CHARACTERIZATION OF $\gamma\text{-}\mathrm{SUBGAUSSIAN}$ RANDOM ELEMENTS IN A BANACH SPACE

V. Kvaratskhelia, V. Tarieladze, and N. Vakhania UDC 519.2

ABSTRACT. We give a characterization of weakly subgaussian random elements that are γ -subgaussian in infinite-dimensional Banach and Hilbert spaces.

CONTENTS

1.	Introduction	564
2.	Proofs	566
	References	567

1. Introduction

To formulate our result, we need a brief preparation.

Lemma 1.1. For a real valued random variable ξ , the following statements are equivalent:

- (i) ξ is a centered Gaussian variable;
- (ii) there exists $a \ge 0$ such that

$$\mathbf{E} e^{t\xi} = e^{\frac{1}{2}t^2 a^2} \quad \forall t \in \mathbb{R}.$$
(1.1)

Moreover, if (1.1) holds for some $a \ge 0$, then $\mathbf{E}\xi = 0$, $(\mathbf{E}\xi^2)^{\frac{1}{2}} = a$, and

$$\mathbf{E} e^{\varepsilon \xi^2} = \frac{1}{\sqrt{1 - 2a^2 \varepsilon}} < \infty \quad \forall \varepsilon \in \left] 0, 1/2a^2 \right[.$$

In what follows, we consider Banach and Hilbert spaces over the field \mathbb{R} of real numbers. For a Banach space X, we write X^* for the dual space of X.

Every considered random element with values in a Banach space is assumed to have a separable range.

A random element ξ with values in a Banach space X is said to be *centered Gaussian* if for every $x^* \in X^*$ the random variable $\langle x^*, \xi \rangle$ is centered Gaussian.

A random element ξ with values in a Banach space X is said to be γ -subgaussian (cf. [6] and [3, Remark 1.4]; see also [8]) if there exists a centered Gaussian random element η with values in X such that

$$\mathbf{E} \, e^{\langle x^*, \xi \rangle} \leq \mathbf{E} \, e^{\langle x^*, \eta
angle} \quad orall x^* \in X^*,$$

In the case where $X = \mathbb{R}$, the notion of a γ -subgaussian random element in \mathbb{R} coincides with the notion of a subgaussian random variable introduced in [5].

Lemma 1.2 (see [1]). For a real valued random variable ξ , the following statements are equivalent: (i) ξ is subqaussian;

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 94, Proceedings of the International Conference "Lie Groups, Differential Equations, and Geometry," June 10–22, 2013, Batumi, Georgia, Part 1, 2014.

(ii) there exists $a \ge 0$ such that

$$\mathbf{E} e^{t\xi} \le e^{\frac{1}{2}t^2 a^2} \quad \forall t \in \mathbb{R}.$$
(1.2)

Moreover, if (1.2) holds for some $a \ge 0$, then necessarily

$$\mathbf{E}\,\xi = 0, \quad (\mathbf{E}\,\xi^2)^{\frac{1}{2}} \le a.$$

Taking into account Lemma 1.2, to each real-valued subgaussian random variable ξ we can associated a quantity $\tau(\xi)$ defined by the equality

$$\tau(\xi) := \inf \left\{ a \ge 0 : \mathbf{E} e^{t\xi} \le e^{\frac{1}{2}t^2 a^2} \ \forall t \in \mathbb{R} \right\},\$$

which is called the *Gaussian deviation* ("écart de Gauss," see [5]) or the *Gaussian standard* (see [1]) of ξ .

Lemma 1.3 (see [2, 5]; see also [8, Proposition 2.1 and Corollary 2.1]). For a real-valued random variable ξ the following statements are equivalent:

- (i) ξ is subgaussian;
- (ii) there exists $\varepsilon > 0$ such that

$$\mathbf{E}\,e^{\varepsilon\xi^2} < \infty, \quad \mathbf{E}\,\xi = 0.$$

Moreover, if (i) holds, then

$$\mathbf{E} \, e^{\varepsilon \xi^2} \leq \frac{1}{\sqrt{1 - 2\varepsilon \tau^2(\xi)}} < \infty \quad \forall \varepsilon \in \left[0, \frac{1}{2\tau^2(\xi)} \right]$$

and

$$\left(\mathbf{E}\,\xi^p\right)^{\frac{1}{p}} \le \beta_p \tau(\xi) \quad \forall p \in \left]0, \infty\right[,$$

where

$$\beta_p = \begin{cases} 1 & \text{if } p \in [0, 2], \\ 2^{1/p} \left(\frac{p}{e}\right)^{1/2} & \text{if } p \in [2, \infty[.$$

A random element ξ with values in a Banach space X is said to be *weakly subgaussian* (see [8]) if for every $x^* \in X^*$ the random variable $\langle x^*, \xi \rangle$ is subgaussian.

In what follows, we denote by H an infinite-dimensional separable Hilbert space with the inner product $\langle \cdot, \cdot \rangle$.

Definition 1.4 (see [3, Definition 2.1]). Let $e := \{e_n, n \in \mathbb{N}\}$ be an orthonormal basis of H. A random element ξ with values in H is subgaussian with respect to e if the following conditions hold:

- (i) for every $x \in H$, the real-valued random variable $\langle x, \xi \rangle$ is subgaussian (i.e., if ξ is weakly subgaussian);
- (ii) $\sum_{n=1}^{\infty} \tau^2(\langle e_n, \xi \rangle) < \infty.$

We have the following complement to Definition 1.4:

Proposition 1.5. Let $e := \{e_n, n \in \mathbb{N}\}$ be an orthonormal basis of H. For a random element ξ with values in H the following statements are equivalent:

- (i) ξ is subgaussian with respect to e;
- (ii) for every $n \in \mathbb{N}$, the real-valued random variable $\langle e_n, \xi \rangle$ is subgaussian and

$$\sum_{n=1}^{\infty} \tau^2 \big(\langle e_n, \xi \rangle \big) < \infty.$$

If X is a finite-dimensional Banach space, then weakly subgaussian random elements are γ -subgaussian (see [8, Proposition 4.4]). In each infinite-dimensional Banach space, there exists a weakly subgaussian random element that is not γ -subgaussian (see [8, Theorem 4.4]). By using the terminology of Definition 1.4, we give the following characterization of weakly subgaussian random elements in a separable Hilbert space that are γ -subgaussian.

Theorem 1.6. For a random element ξ with values in H the following statements are equivalent:

- (i) ξ is γ -subgaussian;
- (ii) for every orthonormal basis $e := \{e_n, n \in \mathbb{N}\}$ of H, the random element ξ is subgaussian with respect to e.

Let SG be the set of all real-valued subgaussian random variables defined on a fixed probability space. It is known that SG with respect to the natural pointwise operations is a vector space over \mathbb{R} and if we identify the random variables that coincide a.s., then $(SG, \tau(\cdot))$ is a Banach space (see [1, 2]).

For a weakly subgaussian random element ξ in a Banach space X, let $T_{\xi} : X^* \to S\mathcal{G}$ be the *induced* operator, which sends each $x^* \in X^*$ to the element $\langle x^*, \xi \rangle \in S\mathcal{G}$ (see [8, Proposition 4.2]).

Theorem 1.6 can be deduced from the following statement containing a characterization of weakly subgaussian random elements that are γ -subgaussian in the case of a reflexive type-2 Banach space.

Theorem 1.7. For a random element ξ with values in a Banach space X consider the assertions:

(i) ξ is γ -subgaussian;

(ii) $T_{\xi}: X^* \to S\mathcal{G}$ is a 2-summing operator.

Then (i) \implies (ii). The implication (ii) \implies (i) is also valid under the condition that X is a reflexive type-2 space.

Remark 1.8. We do not know whether the implication (ii) \implies (i) of Theorem 1.7 remains valid for a reflexive separable Banach space X that is not a type-2 space.

2. Proofs

Proof of Proposition 1.5. The implication (i) \implies (ii) is obvious.

(ii) \implies (i). Fix $x \in H$. We need to show only that the real valued random variable $\langle x, \xi \rangle$ is subgaussian. Clearly,

$$\langle x,\xi\rangle = \sum_{k=1}^{\infty} \langle x,e_k\rangle \langle e_k,\xi\rangle.$$
(2.1)

We also have

$$\sum_{k=1}^{\infty} \tau(\langle x, e_k \rangle \langle e_k, \xi \rangle) = \sum_{k=1}^{\infty} |\langle x, e_k \rangle | \tau(\langle e_k, \xi \rangle) \le \left(\sum_{k=1}^{\infty} \langle x, e_k \rangle^2\right)^{\frac{1}{2}} \left(\sum_{k=1}^{\infty} \tau^2(\langle e_k, \xi \rangle)\right)^{\frac{1}{2}} < \infty.$$

So,

$$\sum_{k=1}^{\infty} \tau \left(\langle x, e_k \rangle \langle e_k, \xi \rangle \right) < \infty.$$
(2.2)

From (2.2), since $(\mathcal{SG}, \tau(\cdot))$ is a Banach space, it follows that the series $\sum_{k} \langle x, e_k \rangle \langle e_k, \xi \rangle$ converges in $(\mathcal{SG}, \tau(\cdot))$ to the sum $\xi_x \in \mathcal{SG}$. From this and (2.1) we see that $\langle x, \xi \rangle = \xi_x$ a.s. Hence, $\langle x, \xi \rangle \in \mathcal{SG}$. \Box *Proof of Theorem* 1.7. (i) \Longrightarrow (ii). Since ξ is γ -subgaussian, there exists a centered Gaussian random element η with values in X such that

$$\mathbf{E} \, e^{\langle x^*, \xi \rangle} \leq \mathbf{E} \, e^{\langle x^*, \eta \rangle} \quad \forall x^* \in X^*.$$

566

From this inequality we obtain

$$\tau(T_{\xi}x^*) \le \tau(T_{\eta}x^*) = \|T_{\eta}x^*\|_2 \quad \forall x^* \in X^*.$$
(2.3)

Since η is a centered Gaussian random element, it follows that T_{η} as an operator from X^* into L_2 is 2-summing. From this and (2.3) we get that T_{ξ} as an operator from X^* into $S\mathcal{G}$ is also 2-summing.

Assume that X is a reflexive type-2 space and show that under this assumption (ii) \implies (i). Since $T_{\xi}: X^* \to S\mathcal{G}$ is a 2-summing operator and X is reflexive, by Pietsch's domination theorem (see [9, Theorem 2.2.2] and [9, Exercise 5]) on the closed unit ball B_X of X we can find a finite positive Radon measure ν such that

$$\tau^2(T_{\xi}x^*) \le \int\limits_{B_X} \langle x^*, x \rangle^2 \, d\nu(x) \quad \forall x^* \in X^*.$$
(2.4)

Since X is of type 2 space, by [4, Theorem 3.5] we can find a centered Gaussian random element η with values in X such that

$$\int_{B_X} \langle x^*, x \rangle^2 \, d\nu(x) = \mathbf{E} \langle x^*, \eta \rangle^2 \quad \forall x^* \in X^*.$$
(2.5)

From (2.4) and (2.5) we obtain

$$\mathbf{E} \, e^{\langle x^*, \xi \rangle} \le e^{\frac{1}{2} \, \tau^2 (\langle x^*, \xi \rangle)} = e^{\frac{1}{2} \, \tau^2 (T_{\xi} x^*)} \le e^{\frac{1}{2} \, \mathbf{E} \langle x^*, \eta \rangle^2} = \mathbf{E} \, e^{\langle x^*, \eta \rangle} \quad \forall x^* \in X^*.$$

Consequently ξ is a γ -subgaussian random element in X.

Proof of Theorem 1.6. The implication (i) \implies (ii) follows easily from the similar implication of Theorem 1.7.

(ii) \implies (i). The condition (ii) implies that the induced operator $T_{\xi} : H \to S\mathcal{G}$ has the following property:

$$\sum_{n=1}^{\infty} \tau^2(T_{\xi} e_n) < \infty$$

for every orthonormal basis $e := \{e_n, n \in \mathbb{N}\}$ of H. This property by Slowikowski's theorem (see [7]) implies that $T_{\xi} : H \to S\mathcal{G}$ is a 2-summing operator. From this, since H is of type 2 and reflexive, by the implication (ii) \Longrightarrow (i) of Theorem 1.7, we see that ξ is a γ -subgaussian random element in H. \Box

Acknowledgment. This work was partially supported by the FP7–IRSES grant No. 317721 of the European Commission.

REFERENCES

- V. V. Buldygin and Yu. V. Kozachenko, "Sub-Gaussian random variables," Ukr. Mat. Zh., 32, 723–730 (1980).
- 2. V. V. Buldygin and Yu. V. Kozachenko, "Metric characteristics of random variables and processes," in: *Trans. Math. Monogr.*, **188**, Am. Math. Soc., Providence, Rhode Island (2000).
- R. Giuliano Antonini, "Sub-Gaussian random variables in Hilbert spaces," Rend. Sem. Mat. Univ. Padova, 98, 89–99 (1997).
- 4. J. Hoffmann-Jørgensen and G. Pisier, "The law of large numbers and the central limit theorem in Banach spaces," Ann. Probab., 4, No. 4, 587–599 (1976).
- J.-P. Kahane, "Propriétés locales des fonctions à séries de Fourier aléatoires," Stud. Math., 19, 1–25 (1960).
- 6. M. Talagrand, "Regularity of Gaussian processes," Acta Math., 159, Nos. 1-2, 99–149 (1987).
- N. D. Tien, V. I. Tarieladze, and R. Vidal, "On summing and related operators acting from a Hilbert space," Bull. Polish Acad. Sci. Math., 46, No. 4, 365–375 (1998).

- 8. N. N. Vakhania, V. V. Kvaratskhelia, and V. I. Tarieladze, "Weakly sub-Gaussian random elements in Banach spaces," *Ukr. Mat. Zh.*, **57**, No. 9, 1187–1208 (2005).
- 9. N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan, *Probability Distributions on Banach Spaces*, Math. Appl., Soviet Ser., **14**, Dordrecht (1987).
- V. Kvaratskhelia

N. Muskhelishvili Institute of Computational Mathematics, Tbilisi, Georgia; Sukhumi State University, Sukhumi, Georgia

- E-mail: v_kvaratskhelia@yahoo.com
- V. Tarieladze

N. Muskhelishvili Institute of Computational Mathematics, Tbilisi, Georgia

E-mail: vajatarieladze@yahoo.com

N. Vakhania

N. Muskhelishvili Institute of Computational Mathematics, Tbilisi, Georgia E-mail: nikovakhania@yahoo.com