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ON THE EXTENDABILITY OF LOCALLY DEFINED ISOMETRIES
OF A PSEUDO-RIEMANNIAN MANIFOLD

V. A. Popov UDC 514.764.2

Abstract. Let η be a stationary subalgebra of the Lie algebra ζ of all Killing vector fields on a

pseudo-Riemannian analytic manifold, G be a simply connected Lie group generated by the algebra ζ,

and H be its subgroup generated by the subalgebra η. Then the subgroup H is closed in G.

An analytic mapping of an open subset U of an analytic manifold M to an analytic manifold N

may admit an analytic extension to the whole manifold M . The study of analytic extensions of local
isometries of Riemannian or pseudo-Riemannian manifolds is of particular interest. It is easy to prove
that an isometry f : U → V between two open subsets of a complete, simply connected Riemannian

manifold M can be analytically extended to an isometry f : M → M . However, it is not always
possible to construct an analytic extension of a locally defined Riemannian analytic metric to a metric
of a complete manifold. A natural generalization of the notion of a complete manifold is the notion of

nonextendability introduced by Helgason in [1]. Nonextendable properly Riemannian manifolds and
the possibility of extension of isometries locally defined on them are examined in [3, 4]. We present
a generalization of results of [3] to the case of pseudo-Riemannian manifolds. In particular, we prove
that if a pseudo-Riemannian metric is defined on a ball and the Lie algebra of infinitesimal isometries

of this metric has zero center and the dimension of this Lie algebra at a fixed point coincides with the
dimension of the ball, then this metric can be extended to a metric of a complete pseudo-Riemannian
manifold.

Consider a pseudo-Riemannian analytic manifold M and an isometry ϕ : U → V between open
subsets of it. The following question appears: Under which conditions the mapping ϕ : U → V can
be analytically extended to an isometry ϕ : M → M of the whole manifold? The existence of an

extension along a continuous curve for complete manifolds was proved in the classical monograph by
Helgason [1]. However, even for complete manifolds, an extension along curves can be ambiguous. For
non-complete manifolds, an analytic extension of a local isometry along an arbitrary curve does not

exist. However, an extension of an infinitesimal isometry always exists.
Infinitesimal isometries on a pseudo-Riemannian manifold are vector fields ξk(x) satisfying the

following system of differential equations:

n∑

k=1

(
∂gij
∂xk

ξk − gkj
∂ξk

∂xi
− gik

∂ξk

∂xj

)
= 0.

Such vector fields are called Killing vector fields.

Theorem 1. Let M be an analytic pseudo-Riemannian manifold, X be a Killing vector field defined
in a domain U ⊂ M , and let γ(t), 0 ≤ t ≤ 1, be a continuous curve in M such that γ(0) ∈ U . Then
the vector field X can be analytically extended along γ.

Proof. Assume thatX can be analytically extended to a neighborhood of each point γ(t) for t < t1 ≤ 1.

We prove that X can also be extended to a neighborhood of the point q = γ(t1). Let V be a normal
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neighborhood of the point q, which is also a normal neighborhood of each of its points (see [1]).

Consider t < t1 such that p = γ(t) ∈ V .
A vector field X generates a local one-parameter isometry group ϕs in a neighborhood of each

point γ(t), t < t1. We prove that for all sufficiently small values of s, local isometries ϕs can also be
analytically extended to a neighborhood of the point q = γ(t1). Then the vector field of velocities

of this local isometry group is an analytic extension of the vector field X to a neighborhood of the
point q.

Consider a connected open set V0 ⊂ V that contains the points p and q, whose closure also lies in V ,

V0 ⊂ V , p, q ∈ V0. Consider a small neighborhood V ′ ⊂ V0 of the point q and connect the point p
with an arbitrary point q′ ∈ V ′ by a segment of a geodesic α(t), 0 ≤ t ≤ 1. Let

Y =
dα

dt
(0) ∈ TpM, ps = ϕs(p), Ys = ϕs(Y ).

From the point ps, we eject a geodesic β(t), 0 ≤ t ≤ 1, such that

dβ

dt
(0) = Ys.

For sufficiently small values of s we have β(t) ∈ V0, 0 ≤ t ≤ 1. We set ϕs(q
′) = β(1). The mapping

obtained is an analytic extension of the isometry ϕs.

Remark. This proof allows one to generalize Theorem 1 to the case of spaces with affine connection.
Namely, an infinitesimal affine transform X of an analytic space with affine connection M defined on
an open set U ⊂ M can be analytically extended along an arbitrary continuous curve γ(t) on M .

In the general case, the basic impossibility of extension of an infinitesimal isometry to an isometry
of the manifold M in the whole is caused by the fact that the pair consisting of the Lie algebra ζ and

a stationary subalgebra η ⊂ ζ of it may not generate a homogeneous manifold. More precisely, under
the condition that each local one-parameter group generated by a vector field X ∈ ζ is extendable,
the isometry group G of the manifold M and an orbit K ⊂ M of this group appear, but this is not

always possible.
Theorem 1 allows one to identify the Lie algebra ζ of all Killing vector fields defined in some

neighborhood of a point p ∈ M with the Lie algebra of all Killing vector fields on the pseudo-

Riemannian analytic manifold M . Let η ⊂ ζ be a stationary subalgebra. X ∈ η if and only if
X(p) = 0. Let G be a simply connected Lie group with the Lie algebra ζ and H ⊂ G be the
subgroup generated by the subalgebra η ⊂ ζ. The exponential mapping defined an isometric action

of the group G in some neighborhood U of the point p determined for elements g ∈ W from some
neighborhood of 0 in G. An extension of these isometries to the whole manifold M defines the orbit
K = G(p) as a differentiable submanifold of the manifold M diffeomorphic to the factor-group G/H.

However, the factor-group G/H is a differentiable manifold if and only if the subgroup H is closed
in G. For pseudo-Riemannian manifolds, one can find the following sufficiently general condition for
the metric under which the subgroup H is closed in G: the algebra ζ has zero center.

Theorem 2. Let ζ be the Lie algebra of all Killing vector fields on a pseudo-Riemannian analytic
manifold M , p ∈ M be a fixed point, η ⊂ ζ be a stationary subalgebra consisting of vector field X ∈ ζ

such that X(p) = 0, G be a simply connected Lie group with the Lie algebra ζ, and H ∈ G be the
subgroup generated by the subalgebra η ⊂ ζ. If ζ has zero center, then H is closed in G.

The proof of Theorem 2 in the general form for the case of a Riemannian manifold follows from
the description of quasi-complete manifolds whose definition and properties are stated below. Here

we present an algebraic proof for a pseudo-Riemannian manifold in the case of a locally homogeneous
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manifold, i.e., under the condition

dimM = dim ζ − dim η.

Assume that the subgroup H is not closed in G. Let the group H be the closure of H in G and
η ⊂ ζ be the Lie algebra of the group H ⊂ G. As was proved in the classical work of Mal’cev [2], the
subalgebra η is a normal subgroup of the Lie algebra η. Therefore, the adjoint representation Ad of

the group G in the algebra ζ,

Ad g(X) = g−1Xg ∀X ∈ ζ, g ∈ G,

defines a linear mapping in the vector space V = ζ/η if g ∈ H.

Consider a normal neighborhood U ⊂ M of the point p and a closed ball of radius r (in the normal
coordinates) Br ⊂ U . Due to the compactness of Br, there exists a neighborhood of the identity
W ⊂ G such that all elements g ∈ W define an isometry g : Br → U (g belongs to a local one-

parameter transformation group generated by some Killing vector field on M). In the tangent space
TpM identified with the vector space V = ζ/η we choose a basis and consider transformations Adh,

h ∈ H ∩W , and Ad g, g ∈ H, as matrices.
Consider a vector field Z ⊂ η, Z /∈ η, and a local one-parameter subgroup Ht ∈ H generated

by the vector field Z. Each element ht ∈ Ht ∩ W is the limit of some sequence hn ∈ H such that
hn ∈ W starting from some number. For t ≤ 1, the norms of the matrices of linear transforms Adht
and Adhn = hn of the vector space V are bounded by some constant C. Therefore, the mappings

Adht and Adhn map the ball Bδ to the ball Br, Bδ ⊂ Br ⊂ V , δ ≤ r/C2n. The bounded sequence
of matrices Adhn defined the sequence of isometric mappings defined on the neighborhood Bδ ⊂ M
of the point p ∈ M . Then the mapping Adht also defines (in the normal coordinates) an isometric

mapping defined on Bδ.
The right multiplication by an element ht defines a linear mapping on the tangent space TpM = ζ/η,

which, in its turn, determines, for all t ≤ 1, an isometric mapping defined on some neighborhood of

the point p ∈ M , since the right multiplication by ht is the superposition of isometric mappings
Adht : X → h−1

t Xht and ht : X → htX. Therefore, a one-parameter isometry group X → Xht
commutes with the action of each sufficiently small element of the group G on U . Hence the Killing

vector field corresponding to this one-parameter group of right multiplications commutes with the
whole Lie algebra ζ, which contradicts the theorem.

Except for the nonclosedness of the subgroup H generated by a stationary subalgebra, there exist

other obstructions for the extension of a local isometry of a Riemannian analytic manifold. For
example, a local isometry of a complete manifold M can be analytically extended in a neighborhood
of each point of this manifold (perhaps, ambiguously). If we remove from M a closed subset, the

extendability property of local isometries loses.
Consider a class of Riemannian analytic manifolds that are locally isometric to each other, i.e.,

that have isometric open subsets. This class of manifolds is defined only by local properties of the

metric. The following question appears: For which metrics does there exist a manifold M possessing
the property of analytic extendability of local isometries ϕ : U → V to isometries ϕ : M → M and
which properties does this manifold possess? Primarily, such a manifold must be nonextendable.

Definition 1. A pseudo-Riemannian analytic manifold M is said to be nonextendable if it cannot

be analytically embedded as an open subset in a pseudo-Riemannian analytic manifold N different
from M .

As an example of a nontrivial punctured covering Euclidean plane, the nonextendability property

is not sufficient for the extendability of local isometries to isometries of the whole manifold. One can
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define a manifold possessing the property of extendability of all local isometries to isometries of the

whole manifold, for example, for metrics whose Lie algebra if Killing vector fields has zero center.

Definition 2. An oriented Riemannian analytic manifold M is said to be quasi-complete if it is

nonextendable and does not admit nontrivial, orientation-preserving Killing vector fields of isometries
ϕ : U → V between open subsets.

Theorem 3. Each Riemannian ball with an analytic metric such that the Lie algebra of all Killing
vector fields on this ball has zero center is contained in a quasi-complete manifold.

The idea of the proof of Theorem 3 is an analytic extension of the initial Riemannian manifold U

to a nonextendable manifold M1 and the subsequent factorization with respect to all local isometries
that preserve orientation and Killing vector fields. A detailed study of quasi-complete manifolds and
the proof of Theorem 3 can be found in [3].

Theorem 4. Each isometry ϕ : U → V between open subsets of quasi-complete manifolds M and N

can be analytically extended to an isometry ϕ : M → N .

The idea of the proof of Theorem 4 is as follows: the nonextendability of the isometry ϕ contradicts
the nonextendability of the manifold N .

Theorem 4 implies that a quasi-complete manifold is unique in the class if locally isometric manifolds.

The term “quasi-complete manifold” can be explained by the fact that a complete manifold whose
Lie algebra of Killing vector fields has no center is also quasi-complete. The proof of Theorem 4 and
other properties of quasi-complete manifolds can be found in [3].

Remark. In the case of a properly Riemannian manifold, Theorem 2 is a consequence of Theorem 4.

This work is a natural continuation of [4].
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