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ESTIMATION OF PROBABILITIES FOR
MULTIDIMENSIONAL BIRTH-DEATH PROCESSES*

A. I. Zeifman1, A. S. Sipin2, A.V. Korotysheva2, T. L. Panfilova2, Ya. A. Satin2,
G.N. Shilova2, and V.Yu. Korolev3

We consider a multidimensional inhomogeneous birth-death process and obtain bounds for the prob-
abilities of the corresponding one-dimensional processes.

1. Introduction and preliminaries

Multidimensional birth-death processes are objects of a number of studies in queueing theory. Firstly,
the problem of the product form solutions for such models was considered; see, for instance, [6] and
references therein. Some specific examples of multidimensional birth-death processes as queueing models
can be found in [4,5]. If the process is inhomogeneous and the transition intensities are of a more general
form, then the problem of computation of any probabilistic characteristics of the queueing model becomes
considerably more complicated. In this note we try to obtain a number of such bounds. Our approach is
based on the method of investigation of inhomogeneous birth-death processes; see the detailed discussion
and some preliminary results in [3,7–10]. Main results of the present paper were briefly formulated in [14].

Let X(t) = (X1(t), . . . ,Xd(t)) be a d-dimensional birth-death process such that in the interval
(t, t + h) the following transitions are possible with order h: the birth of a particle of type j, the
death of a particle of type j. Let λj,m(t) be the corresponding birth rate (of the transition from the

state m = (m1, . . . ,md) =
∑d

i=1 miei to the state m + ej), and μj,m(t) be the corresponding death

intensity (of the transition from the state m = (m1, . . . ,md) =
∑d

i=1 miei to the state m− ej). Denote
pm(t) = Pr (X(t) = m).

Let now the (countable) state space of the vector process under consideration be ordered in a special
way, say 0, 1, . . . . By pi(t) denote the corresponding state probabilities, and by p(t) denote the corre-
sponding column vector of state probabilities. Applying our standard approach (see details in [3,8–10]),
we assume in addition, that all intensity functions are linear combinations of a finite number of locally
integrable on [0,∞) nonegative functions, and, moreover, that, in new enumeration,

Pr (X (t+ h) = j/X (t) = i) =

⎧
⎨

⎩

qij (t) h+ αij (t, h) , j �= i,

1− ∑

k �=i

qik (t)h+ αi (t, h) , j = i, (1)

where all αi(t, h) are o(h) uniformly in i, i.e., supi |αi(t, h)| = o(h). We also assume that the boundedness
condition

λj,m(t) � L < ∞, μj,m(t) � M < ∞, (2)

holds for any j, m and almost all t � 0. Then the probabilistic dynamics of the process is represented
by the forward Kolmogorov system:

dp

dt
= A(t)p(t), (3)
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where A(t) is the corresponding infinitesimal (intensity) matrix. Throughout the paper by ‖·‖ we denote
the l1-norm, i.e., ‖x‖ =

∑ |xi|, and ‖B‖ = supj
∑

i |bij | for B = (bij)
∞
i,j=0. Let Ω be the set all stochastic

vectors, i.e., l1-vectors with nonegative coordinates and unit norm. Hence assumption (2) implies the
inequality

‖A(t)‖ � H = 2d (L+M) < ∞, (4)

for any j, m and almost all t � 0. Hence the operator function A(t) from l1 into itself is bounded
for almost all t � 0 and is locally integrable on [0;∞). Therefore we can consider (3) as a differential
equation in the space l1 with a bounded operator. It is well known [1] that the Cauchy problem for
differential Eq. (3) has a unique solution for an arbitrary initial condition, and p(s) ∈ Ω implies p(t) ∈ Ω
for t � s � 0.

2. Bounds for birth-death process

Here we briefly consider the general approach and the corresponding bounds for an inhomogeneous
one-dimensional birth-death process (BDP); see details in [3, 7–9]. Let X(t), t � 0, be a BDP with
birth and death rates λn(t) and μn(t), respectively. Let pij(s, t) = Pr {X(t) = j |X(s) = i} for i, j �
0, 0 � s � t, be the transition probability functions of the process X = X(t) and pi(t) = Pr {X(t) = i}
be the state probabilities. By p(t) = (p0(t), p1(t), . . . )

T , t � 0, we denote the column vector of state
probabilities. We suppose that the boundedness assumptions (2) hold and, hence, ‖A(t)‖ � H < ∞.

1. Weak ergodicity

We recall that a Markov chain X(t) is called weakly ergodic if ‖p∗(t) − p∗∗(t)‖ → 0 as t → ∞ for
any initial conditions p∗(0),p∗∗(0). Put Ek(t) = E {X(t) |X(0) = k }. Consider an increasing sequence

of positive numbers {di}, i = 1, 2, . . . , d1 = 1, and the corresponding triangular matrix D:

D =

⎛

⎜
⎜
⎜
⎝

d1 d1 d1 · · ·
0 d2 d2 · · ·
0 0 d3 · · ·

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎠

. (5)

Let l1D be the space of sequences:

l1D =
{
z = (p1, p2, · · · )T : ‖z‖1D ≡ ‖Dz‖ < ∞}

.

Put

d = inf
i�1

di = 1, W = inf
i�1

di
i
, gi =

i∑

n=1

dn.

Consider the following expressions:

αk (t) = λk (t) + μk+1 (t)− dk+1

dk
λk+1 (t)− dk−1

dk
μk (t) , k � 0, (6)

and

α (t) = inf
k�0

αk (t) . (7)

The property p(t) ∈ Ω for any t � 0 allows us to set p0(t) = 1 − ∑
i�1 pi(t) and obtain the following

system from (3) for corresponding BDP:

dz(t)

dt
= B(t)z(t) + f(t), (8)
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where z(t) = (p1(t), p2(t), . . . )
T , f(t) = (λ0(t), 0, 0, . . . )

T , B(t) = (bij(t))
∞
i,j=1 and

bij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(λ0 + λ1 + μ1), if i = j = 1,
μ2 − λ0, if i = 1, j = 2,

−λ0, if i = 1, j > 2,
−(λj + μj), if i = j > 1,

μj, if i = j − 1 > 1,
λj , if i = j + 1 > 1,
0, otherwise.

(9)

This is a linear non-homogeneous differential system, the solution of which can be written as

z(t) = V (t, 0)z(0) +

∫ t

0
V (t, τ)f(τ) dτ, (10)

where V (t, τ) = V (t)V −1(τ) is the Cauchy operator of (8). Consider Eq. (8) in the space l1D. We have

DBD−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−(λ0 + μ1)
d1
d2
μ2 0

. . .

d2
d1
λ1 −(λ1 + μ2)

d2
d3
μ3 0

. . .

0 d3
d2
λ2 −(λ2 + μ3)

d3
d4
μ4 0

. . .
. . .

. . .
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (11)

Next, f(t) and B(t) are bounded and locally integrable on [0,∞) as a vector function and an operator
function in l1D, respectively. Now we have the following bound for the logarithmic norm γ (B(t)) in l1D:

γ (B)1D = γ
(
DB(t)D−1

)
1
= sup

i�0

(
di+1

di
λi+1(t) +

di−1

di
μi(t)− (λi(t) + μi+1(t))

)

=

= − inf
k�0

(αk (t)) = −α(t), (12)

in accordance with (7). Hence

‖V (t, s)‖1D � e
−

t∫

s
α(τ) dτ

. (13)

Therefore,

‖p∗(t)− p∗∗(t)‖1D = ‖z∗(t)− z∗∗(t)‖1D � e
−

t∫

s
α(τ) dτ‖p∗(s)− p∗∗(s)‖1D, (14)

for any t � s � 0 and any initial conditions p∗(s),p∗∗(s).
Moreover, inequality ‖p∗(s)− p∗∗(s)‖ � 2‖z(s)‖ � 4‖p∗(s)− p∗∗(s)‖1D implies the bound

‖p∗(t)− p∗∗(t)‖ � 4e
−

t∫

s
α(τ) dτ ∑

i�1

gi|p∗i (s)− p∗∗i (s)|. (15)

Let now
α(t) � α∗ > 0 (16)

for almost all t � 0. Then we obtain the inequality

‖z(t)‖1D � ‖V (t)‖1D‖z(0)‖1D +

t∫

0

‖V (t, τ)‖1D‖f(τ)‖1D dτ � e−α∗t‖z(0)‖1D +
H

2α∗ , (17)
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because λ0(t) � H
2 for almost all t � 0. On the other hand, all pi(t) � 0, and therefore

‖z(t)‖1D =
∑

i�1

pi(t)
i∑

k=1

dk �
∑

i�N

dipi(t). (18)

Hence ∞∑

i=N

dipi(t) � e−α∗t‖z(0)‖1D +
H

2α∗ , (19)

and ∞∑

i=N

pi(t) � d−1
N e−α∗t‖z(0)‖1D +

H

2α∗dN
, (20)

for any N and any t � 0.

Theorem 1. Let a BDP with rates λk(t) and μk(t) be given. Assume that

∞∫

0

α(t) dt = +∞. (21)

Then X(t) is weakly ergodic, and bounds (14), (15) hold for any t � s � 0 and any initial conditions
p∗(s),p∗∗(s). If, instead of (21) we have(16), then X(t) is exponentially weakly ergodic, and bounds
(19) and (20) hold.

Corollary 1. Let, in addition, the numbers di grow sufficiently fast so that W > 0. Then X(t) has
the limiting mean, say φ(t), and the following bound holds:

|φ(t)− Ek(t)| � 4

W
e
−

t∫

0

α(τ) dτ
‖p(0) − ek‖1D. (22)

2. Null ergodicity

We recall that a Markov chain X(t) is called null-ergodic, if pk(t) → 0 as t → ∞ for any initial
condition p(0) and any k.

Consider a decreasing sequence of positive numbers {δi}, i = 0, 1, . . . , δ0 = 1, and the corresponding
diagonal matrix Δ with diagonal entries {δk}. Let l1Δ be the space of sequences:

l1Δ =
{
(p0, p1, . . .)

T : ‖z‖1Δ ≡ ‖Δp‖ < ∞}
.

Consider the following expressions:

ζk (t) = λk (t) + μk (t)− δk+1

δk
λk (t)− δk−1

δk
μk (t) , k � 0, (23)

and

ζ (t) = inf
k�0

ζk (t) . (24)

Then we have the following bound for the logarithmic norm γ (A(t)) in l1Δ:

γ (A)1Δ = γ
(
ΔA(t)Δ−1

)
1
= sup

i�0

(
δi+1

δi
λi(t) +

δi−1

δi
μi(t)− (λi(t) + μi(t))

)

=

= − inf
k�0

(ζk (t)) = −ζ(t), (25)
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in accordance with (23). Hence

‖U(t, s)‖1Δ � e
−

t∫

s
ζ(τ) dτ

, (26)

where U(t, s) = U(t)U−1(s) is the Cauchy operator of (3) for the corresponding BDP. Therefore,

∞∑

k=0

δkpk(t) = ‖p(t)‖1Δ � e
−

t∫

s
ζ(τ) dτ

‖p(s)‖1Δ � e
−

t∫

s
ζ(τ) dτ

, (27)

for any t � s � 0 and any initial condition p(s).

Theorem 2. Let a BDP with rates λk(t) and μk(t) be given. Assume that

∞∫

0

ζ(t) dt = +∞. (28)

Then X(t) is null-ergodic, and bound (27) holds for any t � s � 0 and any initial condition p(s). If,
instead of (28) we have

ζ(t) � ζ∗ > 0, (29)

then X(t) is exponentially null-ergodic, and the bound

N∑

k=0

pk(t) �
δk
δN

e−ζ∗t, (30)

holds for any t � 0, any initial condition X(0) = k, and any natural N .

3. Bounds for probabilities in multidimensional BDP

Consider the one-dimensional process Xj(t). Then Xj(t) is a (generally non-Markovian) birth and
death process with birth intensities

λk =

∑
m,mj=k λj,m(t)pm(t)
∑

m,mj=k pm(t)
(31)

and death intensities

μk =

∑
m,mj=k μj,m(t)pm(t)
∑

m,mj=k pm(t)
. (32)

For any fixed initial distribution p(0) and any t > 0 the probability distribution p(t) is unique. Hence

λk = λk (p(0), t) and μk = μk (p(0), t) uniquely define the corresponding birth-death system (3) for the
state probabilities of the process Xj(t) with a given initial condition, and Theorems 1 and 2 allow one
to obtain their bounds. Let for all m and any t � 0

lj � λj,m(t) � Lj, mj � μj,m(t) � Mj. (33)

Then H = 2
∑d

j=1(Lj +Mj).
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Theorem 3. Let
Lj < mj, α∗ = lj +mj − 2

√
LjMj > 0, (34)

for some j. Then the following bound holds:

Pr (Xj(t) � n/Xj(0) = k) � 1− β1−n

(
H

2α∗ + e−α∗t ·
k−1∑

i=0

βi

)

, (35)

for any natural n, k and any t � 0, where β =
√

Mj/Lj > 1.

Proof. Put dn = βn−1, n � 1. Then

λk + μk+1 − dk+1

dk
λk+1 − dk−1

dk
μk � lj +mj − βLj −Mj/β = α∗, (36)

hence, in accordance with (20), we have

Pr (Xj(t) � n/Xj(0) = k) � 1− β1−n

(
H

2α∗ + e−α∗t‖z(0)‖1D
)

, (37)

and (35), for any n, k and any t � 0.

Theorem 4. Let
Mj < lj (38)

for some j. Then
Pr (Xj(t) � n/Xj(0) = k) � σk−n · e−ζ∗t, (39)

where σ =
√

Mj/lj < 1, ζ∗ =
(√

lj −
√

Mj

)2
.

Proof. Put δn = σn, n � 0. Then

λk + μk − δk+1

δk
λk − δk−1

δk
μk � λk (1− σ)− μk (1/σ − 1) � lj (1− σ)−Mj (1/σ − 1) = ζ∗, (40)

and we can apply Theorem 2.

Remark 1. Instead of Xj(t) we can obtain the same results for the one-dimensional process Z(t) =
= |X(t)|, that is, the number of all particles at the moment t.

Remark 2. There are a number of situations in which a complete study is possible. Namely, if all
birth and death intensities for some Xj(t) depend only on j and t (or all birth and death intensities
for Z(t) depend only on t) then we obtain the corresponding ordinary one-dimensional inhomogeneous
BDP. Hence all results of the previous section can be applied.

Remark 3. In a weakly ergodic case our bounds for the state probabilities can be used to study the
truncations and perturbation bounds for the corresponding processes; see the results for inhomogeneous
BDPs obtained in [11–13].

Remark 4. All of our results can be extended for the case of so-called birth-death-transformation
process, i.e., for the process X(t) = (X1(t), . . . ,Xd(t)) such that in the interval (t, t + h) the following
transitions are possible with order h: the birth of a particle of type j, the death of a particle of type j,
and the transformation of a particle of type j1 to type j2.
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