equivalent :
(1) the Boolean algebra P(X) is σ-distributive;
(2) every algebraic band preserving operator in X is order-bounded ;
(3) every algebraic band preserving operator in X is strongly diagonal ;
(4) every band preserving diagonal operator in X is strongly diagonal ;
(5) every band preserving nilpotent operator in X is order-bounded ;
(6) every band preserving nilpotent operator in X is trivial.

Proof. The only nontrivial implications are (2) =⇒ (3) and (6) =⇒ (2).
(2) =⇒ (3) We have to prove that an algebraic orthomorphism on X is strongly diagonal. Let T

be an orthomorphism in X and ϕ(T ) = 0, where ϕ is a minimal polynomial of T , so that ϕ(λ) =
(λ − λ1) · . . . · (λ − λm) with λ1, . . . , λm ∈ R. Since T admits a unique extension to an orthomor-
phism on Xu, we can assume without loss of generality that X = Xu = R↓ and τ = T↑. Then
[[τ(x) = λ0x (x ∈ R)]] = 11 for some λ0 ∈ R. It is seen from Proposition 2.3.3 that ϕ̂(λ0) = 0 and thus
(λ0 − λ∧

1) · . . . · (λ0 − λ∧
m) = 0 or λ0 ∈ {λ∧

1 , . . . , λ∧
m} within V

(B). Put Pl := χ(bl) with bl := [[λ0 = λ∧
l ]]

and observe that {P1, . . . , Pm} is a partition of unity in P(X). Moreover, given x ∈ X, we see that
bl ≤ [[Tx = τx = λ0x]] ∧ [[λ0 = λ∧

l ]] ≤ [[Tx = λ∧
l x]], so that PlTx = Pl(λlx) = λlPl(x). Summing up over

l = 1, . . . , m, we get Tx = λ1P1x + · · · + λmPm.
(6) =⇒ (1) Arguing for a contradiction, assume that assertion (2) of Theorem 2.3.6 is fulfilled and

construct a nonzero band preserving nilpotent operator in X. By Propositions 2.2.7 and 2.1.6 we have
that V

(B) |= R �= R
∧ and thus R is an infinite-dimensional vector space over R

∧ within V
(B). Let E ⊂ R

be a Hamel basis and choose an infinite sequence (en)n∈N of pairwise distinct elements in E . Fix a natural
number m > 1 and define an R

∧-linear function τ : R → R within V
(B) by letting τ(ekm+i) = ekm+i−1 if

2 ≤ i ≤ m, τ(ekm+1) = 0 for all k := 0, 1, . . . , and τ(e) = 0 if e �= en for all n ∈ N. In other words, if
R0 is the R

∧-linear subspace of R generated by the sequence (en)n∈N, then R0 is an invariant subspace
for τ and τ is the linear operator associated with the infinite block matrix diag(A, . . . , A, . . . ) with equal
blocks in the principal diagonal and A the Jordan block of size m with eigenvalue 0. It follows that τ is
discontinuous and τm = 0 by construction. Consequently, T := τ↓ is a band preserving linear operator
in X and Tm = 0 by Proposition 2.3.3, but T is not order-bounded; a contradiction.

2.3.7. Algebraic order-bounded disjointness preserving operators in vector lattices were treated in [14],
where, in particular, the Propositions 2.3.2 and 2.3.5 were proved. Theorem 2.3.6 was obtained in [48].
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2.4. Involutions and Complex Structures. The main result of this section tells us that in a real
non-locally one-dimensional universally complete vector lattice there are band preserving complex struc-
tures and nontrivial band preserving involutions.

2.4.1. A linear operator T on a vector lattice X is called involutory or an involution if T ◦ T = IX (or,
equivalently, T−1 = T ) and is called a complex structure if T ◦ T = −IX (or, equivalently, T−1 = −T ).
The operator P − P⊥, where P is a projection operator on X and P⊥ = IX − P , is an involution. The
involution P − P⊥ with band projections P is referred to as trivial.

2.4.2. Proposition. Let X be a Dedekind complete vector lattice. Then there is no order-bounded band
preserving the complex structure in X and there is no nontrivial order-bounded band preserving involution
in X.

Proof. An order-bounded band preserving operator T on a universally complete vector lattice X with weak
unit 11 is a multiplication operator: Tx = ax (x ∈ X) for some a ∈ X. It follows that T is an involution
if and only if a2 = 11 and hence there is a band projection P on E with a = P11 − P⊥11 or T = P − P⊥. If
T is a complex structure on E, then the corresponding equation a2 = −11 has no solution.

2.4.3. Theorem. Let F be a dense subfield of R, and let B ⊂ R be a nonempty finite or countable set.
Then there exists a discontinuous F-linear function f : R → R such that f ◦ f = IR and f(x) = x for all
x ∈ B.

Proof. Let E ⊂ R be a Hamel basis of R over R
∧. Every x ∈ B can be written as x =

∑

e∈E
λe(x)e,

where λe(x) ∈ F for all e ∈ E . Put E (x) := {e ∈ E : λe(x) �= 0} and E0 =
⋃

x∈B

E (x). Since B is finite or

countable, so is also E0. Hence E \ E0 has the cardinality of continuum. There exists a decomposition
E \ E0 := E1 ∪ E2, where E1 and E2 are disjoint sets both having the same cardinality. Hence there exists
a one-to-one mapping g0 from E1 onto E2 with the inverse g−1

0 : E2 → E1.
Now we define the function g : E → E as follows:

g(h) =

⎧
⎪⎨

⎪⎩

g0(h) for h ∈ E1,

g−1
0 (h) for h ∈ E2,

h for h ∈ E0.

(1)

It can easily be checked that the F-linear extension f : R → R of a function g is the sought involution.

2.4.4. Theorem. Let F be a dense subfield of R. Then there exists a discontinuous F-linear function
f : R → R such that f ◦ f = −IR.

Proof. The proof is similar to that of Theorem 2.4.3 with the minor modifications: put E0 = ∅ and define

g(h) =

{
−g0(h) for h ∈ E1,

g−1
0 (h) for h ∈ E2.

Interpreting Theorems 2.4.3 and 2.4.4 in a Boolean-valued model yields the result.

2.4.5. Theorem. Let X be a universally complete real vector lattice that is not locally one-dimensional.
Then

(1) for every nonempty finite or countable set B ⊂ X there exists a band preserving involution T
on X with T (x) = x for all x ∈ B;

(2) there exists a band preserving the complex structure on X.

Proof. Assume that X = R↓. Take a one-to-one function ν : N → X with B = Im(ν). The function
ν↑ : N

∧ → X can fail to be one-to-one within V
(B) but B↑ is again finite or countable, as B↑ = Im(ν↑)
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by 1.2.7. By Theorem 2.4.3 there exists an R
∧-linear function τ : R → R such that [[τ ◦ τ = IR ]] = 11 and

11 = [[(∀x ∈ B↑) τ(x) = x]] =
[[
(∀n ∈ N

∧) τ
(
ν↑(n)

)
= ν↑(n)

]]

=
∧

n∈N

[[
τ
(
ν↑(n∧)

)
= ν↑(n∧)

]]
=

∧

n∈N

[[
τ
(
ν(n)

)
= ν(n)

]]
=

∧

n∈N

[[
τ↓(ν(n)

)
= ν(n)

]]
.

It follows that if T := τ↓, then T ◦ T = IX by 1.2.4 and T
(
ν(n)

)
= ν(n) for all n ∈ N, as required. The

second claim is proved in a similar way, using Theorem 2.4.4.

2.4.6. Corollary. Let X be a universally complete vector lattice. Then the following are equivalent :
(1) X is locally one-dimensional ;
(2) there is no nontrivial band preserving involution on X;
(3) there is no band preserving the complex structure on X.

2.4.7. Corollary. Let X be a universally complete real vector lattice that is not locally one-dimensional.
Then X admits a structure of complex vector space with a band preserving complex multiplication.

Proof. A complex structure T on X allows us to define on X a structure of a vector space over the complex
numbers C, by setting (α+ iβ)x = αx+βT (x) for all z = α+ iβ ∈ C and x ∈ X. If T is band preserving,
then the map x → zx (x ∈ X) is evidently band preserving for all z ∈ C.

2.4.8. The main results of this section were obtained in [49]. In connection with Corollary 2.4.7, we
should mention the problem of existence of a complex structure and spaces with few operators (see
[18,25,26,70,71]).

3. Disjointness Preserving Operators

3.1. Characterization and Representation. Now we will demonstrate that some properties of dis-
jointness preserving operators are just Boolean-valued interpretations of elementary properties of disjoint-
ness preserving functionals.

3.1.1. Theorem. Assume that Y has the projection property. An order-bounded linear operator
T : X → Y is disjointness preserving if and only if ker(bT ) is an order ideal in X for every projection
b ∈ P(Y ).

Proof. The necessity is obvious, and so only the sufficiency will be proved. Suppose that ker(bT ) is an
order ideal in X for every b ∈ P(Y ). We can assume that Y ⊂ R↓ by the Gordon theorem. Take |y| ≤ |x|
and put b := [[Tx = 0]]. Then bTx = 0 by (G) and bTy = 0 by hypothesis. Again, using (G) we have that
b ≤ [[Ty = 0]]. Thus, [[Tx = 0]] ≤ [[Ty = 0]] or, what is the same, [[Tx = 0]] =⇒ [[Ty = 0]] = 11. Now, put
τ := T↑ and ensure that ker(τ) is an order ideal in X∧ within V

(B). Making use of the fact that |x| ≤ |y|
if and only if [[x∧ ≤ y∧]] = 11, we deduce that

[[ker(τ) is an order ideal in X∧]]

= [[(∀x, y ∈ X∧) (τ(x) = 0 ∧ |y| ≤ |x| → τ(y) = 0)]]

=
∧

x,y∈X

[[(τ(x∧) = 0]] ∧ [[|y∧| ≤ |x∧|]] =⇒ [[τ(y∧) = 0]]

=
∧

{[[T (x) = 0]] =⇒ [[T (y) = 0]] : x, y ∈ X, |y| ≤ |x|} = 11.

Apply within V
(B) the fact that a functional τ is disjointness preserving if and only if ker(τ) is an order

ideal in X∧. It follows that T is disjointness preserving by Corollary 1.4.4(5).

3.1.2. A similar reasoning shows that if Y has the projection property, then for an order-bounded dis-
jointness preserving linear operator T ∈ L∼(X, Y ) there exists a band projection π ∈ P(Y ) such that
T+ = π|T | and T− = π⊥|T |. In particular, T = (π − π⊥)|T | and |T | = (π − π⊥)T . To ensure this,
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observe that the functional τ := T↑ is disjointness preserving if and only if either τ or −τ is a lattice
homomorphism.

From this fact it follows that T ∈ L∼(X, Y ) is disjointness preserving if and only if (Tx)+ ⊥ (Ty)−
for all x, y ∈ X+. Indeed, given x, y ∈ X+ we can write (Tx)+ = (Tx) ∨ 0 ≤ T+x = π|T |x and, similarly,
(Ty)− ≤ π⊥|T |y. Hence (Tx)+ ∧ (Ty)− = 0.

3.1.3. Theorem. Let X and Y be vector lattices with Y Dedekind complete. For a pair of disjoint-
ness preserving operators T1 and T2 from X to Y , there exist a band projection π ∈ P(Y ), a lattice
homomorphism T ∈ Hom(X, Y ), and orthomorphisms S1, S2 ∈ Orth(Y ) such that

|S1| + |S2| = π, πT1 = S1T, πT2 = S2T,

Im(π⊥T1)⊥⊥ = Im(π⊥T2)⊥⊥ = π(Y ), π⊥T1 ⊥ π⊥T2.

Proof. As usual, there is no loss of generality in assuming that Y = R↓. Put τ1:=T1↑ and τ2:=T2↑. The de-
sired result is a Boolean-valued interpretation of the following fact: If the disjointness preserving function-
als τ1 and τ2 are not proportional, then they are nonzero and disjoint. Put b:=[[τ1 and τ2 are proportional]]
and π := χ(b). Then within V

([0,b]) there exist a lattice homomorphism τ : X∧ → R and reals σ1, σ2 ∈ R
such that τi = σiτ . If the function σ̄i is defined as σ̄i : λ → σiλ (λ ∈ R), then the operators S1 := σ̄1↓,
S2 := σ̄2↓, and T := τ↓ (with the modified descents taken from V

([0,b])) satisfy the first line of the required
conditions. Moreover, π⊥ = χ(b∗) and by transfer we have

b∗ = [[τ1 �= 0]] ∧ [[τ2 �= 0]] ∧ [[|τ1| ∧ |τ2| = 0]],

so that the second line of required conditions is also satisfied.

3.1.4. Corollary. Let X and Y be vector lattices with Y Dedekind complete. The sum T1 + T2 of
two disjointness preserving operators T1, T2 : X → Y is disjointness preserving if and only if there exist
pairwise disjoint band projections π, π1, π2 ∈ P(Y ), orthomorphisms S1, S2 ∈ Orth(Y ), and a lattice
homomorphism T ∈ Hom(X, Y ) such that

π + π1 + π2 = IY , |S1| + |S2| = π,

T (X)⊥⊥ = π(Y ), π1T2 = π2T1 = 0, πT1 = S1T, πT2 = S2T.

Consequently, in this case T1 + T2 = π1T1 + π2T2 + (S1 + S2)T .

3.1.5. Corollary. The sum T1+T2 of two disjointness preserving operators T1, T2 : X → Y is disjointness
preserving if and only if T1(x1) ⊥ T2(x2) for all x1, x2 ∈ X with x1 ⊥ x2.

Proof. The necessity is immediate from Theorem 3.1.4, since T1 = π1T1 + S1T and T2 = π2T2 + S2T . To
see the sufficiency, observe that if T1 and T2 meet the above condition, then Tkx1 ⊥ Tlx2 (k, l := 1, 2) and
so (T1 + T2)(x1) ⊥ (T1 + T2)(x2) for every pair of disjoint elements x1, x2 ∈ X.

3.1.6. Aspects of the theory of disjointness preserving operators are presented in [29, 39, 40]. Recent
results on disjointness preserving operators are surveyed in [13]. In particular, the concept of disjointness
preserving set of operators is discussed in the survey. In terms of this concept, Corollary 3.1.5 can be
reformulated as follows: T1+T2 is disjointness preserving if and only if {T1, T2} is a disjointness preserving
set of operators [13, Lemma 5.2].

3.2. Polydisjoint Operators. The aim of the present section is to describe the order ideal in the space
of order-bounded operators that is generated by the order bounded disjointness preserving operators (=
d-homomorphisms) in terms of n-disjoint operators.

3.2.1. Let X and Y be vector lattices, and let n be a positive integer. A linear operator T : X → Y is
said to be n-disjoint if, for every collection of n+1 pairwise disjoint elements x0, . . . , xn ∈ X, the infimum
of {|Txk| : k := 0, 1, . . . , n} equals zero; symbolically:

(∀x0, x1 . . . , xn ∈ X) xk ⊥ xl (k �= l) =⇒ |Tx0| ∧ · · · ∧ |Txn| = 0.
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An operator is called polydisjoint if it is n-disjoint for some n ∈ N. A 1-disjoint operator is just a dis-
jointness preserving operator.

3.2.2. Consider some simple properties of n-disjoint operators. Let X and Y be vector lattices with Y
Dedekind complete.

(1) T ∈ L∼(X, Y ) is n-disjoint if and only if |T | is n-disjoint.
(2) Let T1, . . . , Tn be order-bounded and disjointness preserving operators from X to Y . Then T :=

T1 + · · · + Tn is n-disjoint.

3.2.3. Proposition. An order-bounded functional on a vector lattice is n-disjoint if and only if it is
representable as a disjoint sum of n order-bounded disjointness preserving functionals. Such representation
is unique up to permutation.

Proof. Assume that f is a positive n-disjoint functional on a vector lattice C(Q). Prove that the corre-
sponding Radon measure μ is the sum of n Dirac measures. This is equivalent to saying that the support
of μ consists of n points. If there are n + 1 points q0, q1, . . . , qn ∈ Q in the support of μ, then we can
choose pairwise disjoint compact neighborhoods U0, U1, . . . , Un ∈ Q of these points and next take pairwise
disjoint open sets Vk ⊂ Q with μ(Uk) > 0 and Uk ⊂ Vk (k = 0, 1, . . . , n). Using the Tietze–Urysohn theo-
rem, construct a continuous function xk on Q that vanishes on Q \ Vk and is identically one on Uk. Then
x0∧x1∧· · ·∧xn = 0 but none of the reals f(x0), f(x1), . . . , f(xn) is equal to zero, since f(xk) ≥ μ(Uk) > 0
for all k := 0, 1, . . . , n. This contradiction shows that the support of μ consists of n points. The general
case is reduced to what was proved by using the Krĕıns–Kakutani representation theorem.

3.2.4. Theorem. An order-bounded operator from a vector lattice to a Dedekind complete vector lattice
is n-disjoint for some n ∈ N if and only if it is representable as a disjoint sum of n order-bounded
disjointness preserving operators.

Proof. Assume that an operator T ∈ L∼(X, Y ) is n-disjoint and denote τ := T↑ ∈ V
(B). It is deduced

by direct calculation of Boolean truth values that τ : X∧ → R is an order-bounded n-disjoint functional
within V

(B). Using the transfer principle and applying Proposition 3.2.3 to τ yields pairwise disjoint
order-bounded disjointness preserving functionals τ1, . . . , τn on X∧ with τ = τ1 + · · · + τn. It remains to
observe that the linear operators T1 := τ1↓, . . . , Tn := τn↓ from X to Y are order-bounded, disjointness
preserving, and T1 + · · · + Tn = T . Moreover, if k �= j, then

0 = (τk ∧ τl)↓ = τk↓ ∧ τl↓ = Tk ∧ Tl,

so that Tk and Tl are disjoint.

3.2.5. It can easily be seen that the representation of an order-bounded n-disjoint operator in The-
orem 3.1.4 is unique up to mixing: if T = T1 + · · · + Tn = S1 + · · · + Sm for two pairwise dis-
joint collections {T1, . . . , Tn} and {S1, . . . , Tn} of order-bounded disjointness preserving operators, then
for every j = 1, . . . , m there exists a disjoint family of projections π1j , . . . , πnj ∈ P(Y ) such that
Sj = π1jT1 + · · · + πnjTn for all j := 1, . . . , m.

3.2.6. Corollary. A positive operator from a vector lattice to a Dedekind complete vector lattice is
n-disjoint if and only if it is the sum of n pairwise disjoint lattice homomorphisms.

3.2.7. Corollary. The set of polydisjoint operators from a vector lattices to a Dedekind complete vector
lattices coincides with the order ideal in the vector lattice of order-bounded operators generated by lattice
homomorphisms.

3.2.8. The characterizations of sums of disjointness preserving operators (Theorem 3.2.4), sums of lattice
homomorphisms (Corollary 3.2.6), and the ideal of order-bounded operators generated by lattice homo-
morphism (Corollary 3.2.7) were proved in [12] using standard tools. For an algebraic approach to the
problem, see [39].
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3.3. Differences of Lattice Homomorphisms. This section presents a characterization of or-
der-bounded operators representable as a difference of two lattice homomorphisms. The starting point
of this question is the celebrated Stone theorem about the structure of vector sublattices in the Banach
lattice C(Q, R) of continuous real functions on a compact space Q. This theorem can be rephrased in the
above terms as follows.

3.3.1. The Stone theorem. Each closed vector sublattice of C(Q, R) is the intersection of the kernels
of some differences of lattice homomorphisms on C(Q, R).

3.3.2. In view of the Stone theorem it is reasonable to refer to a difference of lattice homomorphisms
on a vector lattice X as a two-point relation on X. We are not obliged to assume here that the lattice
homomorphisms under study act into the reals R. Thus, a linear operator T : X → Y between vector
lattices is said to be a two-point relation on X whenever it is written as a difference of two lattice
homomorphisms. An operator bT := b ◦ T with b ∈ B := P(Y ) is called a stratum of T .

3.3.3. The kernel ker(bT ) of each stratum of a two point relation T is evidently a sublattice of X, since
it is determined by an equation bT1x = bT2x. Thus, each stratum bT of an order-bounded disjointness
preserving operator T : X → Y is a two-point relation on X and so its kernel is a vector sublattice of X.
The main result of this section says that the converse is valid too. To handle the corresponding scalar
problem, a formula of subdifferential calculus is used (see [44,51]). In the following form of this auxiliary
fact, the positive decomposition of a functional f means a representation f = f1 + · · · + fN with positive
functionals f1, . . . , fN .

3.3.4. The decomposition theorem. Assume that H1, . . . , HN are cones in a vector lattice X and
f and g are positive functionals on X. The inequality

f(h1 ∨ · · · ∨ hN ) ≥ g(h1 ∨ · · · ∨ hN )

holds for all hk ∈ Hk (k := 1, . . . , N) if and only if to each positive decomposition (g1, . . . , gN ) of g there
is a positive decomposition (f1, . . . , fN ) of f such that

fk(hk) ≥ gk(hk) (hk ∈ Hk, k := 1, . . . , N).

3.3.5. Proposition. Let F be a dense subfield in R and let X be a vector lattice over F. An order-bounded
F-linear functional from X to R is a two-point relation if and only if its kernel is an F-linear sublattice
of the ambient vector lattice.

Proof. Let l be an order-bounded functional on a vector lattice X. Put f := l+, g := l−, and H := ker(l).
It suffices to demonstrate only that g is a lattice homomorphism, i.e., [0, g] = [0, 1]g (see [39]). So, we
take 0 ≤ g1 ≤ g and put g2 := g − g1. We can assume that g1 �= 0 and g1 �= g. By hypothesis, for all
h1, h2 ∈ ker(l) we have the f(h1 ∨ h2) ≥ g(h1 ∨ h2). By the decomposition theorem there is a positive
decomposition f = f1 + f2 such that f1(h) − g1(h) = 0 and f2(h) − g2(h) = 0 for all h ∈ H. Since
H = ker(f − g), we see that there are reals α and β satisfying f1 − g1 = α(f − g) and f2 − g2 = β(f − g).
Clearly, α+β = 1 (for otherwise f = g and l = 0). Therefore, one of the reals α and β is strictly positive.
If α > 0, then we have g1 = αg for f and g disjoint. If β > 0, then, arguing similarly, we see that g2 = βg.
Hence, 0 ≤ β ≤ 1 and we again see that g1 ∈ [0, 1]g.

3.3.6. Theorem. An order-bounded operator from a vector lattice to a Dedekind complete vector lattice
is a two-point relation if and only if the kernel of its every stratum is a vector sublattice of the ambient
vector lattice.

Proof. The necessity is obvious, so only the sufficiency will be proved. Take T ∈ L∼(X, Y ), and let
ker(bT ) := (bT )−1(0) be a vector sublattice in X for all b ∈ P(Y ). We apply the Boolean-valued “scalar-
ization” on putting Y = R↓.

Put τ := T↑ and observe that the validity of the identities T+↑ = τ+ and T−↑ = τ− within V
(B)

follows from Corollary 1.4.4(2) (and is proved by easy calculation of Boolean truth values). Moreover,

[[ker(τ) is a vector sublattice of X∧]] = 11.
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Indeed, given x, y ∈ X, put
b := [[Tx = 0∧]] ∧ [[Ty = 0∧]].

This means that x, y ∈ ker(bT ). Hence, we see by hypothesis that bT (x ∨ y) = 0, whence b ≤
[[T (x ∨ y) = 0∧]]. Replacing T by τ yields

[[τ(x∧) = 0∧ ∧ τ(y∧) = 0∧]] ≤ [[τ(x ∨ y)∧ = 0∧]].

A straightforward calculation of Boolean truth values completes the proof:

[[ker(τ) is a Riesz subspace of X∧]]

= [[(∀x, y ∈ X∧)(τ(x) = 0∧ ∧ τ(y) = 0∧ → τ(x ∨ y) = 0∧)]]

=
∧

x,y∈X

[[
τ(x∧) = 0∧ ∧ τ(y∧) = 0∧ → τ

(
(x ∨ y)∧

)
= 0∧]]

= 11.

3.3.7. Theorems 3.3.4 and 3.3.6 were obtained in [50] and [52], respectively. On using of the above
terminology, the Meyer theorem (see [39, 3.3.1(5)] and [21, 63]) reads as follows: Each order-bounded
disjointness preserving operator between vector lattices is a two-point relation. This fact can easily be
deduced from Theorem 3.3.6, since ker(bT ) is a vector sublattice, whenever T is disjointness preserving.

3.4. Sums of Lattice Homomorphisms. In this section, we will give a description for an order bounded
operator T whose modulus can be presented as the sum of two lattice homomorphisms in terms of the
properties of the kernels of the strata of T . Thus, we reveal the connection between the 2-disjoint operators
and Grothendieck subspaces.

3.4.1. Recall that a subspace H of a vector lattice is a G-space or Grothendieck subspace provided that
H enjoys the following property:

(∀x, y ∈ H) (x ∨ y ∨ 0 + x ∧ y ∧ 0 ∈ H). (2)

3.4.2. This condition appears as follows. In 1955, Grothendieck [27] pointed out the subspaces with the
above condition in the vector lattice C(Q, R) of continuous functions on a compact space Q defining them
by means of a family of relations A with each relation α ∈ A having the form

f(q1
α) = λαf(q2

α) (q1
α, q2

α ∈ Q, λα ∈ R, α ∈ A).

These spaces yield examples of L1-predual Banach spaces that are not AM -spaces. In 1969, Lindenstrauss
and Wulpert gave a characterization of such subspaces by means of the property 3.4.1 and introduced the
term G-space (see [55]). Some related properties of Grothendieck spaces are presented also in [54,67].

3.4.3. Theorem. Let F be a dense subfield in R, and let X be a vector lattice over F. The modulus of
an order-bounded F-linear functional from X to R is the sum of two lattice homomorphisms if and only
if the kernel of this functional is a Grothendieck subspace of X.

Proof. The proof relied on the decomposition theorem (Theorem 3.3.4) (see [53]).

3.4.4. Theorem. Let X and Y be vector lattices with Y Dedekind complete. The modulus of an or-
der-bounded operator T : X → Y is the sum of some pair of lattice homomorphisms if and only if the
kernel of each stratum bT of T with b ∈ B := P(Y ) is a Grothendieck subspace of the ambient vector
lattice X.

Proof. The proof runs along the lines of Sec. 3.3. We apply the technique of Boolean-valued “scalarization”
reducing the operator problems to the case of functionals, which is handled in Theorem 3.4.3. Put Y = R↓
and τ := T↑ and proceed with τ within V

(B). First, we observe the useful calculation:

[[ker(l) is a Grothendieck subspace of X∧]]

= [[(∀x, y ∈ X∧) (τ(x) = 0∧ ∧ τ(y) = 0∧ → τ(x ∨ y ∨ 0 + x ∧ y ∧ 0) = 0∧)]]

=
∧

x,y∈X

[[
τ(x∧) = 0∧ ∧ τ(y∧) = 0∧ → τ

(
(x ∨ y ∨ 0 + x ∧ y ∧ 0)∧

)
= 0∧]]

. (∗)
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Sufficiency. Take x, y ∈ X and put

b := [[Tx = 0∧]] ∧ [[Ty = 0∧]].

It follows from (G) (see the Gordon theorem) that x, y ∈ ker(bT ). By hypothesis ker(bT ) is a Grothendieck
subspace and so bT (x ∨ y ∨ 0 + x ∧ y ∧ 0) = 0. By using (G) again, we get

[[Tx = 0∧]] ∧ [[Ty = 0∧]] = b ≤ [[T (x ∨ y ∨ 0 + x ∧ y ∧ 0) = 0∧]].

Now, it follows from (∗) that [[ker(l) is a Grothendieck subspace of X∧]] = 11. By the transfer principle we
can apply Theorem 3.4.3 to τ within V

(B), consequently, |τ | = τ1+τ2 with τ1 and τ2 lattice homomorphisms
within V

(B). It can easily be seen that the operators T1 := τ1↓ and T2 := τ2↓ from X to R↓ are lattice
homomorphisms and |T | = T1 + T2.

Necessity. Assume that |T | = T1 + T2 for some lattice homomorphisms T1, T2 : X → Y and denote
τ := T↑, τ1 := T1↑, and τ2 := T2↑. It can easily be checked that inside V

(B) we have τ, τ1, τ2 : X∧ → R
and |τ | = τ1 + τ2; moreover, τ1 and τ2 are lattice homomorphisms. By Theorem 3.4.3 and the transfer
principle [[ker(l) is a Grothendieck subspace of X∧]] = 11. Making use of (∗), we infer

[[τ(x∧) = 0∧ ∧ τ(y∧) = 0∧]] ≤ [[
τ
(
(x ∨ y ∨ 0 + x ∧ y ∧ 0)∧

)
= 0∧]]

.

Now, if b ∈ B and bTx = bTy = 0, then
[[
l
(
(x ∨ y ∨ 0 + x ∧ y ∧ 0)∧

)
= 0∧]] ≥ b,

whence by the Gordon theorem we get bT (x ∨ y ∨ 0 + x ∧ y ∧ 0) = 0.

3.4.5. The main result of the section (Theorem 3.4.4) was obtained in [53]. The sums of Riesz homo-
morphisms were first described in [12] in terms of n-disjoint operators (see Sec. 3.3). A survey of some
conceptually close results on n-disjoint operators is given in [1, Sec. 5.6].

4. Order Continuous Operators

4.1. Maharam Operators. Now we examine some class of order continuous positive operators that
behave in many instances like functionals. In fact, such operators are representable as Boolean-valued
order continuous functionals.

4.1.1. Throughout this section, X and Y are vector lattices with Y Dedekind complete. A linear operator
T : X → Y is said to have the Maharam property or is said to be order interval preserving whenever
T [0, x] = [0, Tx] for every 0 ≤ x ∈ X, i.e., if for arbitrary 0 ≤ x ∈ X and 0 ≤ y ≤ Tx there is some
0 ≤ u ∈ X such that Tu = y and 0 ≤ u ≤ x. A Maharam operator is an order-bounded order continuous
operator whose modulus enjoys the Maharam property.

We say that a linear operator S : X → Y is absolutely continuous with respect to T and write S � T
if |S|x ∈ {|T |x}⊥⊥ for all x ∈ X+. It can be easily seen that if S ∈ {T}⊥⊥, then S � T , but the converse
can be false.

4.1.2. The null ideal NT of an order bounded operator T : X→Y is defined by NT :={x ∈ X : |T |(|x|)=0}.
Observe that NT is indeed an ideal in X. The disjoint complement of NT is referred to as the carrier of T
and is denoted by CT , so that CT := N ⊥

T . An operator T is called strictly positive whenever 0 < x ∈ X
implies 0 < |T |(x). Clearly, |T | is strictly positive on CT . Sometimes we find it convenient to denote
XT := CT and YT := (Im T )⊥⊥.

4.1.3. As an examples of Maharam operators, we consider conditional expectation and Bochner integra-
tion. Take a probability space (Q,Σ, μ), and let Σ0 and μ0 be a σ-subalgebra of Σ and the restriction
of μ to Σ0. The conditional expectation operator E (·, Σ0) is a Maharam operator from L1(Q,Σ, μ) onto
L1(Q,Σ0, μ0). The restriction of E (·, Σ0) to Lp(Q,Σ, μ) is also a Maharam operator from Lp(Q,Σ, μ) to
Lp(Q,Σ0, μ0). These facts are immediate in view of the simple properties of conditional expectation.

Let (Q,Σ, μ) be a probability space, and let Y be a Banach lattice. Consider the space X :=
L1(Q,Σ, μ, F ) of Bochner integrable Y -valued functions, and let T : E → F denote the Bochner integral
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Tf :=
∫

Q

f dμ. If the Banach lattice Y has order continuous norm (in this case, Y is order complete), then

X is a Dedekind complete vector lattice under the natural order

f ≥ 0 ⇐⇒ f(t) ≥ 0

for almost all t ∈ Q and T is a Maharam operator. See more examples in [39,40].

4.1.4. A positive operator T : X → Y is said to have the Levi property if supxα exists in X for every
increasing net (xα) ⊂ X+, provided that the net (Txα) is order-bounded in Y . Given an order-bounded
order continuous operator T from X to Y , denote by Dm(T ) the largest ideal of the universal comple-
tion Xu onto which we can extend the operator T by order continuity. For a positive order continuous
operator T we have X = Dm(T ) if and only if T has the Levi property.

The following theorem describes an important property of Maharam operators, enabling us to embed
them into an appropriate Boolean-valued universe as order continuous functionals.

4.1.5. Theorem. Let X and Y be some vector lattices with Y having the projection property, and let T
be a Maharam operator from X to Y . Then there exist an order closed subalgebra B of B(XT ) consisting
of projection bands and a Boolean isomorphism h from B(YT ) onto B such that T

(
h(L)

) ⊂ L for all
L ∈ B(YT ).

The Boolean algebra of projections B in Theorem 4.1.5 as well as the corresponding Boolean algebra
of bands admits a simple description. For L ∈ B(YT ) denote by h(L) the band in B(XT ) corresponding
to the band projection h([K]).

4.1.6. Proposition. For a band K ∈ B(XT ) the following are equivalent :

(1) Tu = Tv and u ∈ K imply v ∈ K for all u, v ∈ X+;
(2) T (K ′

+) ⊂ T (K+)⊥⊥ implies K ′ ⊂ K for all K ′ ∈ B(XT );
(3) K = h(L) for some L ∈ B(Y ).

A band K ∈ B(XT ) (as well as the corresponding band projection [K] ∈ P(XT )) is said to be
T -saturated if one of (and then all) the conditions 4.1.6(1)–(3) is fulfilled.

The following can be deduced from Proposition 4.1.6 by the Freudenthal spectral theorem.

4.1.7. Proposition. If X and Y are Dedekind complete vector lattices and T is a Maharam operator
from X to Y , then there exists an f-module structure on X over an f-algebra Z (Y ) such that an or-
der-bounded operator S : X → Y is absolutely continuous with respect to T if and only if S is Z (Y )-linear.

We now state the main result of the section.

4.1.8. Theorem. Let X be a Dedekind complete vector lattice, Y :=R↓, and let T : X → Y be a strictly
positive Maharam operator with Y = YT . Then there are X , τ ∈ V

(B) satisfying the following :

(1) V
(B) |= “X is a Dedekind complete vector lattice and τ : X → R is an strictly positive order

continuous functional with the Levi property”;
(2) X ↓ is a Dedekind complete vector lattice and a unitary f-module over the f-algebra R↓;
(3) τ↓ : X ↓ → R↓ is a strictly positive Maharam operator with the Levi property and an R↓-module

homomorphism;
(4) there exists a lattice isomorphism ϕ from X into X ↓ such that ϕ(X) is an order dense ideal of

X ↓ and T = τ↓ ◦ ϕ.

4.1.9. The Maharam operator stems from the theory of Maharam’s “full-valued” integrals (see [59–61]).
Theorem 4.1.8 was established in [36,37]. More results, applications, and references on Maharam operators
are in [39,40]. See [44] for some extension of this theory to sublinear and convex operators.
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4.2. Representation of Order Continuous Operators. Theorem 4.1.8 enables us to state that every
fact on order continuous functionals ought to have a parallel variant for Maharam operators that can be
proved by the Boolean-valued machinery. The aim of this section is to prove an operator version of the
following result.

4.2.1. Theorem. Let X be a vector lattice and assume that X∼
n separates the points of X. Then there

exist an order dense ideals L and X ′ in Xu and a linear functional τ : L → R such that the following
assertions hold :

(1) X ′ = {x′ ∈ X ′ : xx′ ∈ L for all x ∈ X};
(2) τ is strictly positive, o-continuous, and has the Levi property ;
(3) for every σ ∈ X∼

n there exists a unique x′ ∈ X ′ such that

σ(x) = τ(x · x′) (x ∈ X);

(4) the map σ → x′ is a lattice isomorphism of X∼
n onto X ′.

4.2.2. To translate Theorem 4.2.1 into a result on operators we need some preparation. Let X and Y be
f -modules over an f -algebra A. A linear operator T : X → Y is called A-linear if T (ax) = aTx for all
x ∈ X and a ∈ A. Denote by LA(X, Y ) the set of all order-bounded A-linear operators from X to Y and
put LA

n (X, Y ) := LA(X, Y ) ∩ L∼
n (X, Y ).

We say that a set T ⊂ L∼(X, Y ) separates the points of X whenever, given nonzero x ∈ X, there
exists T ∈ T such that Tx �= 0. In the case of a Dedekind complete Y and the sublattice T ⊂ L∼(X, Y )
this is equivalent to saying that for every nonzero x ∈ X+ there is a positive operator T ∈ T with Tx �= 0.

4.2.3. Given a real vector lattice X within V
(B), denote by X ∼ and X ∼

n the internal vector lattices of
order-bounded and order continuous functionals on X , respectively. More precisely, [[σ ∈ X ∼]] = 11 and
[[σ ∈ X ∼

n ]] = 11 mean that

[[σ : X → R is an order-bounded functional]] = 11

and
[[σ : X → R is an order continuous functional]] = 11,

respectively. Put X := X ↓ and A := R↓.
4.2.4. Theorem. The mapping assigning to each σ ∈ X ∼↓ its descent S := σ↓ is a lattice isomorphism
of X ∼↓ and X ∼

n ↓ onto LA(X,R↓) and LA
n (X,R↓), respectively. Moreover, [[X ∼ separates the points

of X ]] = 11 ([[X ∼
n ) separates the points of X ]] = 11) if and only if LA(X,R↓) (respectively, LA

n (X,R↓))
separates the points of X.

4.2.5. By the Gordon theorem we can also assume that Y u = R↓. Of course, in this case we can identify
Au with Y u. In view of Theorem 1.3.7 there exists a real Dedekind complete vector lattice X within
V

(B) with B = P(Y ) such that X ↓ is an f -module over Au, and there is an f -module isomorphism h
from X to X ↓ satisfying X ↓ = mix

(
h(X)

)
. In virtue of Theorem 4.2.4 X ∼

n separates the points of X .
The transfer principle tells us that Theorem 4.2.1 is true within V

(B), so that there exist an order dense
ideal L in X u and a strictly positive linear functional τ : L → R with the Levi property such that
the order ideal X ′ = {x′ ∈ X u : x′X ⊂ L } is lattice isomorphic to X ∼

n ; moreover, the isomorphism is
implemented by assigning the functional σx′ ∈ X ∼

n to x′ ∈ X ′ by σx′(x) = τ(xx′) (x ∈ X ).

4.2.6. Put X̂ :=X ↓, L̂ :=L ↓, T̂ :=τ↓, and X̂ ′ :=X ′↓. By Theorem 4.2.4 we can identify the universally
complete vector lattices Xu, X̂u, and X u↓ as well as X with a laterally dense sublattice in X̂. Then L̂
is an order dense ideal in X̂u and an f -module over Au, while T̂ : L̂ → Y u is a strictly positive Maharam
operator with the Levi property. Since the multiplication in Xu is the descent of the internal multiplication
in X u, we have the representation X̂ ′ = {x′ ∈ Xu : x′X̂ ⊂ L̂}. Moreover, X̂ ′ is f -module isomorphic to
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LA
n (X̂, Y u) by assigning to x′ ∈ X̂ the operator Ŝx′ ∈ LA

n (X̂, Y u) defined as Ŝx′(x) = T̂ (xx′) (x ∈ X̂).
Now, defining

L := {x ∈ L̂ : T̂ x ∈ Y }, T := T̂ |L, X ′ := {x′ ∈ X̂ ′ : x′X ⊂ L}
yields that if x′ ∈ X ′, then Sx′ := Ŝx′ |X is contained in LA

n (X, Y ). Conversely, an arbitrary S ∈ LA
n (X, Y )

has a representation Sx = T̂ (xx′) (x ∈ X) with some x′ ∈ X̂ ′, so that T̂ (xx′) ∈ Y for all x ∈ X and hence
x′ ∈ X ′, xx′ ∈ L for all x ∈ X, and Sx = T (xx′) (x ∈ X) by the above definitions.

4.2.7. Theorem. Let X be an f-module over A :=Z (Y ) with Y a Dedekind complete vector lattice, and
let LA

n (X, Y ) separates the points of X. Then there exist an order dense ideal L in Xu and a strictly positive
Maharam operator T : L → Y such that the order ideal X ′ = {x′ ∈ X ′ : (∀x ∈ X) xx′ ∈ L} ⊂ Xu is lattice
isomorphic to LA

n (X, Y ). The isomorphism is implemented by assigning the operator Sx′ ∈ LA
n (X, Y ) to

an element x′ ∈ X ′ by the formula

Sx′(x) = Φ(xx′) (x ∈ X).

If there exists a strictly positive T0 ∈ LA
n (X, Y ), then we can choose L and T such that X ⊂ L and

T |X = T0.

Below, in Theorems 4.2.8–4.2.10, X and Y are Dedekind complete vector lattices.

4.2.8. The Hahn decomposition theorem. Let S : X → Y be a Maharam operator. Then there is
a band projection π ∈ P(X) such that S+ = S ◦ π and S− = −S ◦ π⊥. In particular, |S| = S ◦ (π − π⊥).

4.2.9. The Nakano theorem. Let T1, T2 : X → Y be order-bounded operators such that T := |T1|+ |T2|
is a Maharam operator. Then T1 and T2 are disjoint if and only if so are their carriers; symbolically,
T1 ⊥ T2 ⇐⇒ CT1 ⊥ CT2.

4.2.10. The Radon–Nikodým theorem. Assume that T : X → Y is a positive Maharam operator.
A positive operator S : X → Y belongs to {T}⊥⊥ if and only if there exists an orthomorphism 0 ≤ ρ ∈
Orth∞(X) with Sx = T (ρx) for all x ∈ D(ρ).

4.2.11. Theorem 4.2.1 is proved in [78, Theorem 2.1]. It can be also extracted from [77, Theorem IX.3.1]
or [39, Theorem 3.4.8]. Theorem 4.2.7 was proved in [36] (also see [39]). Theorems 4.2.8–4.2.10, first
obtained in [57], can easily be deduced from Theorem 4.2.7, or can be proved by the general scheme of
“Boolean-valued scalarization.”

4.3. Conditional Expectation Type Operators. The conditional expectation operators have many
remarkable properties related to the order structure of the underlying function space. Boolean-valued
analysis enables us to demonstrate that some much more general class of operators shares these properties.

4.3.1. Let Z be a universally complete vector lattice with unity 11. Recall that Z is an f -algebra with
multiplicative unit 11. Assume that Φ: L1(Φ) → Y is a Maharam operator with the Levi property. We
will write L0(Φ) :=Z whenever L1(Φ) is an order dense ideal in Z. Denote also by L∞(Φ) the order ideal
in Z generated by 11. Considering an order ideal X ⊂ Z, we will always assume that L∞(Φ) ⊂ X ⊂ L1(Φ).
The associate space X ′ is defined as the set of all x′ ∈ L0(Φ) for which xx′ ∈ L1(Φ) for all x ∈ X. Clearly,
X ′ is an order ideal in Z.

If (Ω, Σ, μ) is a probability space and X0 is an order closed vector sublattice of L∞(Ω, Σ, μ) con-
taining 1Ω, then there exists a σ-subalgebra Σ0 of Σ such that X0 = L∞(Ω, Σ0, μ0), with μ0 = μ|X0

(see [19, Lemma 2.2]). Interpreting this fact and the properties of conditional expectation in a Boolean-val-
ued model yields the following result.

4.3.2. Theorem. Let Φ: L1(Φ) → Y be a strictly positive Maharam operator with Y = YΦ and let Z0

be an order closed sublattice in L0(Φ). If 11 ∈ X0 := L1(Φ) ∩ Z0 and the restriction Φ0 := Φ|X0 has the
Maharam property, then X0 = L1(Φ0) and there exists an operator E(·|Z0) from L1(Φ) onto L1(Φ0) such
that
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(1) E(·|Z0) is an order continuous positive linear projection;
(2) E(·|Z0) commutes with all saturated projections, i.e., E(h(π)x|Z0) = h(π)E(x|Z0) for all π ∈

PΦ(X) and x ∈ L1(Φ);
(3) Φ(xy) = Φ

(
yE(x|Z0)

)
for all x ∈ L1(Φ) and y ∈ L∞(Φ0);

(4) Φ0(|E(x|Z0)|) ≤ Φ(|x|) for all x ∈ L1(Φ);
(5) E(·|Z0) satisfies the averaging identity, i.e., E(vE(x|Z0)|Z0) = E(v|Z0)E(x|Z0) for all x ∈ L1(Φ)

and v ∈ L∞(Φ).

4.3.3. We will call the operator E(·|Z0) defined by Theorem 4.3.2 the conditional expectation operator
with respect to Z0. Take w ∈ X ′ and observe that E(wx|Z0) ∈ L1(Φ0) is well defined for all x ∈ X. If,
moreover, E(wx|Z0) ∈ X for every x ∈ X, then we can define a linear operator T : X → X by putting
Tx :=E(wx|Z0) (x ∈ X). Clearly, T is order-bounded and order continuous. Furthermore, for all x ∈ X+

we have
T+x = E (w+x|Z0), T−x = E (w−x|Z0), |T |x = E (|w|x|Z0).

In particular, T is positive if and only if so is w. Putting x := wx and y := 11 in Theorem 4.3.2(3), we get

Φ(wx) = Φ(wx11) = Φ
(
E (wx|Z0)

)
= Φ(Tx)

for all x ∈ X. Now, x can be chosen to be a component of 11 with wx = w+ or wx = w−, so that T = 0
implies Φ(w+) = 0 and Φ(w−) = 0, since Φ is strictly positive. Thus, w ∈ X ′ is uniquely determined
by T .

We say that T satisfies the averaging identity if T (y · Tx) = Ty · Tx for all x ∈ X and y ∈ L∞(Φ).
Now we present two well-known results. By E (·|Σ0) we denote the conditional expectation operator with
respect to a σ-algebra Σ0.

4.3.4. Theorem. Let (Ω, Σ, μ) be probability space, and let X be an order ideal in L1(Ω, Σ, μ) containing
L∞(Ω, Σ, μ). For a linear operator T on X the following are equivalent :

(1) T is order continuous, satisfies the averaging identity, and keeps L∞(Ω, Σ, μ) invariant ;
(2) there exist w ∈ X ′ and a sub-σ-algebra Σ0 of Σ such that T x = E (wx|Σ0) for all x ∈ X .

4.3.5. Theorem. For a subspace X of L1(Ω, Σ, μ) the following are equivalent :
(1) X is the range of a positive contractive projection;
(2) X is a closed vector sublattice of L1(Ω, Σ, μ);
(3) there exists a lattice isometry from some L1(Ω′, Σ′, μ′) space onto X .

The following two results can be proved by interpreting Theorems 4.3.4 and 4.3.5 in a Boolean-valued
model.

4.3.6. Theorem. Let Φ: L1(Φ) → Y be a strictly positive Maharam operator, and let X be an order
dense ideal in L1(Φ) including L∞(Φ). For a linear operator T on X the following are equivalent :

(1) T is order continuous, satisfies the averaging identity, leaves invariant the subspace L∞(Φ), and
commutes with all Φ-saturated projections;

(2) there exist w ∈ X ′ and an order closed sublattice Z0 in L0(Φ) containing a unit element 11 of L1(Φ)
such that the restriction of Φ onto L1(Φ)∩Z0 has the Maharam property and Tx = E (wx|Z0) for
all x ∈ X.

4.3.7. Theorem. For each subspace X0 of L1(Φ) the following statements are equivalent :
(1) X is the range of a positive Φ-contractive projection;
(2) X is a closed vector sublattice of L1(Φ) invariant under all Φ-saturated projections;
(3) there exists a Maharam operator Ψ: L1(Ψ) → Y and a lattice isomorphism h from L1(Ψ) onto X

such that Φ(|Tx|) = Ψ(|x|) for all x ∈ L1(Ψ).

4.3.8. Theorems 4.3.4 and 4.3.5 can be found in [19, Proposition 3.1] and [20, Lemma 1], respectively.
Theorems 4.3.6 and 4.3.7 are published for the first time.
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4.4. Maharam Extension. The general properties of Maharam operators can be deduced from the
corresponding facts about functionals with the help of Theorem 4.1.8. Nevertheless, these methods can
be also useful in studying arbitrary regular operators.

4.4.1. Proposition. Suppose that X is a vector lattice over a dense subfield F ⊂ R and ϕ : X → R is
a strictly positive F-linear functional. There exist a Dedekind complete vector lattice Xϕ containing X
and a strictly positive order continuous linear functional ϕ̄ : Xϕ → R with the Levi property extending ϕ
such that for every x ∈ Xϕ there is a sequence (xn) in X with lim

n→∞ ϕ̄(|x − xn|) = 0.

Proof. Put d(x, y) := ϕ(|x − y|) and note that (X, d) is a metric space. Let Xϕ be the completion of
the metric space (X, d), and let ϕ̄ be the extension of ϕ to Xϕ by continuity. It is not difficult to
ensure that Xϕ is a Banach lattice with additive norm ‖·‖ϕ := ϕ̄(|·|) that contains X as a norm dense
F-linear sublattice. Thus, ϕ̄ is a strictly positive order continuous linear functional on Xϕ with the Levi
property.

4.4.2. Put L1(ϕ) :=Xϕ, and let X̄ stand for the order ideal in L1(ϕ) generated by X. Then (L1(ϕ), ‖·‖ϕ)
is an AL-space and X̄ is a Dedekind complete vector lattice. Moreover, X is norm dense in L1(ϕ) and,
hence, in X̄.

Given a nonempty subset U of a lattice L, we denote by U ↑ (U ↓) the set of elements x ∈ L representable
in the form x = sup(A) (respectively, x = inf(A)), where A is an upward (respectively, downward) directed
subset of U . Moreover, we set U ↑↓ := (U ↑)↓, etc. If in the above definition A is countable, then we write
U �, U �, and U �� instead of U ↑, U ↓, and U ↑↓. Recall that for the Dedekind completion Xδ we have
Xδ = X↑ = X↓.

4.4.3. Proposition. X̄ = X�� = X�� and L1(ϕ) = X�� = X�� with both (·)�� and (·)�� taken in X̄ and
L1(ϕ), respectively.

Translating Propositions 4.4.1 and 4.4.3 by means of Boolean-valued “scalarization” leads to the
following result.

4.4.4. Theorem. Let X and Y be vector lattices with Y Dedekind complete and T a strictly positive
linear operator from X to Y . There exist a Dedekind complete vector lattice X̄ and a strictly positive
Maharam operator T̄ : X̄ → Y satisfying the following conditions:

(1) there exist a lattice homomorphism ι : X → X̄ and an f-algebra homomorphism θ : Z (Y ) →
Z (X̄) such that

αTx = T̄
(
θ(α)ι(x)

) (
x ∈ X, α ∈ Z (Y )

)
;

(2) ι(X) is a majorizing sublattice in X̄ and θ
(
Z (Y )

)
is an order closed sublattice and subring of

Z (X̄);
(3) X̄ =

(
X�Z (Y )

)↓↑, where X�Z (Y ) is a subspace of X̄ consisting of all finite sums
n∑

k=1

θ(αk)ι(xk)
with x1, . . . , xn ∈ X and α1, . . . , αn ∈ Z (Y ).

4.4.5. The pair (X̄, T̄ ) (or T̄ for short) is called a Maharam extension of T if it satisfies conditions
(1)–(3) of Theorem 4.4.4. The pair (X̄, ι) is also called a Maharam extension space for T . Two Maharam
extensions T1 and T2 of T with the respective Maharam extension spaces (X1, ι1) and (X2, ι2) are said to
be isomorphic if there exists a lattice isomorphism h of X1 onto X2 such that T1 = T2 ◦ h and ι2 = h ◦ ι1.
It is not difficult to ensure that the Maharam extension is unique up to isomorphism.

4.4.6. Let X and Y be vector lattices with Y Dedekind complete, T : X → Y a strictly positive operator,
and let (X̄, T̄ ) be the Maharam extension of T . Consider the universal completion X̄u of X̄ with a fixed
f -algebra structure. Let L1(Φ) be the greatest order dense ideal in X̄u onto which T̄ can be extended by
order continuity. In more detail,

L1(T ) := {x ∈ X̄u : T̄ ([0, |x|] ∩ X̄) is order-bounded in Y },
T̂ x := sup{T̄ u : u ∈ X̄, 0 ≤ u ≤ x} (x ∈ L1(T )+), T̂ x = T̂ x+ − T̂ x− (

x ∈ L1(T )
)
.
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Define the Y -valued norm []·[] on L1(T ) by []u[] := T̂ (|u|). In terms of the theory of lattice normed spaces,
(L1(T ), []·[]) is a Banach–Kantorovich lattice (see [39, Chap. 2]). In particular, []au[] = |a|[]u[] (a ∈ Z (Y ),
u ∈ L1(T ).

4.4.7. Theorem. For every operator S ∈ {T}⊥⊥, there is a unique element z = zT ∈ X̄u satisfying

Sx = T̂
(
z · ı(x)

)
(x ∈ X).

The correspondence T → zT establishes a lattice isomorphism between the band {T}⊥⊥ and the order
dense ideal in X̄u defined by

{z ∈ X̄u : z · ı(X) ⊂ L1(T )}.
Proof. This result is a variant of the Radon–Nikodým theorem for positive operators and can be obtained
as a combination of Theorems 4.2.10 and 4.4.4 or proved by means of Boolean-valued “scalarization”.

4.4.8. The Maharam extension stems from the corresponding extension result given by D. Maharam for
F -integrals [59–61]. For operators in Dedekind complete vector lattices, this construction was performed
in [7, 8] in three different ways. One of them, based upon the embedding x → x̄ of a vector lattice X
into L∼(L∼(X, Y ), Y ) defined as x̄(T ) := Tx (T ∈ L∼(X, Y )), was independently discovered in [56].
The main difference is that in [56] the Maharam extension was constructed for an arbitrary collection of
order-bounded operators. For some further properties of the Maharam extension, see [39,56].
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18. J. Dieudonné, “Complex structures on real Banach spaces,” Proc. Am. Math. Soc., 3, 162–164 (1952).
19. G. Dodds, C. B. Huijsmans, and B. de Pagter, “Characterizations of conditional expectation-type

operators,” Pacific J. Math., 141, No. 1, 55–77 (1990).
20. R. Douglas, “Contractive projections on L1 space,” Pacific J. Math., 15, No. 2, 443–462 (1965).
21. M. Duhoux and M. Meyer, “A new proof of the lattice structure of orthomorphisms,” J. London

Math. Soc., 25, No. 2, 375–378 (1982).
22. E. I. Gordon, “Real numbers in Boolean-valued models of set theory and K-spaces,” Dokl. Akad.

Nauk SSSR, 237, No. 4, 773–775 (1977).
23. E. I. Gordon, “K-spaces in Boolean-valued models of set theory,” Dokl. Akad. Nauk SSSR, 258,

No. 4, 777–780 (1981).
24. E. I. Gordon, “To the theorems of identity preservation in K-spaces,” Sib. Mat. Zh., 23, No. 5.,

55–65 (1982).
25. W. T. Gowers and B. Maurey, “The unconditional basic sequence problem,” J. Am. Math. Soc., 6,

851–874 (1993).
26. W. T. Gowers and B. Maurey, “Banach spaces with small spaces of operators,” Math. Ann., 307,

543–568 (1997).
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