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ON QUASI-NONUNIFORM ESTIMATES FOR
ASYMPTOTIC EXPANSIONS IN THE CENTRAL
LIMIT THEOREM

V.V. Senatov1

Improved asymptotic expansions are constructed in terms of the Chebyshev–Hermite polynomials in
the local form of the central limit theorem for sums of independent identically distributed random
variables under the condition of absolute integrability of some positive powers of the the characteristic
function of a summand. The influence of the requirements to the order of existing moments on
the accuracy of approximation is discussed. Theoretical results are illustrated by the example of a
particular shifted exponential distribution.

Let X1,X2, . . . be independent random variables with zero means, unit variances, and common
distribution P . Denote the distribution of the normalized sum (X1 + . . . + Xn)/

√
n by Pn and the

standard normal distribution with density ϕ(x) = e−x2/2/
√
2π by Φ. The central limit theorem (CLT)

states that for large n the distribution Pn is close to Φ. In probability theory there is a traditional
problem of estimation of the proximity of Pn to Φ as well as of construction of asymptotic expansions
which bring more accurate approximation of Pn than Φ. We are interested in approximations in the
local form of CLT for densities. It is well known that in this problem it is necessary to impose additional
restrictions to ensure the existence of these densities and the validity of the local form of the CLT. As
such restriction we will use the condition

∞∫

−∞
|f(t)|vdt < ∞, (1)

where f(t) is the characteristic function of the distribution P , v is a positive number. This condition
guarantees the existence of continuous and bounded densities pn(x) for n � v and the validity of the
relation pn(x) → ϕ(x), n → ∞, −∞ < x < ∞, called the local form of CLT for densities. It should be
noted that from the existence of the density pn(x) for some n it follows that f(t) → 0, t → ∞.

In order to obtain estimates of proximity of pn(x) and ϕ(x) and to construct asymptotic expansions
for densities pn(x) it is necessary to impose additional restrictions on the distribution P associated with

the existence of moments αk =
∞∫

−∞
xkP (dx), k � 3 is integer, or absolute moments βs =

∞∫
−∞

|x|sP (dx),

s > 2. We will assume the existence of moments of the orders 4, 5, or 6.
We need the Chebyshev–Hermite polynomialsHk(x) = (−1)kϕ(k)(x)/ϕ(x), k = 0, 1, . . ., in particular,

H0(x) ≡ 1, H1(x) = x, H2(x) = x2−1, H3(x) = x3−3x, H4(x) = x4−6x2+3, H5(x) = x5−10x3+15x,
H6(x) = x6 − 15x4 + 45x2 − 15. From the results stated and proved below it follows that the estimate

|pn(x)− ϕ(x)| � |A1(x)|√
n

ϕ(x) +O

(
1

n

)
, n → ∞, (2)

is valid for the distributions P with finite fourth moment, where

A1(x) =
θ3
3!
H3(x).
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For the distributions P with finite fifth moment we have
∣∣∣∣pn(x)− ϕ(x)

(
1 +

A1(x)√
n

)∣∣∣∣ � |A2(x)|
n

ϕ(x) +O

(
1

n3/2

)
, n → ∞, (3)

where

A2(x) =
θ4
4!
H4(x) +

1

2

(
θ3
3!

)2

H6(x).

Whereas for the distributions P with finite sixth moment
∣∣∣∣pn(x)− ϕ(x)

(
1 +

A1(x)√
n

+
A2(x)

n

)∣∣∣∣ � |A3(x)|
n3/2

ϕ(x) +O

(
1

n2

)
, n → ∞, (4)

where

A3(x) =
θ5
5!
H5(x) +

θ3
3!

θ4
4!
H7(x) +

1

6

(
θ3
3!

)3

H9(x).

In (2)–(4) the first terms on the right-hand sides are equivalent (for n → ∞) to the left-hand sides for
all x where these terms do not vanish, and their calculation is not difficult. We call these estimates
quasinonuniform due to the fact that the term “nonuniform estimates” is occupied, and some terms on
the right-hand sides of (2)–(4) are uniform over x. The left-hand sides of (2)–(4) change noticeably with
x, and the right-hand sides of (2)–(4) capture these changes. The values θl can be calculated by formula
(5). Explicit estimates for the values O(· · · ) are given below. All these results were obtained using the
Edgeworth–Cramér expansions of the density pn(x).

Here and below θl =
∞∫

−∞
Hl(x)P (dx) are the numbers that we call Chebyshev–Hermite moments of

the distribution P ; they are finite if and only if moments αl are finite and can be calculated by the
formulas

θl
l!

=

[l/2]∑
j=0

αl−2j

(l − 2j)!

(−1)j

2jj!
, l = 0, 1, . . . . (5)

In particular, θ0 = 1 for any distribution P ; for distributions with zero mean and unit variance, we have
θ1 = θ2 = 0, θ3 = α3, θ4 = α4 − 3, θ5 = α5 − 10α3.

Good estimates of the values O(· · · ) from (2)–(4) are quite cumbersome, but for each distribution
P and for any number n each of them can be brought to numerical values. Below we will present
some numerical illustrations that use the centered exponential distribution with parameter 1 as the
distribution P ; its density is p(x) = 0, x < −1, and p(x) = e−(x+1), x � −1. For brevity we will call
it just the exponential distribution (ED). It has zero mean, unit variance, and for it α3 = 2, α4 = 9,
α5 = 44, α6 = 265. This distribution is one of the exclusive distributions for which the density pn(x) is
very easy to calculate. For the ED we have

pn(x) =
√
n

nn

n!en

(
1 +

x√
n

)n−1

e−x
√
n, x � −√

n,

(these are the densities of the centered and normalized Erlang distributions). The explicit form of the
densities allows us to get numerical and graphical illustrations of the results. In order to build graphics
tools that are available on the site ru.numberempire.com can be used. For better understanding of the
essence of matter one can build for n = 100 the graphs of the functions:

1) pn(x), ϕ(x), and pn(x)− ϕ(x);

2) pn(x)− ϕ(x), A1(x)ϕ(x)/
√
n, and pn(x)− ϕ(x)(1 + (A1(x)ϕ(x))/

√
n);

3) pn(x)− ϕ(x)(1 + (A1(x)ϕ(x))/
√
n), (A2(x)ϕ(x))/n, and their difference.

ru.numberempire.com
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It is useful to compare the last difference with the function A3(x)ϕ(x)/n
3/2. In order to build these

graphs the numbers θ3/3!, θ4/4!, θ5/5! are needed, which are 1/3, 1/4, 1/5 for the ED, and the number√
100 100100

100!e100
= 0.39860996. It is possible to obtain the formulas for H7(x) and H9(x) by differentiating

the function e−x2/2; they can be found in [2] and [3].

Now we give the asymptotic values (see below) of the upper bounds of the values O(· · · ) from (2)–(4)
for the ED (the symbol � should read “does not exceed the value that is equivalent to . . .”):

O

(
1

n

)
� 0.03

β4
n

+
|A∗

2(x)|ϕ(x)
n

+
1.9

n3/2
+

6

n2
+

10.4

n5/2
, n → ∞, (6)

where

A∗
2(x) = H4(x)/40 +H6(x)/18;

O

(
1

n3/2

)
� 0.0124

β5

n3/2
+

|A∗
3(x)|ϕ(x)
n3/2

+
11.4

n2
+

57

n5/2
+

72

n3
+

1.5

n7/2
, n → ∞, (7)

where

A∗
3(x) = −H5(x)/72 +H7(x)/12 +H9(x)/162;

O

(
1

n2

)
� 0.0048

β6
n2

+
|A∗

4(x)|ϕ(x)
n2

+
71

n5/2
+

434

n3
+

736

n7/2
+

13

n4
+

13

n5
, n → ∞, (8)

where

A∗
4(x) = −0.043651H6(x) + (1/15 + 1/32)H8(x) +H10(x)/72 +H12(x)/1944.

To calculate the first terms on the right-hand sides of (6)–(8), we did not use the assumption that we
are dealing with the ED. The polynomials A∗

2(x) and A∗
3(x) are the analogs of A2(x) and A3(x), but in

these definitions the values θ
(4,λ4)
4 = 0.4α4−3 and θ

(5,λ5)
5 = 5α5/12−10α3 are used instead of θ4 = α4−3

and θ5 = α5 − 10α3 (the formal definitions θ
(k,λk)
k and λk are given below). The polynomial A∗

4(x) is

(
θ
(6,λ6)
6

6!
− 1

2

(
θ3
3!

)2
)
H6(x) +

(
θ3
3!

θ5
5!

+
1

2

(
θ4
4!

)2
)
H8(x) +

1

2

(
θ3
3!

)2 θ4
4!
H10(x) +

1

24

(
θ3
3!

)4

H12(x),

where

θ
(6,λ6)
6

6!
=

3α6/7

6!
− α4

4!2
+

1

24
.

Inequalities (6)–(8) follow from Theorems 1 and 2 involving the values Bk,n,j, j = 1, 2, which are

equivalent to
∞∫

−∞
|x|kϕ(x)dx/2π. These limit values are used in the calculations of the right-hand sides

of (6)–(8).

Let us make some comments about the estimates (2), (6) and give some modifications of (6). Looking
at the graphs of the functions pn(x)− ϕ(x) and A1(x)ϕ(x)/

√
n for the ED for n = 100 it is easy to see

that they are very close to each other (the maximum of the absolute value of the difference between
these functions does not exceed 0.00115). From the well-known results it follows that for distributions
P with the finite fourth moment under condition (1) the following expansion is valid:

pn(x)−ϕ(x) =
α3

3!
√
n
H3(x)ϕ(x)+

α4 − 3

4!n
H4(x)ϕ(x)+

1

2

(
α3

3!
√
n

)2

H6(x)ϕ(x)+ o

(
1

n

)
, n → ∞. (9)

The order of decrease of the value o(1/n) in the general case cannot be improved.
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From (9) it follows that

∣∣∣∣pn(x)− ϕ(x) − α3

3!
√
n
H3(x)ϕ(x)

∣∣∣∣ �
∣∣∣∣∣
α4 − 3

4!n
H4(x)ϕ(x) +

1

2

(
α3

3!
√
n

)2

H6(x)ϕ(x)

∣∣∣∣∣ + o

(
1

n

)
, n → ∞.

(10)
This estimate cannot be improved at all points x where the first term on the right side does not vanish,
because for these x the first term on the right side is equivalent to

∣∣∣∣pn(x)− ϕ(x) − α3

3!
√
n
H3(x)ϕ(x)

∣∣∣∣
(note that for the ED for n = 100 the maximum value of the last function is close to 0.00115; the
maximum value of the function |pn(x) − ϕ(x)| is equal to 0.0193 . . .). The only drawback of (10) is the
presence of the value o

(
1
n

)
, which makes it unusable for quantitative computation. Analogs of (10) that

are devoid of this defect can be to obtained from Theorem 1 formulated and proved below. From this
theorem it follows that for all x

pn(x)− ϕ(x) =
α3

3!
√
n
H3(x)ϕ(x) +

λα4 − 3

4!n
H4(x)ϕ(x) +

1

2

(
α3

3!
√
n

)2

H6(x)ϕ(x) +R,

where 0 � λ � 1 is a parameter whose choice is at our disposal and

|R| � q4(λ)
β4
4!n

3√
2π

+O

(
1

n3/2

)
, n → ∞,

where

q4(λ) = sup
u>0

|eiu − (1 + iu+ (iu)2

2! + (iu)3

3! + λ (iu)4

4! )|
u4/4!

.

For 0 � λ � 0.4 we have the equality q4(λ) = 1− λ; for λ � 0.4 the sum λ+ q4(λ) is greater than 1 and
always q4(λ) � 1, q4(1) = 1. It is possible to obtain an explicit estimate of O( 1

n3/2 ) from Theorem 1.
From the last expansion of pn(x)− ϕ(x) we obtain the estimate

∣∣∣∣∣pn(x)− ϕ(x)− α3

3!
√
n
H3(x)ϕ(x) − λα4 − 3

4!n
H4(x)ϕ(x) − 1

2

(
α3

3!
√
n

)2

H6(x)ϕ(x)

∣∣∣∣∣ �

� (1− λ)
β4
4!n

3√
2π

+O

(
1

n3/2

)
, n → ∞, (11)

for any 0 � λ � 0.4. This estimate cannot be improved in the following sense: the multiplication of the
first term on its right-hand side by any constant less than 1 makes the evaluation at x = 0 incorrect for
sufficiently large n.

To make this sure, note that (9) implies the relation

pn(x)− ϕ(x) ∼ α3

3!
√
n
H3(x)ϕ(x) +

α4 − 3

4!n
H4(x)ϕ(x) +

1

2

(
α3

3!
√
n

)2

H6(x)ϕ(x), n → ∞,

for those x, where the right-hand side does not vanish or, which is the same,

pn(x)− ϕ(x)− α3

3!
√
n
H3(x)ϕ(x) − λα4 − 3

4!n
H4(x)ϕ(x) − 1

2

(
α3

3!
√
n

)2

H6(x)ϕ(x) ∼

∼ (1− λ)α4

4!n
H4(x)ϕ(x), n → ∞, (12)
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for those x where H4(x) �= 0. This is evident if we note that α4 = β4 and H4(0)ϕ(0) =
3√
2π
.

Thus, estimate (10) which cannot be brought to the numerical values cannot be improved at all
points x, with the possible exception of six; estimate (11) which can be brought to the numerical values
cannot be improved only at one point x = 0. For the ED the asymptotic expansion

α3

3!
√
n
H3(x)ϕ(x) +

λα4 − 3

4!n
H4(x)ϕ(x) +

1

2

(
α3

3!
√
n

)2

H6(x)ϕ(x) (13)

of the difference pn(x) − ϕ(x), which is used in (11), for λ = 0.4 (this is the maximal value at which
(12) is valid) approximates this difference for a great number of points x worse than the first term of
this expansion. This is easily seen by drawing the graphs of the function pn(x)−ϕ(x)− α3

3!
√
n
H3(x)ϕ(x)

for the ED as well as the difference between pn(x) − ϕ(x) and function (13). In particular, for x = 0
and n = 100 we have pn(x)− ϕ(x) = pn(x)− ϕ(x) − α3

3!
√
n
H3(x)ϕ(x) = −0.000332 . . ., at the same time

the difference between pn(x) − ϕ(x) and the function (13) is equal to 0.00269 . . .. This disadvantage is
partly offset by the fact that for expansion (13) we have an explicit estimate, but precisely because of
it, we use the inequality ∣∣∣∣pn(x)− ϕ(x) − α3

3!
√
n
H3(x)ϕ(x)

∣∣∣∣ �

� 0.6
β4
4!n

3√
2π

+

∣∣∣∣∣
0.4α4 − 3

4!n
H4(x)ϕ(x) +

1

2

(
α3

3!
√
n

)2

H6(x)ϕ(x)

∣∣∣∣∣ +O

(
1

n3/2

)
,

whence follow (2) and (6) ((6) is valid for the ED).

It is easy to understand that the drawback of expansion (13) mentioned above, although linked to its
merits, is associated with the “irregularity” of the asymptotic expansions. All the terms of the asymptotic
expansions of the difference pn(x)−ϕ(x), beginning with the second, consist of several summands. If the
distribution P has many moments, then by adding new terms to the asymptotic expansion, in general,
we usually improve the accuracy of the approximation of the difference pn(x)−ϕ(x). However, if we add
terms that make up new terms of expansion, one by one, the picture may change dramatically. Consider
a simple example. The second term of asymptotic expansion of the difference pn(x) − ϕ(x) is the sum
of two summands

α4 − 3

4!n
H4(x)ϕ(x) +

1

2

(
α3

3!
√
n

)2

H6(x)ϕ(x).

Sketching the graph of this sum and the individual terms for the ED it is easy to see that the maximum
absolute value of the sum is considerably less than the maximum of the absolute values of each term;
moreover, near the local extrema the terms have opposite signs and the summation annihilates each
other. In particular, for the ED for n = 100 at the point x = 0 the first of these terms is equal to
0.002992 . . ., the second is equal to −0.003324, and their sum is equal to −0.0003325.

However, if we have information only about the fourth moment of the distribution P , then in order
to get expansions the accuracy of which cannot be improved at least at one point, we will be able to
include only the value λα4 in the main part of the expansion, 0 � λ � 0.4.

Expansion (13) can be slightly transformed and written in the form

α3

3!
√
n
H3(x)ϕ(x) + λ

α4 − 3

4!n
H4(x)ϕ(x) +

λ

2

(
α3

3!
√
n

)2

H6(x)ϕ(x)+

+ (1− λ)

(
−3

4!
H4(x)ϕ(x) +

1

2

(
α3

3!
√
n

)2

H6(x)ϕ(x)

)
.



340 V.V. Senatov

Now it is easy to see that when 0 � λ � 0.4, we have

∣∣∣∣pn(x)− ϕ(x)−
(
A1(x)√

n
+ λ

A2(x)

n

)
ϕ(x)

∣∣∣∣ �

� (1− λ)
β4
4!n

3√
2π

+ (1− λ)

∣∣∣∣∣
−3

4!n
H4(x)ϕ(x) +

1

2

(
α3

3!
√
n

)2

H6(x)ϕ(x)

∣∣∣∣∣ +O

(
1

n3/2

)
,

whence for λ = 0.4 we obtain

∣∣∣∣pn(x)− ϕ(x) −
(
A1(x)√

n
+ 0.4

A2(x)

n

)
ϕ(x)

∣∣∣∣ � 0.03
β4 + 3

n
+ 0.05

(
α3√
n

)2

+O

(
1

n3/2

)
, (14)

here we took into account the fact that max
x

|H2k(x)ϕ(x)| = |H2k(0)|ϕ(0) = (2k−1)!!/
√
2π � 0.4(2k−1)!!.

The function (
A1(x)√

n
+ 0.4

A2(x)

n

)
ϕ(x)

approximates the difference pn(x)− ϕ(x) for the ED better than the function A1(x)ϕ(x)/
√
n, estimate

(14) is good enough, but we cannot speak of the unimprovability of (14), since, for example, for the ED
with n = 100 the left-hand side of (14) does not exceed 0.00075, whereas 0.03β4

n = 0.0027.

It should be noted that the “irregularity” of the asymptotic expansions does not take place for all
distributions. If the “irregular” does not take place, then the expansion from Theorem 1 is acceptable.
Apparently, the second term of the asymptotic expansion of the difference pn(x) − ϕ(x) is regular for
the distributions P with α4 � 3.

In order to avoid the hassles associated with the “irregularity” (if there is any), instead of approxi-
mation (13) of the difference pn(x)− ϕ(x) we can use the approximation

α3

3!
√
n
H3(x)ϕ(x) +

α4 − 3

4!n
H4(x)ϕ(x) +

1

2

(
α3

3!
√
n

)2

H6(x)ϕ(x), (15)

related to the case λ = 1; for this approximation estimate (11) is valid with 1− λ replaced by 1, that is,
the following inequality holds:

∣∣∣∣pn(x)− ϕ(x) − A1(x)√
n

ϕ(x)− A2(x)

n
ϕ(x)

∣∣∣∣ � β4
4!n

3√
2π

+O

(
1

n3/2

)
, n → ∞. (16)

Thus, for approximation (15) we can obtain an estimate that is somewhat less accurate than (11); at
the same time approximation (15) is significantly more precise than all the approximations that were
discussed above. This is easy to ascertain by drawing the graph of the difference between pn(x)− ϕ(x)
and function (15) for the ED. In fact, estimate (16) is very rough because approximation (15) is very
precise. In particular, the maximum value of the absolute value of the mentioned difference for the ED
with n = 100 is equal to 0.0001555, the quantity β4

4!n
3√
2π

equals 0.004488, and the ratio of right-hand

and left-hand sides of (16) is greater than 28. Such a large distinction of the right-hand and left-hand
sides of (14) questions the quality of estimate (16). It is hardly possible to consider the quality of
an estimate which cannot correctly reflect the order of the estimated quantity as high. The cause of
roughness of estimate (16) is clear. The quantity under the absolute value on the left-hand side is
equivalent to the third term of the asymptotic expansion of the difference pn(x) − ϕ(x), i.e., to the
quantity A3(x)ϕ(x)/n

3/2, the maximum of the absolute value of which does not exceed 0.000137 for the
ED with n = 100, and on the right-hand side of (16) the moments of order no higher than 4 are used
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so that it cannot decrease faster than 1/n. However, from estimate (16) it is possible to obtain fully
informative results for less precise expansions. So, (16) implies the relation

∣∣∣∣pn(x)− ϕ(x)− A1(x)√
n

ϕ(x)

∣∣∣∣ � |A2(x)|
n

ϕ(x) +
β4
4!n

3√
2π

+O

(
1

n3/2

)
, n → ∞.

As it has been mentioned above, the maximum value of the right-hand side approximately equals 0.00115
for the ED in case n = 100. It is easy to check that the maximum value of the first addend on the
right-hand side of this inequality is less than 0.00101, and the ratio of the sum of the first two addends
on the right-hand side to the maximum of the left-hand side is less than 4.8, i.e., the right-hand side of
the last inequality gives at least the right order of the maximum of the left-hand side.

Obviously, the following inequality follows from (16):

|pn(x)− ϕ(x)| �
∣∣∣∣A1(x)√

n
ϕ(x) +

A2(x)

n
ϕ(x)

∣∣∣∣+ β4
4!n

3√
2π

+O

(
1

n3/2

)
, n → ∞.

It is easy to notice that the graphs of the left-hand side and of the first addend of the right-hand side
of this inequality are very close to the ED when n = 100 just by plotting them. Moreover, if we add
0.00156 to the first addend on the right-hand side, then we get a function that estimates the left-hand
side on the real axis. The second addend on the right-hand side of the last inequality for the ED for
n = 100 is almost 30 times greater than 0.000156. However, this estimate is consistent because the
second addend on the right-hand side is less than 25% of the maximum value of the first addend (and

about 6% when n = 1600, it is necessary to take into account that
√
1600 16001600

1600!e1600
= 0.398921503 when

counting pn(x), n = 1600).
The same reasoning can be given for (3), (7) and (4), (8).
The technique used below is based on the application of the inversion formula for the Fourier trans-

form

pn(x) =
1

2π

∞∫

−∞
e−itxfn

(
t√
n

)
dt, −∞ < x < ∞, (17)

for all n � v, the repeated application of the equality

ak − bk =

k−1∑
j=0

ak−j−1bj(a− b), (18)

for any complex a, b and natural k the expansion of the multiplication et
2/2f(t) in the segment of a

Taylor series, and modifications of Taylor expansions of characteristic functions, suggested in [7]. We
will say a few words about this.

One of the key roles in application of the method of characteristic functions is played by the expan-
sions of characteristic functions in the segments of a Taylor series. These expansions of the characteristic
functions of distributions P with finite moments of order k usually look like

f(t) =
k∑

j=0

αj

j!
(it)j + o(tk), t → 0, (19)

or

f(t) =
k−1∑
j=0

αj

j!
(it)j + γ

βk
k!

tk, −∞ < t < ∞,

where γ = γ(t) is a complex function such that |γ| � 1. Further on, all such functions (even within one
formula) will be designated as γ, the relation h(t) = γH(t) is equivalent to the inequality |h(t)| � |H(t)|,



342 V.V. Senatov

therefore, for example, the equalities −γ = γ, γ ·γ = γ take place; if A(t), B(t) are nonnegative functions,
then γA(t) + γB(t) = γ(A(t) + B(t)) where the functions γ are different, etc. In [7] modifications of
these expansions were suggested that allow us to write f(t) in the form

f(t) =

k−1∑
j=0

αj

j!
(it)j + λ

αk

k!
(it)k + γqk(λ)

βk
k!

tk, −∞ < t < ∞. (20)

Here λ is an arbitrary number from [0, 1], the definitions of the functions qk(λ) are the same as that of
the function q4(λ) given above. For our purposes it is only important that the equalities qk(λ) = 1− λ
and qk(1) = 1 take place if 0 � λ � λk = k

2(k+1) . The studies on these expansions were continued in [6];

see also [5].
The powers of the variable it in the expansions of the characteristic function f(t) given above are

associated with the moments of the distribution P . For the function et
2/2f(t) (similarly to (19)), instead

of the moments αj , the Chebyshev–Hermite moments θj of the distribution P are used. The use of these
moments is justified by the fact that in the expansions of the densities pn(x) by the system of functions
Hl(x)ϕ(x), l = 0, 1, . . ., the coefficients of these functions are formed by means of the moments and the
Chebyshev–Hermite quasimoments of the distribution Pn, and they are related to the moments and the
Chebyshev–Hermite quasimoments of the distribution P in a quite simple way (see, e.g., [3, Chap. 4,
Sections 1 and 4]). We will use this relationship in the proof of the lemmas given below. In this case
it is not necessary to refer to [3]. The expansions of the densities pn(x) are the same as the expansions
of the relation pn(x)/ϕ(x) in the Chebyshev–Hermite polynomials, and this system of polynomials is a
complete orthogonal system of functions in the Hilbert space L2(ϕ).

We will use two types of the Chebyshev–Hermite quasimoments of the distribution P . The quasimo-

ments θ
(k)
l , k � l, of the distribution P can be calculated by formula (5) on the right-hand side of which

it is required to omit terms related to the moments αj, j > k, and the quasimoments θ
(k,λ)
l , k � l, can

be calculated as θ
(k)
l but instead of αk, the product λαk is used, where λ is the one from (20). In the

estimates of the residuals of the expansions, the Chebyshev–Hermite moments and quasimoments with
the norm sign || · || will be used. The formulas for these quantities will be given at their appearance.

Let us make some comments about the technique of the construction of expansions and introduce
some notation. When n � v, inversion formula (17) yields

pn(x)− ϕ(x) =
1

2π

∞∫

−∞
e−itx

(
fn

(
t√
n

)
− gn

(
t√
n

))
dt, −∞ < x < ∞,

where g(t) = e−t2/2 is the characteristic function of the standard normal law. The right-hand side of
this equality can be written as

1

2π

T
√
n∫

−T
√
n

e−itx

(
fn

(
t√
n

)
− gn

(
t√
n

))
dt +

+
1

2π

∫

|t|>T
√
n

e−itxfn

(
t√
n

)
dt − 1

2π

∫

|t|>T
√
n

e−itxgn
(

t√
n

)
dt, (21)

where T > 0 is the parameter, the choice of which is discussed below. It is almost obvious that the
absolute value of the last element does not exceed

1

πT
√
n
e−T 2n/2, (22)



On Quasi-nonuniform Estimates for Asymptotic Expansions in the Central Limit Theorem 343

and the absolute value of the last but one element does not exceed

√
n

π

∞∫

T

|f(t)|ndt �
√
nαn−v(T )

π

∞∫

T

|f(t)|vdt, (23)

where
α(T ) = sup{|f(t)| : t � T} < 1,

and these terms decrease exponentially as n grows. To prove the last inequality we should notice that
the assumption that the supremum is equal to 1 and the relation f(t) → 0, t → ∞, which was discussed
after formula (1), result in that |f(t0)| = 1 for some t0 � T , which means that the distribution P is
lattice, contradicting the fact that f(t) → 0, t → ∞.

We will consider the first element in (21). From (18) it follows that

fn

(
t√
n

)
−gn

(
t√
n

)
=

(
f

(
t√
n

)
− g

(
t√
n

)) n−1∑
j=0

fn−j−1gj =

(
et

2/2nf

(
t√
n

)
− 1

) n−1∑
j=0

fn−j−1gj+1.

The arguments of the powers of f(·) and g(·) are t/
√
n, and from now on we will omit them. Using the

expansion of et
2/2nf( t√

n
), following from Lemma 1, we can think of the first multiplier on the right-hand

side of the last equality as a linear combination of

A(P )

(
it√
n

)l

and γC(P )

(
t√
n

)l

et
2/2n;

hence fn( t√
n
)− gn( t√

n
) is a linear combination of

A(P )

(
it√
n

)l n−1∑
j=0

fn−j−1gj+1 and γC(P )

(
t√
n

)l n−1∑
j=0

fn−j−1gj . (24)

We need to find the integral of this difference multiplied by e−itx/2π over the interval [−T
√
n, T

√
n].

The integral of the second term in (24) is bounded by

|C(P )|
nl/2

1

2π

T
√
n∫

−T
√
n

|t|lnμn−1

(
t√
n

)
dt =

|C(P )|
n(l−2)/2

Bl,n,1,

where μ(t) = max(|f(t)|, g(t)),

Bl,n,j =
1

2π

T
√
n∫

−T
√
n

|t|lμn−j

(
t√
n

)
dt, 0 � j < n, l � 0.

For any real t and any fixed j we have μn−j( t√
n
) → e−t2/2 as n → ∞. Moreover, with T chosen in an

appropriate way,

Bl,n,j → Bl =
1

2π

∞∫

−∞
|t|le−t2/2dt, n → ∞.

However, in most cases, good bounds for |f(t)| as well as for μ(t), can be obtained only for small t and
this dictates the choice of the parameter T . Also note that for some distributions in the definition of
Bl,n,j we can consider the limit as T → ∞, and the last relation remains valid.
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Hence the second quantity in (24) is equivalent to

|C(P )|
n(l−2)/2

Bl.

The first quantity in (24) can be expressed as

A(P )

(
it√
n

)l

S1,

where

Sk =
∑

j1+...+jk�n−k

fn−j1−...−jk−kgj1+...+jk+k,

1 � k � n (here the sum is over all sets of nonnegative integer numbers j1, . . . , jk such that j1+ . . .+jk �
� n− k; the total number of sets is Ck

n). It is easy to see that for any k, 1 � k < n, we have

Sk = Ck
ng

n +

(
et

2/2nf

(
t√
n

)
− 1

)
Sk+1. (25)

Indeed,

Sk =
∑

j1+...+jk�n−k−1

(fn−j1−...−jk−k − gn−j1−...−jk−k)gj1+...+jk+k + Ck
ng

n.

By virtue of (18),

Sk = Ck
ng

n +
∑

j1+...+jk�n−k−1

⎛
⎝n−j1−...−jk−k−1∑

jk+1=0

fn−j1−...−jk−k−jk+1−1gjk+1(f − g)

⎞
⎠ gj1+...+jk+k =

= Ck
ng

n +

(
et

2/2nf

(
t√
n

)
− 1

)
×

×
∑

j1+...+jk�n−k−1

⎛
⎝n−j1−...−jk−k−1∑

jk+1=0

fn−j1−...−jk−jk+1−k−1gj1+...+jk+1+k+1

⎞
⎠ .

It is not difficult to verify that the last multiple sum coincides with Sk+1 (more detailed arguments can
be found in [3, Chap. 4, Paragraph 14], and in [4]). Thus, the first value in (24) can be written as

A(P )

(
it√
n

)l

ngn +A(P )

(
it√
n

)l (
et

2/2nf

(
t√
n

)
− 1

)
S2.

The second addend can be converted more (these transformations depend on l), and the integration of
the first gives the value

A(P )

n(l−2)/2

1

2π

T
√
n∫

−T
√
n

e−itx(it)le−t2/2dt =
A(P )

n(l−2)/2
Hl(x)ϕ(x) +K,

where

|K| � |A(P )|
n(l−2)/2

1

π

∞∫

T
√
n

tle−t2/2dt,
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this value decreases exponentially as n grows. Here we used the well-known inversion formula

1

2π

∞∫

−∞
e−itx(it)le−t2/2dt = Hl(x)ϕ(x), l = 0, 1, . . . .

Let us proceed to the exact statements and proofs. Below αk and βk are used to denote the moments
of even orders.

Lemma 1. For distributions P with a finite fourth moment, for any 0 � λ � 1 the following
representations are true (−∞ < t < ∞) :

et
2/2f(t) = 1+

θ3
3!
(it)3+

θ
(4,λ)
4

4!
(it)4+

θ
(3)
5

5!
(it)5+γq4(λ)

β4
4!

t4et
2/2+γ

||θ(4,λ)6 ||
6!

t6et
2/2+γ

||θ(3)7 ||
7!

t7et
2/2, (26)

where
||θ(4,λ)6 ||

6!
=

λα4

4!2
+

1

24
,

||θ(3)7 ||
7!

=
|α3|
3!222!

;

et
2/2f(t) = 1 +

θ3
3!
(it)3 +

θ
(4,λ)
4

4!
(it)4 + γq4(λ)

β4
4!

t4et
2/2 + γ

||θ(3)5 ||
5!

t5et
2/2 + γ

||θ(4,λ)6 ||
6!

t6et
2/2, (27)

where
||θ(3)5 ||
5!

=
|α3|
3!2

;

et
2/2f(t) = 1 +

θ3
3!
(it)3 + γ

||θ4||
4!

t4et
2/2 + γ

||θ(3)5 ||
5!

t5et
2/2, (28)

where ||θ4||
4!

=
β4 + 3

4!
.

Proof. From (20) it follows that

et
2/2f(t) = et

2/2

(
1− t2

2
+

α3

3!
(it)3 + λ

α4

4!
(it)4

)
+ γq4(λ)

β4
4!

t4et
2/2.

It is obvious that

et
2/2

(
1− t2

2

)
= 1 +

t2

2
+

t4

8
+

∞∑
j=3

(
t2

2

)j
1

j!
− t2

2

⎛
⎝1 +

t2

2
+

∞∑
j=2

(
t2

2

)j
1

j!

⎞
⎠ =

= 1− t4

8
+

(
t2

2

)3
⎛
⎝ ∞∑

j=0

(
t2

2

)j (
1

(j + 3)!
− 1

(j + 2)!

)⎞
⎠ = 1− t4

8
−
(
t2

2

)3 ∞∑
j=0

(
t2

2

)j
1

(j + 1)!(j + 3)
.

Hence,

et
2/2

(
1− t2

2

)
= 1− t4

8
+ γ

t6

24
et

2/2. (29)

So,

et
2/2f(t) = 1− t4

8
+ γ

t6

24
et

2/2 +
α3

3!
(it)3 +

α3

3!
(it)3

t2

2
+

α3

3!
(it)3

∞∑
j=2

(
t2

2

)j
1

j!
+

+λ
α4

4!
(it)4 + λ

α4

4!
(it)4

∞∑
j=1

(
t2

2

)j
1

j!
+ γq4(λ)

β4
4!

t4et
2/2 = 1 +

α3

3!
(it)3 +

λα4 − 3

4!
(it)4 − α3

3!2
(it)5+
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+γq4(λ)
β4
4!

t4et
2/2 + γλ

α4

4!2
t6et

2/2 + γ
t6

24
et

2/2 + γ
α3

3!222!
t7et

2/2.

The right-hand side of the last equality differs from the right-hand side of (26) only in the symbols used.
The proof of Eq. (27) differs from the previous one only in using the representation

et
2/2α3

3!
(it)3 =

α3

3!
(it)3 +

α3

3!
(it)3

∞∑
j=1

(
t2

2

)j
1

j!
=

=
α3

3!
(it)3 − α3

3!2
(it)5

∞∑
j=0

(
t2

2

)j
1

(j + 1)!
=

θ3
3!
(it)3 + γ

α3

3!2
t5et

2/2.

To prove (28) note that the following analogue of (29) holds:

et
2/2

(
1− t2

2

)
= 1 + γ

t4

8
et

2/2,

so

et
2/2f(t) = et

2/2

(
1− t2

2
+

α3

3!
(it)3

)
+ γ

β4
4!

t4et
2/2 = 1 + γ

t4

8
et

2/2 +
α3

3!
(it)3et

2/2 + γ
β4
4!

t4et
2/2 =

= 1 +
α3

3!
(it)3 + γ

β4 + 3

4!
t4et

2/2 + γ
α3

3!2
t5et

2/2.

The right-hand side of the last equality differs from the right-hand side of (28) only in the symbols used.

Lemma 2. For distributions P with a finite fourth moment, for any 0 � λ � 1 and any −∞ < t < ∞
and n � 3 the following representation is true:

fn

(
t√
n

)
− gn

(
t√
n

)
=

θ3
3!
√
n
(it)3gn +

θ
(4,λ)
4

4!n
(it)4gn +

n− 1

2n

(
θ3

3!
√
n

)2

(it)6gn + γq4(λ)
β4
4!n

t4μn−1 +

+
γ

2
q4(λ)

θ3
3!
√
n

β4
4!n

t7μn−1 +
γ

6

(
θ3

3!
√
n

)2 ||θ4||
4!n

t10μn−1 +
θ
(3)
5

5!

(
it√
n

)5

S1 + 2
θ3
3!

θ
(4,λ)
4

4!

(
it√
n

)7

S2 +

+

(
θ3
3!

)3 ( it√
n

)9

S3+ γ
||θ(4,λ)6 ||
6!n2

t6μn−1+
γ

2

θ3
3!
√
n

||θ(3)5 ||
5!n3/2

t8μn−1+
γ

2

θ
(4,λ)
4

4!n

||θ4||
4!n

t8μn−1+ γ
||θ(3)7 ||
7!n5/2

t7μn−1 +

+
γ

2

θ3
3!
√
n

||θ(4,λ)6 ||
7!n2

t9μn−1 +
γ

2

θ
(4,λ)
4

4!n

||θ(3)5 ||
5!n3/2

t9μn−1 +
γ

6

(
θ3

3!
√
n

)2 ||θ(3)5 ||
5!n3/2

t11μn−1.

Proof. The assertion stated before Lemma 1 entails the following:

fn

(
t√
n

)
− gn

(
t√
n

)
=

(
et

2/2nf

(
t√
n

)
− 1

)
S1. (30)

Using (26) one can easily notice that the right-hand side of the last equation can be represented as

θ3
3!

(
it√
n

)3

S1 +
θ
(4,λ)
4

4!

(
it√
n

)4

S1 +
θ
(3)
5

5!

(
it√
n

)5

S1 +

+γq4(λ)
β4
4!

(
t√
n

)4

nμn−1 + γ
||θ(4,λ)6 ||

6!

(
t√
n

)6

nμn−1 + γ
||θ(3)7 ||
7!

(
t√
n

)7

nμn−1
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(hereafter we omit argument t/
√
n of the function μ). Using Eq. (25) for k = 1, we see that the sum of

the first two terms can be written as

θ3
3!

(
it√
n

)3

ngn +
θ
(4,λ)
4

4!

(
it√
n

)4

ngn +
θ3
3!

(
it√
n

)3 (
et

2/2nf

(
t√
n

)
− 1

)
S2 +

+
θ
(4,λ)
4

3!

(
it√
n

)4 (
et

2/2nf

(
t√
n

)
− 1

)
S2. (31)

Using Eq. (27), one can see that the third term in this expression may be represented as

θ3
3!

(
it√
n

)3
(
θ3
3!

(
it√
n

)3

+
θ
(4,λ)
4

4!

(
it√
n

)4
)
S2 +

+γq4(λ)
θ3
3!

β4
4!

(
t√
n

)7

C2
nμ

n−1 + γ
θ3
3!

||θ(3)5 ||
5!

(
t√
n

)8

C2
nμ

n−1 + γ
θ3
3!

||θ(4,λ)6 ||
7!

(
t√
n

)9

C2
nμ

n−1.

Using Eq. (28) one can see that the last term of (31) can be written as

θ3
3!

θ
(4,λ)
4

4!

(
it√
n

)7

S2 + γ
θ
(4,λ)
4

4!

||θ4||
4!

(
t√
n

)8

C2
nμ

n−1 + γ
θ
(4,λ)
4

4!

||θ(3)5 ||
5!

(
t√
n

)9

C2
nμ

n−1.

Summing up the preliminary results, we obtain

fn

(
t√
n

)
− gn

(
t√
n

)
=

=
θ3

3!
√
n
(it)3gn +

θ
(4,λ)
4

4!n
(it)4gn +

(
θ3
3!

)2 ( it√
n

)6

S2 + γq4(λ)
β4
4!n

t4μn−1 +
γ

2
q4(λ)

θ3
3!
√
n

β4
4!n

t7μn−1 +

+
θ
(3)
5

5!

(
it√
n

)5

S1 + 2
θ3
3!

θ
(4,λ)
4

4!

(
it√
n

)7

S2 + γ
||θ(4,λ)6 ||
6!n2

t6μn−1 +
γ

2

θ3
3!
√
n

||θ(3)5 ||
5!n3/2

t8μn−1+

+
γ

2

θ
(4,λ)
4

4!n

||θ4||
4!n

t8μn−1 + γ
||θ(3)7 ||
7!n5/2

t7μn−1 +
γ

2

θ3
3!
√
n

||θ(4,λ)6 ||
7!n2

t9μn−1 +
γ

2

θ
(4,λ)
4

4!n

||θ(3)5 ||
5!n3/2

t9μn−1. (32)

Notice that the third term of the right-hand side of this equation can be written as

(
θ3
3!

)2( it√
n

)6

C2
ng

n +

(
θ3
3!

)2 ( it√
n

)6 (
et

2/2nf

(
t√
n

)
− 1

)
S3.

Then, using (28), we can easily verify the validity of the lemma.

Theorem 1. For distributions P with a finite fourth moment and for which condition (1) is satisfied,
for any 0 � λ � λ4 = 0.4 and any −∞ < x < ∞ for n � max(3, v) the following representation is true:

pn(x)− ϕ(x) =
θ3

3!
√
n
H3(x)ϕ(x) +

θ
(4,λ)
4

4!n
H4(x)ϕ(x) +

n− 1

2n

(
θ3

3!
√
n

)2

H6(x)ϕ(x) +R+K,

where

|R| � q4(λ)
β4
4!n

B4,n,1 +
q4(λ)

2

|θ3|
3!
√
n

β4
4!n

B7,n,1 +
|θ(3)5 |
5!n3/2

B5,n,0 +
|θ3|
3!
√
n

|θ(4,λ)4 |
4!n

B7,n,0 +
1

6

∣∣∣∣ θ3
3!
√
n

∣∣∣∣
3

B9,n,0 +

+
||θ(4,λ)6 ||
6!n2

B6,n,1 +
1

2

|θ3|
3!
√
n

||θ(3)5 ||
5!n3/2

B8,n,1 +
1

2

|θ(4,λ)4 |
4!n

||θ4||
4!n

B8,n,1 +
1

6

(
θ3

3!
√
n

)2 ||θ4||
4!n

B10,n,1 +
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+
||θ(3)7 ||
7!n5/2

B7,n,1 +
1

2

|θ3|
3!
√
n

||θ(4,λ)6 ||
6!n2

B9,n,1 +
1

2

|θ(4,λ)4 |
4!n

||θ(3)5 ||
5!n3/2

B9,n,1 +
1

6

(
θ3

3!
√
n

)2 ||θ(3)5 ||
5!n3/2

B11,n,1,

and the value K is the sum of the terms that decrease exponentially as n grows; the absolute value of
one of them is no greater than (22), the absolute value of the other is no greater than the right-hand side
of (23), and the others can be bounded by the terms in the main part of the expansion for the difference
pn(x)− ϕ(x) with the coefficients at Hl(x)ϕ(x) replaced by their absolute values and these functions by

1

π

∞∫

T
√
n

tle−t2/2dt,

where T is an arbitrary parameter.

Proof. With account of the comments made before Lemma 1, it suffices to compare the statements
of Lemma 2 and Theorem 1, if we notice that

|Sk| � Ck
nμ

n.

After this note the statement of the theorem becomes obvious.

As has been already mentioned above, for some distributions, including the exponential one, it is
allowed to pass to the limit as T → ∞. If we perform the corresponding calculations (not too complicated,
but quite cumbersome) with the numbers Bk,n,0 and Bk,n,1 being changed to their asymptotic equivalents
Bk, we can be certain that for the ED, the bound of |R| from Theorem 1 is equivalent to the sum no
greater than

0.03
β4
n

+ 0.032
|θ3|√
n

β4
n

+
1.31

n3/2
+

5.65

n2
+

10.4

n5/2
<

0.27

n
+

1.9

n3/2
+

5.65

n2
+

10.4

n5/2

(here λ = λ4 = 0.4).
Now let us notice that in the main part of the expansion from Theorem 1 we can separate the addend

− 1

2n

(
θ3

3!
√
n

)2

H6(x)ϕ(x).

It appeared quite naturally but “too early.” Its presence in the second expansion from Theorem 2 is
necessary, but in the expansion from Theorem 1 it makes the approximation worse (one can easily make
this sure by plotting), which is why we will “transfer” it to the residuary part of the expansion. Now it
is easy to be certain about (6). The term, which decreases as n−2 as n grows in (6), increased a little
as compared to the same addend on the right-hand side of the previous inequality. This is because we

have added max
x

|(θ3/3!)2H6(x)ϕ(x)|
2n2 < 1

3n2 to the last term mentioned.

Similarly, it is easy to ascertain the validity of the following representations.

Statement 1. For distributions P with a finite fifth moment for all 0 � λ � 1 the following
representation of the quantity et

2/2f(t) takes place for all −∞ < t < ∞ :

et
2/2f(t) = 1 +

θ3
3!
(it)3 +

θ4
4!
(it)4 +

θ
(5,λ)
5

5!
(it)5 +

θ
(4)
6

6!
(it)6 + γq5(λ)

β5
5!

t5et
2/2+

+ γ
||θ(5,λ)7 ||

7!
t7et

2/2 + γ
||θ(4)8 ||
8!

t8et
2/2,

where
||θ(5,λ)7 ||

7!
=

λ|α5|
5!2

+
|α3|
3!222!

,
||θ(4)8 ||
8!

=
α4

4!222!
+

1

128
;
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et
2/2f(t) = 1 +

θ3
3!
(it)3 +

θ4
4!
(it)4 +

θ
(5,λ)
5

5!
(it)5 + γq5(λ)

β5
5!

t5et
2/2 + γ

||θ(4)6 ||
6!

t6et
2/2 + γ

||θ(5,λ)7 ||
7!

t7et
2/2,

where
||θ(4)6 ||
6!

=
α4

4!2
+

1

24
,
||θ(5,λ)7 ||

7!
=

λ|α5|
5!2

+
|α3|
3!222!

;

et
2/2f(t) = 1 +

θ3
3!
(it)3 +

θ4
4!
(it)4 + γ

||θ5||
5!

t5et
2/2 + γ

||θ(4)6 ||
6!

t6et
2/2,

where
||θ5||
5!

=
β5
5!

+
|α3|
3!2

,
||θ(4)6 ||
6!

=
α4

4!2
+

1

24
.

To construct the first of these representations we used the equality

et
2/2

(
1− t2

2

)
= 1− (it)4

8
+

(it)6

24
+ γ

t8

128
et

2/2.

Statement 2. For distributions P with a finite sixth moment for all 0 � λ � 1, the following
representations of the quantity et

2/2f(t) take place for all −∞ < t < ∞ :

et
2/2f(t) = 1 +

θ3
3!
(it)3 +

θ4
4!
(it)4 +

θ5
5!
(it)5 +

θ
(6,λ)
6

6!
(it)6 +

θ
(5)
7

7!
(it)7 + γq6(λ)

β6
6!

t6et
2/2+

+ γ
||θ(6,λ)8 ||

8!
t8et

2/2 + γ
||θ(5)9 ||
9!

t9et
2/2,

where
||θ(6,λ)8 ||

8!
=

λα6

6!2
+

α4

4!222!
+

1

128
,
||θ(5)9 ||
9!

=
|α5|
5!222!

+
|α3|
3!233!

;

et
2/2f(t) = 1+

θ3
3!
(it)3+

θ4
4!
(it)4+

θ5
5!
(it)5+

θ
(6,λ)
6

6!
(it)6+γq6(λ)

β6
6!

t6et
2/2+γ

||θ(5)7 ||
7!

t7et
2/2+γ

||θ(6,λ)8 ||
8!

t8et
2/2,

where
||θ(5)7 ||
7!

=
|α5|
5!2

+
|α3|
3!222!

,
||θ(6,λ)8 ||

8!
=

λα6

6!2
+

α4

4!222!
+

1

128
;

et
2/2f(t) = 1 +

θ3
3!
(it)3 +

θ4
4!
(it)4 +

θ5
5!
(it)5 + γ

||θ6||
6!

t6et
2/2 + γ

||θ(5)7 ||
7!

t7et
2/2,

where ||θ6||
6!

=
α6

6!
+

α4

4!2
+

1

24
;

et
2/2f(t) = 1 +

θ3
3!
(it)3 +

θ4
4!
(it)4 + γ

||θ5||
5!

t5et
2/2 + γ

||θ(4)6 ||
6!

t6et
2/2.

These representations together with (28) yield the following analogs of Lemma 2.

Statement 3. For distributions P with a finite fifth moment, the following representation takes
place for all 0 � λ � 1 and all −∞ < t < ∞ when n � 4 :

fn

(
t√
n

)
− gn

(
t√
n

)
=

θ3
3!
√
n
(it)3gn +

θ4
4!n

(it)4gn +
n− 1

2n

(
θ3

3!
√
n

)2

(it)6gn +
θ
(5,λ)
5

5!n3/2
(it)5gn+

+
n− 1

n

θ3
3!
√
n

θ4
4!n

(it)7gn +
(n− 1)(n − 2)

6n2

(
θ3

3!
√
n

)3

(it)9gn +
θ
(4)
6

6!

(
it√
n

)6

S1+
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+

(
2
θ3
3!

θ
(5,λ)
5

5!
+

(
θ4
4!

)2
)(

it√
n

)8

S2 + 3

(
θ3
3!

)2 θ4
4!

(
it√
n

)10

S3 +

(
θ3
3!

)4 ( it√
n

)12

S4+

+γq5(λ)
β5

5!n3/2
t5μn−1 +

γ

2
q5(λ)

θ3
3!
√
n

β5

5!n3/2
t8μn−1 + γ

||θ(5,λ)7 ||
7!n5/2

t7μn−1+

+
γ

2

(
|θ3|
3!
√
n

||θ(4)6 ||
6!n2

+
|θ4|
4!n

||θ5||
5!n3/2

+
||θ4||
4!n

||θ(5,λ)5 ||
5!n3/2

)
t9μn−1+

+
γ

6

(
2
|θ3|
3!
√
n

|θ4|
4!n

||θ4||
4!n

+

(
θ3

3!
√
n

)2 ||θ5||
5!n3/2

)
t11μn−1+

+
γ

24

(
θ3

3!
√
n

)3 ||θ4||
4!n

t13μn−1 + γ
||θ(4)8 ||
8!n3

t8μn−1+

+
γ

2

(
|θ3|
3!
√
n

||θ(5,λ)7 ||
7!n5/2

+
|θ4|
4!n

||θ(4)6 ||
6!n2

+
|θ(5,λ)5 |
5!n3/2

||θ(3)5 ||
5!n3/2

)
t10μn−1+

+
γ

6

(
2
|θ3|
3!
√
n

|θ4|
4!n

||θ(3)5 ||
5!n3/2

+

(
θ3

3!
√
n

)2 ||θ(4)6 ||
6!n2

)
t12μn−1 +

γ

24

(
θ3

3!
√
n

)3 ||θ(3)5 ||
5!n3/2

t14μn−1.

Statement 4. For distribution P with a finite sixth moment, the following representation takes
place for all 0 � λ � 1 and all −∞ < t < ∞ when n � 5 :

fn

(
t√
n

)
−gn

(
t√
n

)
=

θ3
3!
√
n
(it)3gn+

θ4
4!n

(it)4gn+

(
θ
(6,λ)
6

6!n2
+

n− 1

2n

(
θ3

3!
√
n

)2
)
(it)6gn+

θ5
5!n3/2

(it)5gn+

+
n− 1

n

θ3
3!
√
n

θ4
4!n

(it)7gn+
(n− 1)(n − 2)

6n2

(
θ3

3!
√
n

)3

(it)9gn+
n− 1

2n

(
2

θ3
3!
√
n

θ5
5!n3/2

+

(
θ4
4!n

)2
)
(it)8gn+

(n− 1)(n − 2)

2n2

(
θ3

3!
√
n

)2 θ4
4!n

(it)10gn +
(n− 1) . . . (n− 3)

24n3

(
θ3

3!
√
n

)4

(it)12gn +
θ
(5)
7

7!

(
it√
n

)7

S1+

+2

(
θ3
3!

θ
(6,λ)
6

6!
+

θ4
4!

θ5
5!

)(
it√
n

)9

S2+3

((
θ3
3!

)2 θ5
5!

+
θ3
3!

(
θ4
4!

)2
)(

it√
n

)11

S3+4

(
θ3
3!

)3 θ4
4!

(
it√
n

)13

S4+

+

(
θ3
3!

)5 ( it√
n

)15

S5 + γq6(λ)
β6
6!n2

t6μn−1 +
γ

2
q6(λ)

θ3
3!
√
n

β6
6!n2

t9μn−1 + γ
||θ(6,λ)8 ||
8!n3

t8μn−1+

+
γ

2

(
|θ3|
3!
√
n

||θ(5)7 ||
7!n5/2

+
|θ4|
4!n

||θ6||
6!n2

+
||θ4||
4!n

||θ(6,λ)6 ||
6!n2

+
|θ5|

5!n3/2

||θ5||
5!n3/2

)
t10μn−1+

γ

6

((
θ3

3!
√
n

)2 ||θ6||
6!n2

+ 2
|θ3|
3!
√
n

|θ4|
4!n

||θ5||
5!n3/2

+ 2
|θ3|
3!
√
n

||θ4||
4!n

|θ5|
5!n3/2

+

(
θ4
4!n

)2 ||θ4||
4!n

)
t12μn−1+

+
γ

24

(∣∣∣∣ θ3
3!
√
n

∣∣∣∣
3 ||θ5||
5!n3/2

+ 3

(
θ3

3!
√
n

)2 |θ4|
4!n

||θ4||
4!n

)
t14μn−1+

γ

120

(
θ3

3!
√
n

)4 ||θ4||
4!n

t16μn−1+γ
||θ(5)9 ||
9!n7/2

t9μn−1+

+
γ

2

(
|θ3|
3!
√
n

||θ(6,λ)8 ||
8!n3

+
|θ4|
4!n

||θ(5)7 ||
7!n5/2

+
|θ5|

5!n3/2

||θ(4)6 ||
6!n2

+
||θ(3)5 ||
5!n3/2

|θ(6,λ)6 |
6!n2

)
t11μn−1+
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+
γ

6

((
θ3

3!
√
n

)2 ||θ(5)7 ||
7!n5/2

+ 2
|θ3|
3!
√
n

|θ4|
4!n

||θ(4)6 ||
6!n2

+ 2
|θ3|
3!
√
n

|θ5|
5!n3/2

||θ(3)5 ||
5!n3/2

+

(
θ4
4n

)2 ||θ(3)5 ||
5!n3/2

)
t13μn−1+

γ

24

(∣∣∣∣ θ3
3!
√
n

∣∣∣∣
3 ||θ(4)6 ||

6!n2
+ 3

(
θ3

3!
√
n

)2 |θ4|
4!n

||θ(3)5 ||
5!n3/2

)
t15μn−1 +

γ

120

(
θ3

3!
√
n

)4 ||θ(3)5 ||
5!n3/2

t17μn−1.

With the help of these representations it is easy to prove the validity of the following analogs of
Theorem 1.

Theorem 2. For distributions P with a finite fifth moment under condition (1), the following
representation takes place for all 0 � λ � λ5 = 5/12 and for all −∞ < x < ∞, when n � max(4, v):

pn(x)− ϕ(x) =
θ3

3!
√
n
H3(x)ϕ(x) +

θ4
4!n

H4(x)ϕ(x) +
n− 1

2n

(
θ3

3!
√
n

)2

H6(x)ϕ(x) +
θ
(5,λ)
5

5!n3/2
H5(x)ϕ(x)+

n− 1

n

θ3
3!
√
n

θ4
4!n

H7(x)ϕ(x) +
(n− 1)(n − 2)

6n2

(
θ3

3!
√
n

)3

H9(x)ϕ(x) +R+K,

where

|R| � (1− λ)
β5

5!n3/2
B5,n,1 +

1− λ

2

|θ3|
3!
√
n

β5
5!n3/2

B8,n,1+

1

n2

(
θ
(4)
6

6!
B6,n,0 +

∣∣∣∣∣2
θ3
3!

θ
(5,λ)
5

5!
+

(
θ4
4!

)2
∣∣∣∣∣
B8,n,0

2
+

(
θ3
3!

)2 |θ4|
4!

B10,n,0

2
+

(
θ3
3!

)4 B12,n,0

24

)
+

||θ(5,λ)7 ||
7!n5/2

B7,n,1+

+
1

n5/2

(
|θ3|
3!

||θ(4)6 ||
6!

+
|θ4|
4!

||θ5||
5!

+
||θ4||
4!

|θ(5,λ)5 |
5!

)
B9,n,1

2
+

1

n5/2

(
2
|θ3|
3!

|θ4|
4!

||θ4||
4!

+

(
θ3
3!

)2 ||θ5||
5!

)
B11,n,1

6
+

+
1

n5/2

(
θ3
3!

)3 ||θ4||
4!

B13,n,1

24
+

||θ(4)8 ||
8!n3

B8,n,1 +
1

n3

(
|θ3|
3!

||θ(5,λ)7 ||
7!

+
|θ4|
4!

||θ(4)6 ||
6!

+
|θ(5,λ)5 |
5!

||θ(3)5 ||
5!

)
B10,n,1

2
+

+
1

n3

(
2
|θ3|
3!

|θ4|
4!

||θ(3)5 ||
5!

+

(
θ3
3!

)2 ||θ(4)6 ||
6!

)
B12,n,1

6
+

1

n3

∣∣∣∣θ33!
∣∣∣∣
3 ||θ(3)5 ||

5!

B14,n,1

24
,

and the quantity K was defined as in Theorem 1.
For distributions P with a finite sixth moment under condition (1), the following representation takes

place for all 0 � λ � λ6 = 3/7 and for all −∞ < x < ∞, when n � max(5, v):

pn(x)− ϕ(x) =
θ3

3!
√
n
H3(x)ϕ(x) +

θ4
4!n

H4(x)ϕ(x) +

(
θ
(6,λ)
6

6!n2
+

n− 1

2n

(
θ3

3!
√
n

)2
)
H6(x)ϕ(x)+

+
θ5

5!n3/2
H5(x)ϕ(x) +

n− 1

n

θ3
3!
√
n

θ4
4!n

H7(x)ϕ(x)+

+
(n− 1)(n − 2)

6n2

(
θ3

3!
√
n

)3

H9(x)ϕ(x) +
n− 1

2n

(
2

θ3
3!
√
n

θ5
5!n3/2

+

(
θ4
4!n

)2
)
H8(x)ϕ(x)+

+
(n− 1)(n − 2)

2n2

(
θ3

3!
√
n

)2 θ4
4!n

H10(x)ϕ(x) +
(n− 1) . . . (n− 3)

24n3

(
θ3

3!
√
n

)4

H12(x)ϕ(x) +R+K,

where

|R| � (1− λ)
β6
6!n2

B6,n,1 +
1− λ

2

|θ3|
3!
√
n

β6
6!n2

B9,n,1+
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+
1

n5/2

(
|θ(5)7 |
7!

B7,n,0 +

∣∣∣∣∣
θ3
3!

θ
(6,λ)
6

6!
+

θ4
4!

θ5
5!

∣∣∣∣∣B9,n,0 +

∣∣∣∣∣
(
θ3
3!

)2 θ5
5!

+
θ3
3!

(
θ4
4!

)2
∣∣∣∣∣
B11,n,0

2
+

∣∣∣∣θ33!
∣∣∣∣
3 |θ4|

4!

B13,n,0

6
+

+

∣∣∣∣θ33!
∣∣∣∣
5 B15,n,0

120

)
+

||θ(6,λ)8 ||
8!n3

B8,n,1 +
1

n3

(
|θ3|
3!

||θ(5)7 ||
7!

+
|θ4|
4!

||θ6||
6!

+
||θ4||
4!

|θ(6,λ)6 |
6!

+
|θ5|
5!

||θ5||
5!

)
B10,n,1

2
+

+
1

n3

(( |θ3|
3!

)2 ||θ6||
6!

+ 2
|θ3|
3!

|θ4|
4!

||θ5||
5!

+ 2
|θ3|
3!

||θ4||
4!

|θ5|
5!

+

(
θ4
4!

)2 ||θ4||
4!

)
B12,n,1

6
+

+
1

n3

(∣∣∣∣θ33!
∣∣∣∣
3 ||θ5||

5!
+ 3

(
θ3
3!

)2 |θ4|
4!

||θ4||
4!

)
B14,n,1

24
+

1

n3

(
θ3
3!

)4 ||θ4||
4!

B16,n,1

120
+

||θ(5)9 ||
9!n7/2

B9,n,1+

+
1

n7/2

(
|θ3|
3!

||θ(6,λ)8 ||
8!

+
|θ4|
4!

||θ(5)7 ||
7!

+
|θ5|
5!

||θ(4)6 ||
6!

+
||θ(3)5 ||
5!

||θ(6,λ)6 ||
6!

)
B11,n,1

2
+

+
1

n7/2

((
θ3
3!

)2 ||θ(5)7 ||
7!

+ 2
|θ3|
3!

|θ4|
4!

||θ(4)6 ||
6!

+ 2
|θ3|
3!

|θ5|
5!

||θ(3)5 ||
5!

+

(
θ4
4!

)2 ||θ(3)5 ||
5!

)
B13,n,1

6
+

+
1

n7/2

(∣∣∣∣θ33!
∣∣∣∣
3 ||θ(4)6 ||

6!
+ 3

(
θ3
3!

)2 |θ4|
4!

||θ(3)5 ||
5!

)
B15,n,1

24
+

1

n7/2

(
θ3
3!

)4 ||θ(3)5 ||
5!

B17,n,1

120
,

and the quantity K was defined as in Theorem 1.

Similarly to the proof of Theorem 1, it is easy to ascertain for ED that in the first expansion of
Theorem 2 the quantity |R| does not exceed the quantity equivalent to

0.0124
β5

n3/2
+ 0.017

|θ3|√
n

β5

n3/2
+

9.4

n2
+

56

n5/2
+

72

n3
< 0.0124

β5

n3/2
+

11

n2
+

56

n5/2
+

72

n3

(here we used λ = λ5 = 5/12, and β5 < 44.3). The small increase of the term in (7) that decreases as
n−2 with growth of n as compared to the same term on the right-hand side of the previous inequality is

because the quantity max
x

|(θ3/3!)2H6(x)ϕ(x)|
2n2 , which does not exceed 1

3n2 , was added. The small increase of

the term in (7) that decreases as n−5/2 with growth of n as compared to the same term on the right-hand
side of the previous inequality is related to the fact that

max
x

|(θ3/3!)(θ4/4!)H7(x) + 1/2(θ3/3!)
3H9(x)|ϕ(x)

n5/2
<

1

n5/2

was added. Also, there is a term decreasing as n−7/2, which estimates max
x

|(θ3/3!)3H9(x)ϕ(x)|
3n7/2 .

Similarly to the proof of Theorem 1 it is easy to ascertain for ED in the second expansion of Theorem
2 that the quantity |R| does not exceed the quantity equivalent to

0.0048
β6
n2

+ 0.0081
|θ3|√
n

β6
n2

+
65

n5/2
+

432

n3
+

734

n7/2
< 0.0048

β6
n2

+
70

n5/2
+

431.3

n3
+

734

n7/2

(here we used λ = λ6 = 3/7 and β6 = 265). The following equality also takes place:

(
θ
(6,λ)
6

6!n2
− 1

2n

(
θ3

3!
√
n

)2
)
H6(x)ϕ(x) +

n− 1

2n

(
2

θ3
3!
√
n

θ5
5!n3/2

+

(
θ4
4!n

)2
)
H8(x)ϕ(x)+

+
(n− 1)(n − 2)

2n2

(
θ3

3!
√
n

)2 θ4
4!n

H10(x)ϕ(x) +
(n− 1) . . . (n− 3)

24n3

(
θ3

3!
√
n

)4

H12(x)ϕ(x) =
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=
1

n2

((
θ
(6,λ)
6

6!
− 1

2

(
θ3
3!

)2
)
H6(x) +

(
θ3
3!

θ5
5!

+
1

2

(
θ4
4!

)2
)
H8(x) +

1

2

(
θ3
3!

)2 θ4
4!
H10(x)+

+
1

24

(
θ3
3!

)4

H12(x)

)
ϕ(x) +

R1(x)

n3
+

R2(x)

n4
+

R3(x)

n5
,

where

R1(x) = −
((

θ3
3!

θ5
5!

+
1

2

(
θ4
4!

)2
)
H8(x) +

3

2

(
θ3
3!

)2 θ4
4!
H10(x) +

1

4

(
θ3
3!

)4

H12(x)

)
ϕ(x),

R2(x) =

((
θ3
3!

)2 θ4
4!n

H10(x) +
11

24

(
θ3
3!

)4

H12(x)

)
ϕ(x), R3(x) = −1

4

(
θ3
3!

)4

H12(x)ϕ(x).

For ED the absolute value of the maximum of the function R1(x) does not exceed 2.1, and the absolute
value of the maximum of the functions R2(x) and R3(x) does not exceed 13. And now it is easy to
ascertain the validity of (8).
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