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CHARACTERIZATION OF γ-SUBGAUSSIAN RANDOM ELEMENTS
IN A BANACH SPACE

V. Kvaratskhelia, V. Tarieladze, and N. Vakhania UDC 519.2

Abstract. We give a characterization of weakly subgaussian random elements that are γ-subgaussian

in infinite-dimensional Banach and Hilbert spaces.

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
2. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

1. Introduction

To formulate our result, we need a brief preparation.

Lemma 1.1. For a real valued random variable ξ, the following statements are equivalent :

(i) ξ is a centered Gaussian variable;
(ii) there exists a ≥ 0 such that

E etξ = e
1
2
t2a2 ∀t ∈ R. (1.1)

Moreover, if (1.1) holds for some a ≥ 0, then E ξ = 0, (E ξ2)
1
2 = a, and

E eεξ
2
=

1√
1− 2a2ε

< ∞ ∀ε ∈ ]
0, 1/2a2

[
.

In what follows, we consider Banach and Hilbert spaces over the field R of real numbers. For a
Banach space X, we write X∗ for the dual space of X.

Every considered random element with values in a Banach space is assumed to have a separable
range.

A random element ξ with values in a Banach space X is said to be centered Gaussian if for every

x∗ ∈ X∗ the random variable 〈x∗, ξ〉 is centered Gaussian.
A random element ξ with values in a Banach space X is said to be γ-subgaussian (cf. [6] and [3,

Remark 1.4]; see also [8]) if there exists a centered Gaussian random element η with values in X such

that

E e〈x
∗,ξ〉 ≤ E e〈x

∗,η〉 ∀x∗ ∈ X∗.
In the case where X = R, the notion of a γ-subgaussian random element in R coincides with the
notion of a subgaussian random variable introduced in [5].

Lemma 1.2 (see [1]). For a real valued random variable ξ, the following statements are equivalent :

(i) ξ is subgaussian;
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(ii) there exists a ≥ 0 such that

E etξ ≤ e
1
2
t2a2 ∀t ∈ R. (1.2)

Moreover, if (1.2) holds for some a ≥ 0, then necessarily

E ξ = 0, (E ξ2)
1
2 ≤ a.

Taking into account Lemma 1.2, to each real-valued subgaussian random variable ξ we can associated
a quantity τ(ξ) defined by the equality

τ(ξ) := inf
{
a ≥ 0 : E etξ ≤ e

1
2
t2a2 ∀t ∈ R

}
,

which is called the Gaussian deviation (“écart de Gauss,” see [5]) or the Gaussian standard (see [1])
of ξ.

Lemma 1.3 (see [2, 5]; see also [8, Proposition 2.1 and Corollary 2.1]). For a real-valued random vari-
able ξ the following statements are equivalent :

(i) ξ is subgaussian;
(ii) there exists ε > 0 such that

E eεξ
2
< ∞, E ξ = 0.

Moreover, if (i) holds, then

E eεξ
2 ≤ 1

√
1− 2ετ2(ξ)

< ∞ ∀ε ∈
]
0,

1

2τ2(ξ)

[

and

(E ξp)
1
p ≤ βpτ(ξ) ∀p ∈ ]0,∞[ ,

where

βp =

⎧
⎨

⎩

1 if p ∈ ]0, 2],

21/p
(p
e

)1/2
if p ∈ ]2,∞[.

A random element ξ with values in a Banach space X is said to be weakly subgaussian (see [8]) if
for every x∗ ∈ X∗ the random variable 〈x∗, ξ〉 is subgaussian.

In what follows, we denote by H an infinite-dimensional separable Hilbert space with the inner
product 〈·, ·〉.
Definition 1.4 (see [3, Definition 2.1]). Let e := {en, n ∈ N} be an orthonormal basis of H. A

random element ξ with values in H is subgaussian with respect to e if the following conditions hold:

(i) for every x ∈ H, the real-valued random variable 〈x, ξ〉 is subgaussian (i.e., if ξ is weakly
subgaussian);

(ii)
∞∑

n=1
τ2(〈en, ξ〉) < ∞.

We have the following complement to Definition 1.4:

Proposition 1.5. Let e := {en, n ∈ N} be an orthonormal basis of H. For a random element ξ with

values in H the following statements are equivalent :

(i) ξ is subgaussian with respect to e;
(ii) for every n ∈ N, the real-valued random variable 〈en, ξ〉 is subgaussian and

∞∑

n=1

τ2
(〈en, ξ〉

)
< ∞.
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IfX is a finite-dimensional Banach space, then weakly subgaussian random elements are γ-subgaussian

(see [8, Proposition 4.4]). In each infinite-dimensional Banach space, there exists a weakly subgaussian
random element that is not γ-subgaussian (see [8, Theorem 4.4]). By using the terminology of Defini-
tion 1.4, we give the following characterization of weakly subgaussian random elements in a separable
Hilbert space that are γ-subgaussian.

Theorem 1.6. For a random element ξ with values in H the following statements are equivalent :

(i) ξ is γ-subgaussian;
(ii) for every orthonormal basis e := {en, n ∈ N} of H, the random element ξ is subgaussian with

respect to e.

Let SG be the set of all real-valued subgaussian random variables defined on a fixed probability
space. It is known that SG with respect to the natural pointwise operations is a vector space over R
and if we identify the random variables that coincide a.s., then (SG, τ(·)) is a Banach space (see [1, 2]).

For a weakly subgaussian random element ξ in a Banach space X, let Tξ : X
∗ → SG be the induced

operator, which sends each x∗ ∈ X∗ to the element 〈x∗, ξ〉 ∈ SG (see [8, Proposition 4.2]).
Theorem 1.6 can be deduced from the following statement containing a characterization of weakly

subgaussian random elements that are γ-subgaussian in the case of a reflexive type-2 Banach space.

Theorem 1.7. For a random element ξ with values in a Banach space X consider the assertions:

(i) ξ is γ-subgaussian;
(ii) Tξ : X

∗ → SG is a 2-summing operator.

Then (i) =⇒ (ii). The implication (ii) =⇒ (i) is also valid under the condition that X is a reflexive
type-2 space.

Remark 1.8. We do not know whether the implication (ii) =⇒ (i) of Theorem 1.7 remains valid for
a reflexive separable Banach space X that is not a type-2 space.

2. Proofs

Proof of Proposition 1.5. The implication (i) =⇒ (ii) is obvious.
(ii) =⇒ (i). Fix x ∈ H. We need to show only that the real valued random variable 〈x, ξ〉 is

subgaussian. Clearly,

〈x, ξ〉 =
∞∑

k=1

〈x, ek〉〈ek, ξ〉. (2.1)

We also have
∞∑

k=1

τ
(〈x, ek〉〈ek, ξ〉

)
=

∞∑

k=1

∣
∣〈x, ek〉

∣
∣τ
(〈ek, ξ〉

) ≤
( ∞∑

k=1

〈x, ek〉2
) 1

2
( ∞∑

k=1

τ2
(〈ek, ξ〉

)) 1
2
< ∞.

So,
∞∑

k=1

τ
(〈x, ek〉〈ek, ξ〉

)
< ∞. (2.2)

From (2.2), since (SG, τ(·)) is a Banach space, it follows that the series
∑

k

〈x, ek〉〈ek, ξ〉 converges in

(SG, τ(·)) to the sum ξx ∈ SG. From this and (2.1) we see that 〈x, ξ〉 = ξx a.s. Hence, 〈x, ξ〉 ∈ SG.
Proof of Theorem 1.7. (i) =⇒ (ii). Since ξ is γ-subgaussian, there exists a centered Gaussian random
element η with values in X such that

E e〈x
∗,ξ〉 ≤ E e〈x

∗,η〉 ∀x∗ ∈ X∗.
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From this inequality we obtain

τ(Tξx
∗) ≤ τ(Tηx

∗) = ‖Tηx
∗‖2 ∀x∗ ∈ X∗. (2.3)

Since η is a centered Gaussian random element, it follows that Tη as an operator from X∗ into L2 is
2-summing. From this and (2.3) we get that Tξ as an operator from X∗ into SG is also 2-summing.

Assume that X is a reflexive type-2 space and show that under this assumption (ii) =⇒ (i). Since

Tξ : X∗ → SG is a 2-summing operator and X is reflexive, by Pietsch’s domination theorem (see [9,
Theorem 2.2.2] and [9, Exercise 5]) on the closed unit ball BX of X we can find a finite positive Radon
measure ν such that

τ2(Tξx
∗) ≤

∫

BX

〈x∗, x〉2 dν(x) ∀x∗ ∈ X∗. (2.4)

Since X is of type 2 space, by [4, Theorem 3.5] we can find a centered Gaussian random element η

with values in X such that ∫

BX

〈x∗, x〉2 dν(x) = E〈x∗, η〉2 ∀x∗ ∈ X∗. (2.5)

From (2.4) and (2.5) we obtain

E e〈x
∗,ξ〉 ≤ e

1
2
τ2(〈x∗,ξ〉) = e

1
2
τ2(Tξx

∗) ≤ e
1
2
E〈x∗,η〉2 = E e〈x

∗,η〉 ∀x∗ ∈ X∗.

Consequently ξ is a γ-subgaussian random element in X.

Proof of Theorem 1.6. The implication (i) =⇒ (ii) follows easily from the similar implication of The-
orem 1.7.

(ii) =⇒ (i). The condition (ii) implies that the induced operator Tξ : H → SG has the following

property:
∞∑

n=1

τ2(Tξen) < ∞

for every orthonormal basis e := {en, n ∈ N} of H. This property by Slowikowski’s theorem (see [7])
implies that Tξ : H → SG is a 2-summing operator. From this, since H is of type 2 and reflexive, by

the implication (ii) =⇒ (i) of Theorem 1.7, we see that ξ is a γ-subgaussian random element in H.
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