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ON ROBUST ALGORITHM FOR FINDING
MAXIMUM LIKELIHOOD ESTIMATION OF THE
GENERALIZED INVERSE GAUSSIAN
DISTRIBUTION*

I. Yaroshenko1

In this paper, we propose robust numerical methods for finding the maximum likelihood estimation
of the generalized inverse Gaussian distribution. A comparative analysis of the existing algorithms
and the results of numerical experiments are presented. Special attention is paid to reproducibility
of the tests.

1. Introduction

In big data processing, data mining, there exists a contradiction between the accuracy of inference
and the speed (performance) requirements: the more rapidly the data are processed, the more rough
the techniques used and, hence, the less accurate the inference. At the same time, modern data mining
techniques based on probability mixture models substantially use iterative numerical algorithms realizing
advanced statistical procedures, say, EM-algorithm-type techniques [11]. Therefore, there is an urgent
need for high-performance numerical procedures of statistical analysis. At the same time, numerical
methods used in the analysis of big data, e.g., in the algorithms of situational analysis, are required to
be highly reliable. They must calculate with certainty the correct result within a limited time frame.

The present paper proposes a robust numerical method for finding the maximum likelihood estima-
tion of the generalized inverse Gaussian distribution, which was first proposed by Good [9]. The notion
of the generalized hyperbolic distribution as a GIG-variance-mean mixture of normal distributions was
introduced by Barndorff-Nielsen [5, 6]. Both families are already widely used in many fields including
financial mathematics.

The links between the subfamilies of the generalized inverse Gaussian distributions and the sub-
families of the generalized inverse hyperbolic distribution are presented in simplified form in a work by
Paolella [13].

The density of the generalized inverse Gaussian distribution is given by

fGIG(x;λ, χ, ψ) =

(
ψ

χ

)λ
2 1

2Kλ

(√
χψ

) xλ−1 exp

{
−1

2
(χx−1 + ψx)

}
, x > 0. (1)

Here λ ∈ R,

χ > 0, ψ � 0, if λ < 0,

χ > 0, ψ > 0, if λ = 0,

χ � 0, ψ > 0, if λ > 0,

Kλ(z) is the modified Bessel function of the third kind with index λ,

Kλ(z) =

∞∫
0

exp(−z cosh y) cosh(λy)dy, z ∈ C, Re z > 0.
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As χ ↓ 0 or ψ ↓ 0, an uncertainty arises in (1) , so the cases of χ = 0 and ψ = 0 that correspond to
the gamma distribution and the inverse gamma distribution are considered separately as special cases
of the generalized gamma distribution with a fixed power parameter.

2. The generalized inverse Gaussian distribution

2.1. Families of asymptotic distributions

As χ ↓ 0 , the generalized inverse Gaussian distribution turns into the gamma distribution with the
parameters (λ, 2/ψ)

lim
χ↓0

fGIG(x;λ, χ, ψ) = fΓ(x;λ, 2/ψ), x > 0, λ > 0, ψ > 0,

fΓ(x;κ, β) =
1

βκΓ(κ)
xκ−1 exp

{
−x

β

}
;

as ψ ↓ 0 , it turns into the inverse gamma distribution with the parameters (−λ, χ/2)

lim
ψ↓0

fGIG(x;λ, χ, ψ) = fIΓ(x;−λ, χ/2), x > 0, λ < 0, χ > 0,

fIΓ(x;κ, β) =
βκ

Γ(κ)
x−κ−1 exp

{
−β

x

}
.

The gamma distribution and the inverse gamma distribution are special cases of the generalized
gamma distribution with power parameters ν = 1 and ν = −1 respectively.

The numerical methods for finding maximum likelihood estimation of the generalized gamma distri-
bution with a fixed power parameter ν are presented in the final part of the present paper.

2.2. The proper generalized inverse Gaussian distribution

This section of the paper concerns the algorithm for finding maximum likelihood estimation of the
generalized inverse Gaussian distribution. The algorithm suggests the use of a range of nonstandard
functions. The formulas for calculating such functions are presented in the next section of this paper.

When ψ > 0 and χ > 0, it is possible to substitute variables

η =

√
χ

ψ
, ω =

√
ψχ,

fGIG(x;λ, ω, η) =
1

2ηKλ (ω)

(
x

η

)λ−1

exp

{
−ω

2

((
x

η

)−1

+
x

η

)}
, x > 0, (2)

fGIG(x;λ, ω, η) is the density function of the proper generalized inverse Gaussian distribution. Then the
log-likelihood function is

LGIG(λ, ω, η)

n
= −λ log η − log(2Kλ(ω)) + (λ− 1)x̄∼ − ω

2

(
x̄−1η +

x̄1
η

)
, (3)

where

x̄−1 =
1

n

n∑
i=1

1

xi
, x̄∼ =

1

n

n∑
i=1

log xi, x̄1 =
1

n

n∑
i=1

xi, (4)

(x̄−1, x̄∼, x̄1) is the minimal sufficient statistic in the case of the generalized inverse Gaussian distribu-
tions. The following relations between the harmonic mean, geometric mean, and arithmetic mean are
well known:

x̄−1
−1 � exp x̄∼ � x̄1, (5)



356 I. Yaroshenko

and hence
x̄−1x̄1 � 1. (6)

Equality in (5) (and (6)) occurs if and only if x1 = · · · = xn.
Jørgensen [10] proves a number of important theorems that allow one to make the transition from

the three-dimensional optimization problem to the unidimensional optimization problem. The following
statement is a direct consequence of these theorems.

Suppose we are given the (x̄−1, x̄∼, x̄1) statistic and x̄−1x̄1 > 1. Then the maximum likelihood for
this statistic can be attained either for the gamma or inverse gamma distributions or for the proper
inverse Gaussian distribution. In case it is attained for the proper inverse Gaussian distribution, the
maximum likelihood estimation λ̂ is calculated as

λ̂ = argmax
λ∈(−u,u)

LGIG(λ, ω̂λ, η̂λ)

n
, u =

x̄−1x̄1
x̄−1x̄1 − 1

, (7)

where the pair (ω̂λ, η̂λ) is the maximum likelihood estimation for fixed λ. The ω̂λ, η̂λ estimations are
calculated as

ω̂λ = D−1
λ (x̄−1x̄1), (8)

η̂λ =

√
x̄1
x̄−1

√
R−λ(ω̂λ)

Rλ(ω̂λ)
, (9)

where D−1
λ (s) is the inverse function for Dλ(ω),

Dλ(ω) =
Kλ+1(ω)Kλ−1(ω)

Kλ(ω)2
, (10)

Rλ(ω) =
Kλ+1(ω)

Kλ(ω)
. (11)

It was proved by Jørgensen [10] that:

1. Dλ(ω) is strictly decreasing on R+.

2. LGIG(λ) = LGIG(λ, ω̂λ, η̂λ) is strictly convex on (−u, u).

Hence, the transition to the unidimensional problem is completely correct. The function D−1
λ (s) can be

calculated as the solution to the equation D(ω)− s = 0.
Jørgensen proposed the use of the Newton–Raphson method to calculate ω̂λ. Without formal proof of

convergence, he notes that this method works well with a equivalent equation log(Dλ(e
y)−1)−log(s−1) =

= 0, y = log ω. Due to the fact that at small ω exponential overflow takes place in calculating Kλ(ω),
Jørgensen pays special attention to asymptotic representations of function Dλ(ω) for various λ. He
proposes tabulation as a way of likelihood maximization of LGIG(λ).

Implementation of asymptotic representations of Dλ(ω) at small ω has shown that they are quite
inaccurate while exponential overflow takes place in calculating Kλ(ω). In this connection, the following
section contains a description of evaluation of a range of functions, including Dλ(ω).

The Newton–Raphson method and the equivalent equation proposed by Jørgensen clearly do not
make it feasible to attain full machine precision while solving the equation D(ω) − s = 0. Moreover,
robustness of the Newton–Raphson method as applied to the present task needs to be researched further.
That is why we propose to replace this algorithm with a modification of the TOMS748 [2] algorithm for
finding the root of a one-variable function. The TOMS748 algorithm performs search of the root of a
function on a given interval. Since the root is searched for ω > 0, the interval shall be [m,M ], where m
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is the smallest representable normalized value that is not zero, and M is the largest representable value
that is not infinity. The TOMS748 algorithm is not efficient enough on intervals that have limits with
a large exponent difference (in terms of floating-point numbers representation). In the cases of m and
M the exponent difference is at its maximum, and the algorithm can perform thousands of iterations in
order to attain full machine precision. The main point of the modification of the TOMS748 algorithm is
the following: in case the iterations of the algorithm are not efficient enough, binary search is to be used.
However, the average shall not be considered as the arithmetic mean but as the number that divides the
set of numbers of the given interval into equal parts. Following this approach, the [1, 4] interval shall be
divided by 2. Such addition of binary search allows to eliminate uncertainty by one bit. The described
modification can be found in the findRoot function of the D standard library.

In order to find the maximum of LGIG(λ) on the interval (−u, u), we propose to use the standard
algorithm for unidimensional maximization using quadratic interpolation. This algorithm is described
in detail by Brent [7]. Numerous math packages contain Brent’s algorithm. However, it is necessary
to make sure that the algorithm allows to define the two constants that determine tolerance — both
absolute and relative.

The proposed algorithm for finding maximum likelihood estimation is presented in the statistical
package [18].

2.3. Functions

The algorithms for calculating Dν(x),
√

Rν(x)
R−ν(x)

, and logKν(x) are very similar to the algorithm

used for Kν(x), which is presented in [8, 16,17]. A brief presentation of the algorithm for Kν(x) can be
found in [14]. In the following, we will only mention the most important features specific to the required
functions.

According to the algorithm for Kν(x):

Kν(x) =
√
π

1√
x
exp(−x)

1

1 + S
,

Rν(x) =
1

x

[
ν +

1

1
+ x+

(
ν2 − 1

4

)
z0
z1

]
, |ν| � 1

2
,

where z0
z1

is the continued fraction CF2

z0
z1

=
1

b1+

a2
b2+

. . .

with

bn = 2(n + x),

an+1 = − [
(n+ 1/2)2 − ν2

]
.

CF2 converges rapidly at x � 2.

For x � 2 the following series are used:

Kν(x) =
∞∑
k=0

ckfk,
x

2
Kν+1(x) =

∞∑
k=0

ckhk, |ν| � 1

2
.

The sequences {ck}, {fk}, {hk} and the sum S can be found in the works referenced earlier.

From the recurrence formula

Kν+1(x) = Kν−1(x) +
2ν

x
Kν(x)
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stable formulas can be obtained for x � 2

Rν+1(x) =
2ν

x
+

1

Rν(x)
, (12)

and for x � 2

x

2
Rν+1(x) = ν +

x2

4
x
2Rν(x)

. (13)

Then, with regard to (10) and (11),

Dν(x) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D−ν(x), ν < 0,

Rν(x)
2
x(

x
2Rν(x)− ν), x < 2, 0 � ν � 1

2 ,

Rν(x)(Rν(x)− 2ν
x ), x � 2, 0 � ν � 1

2 ,
x
2Rν(x)

x
2Rν−1(x)

, x < 2, ν > 1
2 ,

Rν(x)

Rν−1(x)
, x � 2, ν > 1

2 ,

(14)

and

√
Rν(x)

R−ν(x)
←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
R−ν(x)

Rν(x)

, ν < 0,

√
x
2Kν+1(x)

x
2Kν+1(x)− νKν(x)

, x < 2, 0 � ν � 1
2 ,√

Rν(x)

Rν(x)− 2ν
x

, x � 2, 0 � ν � 1
2 ,

2
x

√
x
2Rν(x)

√
x
2Rν−1(x), x < 2, ν > 1

2 ,√
Rν(x)

√
Rν−1(x), x � 2, ν > 1

2 .

(15)

Analogously for logKμ(x):

logKμ(x) ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

logK−μ(x), μ < 0,

logKν(x), x < 2, 0 � μ � 1
2 ,

log 1
1+S − log x

2 − x, x � 2, 0 � μ � 1
2 ,

logKν(x) + n(log 2− log x) +
n−1∑
i=0

log
(
x
2Rμ+i(x)

)
, x < 2, μ > 1

2

log 1
1+S − log x

2 − x+
n−1∑
i=0

logRμ+i(x), x � 2, μ > 1
2 ,

(16)

where ν and n are such that ν = μ−n, n ∈ N, |ν| � 1
2 . The frexp function of the C standard library can

be used to optimize calculation of sums and differences of logarithms. It extracts the exponent from the
floating point number and allows one to replace the sum or the difference of logarithms with a logarithm
of product or ratio respectively without exponential overflow.

2.4. Comparison with other algorithms and tests

Synthetic tests were carried out on a given set of statistics determined in (4). In order to attain
representative coverage, it is convenient to use the parametrization

(x̄1, x̄−1, x̄∼) =
(
x̄αx̄β,

x̄β
x̄α

, log x̄γ

)
, (17)
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Table 1. Test results

Feature Jørgensen–Yaroshenko NR Nelder–Mead Proper Nelder–Mead

% of failures 0 15 % 4 %

% of better results 92 % / 51 % 8 % 49 %

Max time 1.77 ms 1.36 ms 6.03 ms

Mean time 329 μs 137 μs 555 μs

Median time 261 μs 264 μs 317 μs

Min time 87 μs 33 μs 97 μs

where

x̄α > 0, x̄β > 1,
x̄α
x̄β

< x̄γ < x̄αx̄β. (18)

The following set of statistics was used in testing:

{(x̄α, x̄β)i} = {2i}8i=−8 × {1 + 2i}8i=−8, (19)

for each element of which 64 uniformly distributed numbers x̄γ were chosen, according to (18). The
total number of tests was 17× 17× 64 = 18496.

The Broyden–Fletcher–Goldfarb–Shanno algorithm and the Nelder–Mead [12] simplex method are
considered to be the most efficient algorithms for likelihood function maximization.

The BFGS algorithm requires partial derivative ∂Kλ(ω)
∂ω to be calculated;

Kλ+h(ω)−Kλ−h(ω)
2h can be

used as the approximate derivative. The Ridders method [15] produces more accurate results, but it
requires more function calls for Kλ(ω). At the same time, neither of the ways of approximation of partial
derivative are robust since they require a fixed scale parameter regulating the value of h, which actually
varies significantly.

In the comparison with the Nelder–Mead algorithm we used its implementation from Numeric Recipes
(NR) [14], which was optimized for three-dimensional space. In testing, attention should be paid to the
algorithm stopping criterion. As in numerical oprimization packages, the algorithm in NR is discontinued
in case the values of the likelihood function across all simplex points are similar enough. For the
likelihood function, which is rather sloping in the vicinity of maximum, it is necessary to additionally
require maximum absolute difference of standard projections of simplex points. The limit of the number
of iterations of the algorithm was at 4000. The following points served as the initial simplex on R

3
(λ,η,ω)

space:

(0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2), (1, 1, 1).

For all tested algorithms, the tolerance constants were equal to the square root of the machine
epsilon 1.49e-08. It was assumed that the algorithm produces a better result when the value of the
likelihood function at a calculated point was higher as compared to the result of the other algorithm. If
the maximum absolute difference of likelihood functions exceeded 10−5, the test of the algorithm with
a lesser value of the likelihood function was considered to have failed.

It is important to note several points. First, in the case of the proper Nelder–Mead algorithm a
significant increase in the number of iterations and a significant reduction of the tolerance constants had
almost no influence on the failed test count. Second, the values of parameters that were calculated in
the failed tests differed greatly from the required values.

Table 1 presents test results for the Jørgensen–Yaroshenko algorithm, the Nelder–Mead algorithm
and its modification. In Fig. 1 the distribution graphs for failed tests of the proper Nelder–Mead
algorithm are given.
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Fig. 1. Distribution for failed tests.

3. The generalized gamma distribution with a fixed power

Maximum likelihood estimation of the generalized gamma distribution with a fixed power is quite
straightforward. However, it makes sense to present an efficient numerical method as such basic algo-
rithms are sometimes simply not given due attention.

The density of the generalized gamma distribution is given by

fGΓ(x; ν, κ, σ) =
|ν|

σΓ(κ)

(x
σ

)κν−1
exp

{
−
(x
σ

)ν}
, x > 0;

the log-likelihood function is

LGΓ(ν, κ, σ)

n
= log

|ν|
Γ(κ)

+ (κν − 1)x̄∼ − κ log σν − x̄ν
σν

,

where

x̄ν =
1

n

n∑
i=1

xνi , x̄∼ =
1

n

n∑
i=1

log xi.

The likelihood equations have the form (power parameter ν is fixed)

κ = logmdigammaInverse (log(x̄ν)− νx̄∼) ,

σ =
( x̄ν
κ

) 1
ν
,

where logmdigammaInverse(c) is the inverse function for logmdigamma(κ) = log(κ)−ψ(κ), and ψ(κ) is
the digamma function.

The logmdigammaInverse(c) function is calculated as the solution to the logmdigamma(κ) − c = 0
equation. In order to solve this equation, it is recommended that the TOMS748 [2] algorithm be used.
When possible, TOMS748 uses inverse cubic interpolation, otherwise, parabolic interpolation and the
secant method are used.

The following inequality [3] holds

1

2
y < logmdigamma

(
1

y

)
< y, y > 0,
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which is matched by parametrization κ = 1
y for searching for the root on the interval [c, 2c]

κ = logmdigammaInverse(c) =
1

findRoot[c,2c]

{
y → logmdigamma

(
1
y

)
− c

} . (20)

The number of iterations required for convergence of the present algorithm generally does not depend
on c. Actually, the quantity of floating-point numbers on the interval [c, 2c] is much the same for each
c. In order to calculate logmdigammaInverse(c) when double-precision numbers are used, on average six
and not more than nine function calls for logmdigamma(c) are required so that full machine precision
can be attained. In the neighborhood of zero logmdigammaInverse(c) ∼ 1

2c , and in the neighborhood
of infinity logmdigammaInverse(c) ∼ 1

c , which follows from the limits that can be found in [4]. An
actual implementation of logmdigammaInverse(c) will be included in the D standard library starting
from summer 2015.

Since ψ(κ) asymptotically tends to log(κ), logmdigamma(κ) should be implemented independently.
Formulas (6.3.18) and (6.3.6) from a work by Abramowitz and Stegun [1] may be useful for its imple-
mentation. There are an actual implementations of logmdigamma(κ) in the D standard library and the
statmod package for the R programming language.
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