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NEW NONSINGULARITY CONDITIONS FOR GENERAL
MATRICES AND THE ASSOCIATED EIGENVALUE
INCLUSION SETS

L. Yu. Kolotilina∗ UDC 512.643

The paper suggests generalizations of some known sufficient nonsingularity conditions for matrices
with constant principal diagonal and the corresponding eigenvalue inclusion sets to the cases of
arbitrary matrices and matrices with nonzero diagonal entries. Bibliography: 11 titles.

1. In [9], for matrices with constant principal diagonal, Melman suggested new nonsingularity
conditions and the associated eigenvalue inclusion sets, which are unions of specific ovals of
Cassini. Melman’s research has at least two motivations. First, for matrices A = (aij) ∈ C

n×n

with
a11 = · · · = ann = ξ, (1)

the simplest classical Gerschgorin inclusion set ( [3]; also see, e.g., [11, Theorem 1.1])

Γ(A) =
n⋃

i=1

{z ∈ C : |z − aii| ≤ r′i(A)}, (2)

consisting of disks centered at the diagonal matrix entries, as well as the Ostrowski–Brauer
inclusion set ( [1, 10]; also see, e.g., [11, Theorem 2.2])

Δ(A) =
n⋃

i,j=1
i�=j

{
z ∈ C : |z − aii| |z − ajj| ≤ r′i(A) r′j(A)

}
, (3)

consisting of the Cassini ovals with foci at the diagonal matrix entries, both degenerate to the
single disks

{z ∈ C : |z − ξ| ≤ max
1≤i≤n

r′i(A)} (4)

and {
z ∈ C : |z − ξ| ≤ max

1≤i�=j≤n
{r′i(A) r′j(A)}1/2

}
, (5)

respectively.
Here and in what follows, we use the notation

r′i(A) =
n∑

j=1
j �=i

|aij|, ri(A) = r′i(A) + |aii|, i = 1, . . . , n,

i.e., ri(A) and r′i(A) are the ith complete and deleted absolute row sums of A; r′(A) = (r′i(A))
and r(A) = (ri(A)) are the corresponding vectors; c′i(A) = r′i(A

T ), i = 1, . . . , n, are the deleted
absolute column sums of A, and c′(A) = (c′i(A));

SpecA =
n⋃

i=1

λi(A)

is the eigenspectrum of A.
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The second motivation for considering matrices with constant principal diagonal is that this
class of matrices contains the class of Toeplitz matrices. Accordingly, in [9], the general results
were adapted to Toeplitz matrices, for which they are considerably less expensive to compute.

To be specific, we recall that in [9] the following two equivalent general results were estab-
lished.

Theorem 1. If a matrix A = (aij) ∈ C
n×n, n ≥ 2, satisfies condition (1), then

SpecA ⊆ Ω(A) ≡
n⋃

i=1

{
z ∈ C :

∣∣(z − ξ)2 − (B2)ii
∣∣ ≤ r′i(B

2)
}

, (6)

where we denote
A = ξIn − B; (7)

in addition, the following inclusion holds:

Ω(A) ⊆ Δ(A).

Theorem 2. If, under the assumptions of Theorem 1,

|ξ2 − (B2)ii| > r′i(B
2), i = 1, . . . , n, (8)

then A is nonsingular; in addition, the sufficient nonsingularity conditions (8) are weaker than
the Ostrowski–Brauer nonsingularity conditions

|aii| |ajj| > r′i(A) r′j(A), 1 ≤ i �= j ≤ n, (9)

corresponding to the eigenvalue inclusion set Δ(A) (see (3)), which reduce, for A satisfying
(1), to the single inequality

|ξ|2 > max
i�=j

{r′i(A) r′j(A)}. (10)

As was indicated in [9], Theorems 1 and 2 “can be adapted to cases where the diagonal
elements are not constant but clustered around a certain value, provided that the clustering
is tight enough compared to the magnitude of the nondiagonal elements of the matrix.”

In this paper, we provide some generalizations of Theorems 1 and 2 to arbitrary matrices A ∈
C

n×n and to matrices with nonzero diagonal entries. In general, no clustering of the diagonal
matrix entries is assumed. However, we also propose general nonsingularity conditions and
the corresponding eigenvalue inclusion sets, which are best suited for matrices with clustered
diagonal entries.

The paper is organized as follows. In the next section, we generalize Theorems 1 and 2
to arbitrary matrices and, in particular, provide generalizations especially suited for matrices
with clustered diagonal entries. In Sec. 3, a series of generalizations of Theorem 2 to matrices
with nonzero diagonal entries is suggested, and it is shown that the conditions obtained are
weaker than the known conditions of the so-called diagonal dominance of order k, k ≥ 0,
introduced in [5]. The generalizations established in Secs. 2 and 3 are based on imposing
the condition of strict diagonal dominance on some auxiliary matrices, whose nonsingularity
implies the nonsingularity of a given matrix. In Sec. 4, new nonsingularity conditions and
eigenvalue inclusion sets are derived by applying known sufficient nonsingularity conditions,
more complicated than the condition of strict diagonal dominance, to the auxiliary matrices
considered in Secs. 2 and 3. Concluding remarks are presented in Sec. 5.

2. First of all, we will show that for a matrix A with constant principal diagonal, Melman’s
nonsingularity conditions (8) are actually weaker than not only the classical Ostrowski–Brauer
conditions (9) but also their relaxed version, see (11) below, which takes into account the
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zero/nonzero pattern of the entries of A. Consequently, Melman’s inclusion set Ω(A) is con-
tained in a subset Δ′(A), see (17), of the Ostrowski–Brauer set Δ(A). To this end, we recall
the following definition and theorem [5] (also see [4]).

A matrix A ∈ C
n×n, n ≥ 1, is called quasiirreducible if all its diagonal entries that are

irreducible components of order 1 of the matrix A are nonzero. In particular, every matrix
with nonzero diagonal entries obviously is quasiirreducible.

Theorem 3 ( [5]). If a matrix A = (aij) ∈ C
n×n, n ≥ 1, is quasiirreducible and satisfies the

conditions

|aii|α |ajj|1−α > r′i(A)α r′j(A)1−α for all i �= j such that aij �= 0 (11)

for a certain 0 ≤ α ≤ 1, then A is nonsingular.

Now we are ready to show that for a matrix satisfying (1), the nonsingularity conditions (8)
are weaker than conditions (11) with α = 1/2, which, in the case under consideration, read as

|ξ|2 > max
i�=j: aij �=0

{r′i(A) r′j(A)}, (12)

i.e., conditions (8) stem from condition (12).
Indeed, since

ri(B2) = {|B2|e}i ≤ {|B|r′(A)}i =
∑

j �=i: aij �=0

|aij |r′j(A)

≤ r′i(A) max
j �=i: aij �=0

{
r′j(A)

} ≤ max
j �=i: aij �=0

{
r′i(A) r′j(A)

}
,

from (12) it follows that

|ξ|2 > ri(B2) = |(B2)ii| + r′i(B
2), i = 1, . . . , n,

implying that
r′i(B

2) < |ξ|2 − |(B2)ii| ≤
∣∣ξ2 − (B2)ii

∣∣ , i = 1, . . . , n.

Thus, condition (12) is stronger than conditions (8).
Equivalently, Melman’s inclusion set Ω(A) is contained in the disk

{
z ∈ C : |z − ξ| ≤ max

i�=j: aij �=0

{
r′i(A) r′j(A)

}1/2
}

, (13)

corresponding to the nonsingularity condition (12).

Remark 1. If condition (12) is fulfilled, then (see [6]) the matrix A = ξIn−B is a nonsingular
H-matrix, whereas under the weaker conditions (8), as the following simple example demon-
strates, the matrix A is not necessarily an H-matrix. Thus, conditions (8) differ from the
majority of known nonsingularity conditions, which ensure that A is a nonsingular H-matrix.

Example 1. Let

A =
(

0 1
2 0

)
, whence ξ = 0, B2 =

(
2 0
0 2

)
.

Obviously, B2 is a strictly diagonally dominant (sdd) matrix, and conditions (8) are fulfilled.
However, since DA = 0, the matrix A cannot be an H-matrix.

Now let A = (aij) ∈ C
n×n, n ≥ 2, be an arbitrary matrix. We write it as

A = DA − B, where DA = diag (a11, . . . , ann).

Observe that for A to be nonsingular, it is obviously sufficient that the matrix

C(A) ≡ A(DA + B) = D2
A − B2 + (DAB − BDA) (14)
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be nonsingular. (Observe that the matrix DAB − BDA has zero diagonal entries.) Thus, any
condition sufficient for C(A) to be nonsingular is a fortiori sufficient for A to be nonsingular.
In particular, if C(A) is an sdd matrix, i.e.,

|a2ii − (B2)ii| > r′i(B
2 + (BDA − DAB)), i = 1, . . . , n, (15)

then A is nonsingular.
Obviously, in the case where DA = ξIn, we have BDA − DAB = 0, and conditions (15)

reduce to the Melman nonsingularity conditions (8).
Thus, we have obtained the following generalization of Theorem 2 to arbitrary matrices.

Theorem 4. If a matrix A = (aij) = DA − B ∈ C
n×n, n ≥ 2, satisfies conditions (15), then

it is nonsingular.

It is also worth mentioning that conditions (15), involving the additional matrix BDA −
DAB, are not essentially more expensive to check than conditions (8), because, in the general
case, the most expensive part in computing both (8) and (15) is the computation of the entries
of B2.

In terms of the eigenvalue inclusion sets, Theorem 4 can equivalently be stated as follows.

Theorem 5. Let A = (aij) = DA − B ∈ C
n×n, n ≥ 2. Then

SpecA ⊆ Ω′(A) ≡
n⋃

i=1

{
z ∈ C : |(z − aii)2 − (B2)ii| ≤ r′i(B

2 + BDA − DAB)
}

. (16)

Proof. If λ ∈ SpecA, then the matrix A − λIn cannot satisfy (15), whence, for a certain i,
1 ≤ i ≤ n,

|(aii − λ)2 − (B2)ii| ≤ r′i(B
2 + B(DA − λIn) − (DA − λIn)B),

and, in order to complete the proof, it only remains to observe that

r′i(B
2 + B(DA − λIn) − (DA − λIn)B) = r′i(B

2 + BDA − DAB). �
Note that the set Ω′(A), as well as the Melman set Ω(A), is a union of Cassini ovals.
Unfortunately, in the general case, the inclusion

Ω′(A) ⊆ Δ′(A),

where

Δ′(A) ≡
n⋃

i,j=1
i�=j: aij �=0

{
z ∈ C : |z − aii| |z − ajj| ≤ r′i(A) r′j(A)

}
, (17)

which holds, as we have seen, for matrices with constant principal diagonal, is not always valid,
i.e., the conditions (see (11) with α = 1/2)

|aii| |ajj| > r′i(A) r′j(A) for all i �= j such that aij �= 0 (18)

do not necessarily imply that C(A) is an sdd matrix. Moreover, the classical Ostrowski–Brauer
conditions (9) neither imply (15). Indeed, consider the following simplest example, for which
conditions (9) and (18) coincide.

Example 2. Let

A =
(

1 −2
−1 3

)
.

Then conditions (9) and (18) are obviously fulfilled, but the matrix

C(A) =
( −1 −4

2 7

)
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is not diagonally dominant.

Vice versa, as the following example demonstrates, conditions (15) neither imply (18). Thus,
in general, conditions (15) are incomparable with (9) and (18).

Example 3. Let

A =
(

2 −3
−2 2

)
.

Then the matrix

C(A) =
( −2 0

0 −2

)

is strictly diagonally dominant, but A satisfies neither (18) nor (9).

Consider a modification of the above approach, which is as well applicable to arbitrary
matrices, but appears best suited for matrices with clustered diagonal entries, for which

|aii − ξ| ≤ ε, i ∈ S, (19)

where ε ≥ 0 and S is a subset of the index set {1, . . . , n}.
Now, instead of the matrix C(A), defined in (14), we consider the matrix

Cξ(A) ≡ (DA − B)(ξIn + B) = ξDA − B2 + (DA − ξIn)B, (20)

which depends on the scalar parameter ξ. Then, requiring that Cξ(A) be an sdd matrix, we
arrive at the following sufficient nonsingularity conditions for A.

Theorem 6. Let A = (aij) = DA − B ∈ C
n×n, n ≥ 2, and let ξ ∈ C. If the conditions

|ξaii − (B2)ii| > r′i(B
2 − (aii − ξ)B), i = 1, . . . , n, (21)

then A is nonsingular.

Obviously, as ε → 0 in (19), the inequalities in (21) corresponding to i ∈ S tend to the
corresponding inequalities in (8), and Theorem 6 provides an extension of Theorem 2 to
arbitrary matrices, which takes into consideration the clustering of the diagonal entries.

By applying Theorem 6 to the matrix A−λIn, where λ ∈ SpecA, with ξ changed for ξ −λ,
we obtain the corresponding generalization of Theorem 1.

Theorem 7. Let A = (aij) = DA − B ∈ C
n×n, n ≥ 2, and let ξ ∈ C. Then

SpecA ⊆ Ω′′
ξ (A) ≡

n⋃

i=1

{
z ∈ C :

∣∣(z − aii) (z − ξ) − (B2)ii
∣∣ ≤ r′i(B

2 − (aii − ξ)B)
}

. (22)

Proof. We have

Cξ−λ(A − λIn) = (ξ − λ)(DA − λIn) + (DA − ξIn)B − B2.

Since the matrix Cξ−λ(A − λIn) is singular, from Theorem 6 it follows that for a certain i,
1 ≤ i ≤ n, we necessarily have

∣∣(ξ − λ)(aii − λ) − (B2)ii
∣∣ ≤ r′i(B

2 − (aii − ξ)B).

This completes the proof. �
It is clear that the set Ω′′

ξ (A) is a union of Cassini ovals with foci at the roots

z± =
1
2

{
aii + ξ ±

√
(aii − ξ)2 + 4(B2)ii

}

of the quadratic equation

z2 − (aii + ξ)z + aiiξ − (B2)ii = 0.
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Furthermore, the set Ω′′
ξ (A) is obviously contained in the following unions of Cassini ovals with

foci at the diagonal entries of A and the point ξ:

Ω′′
ξ (A) ⊆

n⋃

i=1

{
z ∈ C : |(z − aii) (z − ξ)| ≤ (B2)ii + r′i(B

2 − (aii − ξ)B)
}

⊆
n⋃

i=1

{
z ∈ C : |(z − aii) (z − ξ)| ≤ ri(B2) + |aii − ξ| r′i(B)

}
.

Obviously, Theorem 7 can be strengthened as follows.

Corollary 1. Let A = (aij) = DA − B ∈ C
n×n, n ≥ 2. Then

SpecA ⊆ Ω′′(A) ≡
⋂

ξ∈C
Ω′′

ξ (A).

Corollary 1 is of theoretical interest. In practice, for instance, in the case of matrices whose
diagonal entries are clustered around p values ξ1, . . . , ξp, p ≥ 1, one can apply the following
larger but computable eigenvalue inclusion set:

SpecA ⊆
p⋂

i=1

Ω′′
ξi(A).

3. Now we present a series of alternative generalizations of Melman’s nonsingularity condi-
tions (8), but this time only to matrices A = (aij) = DA − B with nonzero diagonal entries,

aii �= 0, i = 1, . . . , n. (23)

For such matrices, the nonsingularity of A obviously amounts to the nonsingularity of the
Jacobi scaled matrix

Ā ≡ D−1
A A = In − D−1

A B ≡ In − B̄.

Observe that the latter matrix has constant principal diagonal, DĀ = In. By applying Theo-
rem 2 to Ā, we obtain that if

|1 − (B̄2)ii| > r′i(B̄
2), i = 1, . . . , n, (24)

then both matrices A and Ā are nonsingular.
Obviously, if DA = ξIn, ξ �= 0, then conditions (24) are equivalent to Melman’s condi-

tions (8).
Unfortunately, in the case where DA �= ξIn, the inequalities describing the eigenvalue inclu-

sion sets associated with the nonsingularity conditions (24) involve λ in a rather complicated
way, which makes these sets practically useless.

As is readily seen, conditions (24) can be replaced by the single stronger sufficient condition

1 > max
1≤i≤n

ri(B̄2), (25)

from which conditions (24) trivially follow.
Condition (25), in its turn, can be strengthened to the condition

1 > max
1≤i≤n

ri(|B̄|2), (26)

which is less expensive to compute (because r(|B̄|2) can be computed by multiplying |B̄| by
vectors twice) and still weaker than the relaxed Ostrowski–Brauer conditions (18).
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Indeed,

ri(|B̄|2) = (|B̄| r(B̄))i =
∑

j �=i: aij �=0

|aij |
|aii| rj(B̄) ≤ r′i(A)

|aii| max
j �=i: aij �=0

{
r′j(A)
|ajj|

}
,

whence

max
1≤i≤n

ri(|B̄|2) ≤ max
1≤i�=j≤n: aij �=0

r′i(A) r′j(A)
|aii| |ajj| .

Therefore, conditions (18) imply (26), and we have the implications

(18) =⇒ (26) =⇒ (25) =⇒ (24). (27)

The following theorem extends conditions (24) to the case of an arbitrary k ≥ 1.

Theorem 8. If, for a certain k ≥ 1, a matrix A = DA − B ∈ C
n×n, n ≥ 2, with nonzero

diagonal entries satisfies the conditions

|1 − (B̄k)ii| > r′i(B̄
k), i = 1, . . . , n, (28)

then it is nonsingular.

Proof. Define the matrix

C̄(k) = Ā(In + B̄ + · · · + B̄k−1) = In − B̄k, k ≥ 1.

Obviously, for Ā (and also A) to be nonsingular, suffice it that the matrix C̄(k) be nonsingular.
It remains to observe that conditions (28) exactly mean that C̄(k) is an sdd matrix, implying
that it is nonsingular. �

Note that for k = 1 conditions (28) simply require that A be an sdd matrix, whereas for
k = 2 they reduce to (24).

For matrices with constant principal diagonal, DA = ξIn, Theorem 8 implies the following
generalization of Theorem 2.

Corollary 2. If a matrix A = DA − B ∈ C
n×n, n ≥ 2, with DA = ξIn, ξ ∈ C, satisfies the

conditions
|ξk − (Bk)ii| > r′i(B

k), i = 1, . . . , n, (29)
where k ≥ 1, then A is nonsingular.

Proof. Indeed, if ξ �= 0, then A is nonsingular by Theorem 8. Otherwise, we have A = B, and
conditions (29), meaning that Ak = Bk is an sdd matrix, guarantee that A is nonsingular. �

Obviously, conditions (28) can be replaced by the stronger sufficient conditions

1 > max
1≤i≤n

ri(B̄k) (30)

and
1 > max

1≤i≤n
ri(|B̄|k), (31)

which generalize conditions (25) and (26), respectively, to k ≥ 1.
Now we show that condition (31) is weaker than the so-called conditions of strict diagonal

dominance of order k, k ≥ 1, with weight α = 1 (see [5]) for the matrix Ā = In − B̄, which
read as

k∏

j=1

r′ij (A)

|aij ij |
< 1 (32)

for all paths (i1, . . . , ik) in the digraph GA−DA
associated with the matrix A − DA.
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Indeed, for k = 1, we have the equalities

ri(|B̄|) =
r′i(A)
|aii| , i = 1, . . . , n,

whereas for k ≥ 2,

ri(|B̄|k) = (|B̄| · r(|B̄|k−1))i =
∑

i2 �=i: aii2
�=0

|aii2 |
|aii| ri2(|B̄|k−1)

≤ r′i(A)
|aii| max

i2 �=i: aii2
�=0

{
ri2(|B̄|k−1)

}
.

By induction, we readily obtain that

max
1≤i≤n

ri(|B̄|k) ≤ max
i1,...,ik

k∏

j=1

r′ij (A)

|aij ij |
, (33)

where the maximum on the right-hand side is taken over all paths (i1, . . . , ik) in the digraph
GA−DA

.
In view of (33), condition (31) is implied by conditions (32). Furthermore, the row sums

ri(|B̄|k), i = 1, . . . , n, occurring in (31), can be rather inexpensively computed by multiplying
the matrix |B̄| by vectors k times.

Note also that under the strict conditions (32), A is a nonsingular H-matrix (see [6, Theo-
rem 3.2]).

Thus, for k ≥ 1 we have the implication string

(32) =⇒ (31) =⇒ (30) =⇒ (28),

similar to (27).

4. All the nonsingularity conditions presented in the previous sections are based on the
requirement that a certain auxiliary matrix, associated with a given matrix A, must be strictly
diagonally dominant. However, the nonsingularity of an auxiliary matrix can also be ensured
by imposing other sufficient nonsingularity conditions on it, which lead to other eigenvalue
inclusion sets.

Below, we illustrate this approach by applying the classical “mixed” Ostrowski conditions
[10] (also see, e.g., [11, Theorem 1.16]), which are recalled below, and the relaxed Ostrowski–
Brauer conditions (18) to the matrices C(A) and Cξ(A) (see (14) and (20)). This permits
us to generalize the corresponding results obtained in [7] and [8] for matrices with constant
principal diagonal to arbitrary matrices.

Theorem 9. Let A = (aij) ∈ C
n×n, n ≥ 2, and let 0 ≤ α ≤ 1. If

|aii| > [r′i(A)]α [c′i(A)]1−α, i = 1, . . . , n, (34)

then A is nonsingular.

By applying Theorem 9 to the matrix C(A), we immediately obtain the following nonsin-
gularity result, generalizing Theorem 4, which corresponds to the case α = 1 in (34).

Theorem 10. Let A = (aij) = DA − B ∈ C
n×n, n ≥ 2, and let 0 ≤ α ≤ 1. If

|a2ii − (B2)ii| >
[
r′i(B

2 + BDA − DAB)
]α [

c′i(B
2 + BDA − DAB

]1−α
, i = 1, . . . , n, (35)

then A is nonsingular.
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Note that Theorem 10 generalizes Theorem 2.2 in [7] to arbitrary matrices and reduces to
the latter for matrices with constant principal diagonal.

The counterpart of Theorem 10 in terms of the eigenvalue inclusion set is the following
generalization of Theorem 5 in this paper. Simultaneously, it generalizes Theorem 2.5 in [7],
which is stated for matrices with constant principal diagonal, to the general case.

Theorem 11. Let A = (aij) = DA − B ∈ C
n×n, n ≥ 2. Then

SpecA ⊆
⋂

0≤α≤1

n⋃

i=1

{
z ∈ C : |(z − aii)2 − (B2)ii|

≤ [
r′i(B

2 + BDA − DAB)
]α [

c′i(B
2 + BDA − DAB)

]1−α
}

.

(36)

By applying Theorem 9 to the matrix Cξ(A), we obtain the following generalization of
Theorem 6.

Theorem 12. Let A = (aij) = DA − B ∈ C
n×n, n ≥ 2, let 0 ≤ α ≤ 1, and let ξ ∈ C. If

|ξaii − (B2)ii| >
[
r′i(B

2 − (aii − ξ)B)
]α [

c′i(B
2 − (aii − ξ)B)

]1−α
, i = 1, . . . , n, (37)

then A is nonsingular.

The corresponding generalizations of Theorem 7 and Corollary 1 are as follows.

Theorem 13. Let A = (aij) = DA − B ∈ C
n×n, n ≥ 2, and let ξ ∈ C. Then

SpecA ⊆
⋂

0≤α≤1

n⋃

i=1

{
z ∈ C : |(z − aii)(z − ξ) − (B2)ii|

≤ [
r′i(B

2 − (aii − ξ)B)
]α [

c′i(B
2 − (aii − ξ)B)

]1−α
}

. (38)

Corollary 3. Let A = (aij) = DA − B ∈ C
n×n, n ≥ 2. Then

SpecA ⊆
⋂

ξ∈C

⋂

0≤α≤1

n⋃

i=1

{
z ∈ C : |(z − aii)(z − ξ) − (B2)ii|

≤ [
r′i(B

2 − (aii − ξ)B)
]α [

c′i(B
2 − (aii − ξ)B)

]1−α
}

. (39)

It should be indicated that the eigenvalue inclusion sets for the matrix A occurring in
Theorems 11 and 13, whose definitions involve the intersection over α, are not of theoreti-
cal interest only because they can alternatively be defined in such a way that they become
practically computable, see [2, 7].

In a similar way, applying the nonsingularity conditions (18) to the matrices C(A) and
Cξ(A), we come to the following strengthenings of Theorems 4–7.

Theorem 14. Let A = (aij) = DA − B ∈ C
n×n, n ≥ 1. If

|a2ii − (B2)ii| |a2jj − (B2)jj| > r′i(B
2 + BDA − DAB) r′j(B

2 + BDA − DAB)

for all i �= j such that (B2)ij + aijajj − aiiaij �= 0, (40)
then A is nonsingular.

Theorem 15. Let A = (aij) = DA − B ∈ C
n×n, n ≥ 1, and let ξ ∈ C. If

|ξaii − (B2)ii| |ξajj − (B2)jj| > r′i(B
2 − (aii − ξ)B) r′j(B

2 − (ajj − ξ)B)

for all i �= j such that (B2)ij + (aii − ξ)aij �= 0, (41)
then A is nonsingular.
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The eigenvalue inclusion counterparts of Theorems 14 and 15 are presented below.

Theorem 16. Let A = (aij) = DA − B ∈ C
n×n, n ≥ 2. Then

SpecA ⊆
⋃

i�=j:
(B2)ij+aijajj−aiiaij �=0

{
z ∈ C : |(z − aii)2 − (B2)ii| |(z − ajj)2 − (B2)jj|

≤ r′i(B
2 + BDA − DAB) r′j(B

2 + BDA − DAB)
}

. (42)

Theorem 17. Let A = (aij) = DA − B ∈ C
n×n, n ≥ 2, and let ξ ∈ C. Then

SpecA ⊆
⋃

i�=j:
(B2)ij+aijajj−aiiaij �=0

{
z ∈ C : |(z − aii)(z − ξ) − (B2)ii| |(z − ajj)(z − ξ) − (B2)jj|

≤ r′i(B
2 − (aii − ξ)B) r′j(B

2 − (ajj − ξ)B)
}

. (43)

Corollary 4. Let A = (aij) = DA − B ∈ C
n×n, n ≥ 2. Then

SpecA ⊆
⋂

ξ∈C

⋃

i�=j:
(B2)ij+(aii−ξ)aij �=0

{
z ∈ C : |(z − aii)(z − ξ) − (B2)ii| |(z − ajj)(z − ξ) − (B2)jj |

≤ r′i(B
2 − (aii − ξ)B) r′j(B

2 − (ajj − ξ)B)
}

. (44)

Note that in the case of matrices with constant principal diagonal, Theorems 14, 15 and 16,
17 improve (by taking into account the matrix sparsity pattern) Lemma 2.1 and Theorem 2.2
in [8].

Statement of the nonsingularity conditions resulting from application of Theorem 9 and
conditions (18) to the matrices C̄(k) = In − B̄k, k ≥ 1, is left to the reader.

5. In this paper, we have suggested a general approach, which enables one to obtain nonsingu-
larity conditions and eigenvalue inclusion sets for a given matrix A. This approach is based on
imposing known nonsingularity conditions (in particular, the simplest condition of strict diag-
onal dominance) on some auxiliary matrices, whose nonsingularity implies the nonsingularity
of A. In this way, a number of new sufficient nonsingularity conditions and the associated
eigenvalue inclusion sets are obtained.

The results presented generalize recent results on the nonsingularity and eigenvalue inclusion
sets for matrices with constant principal diagonal, established in [7–9], to arbitrary matrices
and matrices with nonzero diagonal entries.

Obviously, the approach developed can readily be used in conjunction with other known
nonsingularity conditions, which will result in new nonsingularity conditions and eigenvalue
inclusion sets for matrices.

Translated by L. Yu. Kolotilina.
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