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FUNCTIONAL DIFFERENTIAL PARABOLIC EQUATIONS:
INTEGRAL TRANSFORMATIONS AND QUALITATIVE PROPERTIES
OF SOLUTIONS OF THE CAUCHY PROBLEM

A. B. Muravnik UDC 517.9

ABSTRACT. In this monograph, we examine the Cauchy problem for second-order parabolic functional
differential equations containing, in addition to differential operators, translation (generalized trans-
lation) operators acting with respect to spatial variables. The specified problems have important
applications, such as the multilayer plates and envelopes theory, the diffusion processes theory, includ-
ing biomathematical applications, models of nonlinear optics, etc. The main concern of the present
work is the long-time behavior of solutions of studied problems.
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INTRODUCTION

We examine the Cauchy problem for second-order parabolic functional differential equations contain-
ing, in addition to differential operators, translation (generalized translation) operators acting with
respect to spatial variables. The investigation of such nonlocal problems was started in the classical
works of Tamarkin, Picone, and Carleman. Further development of the theory of functional differen-
tial (in particular, differential-difference) equations refers to Myshkis. Nowadays, this theory is deeply
and actively developed by various mathematicians (see monographs [1, 28, 102] and the references
therein as well as the series of papers [111-116, 119] devoted to functional differential equations in
Banach spaces). The general theory of elliptic and parabolic functional differential equations (solv-
ability, smoothness of generalized solutions, spectral properties of operators) was developed in [11, 12,
17, 18, 30, 39, 82-84, 97-107, 118, 123].

The specified problems have important applications, such as the multilayer plates and envelopes
theory (see [81, 102]), the diffusion processes theory, including biomathematical applications (see [100,
117, 123]), models of nonlinear optics (see [91, 103, 104, 109, 120-122]), etc.

The main concern of the present work is the long-time behavior of solutions of studied problems.
Recall that a stabilization of solutions frequently takes place for parabolic problems. This phenomenon
(found by Petrovskii and Tikhonov in the first half of the 20 century) is the existence of a finite limit
(in any sense) of the solution as ¢t — co. A well-known example is the necessary and sufficient condition
of the (pointwise) stabilization of the Cauchy problem solution for the heat equation with a bounded
initial-value function: the specified solution tends to a constant if and only if the limit

1
li d
o mes{|z| < r} / uo(x)dz

lz|<r

exists and is equal to the same constant. This condition is obtained in [95] (see also [96]). Further,
the stabilization theory for parabolic equations was developed in [4-6, 9, 10, 19-27, 49, 69, 85, 86,
92-94, 124-129] and many other papers of various authors.

The stabilization of solutions also occurs in the elliptic theory. In particular, it takes place for the
Dirichlet problem in subspaces (see [7, 8, 61, 77]): the direction of the stabilization is orthogonal to
the boundary hyperplane, and the necessary and sufficient condition of the stabilization coincides with
the classical condition from [95]. Thus, the behavior of the solution of the specified elliptic equation
is similar to the behavior of solutions of parabolic equations. However, the complete coincidence does
not take place: unlike the parabolic case, the fundamental solution decreases as a power.

At the moment, the classical stabilization theory can be regarded, in general, as complete: the
research interest transits to nonclassical parabolic problems. This refers to the present work as well:
it is devoted to functional differential parabolic equations.

Apart from regular equations (i.e., equations such that their coefficients have no singularities), we
study singular functional differential parabolic equations containing the Bessel operator

1 0 RO\ 0? k 0
yk oy (y 8y> o "y oy

with positive parameter k acting with respect to one or several spatial variables.
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Singularities of the above type arise models of mathematical physics such that the characteristic of
the media (e.g., diffusion characteristics or heat—conductivity characteristics) have degenerate power-
like heterogeneities.

Function-theory methods necessary for the investigation of such singularities and the general theory
of the specified singular equations are developed in [34] (see also [31-33, 35]). A thorough investigation
of parabolic equations containing the Bessel operator is given in [36-38, 4245, 47] (see also references
therein). Necessary and sufficient conditions of the stabilization of solutions of the specified singular
parabolic equations are found in [48, 60, 64].

In the present work, we examine (apart from the Bessel operator) the general translation operator
introduced and investigated in [41]. Thus, the functional differential equations studied are not only
differential-difference ones, but are integrodifferential as well.

The work consists of the current introduction and four chapters.

In the first chapter, we use equations such that only low-order (more exactly, zero-order) terms
are nonlocal. It is known that such terms characterize dissipation properties of the described process,
and they become nonlocal once the dissipation delays. The case of the anisotropic media is the most
interesting: the diffusion process is multidimensional and the delay is different for different directions
(see, e.g., [100, 123]). Also, nonlocal terms of the above type arise in mathematical models of nonlinear
optical systems with two-dimensional feedback, used, e.g., in contemporary computer technologies and
in the study of laser bundles (see, e.g., [91, 103, 104, 120-122]).

The main result of Chap. 1 is Theorem 1.5.1 on the classical unique solvability of the Cauchy problem
and Theorem 1.6.1 on the generalized weight asymptotic closeness of the investigated solution and the
Cauchy problem solution with a transformed initial-value function for the heat equation; the latter
theorem implies corollaries about the (pointwise) stabilization.

Note that the existence of generalized (in various senses) solutions of the specified problem was
proved much earlier (see, e.g., [15, 16, 89, 90]), but stabilization theorems treat the solution behavior
on low-dimensional manifolds (including one-dimensional ones), while the existence of a trace on such
a manifold is not guaranteed even for strong solutions. Classical solutions, i.e., solutions possessing
all derivatives (included to the equation) in the classical sense, satisfying the equation at any point of
the half-space R"™x (0, 4+00), and satisfying the initial-value condition (in the sense of one-sided limits
as t — +0) for any x from R", possess the required properties; that is why its existence and integral
representation are considered quite thoroughly (Secs. 1.1-1.4).

The proven weight asymptotic closeness of solutions is understood as follows: the difference between
the solution of the studied functional differential equation, multiplied by the corresponding weight
function, and the solution of the “standard” differential equation (more exactly, the heat equation)
tends to zero if the independent variable of the studied solution tends to infinity along the ray rotated
to a certain angle with respect to the initial-value hyperplane; this angle is uniquely determined by
the coefficients of the low-order (i.e., nonlocal) part of the functional differential equation:

n J
=t 2 ajk x t z t
lim |e j—““‘lju(m,t)—w< 1+Q1,..., "+q”,t> =0,
t—+o0 b1 Pn

where w(x,t) is the bounded solution of the Cauchy problem for the heat equation with the initial-
value function ug(p121,...,pney) and the constants p; and g; are determined by the coefficients of the
nonlocal part of the original functional differential equation (here ajj, are the coefficients at translation
operators).

This behavior of the solution is a qualitatively new effect compared with the classical case of
differential equations: this phenomenon also occurs in the classical case, but this takes place only
if the equation includes first-order terms. It turns out that zero-order terms can cause the same
effect though their physical interpretation is principally else. Thus, qualitatively new effects caused
by nonlocal terms of equations arise even in the case where the principal part of the equation is still
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classical one. Note that this entirely corresponds to the general parabolic theory (see [29]): low-order
terms of a parabolic equation (unlike, e.g., the elliptic case) might have a principal impact to the
qualitative properties of its solution.

The second chapter is devoted to regular equations with nonlocal principal terms, i.e., equations
containing superpositions of second derivatives (including mixed ones) and translation operators with
respect to any (spatial) coordinate directions. We consider the Cauchy problem solution in the sense
of distributions (more exactly, in the sense of [15, 16]), and we prove (see Theorem 2.7.3) that the
solution is classical in the subspace R™ x (0,400); this allows us to consider the behavior of solutions
on one-dimensional manifolds and obtain theorems on the asymptotic closeness of solutions and on
their stabilization. The main result (obtained in Theorem 2.7.4) is as follows: if the right-hand part
of the equation is a homogeneous strong elliptic operator, then the asymptotic closeness takes place
for the investigated solution and the Cauchy problem solution (with the same initial-value function)
for the differential parabolic equation obtained from the original functional differential equation by
means of setting all translations equal zero:

tllglo[u(:n, t) —ov(z,t)] =0,

where u(x,t) is the solution of the (functional differential) equation

n 2
ou 0°u
Y = g akjmamkaxj (1‘1, e, Ti—1, T+ hk,’jma Tm41y -+ Tn, t)

k,j,m=1

and v(z,t) is the solution of the (differential) equation

ov - v
= Qkjm
ot kJ’zm::l O0x0x;
(with the same initial-value function).

If the equation includes low-order terms (apart from the nonlocal principal part), then we obtain
a weight asymptotic closeness; if the specified low-order terms are nonlocal ones, then effects specific
for the nonlocal case described in Chap. 1 arise.

Note that the strong ellipticity assumption is quite important for the second chapter. Similarly
to the case of bounded domains (see [102, §9]), there is an essential distinction between the strong
ellipticity for differential and differential-difference operators.

In the third chapter, we study a parabolic integrodifferential equation with one spatial variable
such that the Bessel operator and a linear combination of generalized translation operators act with
respect to that variable; this is treated as a prototype case for singular functional differential equations.
Similarly to the case of differential singular equations (see, e.g., [34]), we add the following condition
to ensure the uniqueness of the solution: the solution is assumed to be even with respect to spatial
variable. The unique solvability of such a problem is proved in Theorem 3.5.1. The properties of the
one-dimensional fundamental solution constructed in this chapter are applied in the next chapter to
construct the fundamental solution for the general singular case.

The fourth chapter is devoted to the general singular case: there are spatial variables such that
second derivatives and translation operators act with respect to them (nonspecial variables) and spatial
variables such that Bessel operators and generalized translation operators act with respect to them
(special variables). Apart from the initial-value condition, we impose the evenness (with respect to
special variables) condition for the solution. For the above problem, we prove the unique solvability
(see Theorems 4.5.1 and 4.6.1) and the weight asymptotic closeness of its solution and the solution of
a similar problem for certain differential singular equation (see Theorem 4.7.1).

Acknowledgments. The author is deeply grateful to Professor A. L. Skubachevskii for his long-
standing concern and support. The author is supported by the President’s Grant for Government
Support of the Leading Scientific Schools of the Russian Federation No. 4479.2014.1.
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CHAPTER 1

EQUATIONS WITH NONLOCAL LOW-ORDER TERMS

In this chapter, we consider equations of the type

ou
at:Au+§:mm@—hJ) (1.1)
heM

where M is a finite set of vectors of R™ parallel to the coordinate axes (or any other orthogonal
vector system). The motivation to study such equations relates both to the pure theory (nonclassical
low-order terms are added to a parabolic equation) and applications, e.g., to problems of nonlinear
optics: it is known (see, e.g., [121]) that a nonlinear optical system with so-called multipetal waves is

described by the equation

881; +u = DAu+ K(1+ vycosug),

where u(x,t) is the phase of the light wave, u, = u(g(x),t), g is a one-to-one transformation of spatial
variables, different from the identity, the positive coefficients D and ~ are the diffusion coefficient and
the visibility of the interference picture respectively, and K (different from zero) is the nonlinearity
coefficient depending on the intensity of the input field.

In [103, 104], this quasilinear equation is linearized to the form

ov
ot

where the constant w (the so-called spatially homogeneous stationary solution) is the root of the
transcendental equation w = K (1 + 7 cosw).

If g(x) is a translation operator, then the linearized equation coincides with Eq. (1.1) such that the
set M consists of two elements (one of them is the zero vector).

= DAv —v — Kysinwvyg,

1.1. Fundamental Solution (Single Spatial Variable)
Let a,h € R™. In R!x (0, 400), consider the equation

o Pu &
5 = a2 + kZ::laku(:E — hg, t). (1.2)

Define the following function on R! x (0, +-00):

7 —t(£2— in: ay, cos hi€) m
E(x,t) L, p(a,t) &t /e =T cos(z€ — tz a, sin hi&)d¢. (1.3)

It is easy to see that

oo

7 —t(§2—§ ay, cos hi§) 7 2 2 dn et \/71'
E(x,t)| < = de < | U=tge = t/ - = :
\(x)\_O/e §_O/e £ eoe Vi e 2

Thus, for any to,T € (0,+00) integral (1.3) converges absolutely and uniformly with respect to
(z,t) € R'x [tg, T]. Therefore, £(z,t) is well defined on R! x (0, +00). Formally differentiate & under
the integral sign:

—H(€2— 37 ay, cos hy€)

—1(€2— 32 ay cos hyg) ) b
e = )

am S m )
9tlgm—1 <e k=1 cos(z€ —t Z ay sin hkﬁ))

k=1
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where P(€) is a polynomial of power not exceeding m + 2[. Hence,

(Z |a|— §2)

om (e_t(§2— > ag cos hi€) < A€m+2l

DHlgm-1 k=1 cos(z€ —t Z ay, sin hk§)>

k=1

Further,

(i lay|-€%)t Z 2 Z |ak\t H2 5 dn
m-+20 = = m+2l &4t n
e k=1 d¢ = d e

m
t
k§1|ak|t OO F(m+2l+l)ek2::1 o]
_ ¢ m-+21[ —772d _ 2
= 42141 n e = ma2l+1
t 2 0 t 2

Therefore, the integral obtained by the formal differentiating of the integrated function converges
absolutely and uniformly with respect to (z,t) € R! x [tg,T] for any tq,T € (0,+oc). Hence, the
function £ defined by relation (1.3) is infinitely differentiable on R! x (0, 4+-00) and integration under
the integral is valid. This implies that

i m —t(&2— i ay cos hi€) m
o€ = / [(Z ay, cos & — €2)e = cos(z€ — tZak sin hx€)

—t(&2— i ay, cos hi€) m m
+ e =R sin(z€ — tZak sin hi€) Zak sin h;g] d¢

k=1 k=1

i —t(§2—§ ay, cos hi€)
= /e = * [Zak cos h€& — £2) cos( x&—tZaksmhk&)

k=1

+ sin(z€ —t Z a sin hi€) Z ay sin hk§] dg,

k=1 k=1
i —t(&2— i ay cos hi€) m
gg - _ /é‘e = * sin(mf — tZak sin hkf)df,
T 5 k=1
and
2 i —t(£2— f: aj, cos hi§) Ui
g ‘g _ —/§2e = * cos(z§ — tzak sin hy,€)dg.
T 5 k=1
Therefore,

2 7 —t(fz—in: ay, cos h&)
a@f — gwi = /e = * [Z ay, cos hi.& cos <$£ — tZak sin hk£>

+ Z ay, sin hj,€ sin (az{ —t Z ay, sin hkf)] dg.
k=1 k=1

The latter relation is equal to

m i —t(£2— in: ay, cos hi€) m
Zak/e = * cos hi€ cos (az{ — tZak sin hk§> d€

k=1 7§ k=1
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—H(E2— 3 ag cos hyg)

+ Z ai | e k=1 sin hi€ sin <x£ —t Z ag, sin hk£> d€

m i —t(£2— i ay, cos hi€) m m
= Z ak/e = > cos [(aj - hk)gtz ay, Sinhk£] d¢ = Zakg(x — hg, t).
k=1 9 k=1 k=1

Thus, the function &(x,t) satisfies (in the classical sense) Eq. (1.2) in the domain R! x (0, +00).

We call £(x,t) the fundamental solution of Eq. (1.2). To show the reasonability of this term, we
prove below that the convolution of &, with any bounded initial-value function coincides with that
initial-value function on the initial axis.

1.2. Fundamental Solution: Convolutions with Bounded Functions

Assuming that a positive ¢ is fixed, estimate the behavior of £(z,t) as x — oo.
Let us prove the following assertion:

Lemma 1.2.1. Lett >0 and a,h € R™. Then
lim 22&(z,t) = 0.

T—00

Proof. Decompose the function £(z,t) into its even and odd (with respect to z) terms & (z,t) and

Ea(x,t):
y t(§2 m a cos hi&) m
/e = * cos x€ cos (tZak sin hk£> d€
and
ya —t(£2— i ay, cos hi€) m
E(x,t) = /e = sin z€ sin (tZak sin hk£> dg.
Change the variable: n = x€. This yields the relation
7 2 t Z ay, cos hzn m h 1 i
/e e i cos <t2aksin k77> cosndn = /1[) (77) f(n)dn,
— x x ) x
0 =

where
f(r)=cosT € LOO(REF),
t i aj CosT m
P(1) = e e K51 * cos (tZak sin 7‘) € L1(Ri).
k=1

Denoting e '™ by 1o(7), we see that () € Li(RY). Further, the Mellin transform of the function
1o(7) is defined on the real axis and it has no real zeros; indeed,
[e.e] [ee] .
: 1 ia— r(He
/T1z¢0(7)d7 — ie /Z 5 1e_zdz — ( 1321) )
2t 2 5

2t 2
0

Further,

io/lﬁo(;—)f(T)dT 2{; - %0
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Then .
i/z/; (;) Firydr =30
0

due to the Wiener Tauberian theorem (see [13, p. 163]), i.e., &1 (x,t) tends to zero as x — oo for all
fixed t > 0 and a, h € R™.
Now, consider & (z,1).

. 42
Denote the function e ¥ ¢ k=1

t f: ay cos hyT m
T sin <t > agsin hk7'> by ¥(7) € L1(RL). Denote the func-
k=1
tion sinT by f(7) € Loo(R%). Then

1 T T r 3 r?\ rooc
r/wo(r)f(T)dT_%F <1’2’_4t> —0
0

where I’ denotes the confluent hypergeometric function of second type.
Thus, the assumptions of the Wiener Tauberian theorem are satisfied. Hence, for all fixed ¢ > 0
and a,h € R™, we have

Ex(w,t) = i]oqp () snyar o
0

Thus,
lim £(z,t) =0

Tr—00
for any positive ¢t and any a, h € R™.
However, the obtained limit relation is not sufficient to prove the convergence of the convolution
of the fundamental solution with bounded initial-value functions. We must estimate the rate of the
proved decay. To do that, we integrate the term & (x,t) by parts:

[e.e] m
t( S ay cos hi&E—£2) m
/e = cos(tZak sin hi&) cos x€dE
) m t=oo [ H3 apcoshig—€?)
cos(tZaksinhkf) sinm§‘ —i—t/e k=1
k=1 ¢=0

0

1 t( in: ay, cos hy&—E&2
e k=1

X

k=1 k=1 k=1 k=1

X ((2§ + Z hrag sin hi€) cos(tz ay sin hi&) + sin(tz a sin hi€) Z hiaj. cos hk§> sin mﬁd{]

b t( i ay, cos hp€E—£2) m m m
- t /e = * (25 cos(tZak sin h€) + Zakhk sin(hg€ —I—tZak sin hk£)> sin x&d€.
k=1

Z

Denote the derivative (with respect to &) of

e k=1

t( i ay, cos h,€—£2) m m m
* * <2§ cos(tz ag sin hg€) + Z aghg sin(hg€ + tz ay, sin hk§)>

k=1 k=1 k=1

by () and integrate by parts again. We see that

t
72

2€ cos(t Z ay, sin hi.§)

k=1

51 (ZL‘, t) =

e k=1

13> ay cos hyt—€2) <
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t
72

(&) cos 2Edg,

k=1 k=1

+Z aphg sin(hi€ + tZak sin hkf)) cos mg‘ + /1/1(5) cosx€dl | =
0

ie., 228 (z,t) = /1/1 cos ndn.

Since (&) € Ll(Rl ), it follows that the assumptions of the Wiener Tauberian theorem are satisfied.

T—r 00
Hence, z2&(z,t) — 0 for all fixed t > 0 and a,h € R™.
In the same way, consider the second term of the fundamental solution.

t(ﬁ% ay, cos hp€—¢€?)

1
& = =
9 (x,t) e k=1 sin( Zaksmhk& cosa:&‘
k=1
T3 arcoshue—€?)
t aj, cos
_/e =t * ( Zakhks1nhk§+2§ ) sin( Zaksmhkﬁ)

— tcos(t Z a sin hi€) Z aphy, cos hk§> cos x§d§] .

k=1 k=1

Thus, the second term of the fundamental solution is equal to

¢TSS apeoshie—e?) [ I m L
— / e k=1 (2{ sin(¢ Z a, sin hi€) —Z aghy cos(hié +t Z ay, sin hk§)> cos x€d€
0 k=1 k=1 k=1
t . t(in: aj cos hk§—§2) . m . m m . E=00
=2 [sm x€e k=1 (2{ sm(tz a sin hi€) —Z aghy cos(hié+ tz ay, sin hk§)> ‘520
k=1 k=1 k=1
00 ‘ ; 0o .
- [w@siacag| = 7y [o("sinndn,
0 0
where
m /
t( Y ay cos hpé—£2) m m m
Y€)= [e =R (2{ sin(¢ Z ag sin h&) — Z aghy, cos(hi€ +t Z aj sin hk§)>] € Li(RY).
k=1 k=1 k=1

%
By virtue of the Wiener Tauberian theorem, this implies that 22, (z,1) w—0>00 for all fixed ¢t > 0 and
a,h € R™, which completes the proof of Lemma 1.2.1. [ ]

Estimate the behavior of derivatives of the fundamental solutions as z — oco.
The following assertion is valid.
Lemma 1.2.2. Lett >0 and a,h € R™. Then
0%E
. 2 .
wh_}r{)loa: 92 (x,t) =0.
Proof. Consider the function
02E, (.t T, e aeoshig)
— — aj. CoS
815;7 ) =— /{26 =R cos(tkzzlak sin hy€) cos z€ d€.
0 =
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Integrating by parts, we see that
6251 (1‘, t) 1

0z2 T

—H(E?— 3" ay cos hé) m £=0
20 €5 cos(t S ay sin hyf) sin xg(
k=1 §=co

!/

i (% in: ay, cos hi€) m
—I-/ (526 = cos(tZak sinhk£)> sin x€ d§
k=1

0

[ee]
_1 /
oz
0
Integrating by parts again, we obtain the relation

m /
—t(62— 3" ay, cos hi€) m

<£2e = * cos(t Z ay, sin hkﬁ)) sin z€ d€.
k=1

!/

0z? 2

oo
o
0

2 —t(£2— in: ay, cos hi€) m £=0
0°& (xat) 1 526 = * COS(tZak sin hkﬁ) COS ZL‘&‘
k=1 §=o0

m 2

52 —t(§2—k21 ay, cos hp€
e =

where
"

5E) = lgze_t(§2_k2—:1ak cos h§) Cos(tZak sin hkﬁ)] € Li(RY).

k=1
. . . . 2 8251 (:1:7 t)

Thus, the assumptions of the Wiener Tauberian theorem are satisfied. Hence, x o2
47

all fixed ¢ > 0 and a,h € R™.

In the same way, we have
02E,(x,t T, —HE- 3 apcoshid) u
— — ay, cos hy,
82526’ ) =— / e k=1 sin(t kz_:l ag sin hi€) sin x€ d€.

0
Integrating by parts, we see that the last expression is equal to

1 —t(£2— i ay, cos hi&) m §=00
2e 2 @k cos T sin(tZak sin hi€) cos x&‘
z k=1 =0

/

by —t(&2— i ay, cos hi€) m
—/ (526 = Sin(tZaksinth)) cos z€ d€
0

k=1
o0
./
x
0
Integrating by parts again, we obtain the relation

/

—t(&2— iﬂ: ay, cos hi€) m
<§26 = * sin(t Z ay sin hk§)> cos z€ d€.
k=1

/

02E5(2, 1) 1 ([, 4= 5 axcoshue
Ox? x?

where
"

H(E) = [526—1&(52_’;_:1 ay, cos hi€) sin(t Z ay sin hkf)] el (R},_)

k=1
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cos(t;ak sin hkg)] cosz€dl | = 3 /zp (m) cosndn,
= 0

T—00

— 0 for

£2e =1 )sin(tkz::lak sinhkf)] sinmf‘izo — O/"tb(f)sinxgd{ ;



Thus, the assumptions of the Wiener Tauberian theorem are satisfied. Therefore,

28 Sgact /z/) ) sinn dn —>0

which completes the proof of Lemma 1.2.2. [ ]

Since &(x,t) satisfies Eq. (1.2) in R x (0, +00) (see the previous section), Lemmas 1.2.1 and 1.2.2
imply the following assertion.

Lemma 1.2.3. Lett >0 and a,h € R™. Then

x,t) = 0.

lim 22
A z” o

This lemma can be proved directly as well (the proof is the same as the one for Lemma 1.2.2).
From Lemmas 1.2.1-1.2.3 and the fact that £(x,t) satisfies Eq. (1.2) in R!x (0, +-00), we deduce the
following assertion:

Theorem 1.2.1. Let ug(x) be continuous and bounded in R*. Then the function
+00
[ £ta - tualerae

satisfies (in the classical sense) Eq. (1.2) in R x (0, +00).

Remark 1.2.1. The assumption of the continuity and boundedness of the function ug can be replaced
by the assumption of its belonging to L.(R!). Under this assumption, in general, the specified
convolution is not a classical solution of Eq. (1.2) anymore; it is its a.e. solution.

Remark 1.2.2. Continuing to integrate by parts in Lemmas 1.2.1-1.2.2, we see that
8k+l
=0

xll)rrolo ™ P (x,t)

for all positive integers m, k, and [ and any positive ¢.

1.3. Solutions of Cauchy Problems

Introduce the notation .
u(e.t) = [ &= € u©)ie

and impose to Eq. (1.2) the initial-value condition
ul,_ = uo(z), (1.4)

where ug(x) is continuous and bounded in R*.
The function u(x,t) is defined on R x (0,+0c). Take an arbitrary real o and investigate the
behavior of u(zg,t) as t — 0.
Change the variable by the formula
xo —¢§

20/t

This yields the relation

+oo
(o, t) = 2/t / E(2v/tn, tyuo (o — 2/tn)dy
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Further, we have

m
t| €2— 3" ap cos hpé

\/t5(2\/t77,t) = \/t/e_ ( k=1 ) cos (2\/15775 —tiaksinhk£> d€
k=1

0

i —224t in: aj, cos hkz
= /e k=1 <2z17 — tz ag, sin > dz.
0
Hence,
+00 [e’¢) hyz
224t Z ay, cos k
u(zo,t) = 2/u0 zo — 2V/tn) /e " <2277 - tZak sin ) dzdn. (1.5)

—00 0

1
On the other hand, the following relation holds: wug(xg) = y / uo(xo)e_”2 dn.
™

Consider the following difference:

400
71T / E (w0 — &, t)uo(€)dE — uo(xo)

—+00 [e%¢}

2 224t Z ay, cos hk: n hiz
= Ty — 2Vtn) /e cos [ 2zn —t » agsin d
/ 7r kzzzl Vi

—0o0

0
] A
—\/ uo(xg)e” ”]dn—/+/+/ def 1+ I + I5. (1.6)

Let us prove the following assertion.
Lemma 1.3.1.

o0 m
—224t 3" ay cos Pz m h
. k< t—+0 VT _ 2
/e k=1 vVt cos 2zn —t g ay sin dz —» A e "

uniformly with respect to n € R*.

Proof. We must prove that for any positive e, there exists a positive § such that for any ¢ € (0,d) and
any real n the following inequality holds:

i 22+t f: ay, cos Pz m hiz b
- Vi . N —22
e k=1 cos | 2zn—t g a sin dz — /e cos2zndz| < €.
/ ( 1 \/t > / g

4 k=1

Let € > 0. Consider

i t > aycos P2 m hiz
2

/e_z e k=1 vVt cos 2z2n —t Z ag sin k —cos2zn| dz
=V

3 =

0 U hpz m
t > agcos kK h
= [e* |e = vVt | cos 2zncos |t Z ag sin ke
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m
h
— sin2znsin (t Z ag sin j:)) — cos2z7]] dz.

k=1

Select a small ¢ from (0,1] such that the sine is monotone on <—(5 S lagl, 6 > \ak\> and the
k=1 k=1

inequality
m o0 -1
m
e [ tX laxl
sin <5Z|ak|> < 5 | € k=1 /e—z2dz

holds for any ¢ € (-4, ). Then the following inequality holds provided that ¢ € (0,0):

7 t in: aj, cos hk= m hiz

g . . .
/6 e k=1 vt sin 2277 sin | ¢ E ag S k dz
J Vi

k=1
Sl T T & Janl
€ t ag 2 _ ot ak €
< e k=1 e “dz e Fer=l  dz= _.
2 2
0 0

It suffices to show that the specified (sufficiently small) § can be chosen to satisfy the following
inequality for any real z and n:

t i aj, cos Pz m hiz B 7 -
2
|cos2zn] |e *=1 vVt cos (tZak sin ¥ ) -1 < ) /e_z dz
Thus, it suffices to show that
t in: aj cos P2 m hiz
e k=1 vVt cos (tZak sin * t—>—+>0 1
Y
uniformly with respect to z € R!.
We have
tiakcos k= ( m hZ)
Vi . k
e k=1 cos tZak sin —1
-V
t f: ay, cos t m h
Vi 2 .
=e k=1 1 —2sin ag sin -1
-z S
k=1

tiakcos tiakcoshkz t m hiz

=e k=1 VE 1 —2¢ k21 V! sin? Z ag sin k
im0 Ve

t — €~ 5 faxl

Select a small ¢ such that sin’ (2 Z |ak|> < g€ k=1 . Since there exists a (sufficiently small) sem-
k=1

ineighborhood of the origin such that the sine is monotone in it, it follows that the inequality

t & h — 3 Jal
251n2<22aksin \Zz) < Ze =
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is valid for the selected t. Without loss of generality, we assume that the selected ¢ belongs to (0,1).

Therefore, the following inequality holds for any real z:

hpz

t m th t in: apcos 7, €
2sin? ay, sin e k=1 <
(o) <4

m
t > ay cos hj:
Thus, it suffices to estimate e k=1 — 1.

Without loss of generality, we assume that ¢ is sufficiently small to satisfy the inequality

m

€ = > laxlt > laglt €
1—4<e k=1 < ek=1 <14 .

Hence, the inequality

e~ Slult t3 apcos " 3 jale e
11— <e #=1 <e k=t "< erst <1+
1 1

is valid for any z € R,
This implies that

L hpz
t > apcos 'k

e k=1 1)<

4

for any z € R, which completes the proof of Lemma 1.3.1.

Now, we can estimate the integrals of sum (1.6).
First, estimate |I3]:
(e} m
—22+4t > ay cos h\/ktz m hiz
e k=1 cos | t ag sin cos 2nzdz
/ 2

Z=00

—224t i ay, cos Pz U hrz \ sin2nz
=e k=1 Yt ocos ¢ Z ag sin K "
k=1 \/t 277

z=0

1 7 —224 f: aj, cos P2 m hiz ,
— / [e k=1 vVt cos (t Z ay sin y ) ] sin 2nz dz
) = Vil

/

[ee] m hyz m
1 —224t 3 ap cos K h
E— / e = Z ay, sin ke sin 2nzdz
0 Lo )|

(since n > A > 0).
The last expression can be estimated as follows:

m /
1 ~224t 3" agcos "k i hiz cos 2nz
— e k=1 vt ocos [ t Z ap sin k "
= Vi),

z=0

2n

Z=00

o0 m hy = m "
1 —224t > apcos 'k hiz
+ 9 / [e k=1 vt cos (t Z ay sin F cos 2nzdz
) P vt )|
m /
1 [ —224t 3 ay cos vt < m )] z=00
= e k=1 cos |t Z aj sin cos 21z
2 —
4n k=1 % . ?
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, . m N "
—2z%4t Y ay cos

oo kZ m
1 Vit . hkz
- 2 (& k=1 cos |t Z Q. S11 COS 2772 dz.
477 0 k=1 \/t 2

Taking into account that n > A > 0, we see that the last expression is equal to
"

o0 m hyz m
1 —224t > agcos 'k h
— 2/ e =R cos [t E ag sin ke cos 2nzdz.

The last integral converges uniformly with respect to n € R! and if ¢ < 1, then its absolute value
is estimated from above by a constant depending only the vectors a,h € R™; denote that constant
by M. The same estimate holds for

i 224t f: ay, cos hkz m h
- . . z .
/e k=1 vVt gin | ¢t E ag, sin ] sin 2nz dz,
1 Vi

0
which is the second term of the internal integral in Is.
Thus,

Msupluo| [ dn _ sup|uo| [ M1

4M sup |ug n  sup |ug 2 4 1/_2
I3 < T dn = 7 d
|I3] < / + Jr e 1 = sup |ug| 7TA+\/7T e n

A

It is obvious that |I;| satisfies the same estimate.
Let € be an arbitrary positive number. Without loss of generality, we assume that t < 1. Select a

(sufficiently large) positive A such that |I] < ° and |I5] < ; and fix that A. Consider

A o)

2 224t in: ap cos "kZ
122/ o(zo — 2Vtn) /e =T
.
—A 0
hiz 1 2
x cos | 2zn — tz ay, sin > dz — ug(xo)e " ] dn.
( -V VT

By virtue of Lemma 1.3.1 and the continuity of the function wug(x) at the point x, there exists a
positive § such that the inequalities ¢t < & and |2v/tn| < § imply the inequality

[e.e]

224t Z ag cos "k? ’u,o(xo) 2 €
— 2Vt 2 22m —t <
ug(zo — 2v/tn) /e (zn Zaksm ) ya e 6A
0
. 52 € . . .
Denote min { 9, AA2 by to; then |I5| < 5 once t < tp. Since € is chosen arbitrarily, it follows that

lim /sm—anm&%ﬂm%>=a

t—+0 | T

Taking into account the real xg is taken arbitrarily, we prove the following assertion.

Theorem 1.3.1. Let ug(x) be continuous and bounded in R*. Then the function

+oo
1
[ - g (e
is a classical solution of problem (1.2), (1.4).
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In particular, using this theorem, one can compute the integral of the fundamental solution over

the real axis:

Lemma 1.3.2.

b f: ayt
/ E(x,t)dx = mek=1 *

Proof. Assign ug(z) = 1. This function is bounded. Hence, by virtue of Theorem 1.3.1, the function

“+oo
def 1
EE S ECRR L

satisfies Eq. (1.2) in R! x (0,+00) and the initial-value condition y(z,0) = 1 on R'. However, the

function y(z,t) does not depend on x:

+oo +oo
[ gt = [ eende =),
i.e., y(t) satisfies an ordinary differential equation

m
Y =Y ay =0
k=1

m

> agt
and the initial-value condition y(0) = 1. Thus, y(t) = er=! * , which completes the proof.

1.4. Multidimensional Case
Let z € R™. In R™x (0, +00), consider the equation

ou

o = Du+t > agu(w — bph, t),

k=1

where a and b are arbitrary parameters from R” and A is a fixed vector of length 1 in R™.

In R™x (0, +00), define the function

—t(|€[2— 3 aj, cos byh-€) m
Eaphn(x,t) def Emy(z,1) def /e ST os (a: CE— tz ay, sinbgh - £> dg.

Rn k=1

Then

t(in: ay, cos b h-6—|€[?) (i lax|—|€12)¢
€y (2, 1))] S/e S d{é/ek—l ' d¢

R" Rn
m m 0o
t t
g™ / e1EF g = o™ / / e1€P S dr
R 0 |¢[=r
m o0 m
¢ t
= Onekgl . /e_tr27"n_ldr = Cn 61;:21 fax] r (n) t2
2 2
0

(here dS¢ denotes the surface measure in R and C,, is the area of the unit sphere in R").

(1.7)

Hence, integral (1.8) converges absolutely and uniformly with respect to (z,t) € R™x [tg, T] for all

to, T € (0,400), i.e., Epn)(z,t) is well defined in R"x (0, +00).
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Formally differentiate &, (w,1):

aE m U3 ay cosbyh-€—¢[?)
8(15 ) :/(Z ay, cosbyh - € — |£|2)e k=1

Rn k=1

(3 a conbih€—e)

X cos( - —tZaksmbkh f)df+/

k=1 Rn

X sin(x —tZaksmbkh €) Zaksmbkh &de.

k=1 k=1
This expression is equal to
t(z ay, cos by h-£—|€|?)
/e = [Zakcosbkh £ — |€%) cos(z —tZaksmbkh €)
R k=1
—l—Zaksmbkh Esin(x —tZaksmbkh §)] dg.
k=1 k=1

Therefore,

0,
(n —/[Zakcos<m—bkh —tZaksmbkh §)

13 ax cosbrh£—¢1%)
— €]? cos(z —tZaksmbkh §)] A= d

k=1
Further, we have

5 cos(z - —tZaksmbkh dg, j=1,n,
Oz}

Py / & 2,k cos b E—lel?)
R k=1

which implies that

t(in: ay, cos bph-—|€|?)
A&y = — / €)% e =1 e cos(z - & — tZak sin bih - £)d¢.
Therefore, we have
oE, m 13 ay cosbyh-—¢1?)
8(75) — A& :Zak/e e R cos [(az—bkh —tZaksmbkh g] de.
k=1 Bn k=1
Thus, function £,y formally satisfies Eq. (1.7).
Let us check whether the above formal differentiating is legible:
ol+Im| (S ay cos byh-6—|¢]?) #(3" ay, cosbph-£—[€[?)
O™ . Dan e k=1 cos(z - & — t;ak sinbih - £) P(&)e #=1 )

where P(§) is a polynomial of power not exceeding |m| + 2I (here |m| = mq + --- + m,, + 2l is the
multi-index length). Hence,

al+|m|
ot ox™ ... dxp'm

t(é a, cos buh-£—[€]?) (z osl=le)e

cos(x —tZaksmbkh o) || < Alg|lmi+2te s

k=1
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Further, we have

m _ 2 m o0 m+n m
/‘§||m|+2le(kz_:1 faxl=lel )tdé* = Cekgllak‘t /r|m|+2l+n—le—tr2dr _ cr (min + l) ek; |a’“‘t_
g / 21 2 +l

Therefore, the integral obtained by the formal differentiating of the function &), for all 5, T €
(0,400), converges absolutely and uniformly with respect to (z,t) € R™ x [tg,T]. Therefore, the
function &,)(,t) defined by relation (1.8) is infinitely differentiable in R" x (0, +00) and satisfies (in
the classical sense) Eq. (1.7).

Now, investigate the behavior of the function &,)(x,t) and its derivatives as |z| — co. Without
loss of generality, assume that m = 1 and a1 = 1; redenote the vector bih by h. Further, rotate the
coordinate system 1, ..., &, to an angle such that z-& = |z|£; (the Jacobian of this change of variable
is equal to unity). Then

Emy(z,t) = /et(COS hg=¢]%) cos(|z|€ — tsinh - £)dE,
Rn
where h is, in general, different from the vector from the vector h (moreover, h de~pends on x; precisely,

it depends on the ray containing the point ), but |A| = |h|. Assuming that h = (|h|,0,...,0), we
obtain that

Epmy (1) = / etleos BIEIE) cos(| )¢y — tsin [|€)de
R'n

—+o0o
- / e_t|§’|2d§’/et(cos|ﬁ|§1_5%)cos(|x|£1—tsin|l~1|£1)d£1

Rn—1
n — 1 1—-n n — 1 1—-n
=Gl |y )t & pllalt) = Cual [ )t 2 Epy(lz]s ), (1.9)
where &) ;) = & is still defined by (1.3).
However, the assumption that h = (|h|,0,...,0) does not restrict the generality because the Laplace

operator is invariant with respect to rotations. This means that & in relation (1.9) varies from one
ray to another, but the function &; 5| is the same for all x € R™. Therefore, by virtue of Remark 1.3,
the limit relation

lim |:L‘|n+15(n)(33,t) =0

|x|—o00
holds for all positive ¢ and |h|.
In the same way, we have

A&y, = —/|§\2et(°°“~151_52) cos |z|€1 cos(tsin |h|&; )dE.
R'n

The last integral is equal to
n
-2 / gFetcos e 676D cosaféy cos(tsin |[¢1)dg
= —/ﬁfet(c‘)sagl_g%_"'_gi) cos |z|€&; cos(tsin |h|&;)dE

R’I’L

—Z/§]Zet(coslﬁ|5l_5%_"'_5’2l) cos |z|€1 cos(tsin |h|&; )dE.
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The last expression is equal to

+00
- / e_t(§§+"'+5%)d£//ﬁfet(msa&_g%) cos |z|&; cos(tsin |h|€1)dE;

Rn—1

—Z / 2o UG+ HE) g/ / teos [hl&1—€D) o5 |z|€1 cos(tsin |h|&;)dé
R'n

1

2 n
885;1(|$| t) / e—t‘f’\Qdé./ _ 251(|£L‘|,t) Z / gie—t\§/|2d£/‘

Rn—1 jZQRnfl

Compute the integral in the second term:

+o0o
/{?e_tglzdf/: / e_t77|2d7]/§2-e_t572'd§j

Rn—1 Rn—2

o0
3 .
—C, 2r tl_ /726—” dr = Cn_gr <2> r (Z - 1) "t
0

This implies that
n—1\ 1-n 0% 3 n a1
A&, = CpT ( ) > £ 55 (al#) = nCyal <2> T (2 - 1) "3 &1 (|2, 1)

Computing A& 5, in the same way and taking into account Remark 1.2.2, we see that the limit relation

| l|1m |x\”+1AE(n)(m t)=0

holds for all positive ¢ and |h|. Then, arguing as in the proof of Lemma 1.2.3, we obtain that
o€
li n+1 (n) =0
Jm |z| o (&:t)
for all positive ¢ and |h|. Thus, the following assertion is proved:

Theorem 1.4.1. Let a function ug(x) be continuous and bounded in R™ (belong to the space Loo(R™)).

Then the function /S(n) (x — & t)uo(&)dE satisfies Eq. (1.7) in the classical sense (a. e. respectively).
Rn

To prove that the constructed solution satisfies the corresponding initial-value condition as well

(apart from Eq. (1.7)), we represent the fundamental solution as follows:

13 ax cosbér—[g[?) m
/e =R cos(z1&1 + -+ + xpén— tz ay, sin b€y )dE

k=1

t( in: ay, cos b&1—&3) , m
= /e k=1 Vet cos(r1&1— tz ay sinbp&1) cos a’- £'d€

B k=1
t( i ay, cos bpé1—£2) , m
— /e k=1 Vet sin(z1&1— tz ay sin bp&p) sina’- £'d¢.
k=1
Rn

363



The last expression is equal to

o m , "
/et(kgl oncostiti=t}) (r161— 1> ay sin by / P cos 2 £1de!
oo k=1 Rn—1
i #( fj ay, cos by&1—£3) m
_ / e k=1 sin(z1&1 —t Y ap sinbéy)dé / e sin o’ €'de’
%o k=1 R-1
= 25a,b(m1,t)/e_t|§/|2 cosz’'- &'de’

Rn—1

(the second term vanishes because the integrand of its first factor is even).

Compute the last integral.

Without loss of generality (more exactly, up to a rotation of the coordinate system &3, ...,&,), we
have z'-¢ = |z|&. Therefore,

—+00

/e‘t|§,|2 cosz’- ¢'d¢’ = /e‘t|§,|2 cos |2'|€ad€ = /e‘tg% cos |2'|€ad€y /e_t|§”|2d£”

Rn—1 Rn—1 — 00 Rn—2
n—1 ‘2

\/7T |’ (24t ) e _ (T 2 1
\/t /e 3 d€ _(t) e 4t .

Rn—2

n—1 72

Thus, &) (z,t) =2 (:) ’ E(ml,t)e_‘zélt , where 2/ = (79, ...,z,) is a vector from R~ L.

Let (yo,2Y, ... 20 1) %f (4o, 2°) be an arbitrary element of R™. Introduce the following notation:

ua )t / o~ & uol€)d (1.10)

Consider the difference u(yq, 2°,t) — ug(yo, 2°).
Change the variables:

0
_ s — &
Yo 51:77 i gj“:zj,j:l,n—l.

2/t T2Vt
This yields the relations

u(yo, 2%, t) = e /\/tS (2Vtn, t)e 1=y (y0—2\/t77,a:(1) —2/tzy, .20 —2\/tzn_1)d77dz

= g / / VEE(2Vtn, t)e™ uo (yo — 2Vt 2° — 2\/155) dédn

—oo Rn—1

and

1
w(yo,a®) = / / & 1€y (o, 20)dedn.
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Thus, we have
u(yo, 2°,t) — uo(yo, 2°)
—+00
2
= 2 [ [ e Vesavin i (- 2vina® - 2vi) - ¥ uatn,a)e | acan
T 2
—oo]Rn—l

The last difference can be represented as

n+1 / / &l uo y0—2\/t77,a: —2\/t§)

—00 Rn— 1
— 224t Z ay, cos bkz T
X /e k=1 (2277 - tz a sin ) dz — v uo(yo,aco)e_”2 dédn
2
0
(see the deduction of representation (1.5) in the previous section).

NOW7 let A > 07 Gl = {(7]7 5)‘77 € (—A, A)? |€‘ < A} ) and G2 :Rn\Gh then u(y()a xoﬂ t)_UO(yOJ xO) =
J1 + Jo, where

7 UL bz
2 —224+t > ag cos K
J] = nt1 / /UO (yO - 2\/t777$0 - 2\/t£) e k=1 § Vi
e G; Lo
m
. bkz \/7'(' O\ —m2 g2
xcos | 2zn —t ag sin dz — U aNe ™ | e ‘ﬂdd,

ji=12.
First, we estimate the integral Js:

/ o (yo, 2°)e 1 dnde| < sup uol / &P ggdn = C,, sup [uo) / e gr A28
2 €[22 42

(due to the convergence of the last integral and boundedness of ug).
To estimate the remaining term of the integral Jo, we decompose the integrating domain as follows:

Go={n>AEeR" M Uln<-A ¢eR" M u{ne -4 A]L¢ > A} LGy UGanUGas;
correspondingly, for j = 1,2, 3, denote

—224t in: aj, cos bkz
/ —ler? /uo %0 —2\/2577,3: —2\/155) = (22n—t2aksm ) dzdnd§

Gaj
n+1
T 2
by 9 Jg,j
Then
2
Jor = / uo (yo —2v/tn, 2% — 2\/t£)
2
T G2
o0 m
—224t 3 ay cos bk = m b
x/e =R Cos 221 cos tZak sin ke dzdnd§
pu Vit

0
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+ 3+1 / () (yo —2v/tn, 2% — 2\/t§)

T2
Ga2,1

0 2 bz m
—224t > ay cos \’;t ) ) . bz
x [e k=1 sin2znsin | t E ag sin
Vi

Earlier, estimating the integral I3 in (1.6), we obtained that
i —224t f: aj, cos br? " brz
‘ /e k=1 vVt cos 221 cos tZak sin © dzdndf‘ <
= Vi
0 -
provided that n > A and ¢ € (0, 1]. Therefore,

|J21 1| < 2Msup|u0‘ / —|§|2d£/ dn 2Msup|u0\

) dzdndé ¥ Jo 11+ Ja 0.

n+1
T 2
4 M sup |u
Estimating Ja 12 in the same way, we see that |Jp 1| < p| 0‘,
4 M sup |u
In the same way, we obtain the inequality |J 2| < j| 0‘,
T
Let us estimate
9 A
Joz = .4 / eI /uo (yo — 2t z° — 2\/t§)
T gsa a

o0 m by 2 m
—224t 5 ay, cos \’;t . bez
X /e k=1 cos 2zncos | t E aj, sin

dzdndé.
) =V )

For t € (0, 1], we have

[ee) m (o)
—224¢ > ay cos bk2 m bLz T
‘/e k=1 Vi cos 221 cos tZak sin k dz‘ < et /e_z2dz < v e.
0 k=1 vt 0 ’

Therefore,

o] < 2suplu0|€A/e_|§|2d§ 2C, sup|u0|eA/ -

T2
1€[>A

The last expression tends to zero as A — oco. Indeed, we have

X
F(n) n—2 —r2
- N \/22 —/T e " dr
0

F n
a:/ r2e " dr = 1 (3) —/r”_2e_T2dr =
V2

T 0

1
T

Computing the limit

lim
r—r00

by means of the L’Hospital rule, we obtain the it is equal to lim a"e T = 0,
T—>00
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Thus, for an arbitrary positive €, one can select a positive A such that |.Ja] < ; fix such A and

consider the integral J;.
By virtue of the continuity of ug at the point (yo,2%) and Lemma 1.3.1, one can select a small
positive ty such that for any ¢ from (0,tp) and any (n,£) from G1, we have

[e.e] m
—224t 3" ay cos Pk ? m b
Uug (yo - 2\/7577,3;0 _ 2\/155) /e 2 RS cos <2z17 — tZak sin \IZ d
k=1

0

n+1
ET 2 1

2 2 (24)%

Since the positive € is selected arbitrarily, this implies that

_ . 9
—uo(yo, ) Ve e, Al <

lim u 20, .20 ) =u 20,20 ).
510 (y07 1 yn 17) 0(y07 1 yn 1)

Since the real 29, ..., 20 |, and yo are selected arbitrarily, this proves the following assertion:

»yn—1

Theorem 1.4.2. Let ug(z) be continuous and bounded in R™. Then the function defined by (1.10) is
a classical solution of problem (1.7), (1.4).

1.5. Uniqueness of Solutions

Take an arbitrary positive T and consider the function u(x,t) = u(2’, x,,t) defined as

224t Z aj, cos bk; m b
n+1 / / uop .’E — 2\/t§, Tn — 2\/t7]) |€|2 / k 4 CcOS <227’] — tZ ar sin \I;:) ddedTI
0

A k=1
(1.11)
and satisfying (by virtue of Theorem 1.4.2) problem (1.7), (1.4).

Let us prove the following assertion:

Theorem 1.5.1. Let ug(z) be continuous and bounded in R™. Then function (1.11) is a unique
bounded solution of problem (1.7), (1.4) in the domain R™x (0,T).

Proof. First, we prove that function (1.11) is bounded.

n+1
m 2

m
brz
Treating cos | 2zn — tz ag sin K as the cosine of a difference, decompose 5 u(z,t) into two

= Ve

terms; it suffices to estimate one of them. Estimate

“+oo
Ildéf/ /uo (31:/—2\/155,:1:71—2\/1517)e‘m2

—oo Rn—1

bz

—224t Z ay, cos m b
/ PRV s 2zm cos <t Z ag, sin \Z) dzd&dn.

In Iy, represent the domain of integrating with respect to the variable (§,7n) as G1 U Gy U G3 U Gy,
where

ci={Emne 1.k <1}, G={En|n>1,ce R},
Gs={(&mln<-1,¢er '}, and Gi={(&m|ne-1,1) ) = 1}
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The terms of the integral I; are denoted by Ji, Js, J3, and J, respectively. Estimate those terms.
m 0o m
1< el sup e 5 [ e <2 msp ol 5
0
The absolute value of the internal integral in Jy is estimated from above by
m 0o
etk;\akl /e_Zde < eTkzlmw \/27r
0

Therefore,

75 n T3 lay
< vmsuplule S [ ag <t supugle 5

Rn—l
To estimate the term Js, represent its internal integral as follows:

"
z

o0 m
1 —224t 3 ay cos ok m b
~ 42 / [e STV s (tZak sin F* cos 2nz dz. (1.12)

m biz m bz
Denote t > ay cos F and t S aysin "

k=1 Vi k=1 Vi

b
= —\/tZakbk sin \I;Z, 1(2) Zakbk cos ,
k=1

by f1(z) and fa2(2) respectively. Then

(2) = \/téakbk cos b\/t’ and fY(z Zakbk sm
This implies the inequalities
fil < tz k], £}l < \/tz Jarl[bel, and [f7] <Y laglbi (5 =1,2). (1.13)
k=1 k=1

Further, we have

[ O = (fi(2) — 22)e I,

[T HAO = [(f{(2) = 22 + ((2) = D)e IO,

[cos fo(2)]" = — f(2) sin fa(2),
and

[cos fo(2))" = —f5(2) sin fa(2) — [f3(2)]? cos fa(2).
Hence,

o~ T1(2) cog g(z)} " _e=FHN0G) (fé'(z) sin fo(2) + [f5(2)]? cos fg(z))
—2f5(2) sin f2(2)[f1(2) — 2z]e_z2+f1(z)+cos fg(z)e_z2+f1(z) ([f{(z)]2 — 4zf{(z)—|—4z2+f{/(z) — 2) .

The absolute value of the last expression does not exceed

tz la k\
e #=1 AP+ A2l f1) |1+ 422 2 2l S5+ 211 el + LA+ 1) -
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This and estimates (1.13) imply that the absolute value of (1.12) does not exceed

m
t 3 lax| oo
k=1

m 2 m m
e
) /e-z2 2 (S farlibel | +4eve S Jagllbel + 3 Jaglt? + 222 + 1| de
2n k=1 k=1 k=1
0 = = =
T35 Jal
M1 +T)e +=t
< 9 )
n
where M depends only on (complex) parameters a and b.
Thus,
T3 Jal Td T3 axl
a a n—
| o] < M(14+T)e *=t * sup |ug| / 6_52d5/ 727 =M1 +T)e =t * sup |ug|m 2.
n
Rn—1 1

In the same way, we estimate |J3].
Thus, the boundedness of I; is proved. Therefore, the boundedness of u(z,t) is proved as well.
Further, Eq. (1.7) can be represented as

= L, Pu,
ot —

where P11 = A, Lyyi1 = I, B = a1, r = 1,m, and the operators L,, r = 1,m, act as follows:
L,g(x) = g(x —bh). It is known from [2] that no nontrivial bounded solutions of the Cauchy problem
for such an equation exist for ug(z) = 0.

Since Eq. (1.7) is linear, it follows that Theorem 1.5.1 is proved. [

Now, consider problem (1.7), (1.4) in the half-space R™ x (0,00). The function u(x,t) defined by
relation (1.11) is a classical solution of the specified problem such that for any to from (0, +00) the
function u(z,t) is bounded in the layer R™ x [0,¢9]. Let us show that Theorem 1.5.1 implies the
following assertion.

Corollary 1.5.1. Function (1.11) is the unique solution of problem (1.7), (1.4) in the half-space
R"™x (0,00) bounded in R™ x [0,tg] for any positive tg.

Proof. Assume the converse: there exist two different solutions wui(x,t) and wus(x,t) possessing the
above property. Then the function v(x,t) % uy (2,t) — ug(x,t) is different from the identical zero, is
bounded in R™ x [0, #p] for any positive tg, satisfies Eq. (1.7), and satisfies Eq. (1.4) with the trivial
initial-value function. There exists (z*,t*) from R™ x (0,400) such that v(z*,¢*) # 0. Then, denoting
t* +1 by T, we see that for any finite 7" there exists a bounded solution of problem (1.7), (1.4) with
the trivial initial-value function. This contradicts Theorem 1.5.1.

Corollary 1.5.1 is proved. [

Remark 1.5.1. We used the uniqueness of the bounded solution of problem (1.7), (1.4), but the
assertion of [2, Theorem 2] is stronger: it defines a wider uniqueness class. Therefore, solution (1.11)
is unique in a wider class as well. More exactly, it is the class of functions satisfying the following
estimate for any positive 1"

sup |u(z, t)| < Cedl*llos(zl+1)
te[0,7
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1.6. Asymptotic Properties of Solutions

In this section, we consider Eq. (1.7) in the following form:

ou LI
o = Au+ZZajku(m+l)]-khj,t), (1.14)
j=1k=1
where h; def (hj1s...,hjn) are vectors of unit length pairwise orthogonal (for j =1,n) in R™ and

ajk, bjr € R! for k = 1,m;,5=1,n.
Then function (1.11), which is (by Theorem 1.5.1) the unique solution of problem (1.14), (1.4) in
the half-space R™ x (0,T") bounded in R™ X [0, ty] for any positive ¢y, is represented as follows:

o mj bz m;
2\" n 2+t2a cos Ik J b
< >/u0 z — 2v/tn) ||/ TV os 27]jz+tg ) sin zj: dzdn. (1.15)
7r
7=10

R” k=1

Without loss of generality, assume that the (ﬁnite) number sequence {ajk}zl'l, j = 1,n, does not

decrease. For any j € 1,n, denote mln k by m ; if j is such that aj, < 0 for any k € 1,m;, then
@i >

denote m; + 1 by m?. Denote the dlfferentlal-dlfference operator at the right-hand part of Eq. (1.14)

by L. Also, consider the operator £ acting as follows:

n
L3 Ay + Z Z ajpu(r + bighj,t).
J=1k<m)
n
Denote the operator Z Z a;jp] — L by R and consider the real part of its symbol (or, which is the
Jj=1 k<m2
same, the symbol of the operator R + R*):

ReR(¢ Z > ap+ P Z > ajkcosbiig;

Jj= 1k<m] Jj= 1k<m?

(see [102, § 8]). We say that R(€) is positive definite if there exists a positive C such that ReR(£) > C|¢|?
for any ¢ from R™. Similarly to the case of differential operators (see, e.g., [108, p. 66 and p. 78]),
any operator R possessing the above property can be called a second-order operator strong elliptic
in the whole space. Note that, similarly to the case of bounded domains (see [102, § 9]), the strong
ellipticity of differential operators differs essentially from the strong ellipticity of differential-difference
ones. Therefore, the impact of difference terms is principally important.

The main result of the section is the following theorem.

Theorem 1.6.1. Let R(§) be positive definite. Then, for any x from R™, we have

.7

> ¢ '

1S (m,t)—w<x1+q1,...,$n+qn,t> —0, (1.16)
b1 DPn

M:

lim |e 7
t——+o00

where w(x,t) is the bounded solution of the Cauchy problem for the heat equation with the initial-value
function ug(p121, - .., PpTn),

1 J mj .
p] = 1 + 9 Zajkb?k’ and q] = Zajkbjk, ] = 1,’[’L.
k=1 k=1
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Proof. First, we note that pq,...,p, are well defined and different from zero under the assumptions
of the theorem. Take an arbitrary j € 1,n. From the assumption of the theorem, it follows that

2 2
Z ajk +&5 — Z ajk cos bjr&; > CE;
k<mg k<m?

for any positive §; (the positive definiteness condition with &1,...,&-1, &j+1,...,&, assigned to be
equal to zero). This implies that

biké; & sin 755 ?
052 < 5]2 + Z ajk(l - COSbjkfj) = 5]2 + 2 Z Ak Sin2 ]2 I = 5]2 + 2] Z ajkb?k; b 2 .

0 0 0
k<mj k<m]. k<mj

. b 2

1 o [ sin 75 1 9

Hence, 1+ 5 E a;jkbj ( bt > C for any &; > 0. Therefore, 5 E ajibj > —1. Indeed, as-
k<m? 2 k<m}

1
suming, to the contrary, that 5 Z ajkb?k < —1, we see that the following inequality holds for any

k<mg
positive &;:
o bip&i\ 2 o bigs\ 2
1 5 1 5 1 o [ sin 757 1 9 sin 75
C=l+, > @bl — 9 D @b+ 9 doarbi | e | < 9 DR | B
k<m} k<m k<m? 2 k<m 2

Since we deal with a finite sum, it follows that one can select a small positive §; such that the last

. C . - e 1
expression does not exceed . The obtained contradiction proves the positivity of 5 Z ajkb?k +1
k<mg
Therefore, p; is defined and it is positive. [ ]

Now, we must prove two preliminary assertions.

Lemma 1.6.1. Let the assumptions of Theorem 1.6.1 be satisfied and j € 1,n. Then

o] mj boyz ms (2n—q;v/t)2
—224t Z_: ajg (COS th —1> ! . bjkz \/7'(' - 4;2, t—00
e k=1 cos | 2zn —t Z ajk Sin dz — e J — 0
0 k=1 vt 2p;

uniformly with respect to n € RL.

Proof. Let j € 1,n. Redenote m; by m, mg-) by mg, pj by p, q; by q, aji by ag, and bjy, by b; k=1, m.
The relation

VT n—ay?
e 4p?

[e.e]
= /6_172‘32 cos(2n — q\V/t)zdz,
2p

0
holds for any real n and any positive ¢t. Therefore,

o0 m
—224t > ay (cos bk _q m brz _ (2n—qvt)?
/e k=1 ( vt ) cos Zzn—tZak sin ~ dz — \/ﬂe 4p? =11 + I,
2 ) Ty
s =

where

=, bz
—2t 3 ap sin? F

L 2/6_22 cos2nz |e k=t 2V cos tZaksin bz — 17 cos(qzV/t)| | dz
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and .
—2t 3 ay, sin? Ok = m bz
I, = sin2nz [e k=1 V" sin (t ay, sin \I;t — 117 sin(qzV't) | dz.
k=1

Consider the first term:
o

I = /e_z2 cos 21z

= b
—2t 3 ay, sin? 9

ke ua brz 2y,2
= vt i Ok _ o(1=p%)z \/
e k=1 cos |t aj sin e cos(gzVvt)| dz
(2 : «t) “ )]

0
) 0
=/+/ def I35 + Iy s.
0 )

Take an arbitrary positive €. First, we estimate I s.

The absolute value of the second term of its integrand does not exceed e P*?*. Consider its first
term:

m m 202 bz m i brz
bz sin b2z2 2 sin
.2 Yk 2v/t U 2 2V/t
2t E ay, sin oVt =2t E Ak s 4 = 9 E aby, by x
=1 k=1 e k=1 2Vt

Therefore, the absolute value of the specified term of the integrand does not exceed

By virtue of the assumption of Theorem 1.6.1, the inequality

1
—2 Z akbi<1

k<mg

holds. Then

1 9 S oVt
_2 E akbk ( biz <1
k<mo 2V/t

because any a; of the last sum is negative. Therefore, the power of the last exponential function can
be represented as

s bpz 2 s bgz 2 s bgz 2
2 S1n 2 S1n 2 Sin
2 < 2 2v/t z 2 2/t z 2 2Vt
T 2 Z akbk( bz > o 2 Z akbk( brz ) <= 2 1+ Z akbk( brz )

k<mo 2/t k>mgo 2/t k>mgo 2/t
Thus, the absolute value of the last integrand does not exceed 26_722, where
s bz
1 sin
v =min | p%,1+4 _ inf apbi 2Vt = min(p?, 1)
2 2>0 bz
t>0 k=mo 2v/t

by virtue of the positivity of any aj of the last sum. Hence, v > 0. Therefore, there exists a positive
€
¢ such that ‘I4,5| < 4 Fix that 0 and estimate I3 5. The third factor of its integrand is equal to

bz

—2t iﬂ: ay, sin? 'k
+ Cos(qz\/t) [e k=1 2/t _ 6(1_p2)Z2

(1.17)

n 2 bz
_2tk21ak sin” %

t - . brz
[cos <th:1ak sin \2) — cos(qzV/'t)

Let us estimate the second term of sum (1.17):

e

_ot f: . obpz _ot f: . obpz _z2 gl: b2
k_lak sin 2\/t (1—p2)z2 . k_lak sin 2\/t P k_lak %
e = —e =e = —e =
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bzz2 . o bpz bzz2 bzz2 <2\/t> 12 bz
Sin = —
2 21/t 2 2 \ brz 2/t

s bpz 2 s brz bz
_ biz2 1— Sln2\/t _ biz2 1 + SIHQ\/t 11— Sln2\/t
2 by z 2 bz brz :
2Vt 2/t 2v/t

Form any positive ;1 and any k£ = 1,m there exists a positive d j such that for any « € (=01 4,01%)

the inequality ‘smx — 1‘ 5 - holds. On the other hand, ‘ + 1‘ < 3 for any x. Hence,
x m\ak\b 52
bz2’2 2 bk 361
— 2t
la| ) sin ot <o
bid
for any t > 05 and any z € [0,0]. Select a small £1 such that
1k

. —52 —52
63;1 o 351 1— ge 14 ge
’ ayr T ayn )

2 m 2 2 2
— Zakbi —Z2 Z akbi—ZQ Z akbz _z2 Z akb2 2

2
e k=1 —e k<mg k>mq <e k<mg <

Then

<e
for any z € [0,6]. Hence, for the specified z and for any ¢ > max ( > we have

1<k<m
-1
—2t Z ay, sin?
cos(qzV't) e #= - e<1_p2)z2] < 4\5/71 :; /e_z dz . (1.18)

0
Now, estimate the first term of (1.17).

0s (tz a sin bj;:) — cos(qzV/t) = cos (q\/tz +t Z ay, sin b\];j - q\/tz> — cos(qzV/'t)
k=1

k=1
= cos(qV/tz) [cos (ti a sin b\];j - q\/tz> - 1]

k=1

—sin(qV/tz) sin (tz aj sin b\';j — q\/tz) . (1.19)

k=1

ﬁ
NE
o

=

@

B

<.
|

=)
=

N

I
|M3
~ /;\
@,

E

<=
|

&
=~

N
NG

k=1 k=1 Vit
. 1 /sinz sinx —x . cosx—1 —sinx
lim — 1] =1lim 9 = lim = lim = 0;
=0 X T z—0 T z—0 €T z—0 2
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therefore, for any positive €1 and any k = 1, m there exists a positive T} such that

Vit [sin bkz P -

biz b\% m|ay|b?62

for any t > T}, and any z € [0,0]. Therefore, for any ¢ >  max Ty, we have
SKRSmM

sin(gv/tz) sin (t Z ay, sin b\’;j - q\/tz>

k=1

< |sineq].

Further,

m
t > agsin b\’;f — gtz
k=1
2

cos(qv/tz) [cos (tf: a sin b\l;j - q\/tz) - 1]

k=1

= ‘ — 2cos(qV/tz) sin?

m
t > agsin b’“Z — gtz
< 2sin? F1
2
€
As above, one can select a large t such that the last expression is less than 2sin? 21 for any z € [0, d].
€ ce=?”
Thus, selecting a small 1 such that the inequality |sineq |+ 2sin? 21 < 1y holds and taking into
T
account the inequality
L, o byz ot % . 2 bz 22 K b2
. 2tk§1aksm o ce kgznoaksm o/t - 2 k<Zmoakk<eZ2

€
we see that the absolute value of expression (1.17) does not exceed 4 / e % dz provided that ¢

0
€
is sufficiently large. Hence, there exists a positive T" such that if ¢t > T, then |I375| < R i.e

€
<,
The term I is estimated in the same way:

< 2 by
—2t 3 agsin

bkz 2,2
e k=t Mgin [+t asin — P gin(gzv/t
( Sa ﬁ) (4

k=1

U . obpz
[ —2t 2 a sin® %,
e k=1

_ 6(1—102)22] sin(qz\/t)

—2t Z ay, sin?

+e A [SIH (t Z a sin l:/:) - sm(qz\/t)]
k=1

The first of those terms is estimated in the same way as (1.18). It remains to estimate the second one:

sin (t Z ay, sin kz) — sin(gzV/t) = sin <q2\/t +t Z ay, sin \IZ - qz\/t) — sin(gzV't)

k=1 \/t k=1

cos (t Z ay, sin b\];: — qzx/t> — 1| + cos(gzV/t) sin (t Z ay sin ]\Z — qzx/t> :

k=1 k=1

= sin(qzv/t)

this expression is estimated in the same way as (1.19). Thus, there exists a positive T" such that
€
‘Ig‘ < 5 for any t > T.
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This completes the proof of Lemma 1.6.1. [ ]

Lemma 1.6.2. Under the assumptions of Theorem 1.6.1, for any j € 1,n there exists M; depending

only on the coefficients aji, ..., ajm;,bj1,...,bjm; and such that
oo mj birz mi
—224¢ S a;p (cos IET 1 J b1z M.
/e = ( Ve >cos yz—qj\/tz+t2ajksin k=) dz| < N
P Vi y

0
for any y € (0,+00) and t € [1,400).

Proof. Take an arbitrary j € 1,n and redenote m; by m, mg-) by mo, p; by p, q; by q, aj by a, and

bir, by bi; k = 1,m. It suffices to estimate one term of the last integral (the second one is estimated
in the same way). Let us estimate

o0 m
—224t > ag(cos bkz g m bz
/e k=1 ( vt )cos 1z COS (q\/tz - tZak sin * | dz

or, which is equivalent,

o0 m
—224+ L 3 ap(cosbyzt—1) qz 1 m
t — .
/e k=1 cos P ,;_1 a sin bzt | cosyzdz.

0

o0

1
Integrating by parts two times, we obtain that the last integral is equal to — / g"(2) cos yzdz, where
Y

2, 1 <~ m
o) = e 22+ 5 kgl ay(cos byzt—1) cos (qtz _ t12 Zak sin bkzt>
k=1
(it is easy to check that the integrated terms vanish). Therefore, it suffices to show that for arbitrary
fixed values of the (vector) parameters a and b satisfying the assumptions of Theorem 1.6.1, the last
integral is bounded uniformly with respect to t > 0.

We have
1 —22+ 1 in: ag (cos by zt—1) m 2 1 &
J(z) = te 25 (Z arby |sin qt — bzt — 2 Zak sin by zt
k=1 k=1
in [ 7 1f:'bt 22t cos | 1§:'bt
— sin — ay sin bz — 2zt cos — ay sin by z
¢ 2 k k ¢ 12 k k
k=1 k=1
and
1 —22+ 1 in: ay(cos byzt—1) 1 m
J"(z) = L€ =" (—Zz — ;akbk sin by zt

m m m
1 1
X <,§_1 arby [sin <th — bpzt — 42 E a sin bkzt) — sin <th r E a sin bkzt)]

k=1 k=1
m
1 —,22-1—)512 > ag(cosbgzt—1)

z 1 &
— 2zt cos (qt 2 Zak sin bkzt>> + te k=1

k=1

m m m
1 1
X (,; agby [(3 — byt — ; g ajby, cos bkzt> cos (qtz — bzt — 2 ,}Zlak sin bkzt>

k=1
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m m
qg 1 qz 1 .
— (t —y g apby X cos bkzt> cos < P kE_l aj sin bkzt>]

k=1
qz 1 "
— 2t cos ( P Zak sin bkzt)
k=1
qz 1 - qg 1 “
+ 2tz sin — ay sin by zt — apb X cos bzt .
(t LS aesinty )(t LS ot x conb ))
k=1 k=1
Note that
m 1 _ 1 _ 1 _ _
et12 kz::l ay (cos by zt—1) _ etz k<Zr:nO ag(cosbyzt—1)+ 5 kZZr:nO ay(cos byzt—1) - etQ kg:no ay, (cosbyzt—1) e 2k§no ag

Further, the terms

o0 1 m
—22 2 qz :
/e z“ cos ( P E ay, sin bkzt> dz,

o0 1 m

2 qz )
/e cos ( ;g kzlak sin bkzt> dz,
0 —

and
7 2 z 1 —
/e_z kzlakb% cos (qt — bzt — 22 kzlak sin bkzt> dz
0 = =

are bounded uniformly with respect to ¢t > 0. Thus, it suffices to estimate the integral

[e.e]

/e_z2|\1f(z;t)|dz,
0
where the function ¥(z;t) is a sum of terms of the form

+ ?l by sin by zt ?l b i — bptz — ?1 in bzt
a S Oz a S z Qj SIN 0. 2
¢ t2 kYk k kVk ¢ k t2 k k

k=1 k=1 k=1
(e 1 .
— sin P Zak sinbpzt | |,
k=1
m 1 m q qz 1 m
Z arby [<t2 Z apby, cos bzt — t2> cos <t — bptz — 2 Z ag sin bkzt>] ,
k=1 k=1 k=1
and
1 & 2 1 &
<tq? ~ Zakbk cos bkzt) cos <qt ~ Zak sin bkzt)
k=1 k=1
2 1 & 1 -
—2zsin (qt ~ Z ay, sin bkzt> ; <q — Z aiby cos bkzt> .
k=1 k=1
We have

bktz

m m m
q— Z ayby, cos bzt = Z axbr (1 — cos bgzt) = 2 Z by, sin® 5

k=1 k=1 k=1
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and

1 7 byt b? 7 sin? b’“tz ? b 7
y
2 /e in? k f/ ( bktz ) 22dz < f/ze 2 dz,
0 0 0

which bounded uniformly with respect to t > 0.
Also, we have

[ee) [ee) bktz [e'e) [ee)
sin i brtz
z bktZ 2 bk _,2|sIn bk _ .2
e~ gin? = 0% 22e™? 2 ldz < 0% 22e " dz,
t 9 btz 92
0 0 0 2 0

which is bounded uniformly with respect to ¢ > 0.
Thus, it suffices to estimate the integral

T 2 1 &
/ ( Z t2 Z agby, sin bkzt> Z arby, [sm (qtz ~ Z aiby sin bkzt>
0 k=1

dz.

1 m
— sin (qtz ~ Z apby sin bzt — bmﬁz)]

k=1

The difference of the sines in the last integral is equal to

byt 1 & 1 &
2 sin? k2 # gin (qtz ~ 4 Z ayby sin bkzt> + sin bitz cos (qtz ~ Z ayby sin bkzt> ;

k=1 k=1

therefore, it suffices to estimate the integrals of

22 . o bptz  __2|sinbitz| sin? bitz - L2 | sin bytz| 2

e Sin e
t ’ 2 2’ 12

) |sinbytz|, and e

22
| sin bytz|.

t

The initial three integrals are reduced to integrals estimated above, while the last one is equal to

o0
) / 2

0
respect to ¢t > 0.
This completes the proof of Lemma 1.6.2. [

smb tz
b ‘dz i.e., it does not exceed |bg| / 2%e*"dz; hence, it is bounded uniformly with

Now, we can pass directly to the proof of Theorem 1.6.1.
Let xp = (m(l), ...,22) be an arbitrary point of R". Then, using the integral representation for the

solution of the Cauchy problem for the heat equation, we have the relation

(2nj+q; V)2

0 0 _y
t t 1 > :
w<$1+q1 ,...,$”+qn ,t>: /e = uo(zd — 2mvt, ..., 20 — 2n,v/t)dn
b1 Pn 7'('2 Hp]R”
7j=1
Hence, the difference
n My
—t > > ajk xO t .’EO t
e J=lk=1 ! u(mo,t)—w< 1Tt . ntdn ,t)
b1 Pn
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can be represented as

1n /uo( —2mVt, ... 2h — 29,V

T2
R

. N (2 4q v

2 et e ) PN VEA D B »R
H\/ = cos 2njz+t2ajksm Vi dz— , e 7= J dn.
=1 0 k=1
j=1

Change the variables: y; = 2n; + qj\/ t, j = 1,n. This reduces the last expression to the form

1 —224t Z ajg (cos bjj —1)
7Tn/uo(ﬂﬂl—i‘tht—yl\/t Ty + Gnt — Yn V1) H/

R7 J=10
2
m; n Yj
bikz -
X COS <yjz—qj\/tz —I—tz ajj, sin zj ) dz — H;/W'e ; dy, (1.20)
k=1 t j=14Pi

which can be represented as a sum

/ / déf Ji + Jo,

Q(A)  RMQ((A
where A is a positive parameter.

Let ¢ > 0. Each internal (one-dimensional) integral in (1.20) is a bounded function of y; and t.
Indeed, the power of the exponent in the integrand does not exceed

b
22t Z ajk (cos zj: —1>

k<mg
. bigz 2
sin b 2 1 ; 2
L2 sin o, ¢
=224+t ik 2Vt J def _ 22011+ aipb? =
J b1z IrY5k
Jk 2\/t 2 Ozt
k<mgo 2\/t k<mgo

All ajj, in the last sum are negative; therefore,

bixz 1
-2+ tzajk (COS z;t - 1> <21+ 5 Z(Ijkb?k e 2
k<mo k<mo
where v > 0 by virtue of the assumption of the theorem. Then Lemma 1.6.2 implies that the
absolute value of each specified (one-dimensional) integral is bounded from above by the function

M.
5m) < R
J

select A such that Jp < ; for any t from [1,+00). Fix the selected A and consider J;. By virtue of

Lemma 1.6.1 and the boundedness of the internal integrals of expression (1.20), the difference in the
square brackets of expression (1.20) tends to zero as t — oo uniformly with respect to y € R™. Indeed,
by virtue of Lemma 1.6.1, there exists a positive 7" such that for any t € (T, +00), any j € 1,n, and
any 7 € (—00,+00), we have

where M; is a positive constant. Now, using the boundedness of the function ug,

(2nj+¢; Vit)?

00 ) my bikz m; n
—ze+t 2 ajk (COS Vit —1) X b]kz \/71' - 4p2? ET
e k=1 cos | 2njz +t g g Sin dz — e i <

k=1 Vi 2p; 27t A" sup|uol
9 —
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(note that no assumptions for the signs of the coefficients bj;, are imposed in Lemma 1.6.1). Hence,
yj — gVt

5 . Therefore, for any ¢ from

the last inequality holds if we take any real y; and assign n; =

(T, +00), we have the inequality

n 7 —z +tZa k cos bjkz—l) i) —
J V't . ]

|| e cos| yiz— q; tz—l—tg a; sm dz —Il

j:1/ <y] QJ\/ gk ) 2]?]

k=1

2

em™
<

= 2ntL An sup|ug)|

This completes the proof of the theorem because xg is chosen arbitrarily.

Remark 1.6.1. The exponential weight arising in the obtained closeness theorem for solutions is
caused not by the presence of difference terms in the equation but by the dissipativity of the problem.
The specified weight arises in the classical case as well: if all the coefficients b, vanish, then the limit
relation (1.16) becomes the identity (for any ¢). Once we add low-order (more exactly, zero-order)
terms to a parabolic equation, the solution leaves the class of bounded functions (even if the initial-
value function is bounded), but, multiplying it by the corresponding exponential (with respect to t)
weight, we return the solution to the specified class.

Note that closeness theorems for solutions are, in general, stronger than stabilization theorems.
Thus, Theorem 1.6.1 establishes a more general type of behavior of the solution as ¢ — oo than the
stabilization. However, it is worth showing an important special case where the classical pointwise
stabilization of the solution takes place: this is the case where the operator L is symmetric. In the
specified case, we can apply the following Repnikov—Eidelman result (see [95]): the stabilization of the
Cauchy problem solution for the heat equation (denote this solution by v(z,t)) takes place if and only
if the following limit relation holds for the bounded initial-value function (denoted by wvo(x) here):

. nl(3)
tliglo o /vo(az)daz =1, (1.21)
|z|<t

where [ is a real constant.
This implies the following assertion.

Corollary 1.6.1. Let the assumptions of Theorem 1.6.1 be satisfied, L be symmetric, and | € R'.
Then

—t i i i
tli}m e J=lk=1 (x,t) =1 for any x € R"
if and only if
: nl'(3)
tliglo " /uo(m)dm =1

To prove this, it suffices to note that, since the operator L is symmetric, it follows that it can be
represented (see [102, Lemma 8.2]) as follows: Lu = Au + Z apu(z — h,t), where M is a finite set

heM
of vectors from R"™ such that for any h belonging to M, the vector —h belongs to M as well and
ap = a_p, for any h from M. This implies that ¢y = --- = ¢, = 0. It remains to apply the specified

stabilization theorem from [95] to the function w(x,t).

Remark 1.6.2. It follows from Corollary 1.6.1 that surfaces bounding the averaging domains of the
initial-value function are not spheres in the differential-difference case: they become ellipsoids. Recall
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that if we deal with the classical case of differential equations, then such an effect arises if the Laplace
operator is replaced by an elliptic operator with different coefficients at different second variables:

n
I
792
e oz ;
Remark 1.6.3. In Corollary 1.6.1, the symmetry assumption for the operator L can be weakened as
follows: we replace it by the assumption that a; Lb; for any j € 1,n, where a; = (aj1, ..., ajm,) and

bj = (bj17 c. ,bjmj).
It is known from [26] that if the function vg(x) satisfies the condition
F n
lim " 52)
t—o0 27'(' 21N

/vo(m + y)dz = [ uniformly with respect to y € R"
|x|<t

(this condition is stronger than (1.21)), then the uniform stabilization of the function v(z,t) takes
place. This implies the following assertion.

Corollary 1.6.2. Let
nI‘(g)

n
n
n .
2r2t" [[p; . 2
=1 3 f<i?
j=17%j

lim
t—o00

uo(r + y)de =1

uniformly with respect to y € R™ and the assumption of Theorem 1.6.1 be satisfied. Then

for any © € R™.

1.7. The Sense of the Positive Definiteness Condition

The positive definiteness condition imposed on the auxiliary operator in Theorem 1.6.1 (as well as
the introduction of the specified auxiliary operator itself) looks rather artificial. Let us show that it
has a substantial sense.

As a prototype, consider the problem

ou 0%u

— Lo def R! : 1.22
ot u_8x2+au(a:—|—b,t),a:6 ,t>0; (1.22)
u|t:0 =ug(z), z € R! (1.23)

(the coefficients a and b are supposed to be real and the initial-value function wug is supposed to be
continuous and bounded) and consider the positive definiteness condition for the auxiliary operator,
providing the validity of the theorem on the (weighted) asymptotic closeness (stabilization) of solutions.

Then the operator £ and the operator R obeying the positive definiteness condition act as follows:

d%u

0x2

2
g;;, a>0,

+ au(x + b,t), a <0,
Lu =

and
d%u

0z2

au — —au(x +b,t), a <0,

d%u

T2 a > 0.
iy
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Therefore,
&, a <0,
a+& —acosbe, a>0.

ReR(¢) = {

Thus, the positive definiteness condition for the operator R is satisfied for any nonnegative a; for
any negative a, the specified condition is equivalent to the existence of a positive C' such that the
inequality £2 + a(1 — cosb¢&) > C€2 holds for any real £&. The last 1nequahty is reduced to the form

ab?
€2 + 2asin’ 2§ > C¢2. In the sequel, we assume that a < 0. Let 5 > —1. Denote the positive

b2
constant 1 4 a2 by C. Taking into account that sin? 2§ < f

2 UG ab?e?.

; therefore,
2

and the coefficient a is nonnegative,

we obtain the inequality 2asin

2
€2 + 2asin? b2€ > ¢2 (1 + a;’ > — g2,

ab?
Hence, the condition 5 > —1 implies the positive definiteness condition for the operator R.

2
a
Now, assume that the constant 1 + 5 is nonpositive and prove that the positive definiteness

b
condition is not valid for the operator R. To do this, we represent £2 + 2a sin? ; as
. bEN 2
ab? [ sin 5
2 b&
2

&1+

(on R'\{0}) and assume the inverse, i.e., that the operator R is positive definite. Then there exists a
positive definite C' such that

2 [ sin b\’
b
€2 1—|—a 2 > C¢? for any & # 0,
2 b
2
i.e.,
2 [ sin by *
ab 2
1+ 5 be > C for any & # 0.
2
L bEN
‘ ‘ o ab? [ S0, ab? ‘ .
Since the function g(§) = 1 + 9 be tends to 1+ 9 as & — 0, it follows that there exists
2

C
a positive &y such that g(§) < ) for any £ € (0,&). We arrive at a contradiction, which proves that

the assumption about the positive definiteness of the operator R is wrong.
Thus, for Eq. (1.22), the positive definiteness condition for the operator R is equivalent to the
2

b
condition 1 + a2 > 0 (regardless the signs of the coefficients a and b).

In the sequel, we assume that the above condition is satisfied.
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Then the weighted asymptotic closeness of the solution of problem (1.22)-(1.23) and the function
sty <a: + abt
el

,t> takes place, where w(x,t) is the solution of the problem

ow 0w )
8t - 8%2 y L S R 7t > 07 (124)
wl,_y = wo(x) & ug(VCx), = € R, (1.25)

b2
C=1+ a2 , and the weight is equal to e .

Together with Eq. (1.22), which is a differential-difference equation, and Eq. (1.24), which is a
differential one, consider the differential equation

ov ab?\ 9%v ov
=(1 R! . 1.2
o1 < + 2>8x2+abax+av,xe >0 (1.26)
Define the function
+ abt
v(z,t) ey <a: ,t> def gatyp (..t 1.27
(@.) e (1 (1.27)

and substitute it in Eq. (1.26):

o ab 0w at OW

8t_ae w(at)+\/06 8.’E(7t)+e at(7t)
and ) )

ov 1 0w v 1 ,0%w

83:_\/06 ax(’t)’ 8z2 = C°© 83:2(’t)'
Hence,

ab*\ 0%v ov o O*w ab 0w at
<1—|— 5 > 92 +ab83} +av=e 92 (1) + \/Ce 5 (-, t) + ae®w(-, t).
Since
0w ow

axQ ( 7t) - 8t ( 7t)

(this holds not only at the point (-,¢) but at any point of R x (0, +00)), it follows that function (1.27)
is a solution of Eq. (1.26).

x
VC
e~%) holds for the solution of problem (1.22)-(1.23) and the solution of problem (1.26), (1.23); note
that e~% is the weight function returning the function v(x,t) (which solves a differential equation)
into the class of bounded functions.

The differential equation (1.26) is the differential-difference equation (1.22), where the nonlocal
term is changed for its Taylor expansion up to the order 2 (i.e., the order of the equation) inclusively.
The considered that the positive definiteness condition for the auxiliary operator is equivalent to the
parabolicity condition for the specified differential equation (i.e., the ellipticity condition for its right-
hand part). This holds for all (more general) cases of nonlocal low-order terms considered above as
well (the proof is the same).

Thus, the positive definiteness condition for the auxiliary operator, ensuring the validity of the
theorem on the (weighted) asymptotic closeness (stabilization) of solutions, is as follows: if all nonlocal
terms of the original differential-difference equation are changed for their Taylor expansions up to the
order 2 inclusively, then the obtained differential equation should be parabolic.

Note that this clearly illustrates the dual nature of low-order nonlocal terms: they play no role
for the solvability investigation because the solvability of the Cauchy problem depends only on the
principal terms (only the parabolicity of the equation obtained from the original one by means of the

Further, v| g =W ,0> = ug(x). Therefore, the asymptotic closeness (with the same weight
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eliminating of all nonlocal terms is important), but, investigating asymptotic properties, we cannot
treat them as low-order terms anymore (the parabolicity of the equation constructed according to the
coefficients of those nonlocal terms is important)

CHAPTER 2
EQUATIONS WITH NONLOCAL PRINCIPAL TERMS

2.1. The Case of Factorable Fundamental Solutions

Let a,h € R™. In R! x (0, 4+00), consider the following equation:
ou qof PP N 9%
o = Lu= D2 + Zak(‘)aﬂ (x + hg, t). (2.1)

Consider the real part of the symbol of the operator L:

ReL(§) = =& = & ay cos hy§

k=1

(cf. Sec. 1.6). As in Sec. 1.6, we say that —L(§) is positive definite if there exists a positive C' such
that —ReL (&) > C&? for any ¢ € R!; any operator —L possessing the specified property is called a
second-order operator strongly elliptic in the whole space (see also [108, p. 66 and p. 78]).

In the sequel, we assume that the operator —L is strongly elliptic.

Note that the coefficients of the equation can be arbitrarily large under the strong ellipticity as-
sumption (see, e.g., [102, Ex. 8.1]).

Together with Eq. (2.1), consider condition (1.4), assuming that the initial-value function ug(x) is
continuous and bounded in R!.

On R!x (0, 4+00), define the following function:

ya —t&2(1+ i ay, cos hi€) m
E(x,t) L g, p(a,t) &t /e = cos(z€ — t&2 Z ay, sin h&)d¢. (2.2)
Obviously, if the operator —L is strongly elliptic, then the inequality 1+ > ay cos hy{ > C holds for

k=1
¢ # 0. Let us show that it is valid for £ = 0 as well (perhaps, with another positive constant), i.e.,

m m
1+ > ar > 0. Assume the converse: 1+ > ai < 0. Then, for any £ # 0, we have
k=1 k=1

m m m m m
C< 1+Zak —Zak—FZakcoshk{ = 1+Zak +Zak(coshk§— 1)
k=1 k=1 k=1 k=1 k=1

m m m m s hié 2 2 m i hié 2
hi€ 1 sin "% 1 sin
_ . 2 kS 242 2 2 2
_1+§ ap —2 E a sin 5 —1+§ ak—2 E aphi€ < hit ) §—2 aihy, hit .
k=1 k=1 k=1 k=1 2 k=1 2

Now, selecting sufficiently small positive &, we arrive at a contradiction with the positivity of the
constant C.
Therefore,

< [eCqe =] "
il < [eie= [ T
0
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.., for any to9, T from (0,400), integral (2.2) converges absolutely and uniformly with respect to
(z,t) € R x [tg, T]; hence, &(x,t) is well defined on Rx (0, +00).
Formally differentiate £ with respect to the variable ¢ under the integral sign:
—t&2(1+ Z ay, cos hi€)

— / 2(1+ Z ay, cos hi€)e k=1 cos(z& — t&2 Z ag sin hi&)d§
k=1

k=1

sin(z€ — &> Z ag sin hi€) Z ap&? sin hi&déE

k=1 k=1

0o
te2(1+ Z ay, cos hi€)
+/e

0

m 7 —t&2(1+ in: ay, cos hi€) m

Z ag / e =T [Sin(lf — 12 Z ag sin hi€) sin hy€
0

k=1 k=1

— cos(x§—t¢ Zak sin hi&) cos hkf] d¢ /5 e_t€ 1+¥ o C()Shkg)cos (x€—t¢ Zak sin hy&)d€

k=1 k=1

0o
—t&2(1+ Z ay, cos hi€)
= /526 =R (Z aj, cos

(x + hg)€ —tE Zaksmhkﬁ
k=1

+ cos(z€ — €2 Z ay, sin hk£)> dg.

k=1
Further, formal differentiation of £ with respect to the variable z under the integral sign yields:

0%E _ 7{26_%2(14_’5:1 ay, cos hi§)

22 cos(xé — t&° Z ay sin h&)dg.
k=1

0
The absolute value of both integrals is bounded from above by a linear combination of the form

oo

_ s
/626 otge = VT
) 4Ct2

i.e., they converge absolutely and uniformly with respect to (z,t) € Rx [to, T for all to, T € (0, +00).
Hence, differentiating under the integral is valid, and the following relation holds in R x (0, 4+00):

2 s —t§2(1+z ay, cos h€)
ag—ag:—/ﬁe =/h * Zakcos

ot Oz2 x + hy)€ — t€2 Z aj, sin hkgl d¢

k=1

92&
(z+ hg)é —t§22aksmhk£]d£ Zaka o (T + Dy, t).

9 —t&2(1+ Z ay, cos hi€)
ak 5 e =1 cos

k=1

Therefore, £(z,t) satisfies (in the classical sense) Eq. (2.1) in R! x (0, +00).

2.2. Cauchy Problem: Unique Solvability

Let us estimate the behavior of £(x,t) and its derivatives as x — oo (assuming that a positive ¢ is
fixed). To do this, decompose it into the even and odd (with respect to x) terms & (x,t) and E(x,t):

y —t&2(1+ in: ay, cos hi€) m
Ei(z,t) = /e = cos x€ cos(t§2Zak sin hy&)d§
0 =
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and

—t&2(1+ in: ay, cos hi€) m
E(x,t) = /e = sin z€ sin(t&? Zak sin hi&)dE.
Let us prove the following assertion.

Lemma 2.2.1. Ift > 0, then the function x*&(x,t) is bounded in R'.

Proof. Fix an arbitrary positive ¢ and integrate

) m
k=1 cos(t&> Z ay, sin hi&) cos z€ d€

o0 m
—t€2(14+ 3 ay cos hyé
e

by parts two times. This yields

"

1 7 —t§2(1+§: ay, cos hi€) m
/[e k=1 r g cos(t£2 E ay Sinhkg) cos x& d§
k=1

2
0

(it is easy to check that all the integrated terms vanish).
The last integral is a bounded function of the variable x; therefore, 22£;(z,t) is bounded. The
boundedness of the function 2&;(x,t) is proved in the same way. Lemma 2.2.1 is proved. [

Thus, the following function is defined in R! x (0, +00):

+oo
w(z, 1) <i:ef71T / E(x — €, )up(€)de. (2.3)

The following assertion is valid.

2
Lemma 2.2.2. Ift > 0, then the function x* gxi (x,t) is bounded in (—oo,+00).

2

O0z?

To prove this, we decompose into its even and odd (with respect to x) terms and integrate the

former term

b —t€2(1+ in: ay, cos hi€) m
_ / e =t * cos(t&> Z a, sin hi&) cos x€ d€
k=1

0
by parts two times. The remaining part of the proof is similar to the proof of Lemma 2.2.1.
2
Obviously, Lemma 2.2.2 remains valid if we take 92 at the point (z + hg,t), k = 1, m, instead of
x

the point (z,t). Taking into account that £(z,t) satisfies Eq. (2.1) in R! x (0, +00) (see the previous
section), we deduce the following assertion from Lemma 2.2.1 and 2.2.2:

Lemma 2.2.3. Ift > 0, then z* é(‘))f

Lemmas 2.2.1-2.2.3 and the fact that £(z,t) satisfies Eq. (2.1) in R x (0, +00) imply the following
assertion:

(x,t) is bounded in (—oo, +00).

Theorem 2.2.1. Let —L be a strongly elliptic operator in RY. Then function (2.3) is a classical
solution of Eq. (2.1) in R x (0, +0c0).

Remark 2.2.1. The fact that function (2.3) satisfies problem (2.1), (1.4) in the sense of generalized
functions is known (see, e.g., [16]). The only new value of Theorem 2.2.1 is the fact that the specified
function is a classical solution in R x (0, +-00).
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Let us prove the uniqueness of the specified solution. Following [16], investigate the real part of the
symbol of the elliptic operator L contained in Eq. (2.1). The specified symbol P(z) ¥ P(o 4 i7) is
equal to

m m
—2? <1 + Z ake_ihkz> = (12 — 6% — 2io7) (1 + Zake_ihkz)
k=1 k=1
m .
= (1% — 0% = 2io7) (1 + Zakeh“_lhk”>

k=1

m m
= (1% — 02 — 2io7T) (1 + Z are™ cos hyo — zz ape™ sin h;m) .
k=1 k=1

Thus,

m m
ReP(z) = (1% — 0?) (1 + Z are™ cos hk0> — 20T Z are™ sin hyo.
k=1 k=1

The function Q(z, tg,t) 4 elt=10)P(2) gatisfies the following inequality

|Q(Z, to, t)| < e(t_to)[ol(l+a4)+02603q—] ‘

The last estimate implies (see [16, Ch. 2, Appendix 1]) that problem (2.1), (1.4) has at most one
solution in the sense of generalized functions.

Remark 2.2.2. As in the case of low-order nonlocal terms, the uniqueness of the solution of prob-
lem (2.1), (1.4) (in corresponding spaces of generalized functions) holds for a much wider classes
of initial-value functions than the class of continuous bounded functions; in particular, it holds for
Tikhonov classes and their generalizations (cf. Remark 1.5.1 and see [2] and [40]). However, we con-
sider only the case of continuous bounded initial-value functions because we investigate the closeness
of solutions of the specified problem and classical parabolic problems.

Remark 2.2.3. The uniqueness of the solution allows us to find the integral of the fundamental
solution over the whole real axis: the following assertion is valid.

oo
Lemma 2.2.4. / E(x,t)dx =m.
—o0
Proof. Consider the function ug(x) = 1; it is continuous and bounded. Hence, the function
+00
TE R CRR L
—o0

satisfies Eq. (2.1) in R! x (0, +00) and satisfies the initial-value condition
y(x,0) = 1.

However, y(z,t) does not depend on x :

400 +oo
/ E(x — &, 1)de = / E(6,1)dE = Ty (1),

Le., y(t) satisfies the ordinary differential equation ¢y’ = 0 and the initial-value condition y(0) = 1.
Hence, y(t) = 1. ||
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2.3. Long-Time Behavior of Solutions

In this section, we study the behavior of u(z,t) as t — oco. Together with problem (2.1), (1.4),
consider the heat equation with the same initial-value condition (1.4). Denote its classical bounded

m
solution by v(z,t); denote the positive constant 1 + Z a, by p.

k=1
The following assertion is valid:

Theorem 2.3.1. The limit relation tlim [u(z,t) —v(x,pt)] = 0 holds for any real x.

oo
o —§

2/t

Proof. Take an arbitrary real zy and consider u(xg,t). Change the variable: n = ; we obtain
that
“+oo
2Vt
u(zo,t) = ;r/ / E(2V/tn, tug(zo — 2v/tn)dn.
—o0
Further,

i —t&2(1+ 5 ay, cos h€) m
VEERV 1) = Vi / . . — 1623 aj sinhy€)de
k=1

0
o m
—22(14 3 aj cos h\’;tz) m hiz
=[e k=1 cos | 2zn — 22 ag sin dz.
/ (R PLE
0 -
This implies that the function u(zg,t) can be represented as
“+00 o0 m hyz m
2 —22(1+ 3 ag cos \]/“t ) hyz
uo(zo — 2Vt e k=1 cos | 2z2n — 22 ay sin dzdn.
- / o(o 77)/ n > ay it n
—00 0 k=1
Then
Vi T 204 5 apcos ")
—z ay, cos
u(wo,t) — v(wo, pt) = /Uo(l’o - 2\/'577)/ [6 =t v
7r
—00 0
“ hiz 2
x cos | 2z2n — 22 Z ay sin R — e cos 2zn | dzdn. (2.4)
- Ve

To continue the proof, we need the following two lemmas.

Lemma 2.3.1. We have

[e’e) m

—22(14 Y ay cos "E7) o hiz t=o0
/ ¢ k=1 vVt cos 2zm — 22 g ay sin g - e_pZ2COS 2zn| dz — 0
o k=1 \/t

uniformly with respect to n € (—oo, +00).

Proof. Fix an arbitrary positive € and decompose the estimated integral as follows:

) oo
/+/ df 1) 5+ Ins.
0
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o0
The absolute of this sum is estimated from above by 2 / e~ C# dz; therefore, there exists a positive §

0
€
such that |I5 5| < 5 for any real n and any positive t. Fix that ¢ and consider the integral I 5. Its

integrand is equal to

5 | 22 in: ay (1—cos h\’y) m hz
e P¥ e k=1 *cos | 2zm — 22 ay, sin — cos 2z
[ -2 Jt 7

k=1
m . h m
—p2? 222 X_: aj, sin? 2’“\; 9 ) th
=e e k=t cos2zncos | z E aj sin
P Vi

m
hkz
+ sin2zpsin | 22 ay sin — cos 2z
o (v )| -

k=1
UL . o h
2222_:aksm2 2% 2m . hpz
e k=1 cos | z E ag sin Vi —1

2 hg= m
h
+e k=1 2V gin 2zn sin (zQZ ay sin jj)) df Ay (n,t;2) + Az (n, t; 2).
k=1

The inequality

4 m 4
26 37 |ay| “ h
/Ag(n,t; 2)dz| <e k=1 ’ / sin <zzz aj sin 2 ae
0 0 k=1 vt
holds for any 7 and ¢. Denote the fraction
m 2 462 5 |ayl
165° (z |ak|\hk|> e =
k=1
£2
by Ty. Then the inequality
h h
jtz— 8m m|k| 7k:17m7
2
™ B 3 lalhl
holds for any t > Tjy; hence,
“ hiz “ hyz €
. 2 . k 2 . k
sin | z aj sin < |z aj sin < m
( kz::l W) kz::l Vit 252 3
de k=1
(because 0 < z < ).
4 4
Thus, /Ag(n, t;z)dz| < Z if t > Ty and 7 is real. It remains to estimate the integral / Ai(n,t; z)dz.
0 0

Its absolute value does not exceed
)

L2

0

=, hpz
222 3 apsin? [k

m
hiz
e k=1 2Vt cos [ 22 a sin —1|dz.
(o’
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The difference in the integrand can be represented as follows:

m . o h
222 3" apsin? [k

, - hyz - hyz - hyz

e k=1 2V cos | 22 E ag sin b —cos | 22 E ag sin K +cos | 22 E ag sin K -1

( =V -V vt
m 2 2 hpz m
hiz 2z% 3 ay sin hiz
2 . k 2Vt 2 . k
=cos | z E a sin e k=1 —1|+cos|z E a sin — 1.
( W‘) ( ) ( W‘)

o, hpz
222 3 ay sin? [k

Select a large T7 such that |e k=1 for any t > Ty and any z € [0,4]. This is

possible because there exists a positive §; such that e* € (1 — 85(5’1 + 855) for any = € (—d1,01).
m
0t 37 lax|hj,
Thus, one can assign 11 = k=1
261

€ €
Further, there exists a positive do such that the inequality 1 — <cosz <1+ holds for any

86 86
€ (—0d2,02). Assign
m 2
(& faulim)
def k=1

b=
2 53

Then, for any ¢t > T, and any z € [0, ], we have

‘ 2Zaksmj ‘S 2Z|ak||th| < \/T Z‘athk‘ — .

Therefore, the inequality

- hiz €
2 . k
os | 2z ag sin -1 <
(i) 1 <3
holds for any ¢ > T, and any z € [0,6]. Hence, for any ¢ > max{Ty,T1,T>} and any n € (—o0, +00),
we have

g . €
/Al(n,t;z)dz < g e |Il75‘ < 5

This completes the proof of Lemma 2.3.1. [
Lemma 2.3.2. There exists a positive M depending only on a and h such that

[e.e] m
—22(14 > ay cos "k7) i h M
/e k=1 vt cos Zzn—zzz:aksin ) dz <
2 ) =y
0 =
for any t > 1 and any n € R1\{0}.
Proof. Represent the estimated integral as
T =204 3 ax cos ") m Iz
Vit 2 . k
e k=1 cos2zncos | z ay sin d
/ o ()
0 =
[e.e] m
—22(14+ Y ay cos hkz) m h
+/e =R sin 227 sin z2Zaksin R dz (2.5)
) = Ve
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and, for definiteness, consider the former term.

UL hpz
—22(1+ 3" ag cos 'k )
k=1 Vi

hyz
Denote the function e 22 Z a sin ) by g(z) (t is treated as a positive

= v

o
parameter) and integrate / g(z) cos 2nzdz by parts. We obtain the relation
0

sin 2nz

9(2) o

2n

z=-400 1 o0
- /g’(z) sin 2nzdz = —
z=0 277 0

[e.e]

1
/g’(z) sin 2nzdz
0

m
hiz
because g(+00) = 0 since 1 + Z Qg COS y > C > 0. Integrating by parts again, we see that

-V

+ o
7 )cos P R | / oz
z ) cos 2nzdz.
g s 2 )9 "
0
. . . ,, \COs2nz . ,, \COS2nz
Let us prove that the integrated term vanishes. To compute lim ¢'(2) , and lim g'(2) ,
z—+0 4n z—+o00 4n?

differentiate the function g(z):

—zz(l—i-i aj cos hkz) m hiz
"(z)=e k=1 vt —2z 1+ aj, cos K
g9(2) Z k Vit

k=1
2 . k
arhy sin cos | z a sin
i e (42 ¢t>
~22(14 35 agcos ") h 2 hkz 2 & hyz
k=1 sin | z ag, sin 2z ay sin ajhy, cos .
S S ausin 55 5 S e
The last expression can be reduced to the following form:

—2 (14 7273 aj cos h\]/ctz) 22 9 - hiz " hiz
—e k=1 sin | z ay, sin aghy, cos

k=1 k=1

2 m m h m h
_~ cos z2Zaksin Zakhksm iz +2zcos ZQZaksin ke Zakcos K
Vi = = Vi)Y
m m
+ 2zsin | 22 aj SIn ag sin + 2zcos | 2 ag sin ;
(5 ¢>Z s (S

k=1

— e

therefore, ¢'(2) is equal to

—22(14 3 apeos 57 [ 2 Bz m hiz
e k=1 aghy, sin — 22 a; sin
vy,
m m m
hrz 9 . hyz 9 . hez
+ 2z aj, CoS -z a; sin —2zcos | z ag sin .
2 ( Vi ; Vi kz::l Vi

390



Hence, ¢'(0) = ¢'(+00) = 0; therefore,

o0 o
[ atreosmaaz == 1 [ () cos 2z
0 0

Obviously, there exists a polynomial P(z) such that its positive coefficients depend only on a and h

2 U hpz
—22(14+ > ay cos VA )
k=1

and the inequality |¢g"(2)] < e P(z) holds on [0,+00) provided that ¢t > 1. Hence,

[e.e] [ee]

1
/g(z) cos 2nzdz| < w2 /e_CZQP(z)dz
0 0

for any ¢t > 1 and any 7 € R'\{0}. Thus, the claimed estimate is valid for the former term of (2.5).
The latter one is estimated in the same way. This completes the proof of Lemma 2.3.2. [
To complete the proof of Theorem 2.3.1, we decompose (2.4) into the sum
-R R +00
[+ [+ ] ) % 2 0 + 1 + 15000,
—oo  —R R

where R is a positive parameter. By virtue of Lemma 2.3.2 (without loss of generality, one can assume
that ¢ > 1) and the boundedness of the function ug, we have

\I5R()|<SUP\U0 |/<M \\//I _n>d77

The last integral converges. Hence, for any positive £ there exists Ry from (1,+o00) such that
TE . : .
|I5. Ry (t)] < 6 for any ¢ from (1,400). Obviously, I3 r, satisfies the same estimate.

Fix that Ry and consider Iy r,(t). Its absolute value does not exceed

+Ro) oo 2(1+ f: hkz) m h
—z aj cos
sup |ug(x)| / / e k=1 Vvt cos | 22m — 22 Z apsin| ) — 7P cos 2zn | dz|dn.
K Ry ' 0 k=1 vt
—140

By virtue of Lemma 2.3.1, there exists T* > 1 such that for any real nn and any ¢t > T™, the absolute
-1

value of the internal integral in the last expression does not exceed e <12R0 sup |ug(z)| ) . This
R1

implies that the absolute value of (2.4) does not exceed ¢ for any ¢t > T™. Since ¢ is selected arbitrarily,
it follows that tlim [u(zo,t) — v(xo,pt)] = 0. This completes the proof of Theorem 2.3.1 because zg is
— 00

selected arbitrarily. [ ]

Corollary 2.3.1. Let x,l € (—o0,400). Then
lim w(e,6) = | < i 1/ (2)de =
Jim 4 o [ e =

To prove this, it suffices to note that the assertion of the corollary is the classical pointwise stabiliza-
tion theorem (see [95]), i.e., it holds for the function v(z,t); further, it remains to apply Theorem 2.3.1
directly.
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Remark 2.3.1. Note that although Theorem 2.3.1 and Corollary 2.3.1 are valid under the same
conditions, the assertion of the theorem (treating the closeness of solutions) is stronger in the following
sense: unlike the assertion of the corollary (which is a stabilization theorem), it provides information
on the solution behavior even for the case where the (necessary and sufficient) stabilization condition
is not satisfied.

2.4. The Case of Several Spatial Variables

Let n,my,...,my, € N and a;,b; € R™, where a; denotes the vector (a1, ...,aim,) and b; denotes
the vector (b1, ..., bim;), ¢ = 1,n. In the domain {ZL‘ e R

t> 0} , consider the equation

ou e
ot L u 4 fAu+ZZGZ]a 2 {L’l,...,l’i_l,l’i—l—bij,{L’i+1,...,{13n,t) (26)

=1 j=1

and condition (1.4), assuming that ug is continuous and bounded in R".
Similarly to Sec. 2.1 (see also [102, §8]), impose the positive definiteness condition on the symbol
of the operator —L,): there exists a positive constant C' such that

—ReL)(€) = |¢]? + Z{Z Za” cosb;;& > C|¢|?
=1 7j=1
for any £ € R™.

As in the one-dimensional case, any operator —L,) possessing the specified property is called a
strongly elliptic operator in the whole space.

Note that, as in the one-dimensional case (cf. also [102, Ex. 8.1]), the strong ellipticity condition
imposes no restrictions on the values of the coefficients of the equation.

Also, note that, as in the case of a bounded domain (see [102, §9]), the strong ellipticity of differential
operators substantially differs from the strong ellipticity of differential-difference ones; therefore, the
impact of difference terms has a principal meaning.

In R™ x (0,00), denote the function

1 —t<§2+i &2 i a;j COsz‘jfi) n s )
Emy(z,1) def on /e =1 =l cos | x-&— tz ¢ Z a;jsinb;;&; | d€. (2.7)
The power of the last exponent can be represented as

n m;
—tY & |14 ai;cosbi;
i=1 j=1

There exist positive constants C1,...,C, such that for any & from R” and any positive ¢, the last
n

expression does not exceed —t Y CZ-EZ-Q. Indeed, take an arbitrary ¢ € 1,n and apply the strong
=1

elhptlclty condition, assuming that & = --- = &1 = §Z+1 = ... =&, = 0. We see that &2 +

5 Z a;jcos b > C’Ez for any real &. Hence, 1 + Z a;jcosbii& > C for any & # 0. Let us
j=
show that the last inequality holds (perhaps, with another positive constant) for £ = 0 as well, i.e.,

mg mg
14 )" a;; > 0. Assume the converse: 1+ > a;; < 0. Then, for any & # 0, we have
j=1 =1

c<1 —I—Zaij — Zaij +ZaijCOSbij£i
= j=1 j=1
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. S & s
- 1+Z @ij +Z a;j(cos bij§ —1) = 1—1-2 Qij —22 ajj sin? 2]2 ‘
Jj=1 j=1 — j=1
mg 1 m; 9 o Sin 'Ljfz 2 m; Sln 2352
= 1+Z aij =, Z ai;bi;&; ng < Z a;;b; ”61 _
J=1 j=1

Now, we can select a small positive &; such that we arrive at a contradiction with the positivity of the
constant C.

Therefore, for any [tg, T] C (0,400), integral (2.7) converges absolutely and uniformly with respect
to (z,t) € R™ x [tg, T}, i.e., the function &) (x,t) is well defined.
Formally differentiate &,y with respect to the variable ¢ under the integral sign:

ot
Rn

xsin|z-&—t Z 52 Z a;j sin b;&; Z &; Z a;j sin b;;&;d¢
j=

=1 7j=1

n mg
—t{ €12+ €2 3 aij cosbiz&;
e =1 =

n m;
—/ EP+> &> aycosbié
in =1 j=1
n m;
xcos |x-&— tz {ZQZ a;jsinb;;&; | d€.
=1 j=1

This can be represented as

n my;
€124 €2 3 aij cos bijfi)
i=1 @ j=1

En: 2 a;j /e_t( 512 [Sin b;;&; sin <ac € — ti&i i ag; sin bk1£k>

i=1j=1 pgn k=1 1=l
n mg
— cos b;;&; cos <m SE—t Z 513 Z ag; Sin bkl§k>] d€
k=1 1=l

/ P —t<|€|2+2 & Z aij cos bij&;
- [1€

i=1 ) cos ( — tZ£kZakl sin bklfk) dg,
k=1 =1

which is equal to

—t \i\z‘f‘i & % aij cos bijii)
—/|£|2e ( =1 =t cos —tzngakl sin byi&y | d€
Rn k=1 1=1

n m; |§|2+§: 522 % a;j cos bzg&z) n mi
- Z Z aZ]/éz < ==t cos| x - f + bmfz — tzé"% Z ay; sin bklfk df

i=1j=1 pn k=1 =1
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Further, formal differentiation of £(,,) with respect to the variable z; under the integral sign yields the
relations

625 n —t(|§|2+§: 522 % ai-cosbi-§i> n my,
on &;2 ) — /51-26 e J cos |z -€E—t Z 5]% Z ag sin by, | dé
‘ =1

Rn k=1 =
and
851322 1y---sbi—1,4L9 iJs Lit1ly -y dn,
—t<|§|2+£: 52-2 Wi a;j cos bij§i> n my,
= — /52-26 =1 =l cos | x - &+ bij& — tz E,% Z ag; sin by &y | d€.
Rn k=1 =1

Each of those integrals converges absolutely and uniformly with respect to (x,t) € R™ x [tg, T] for any
[to, T] C (0, +00); therefore, &,)(z,t) satisfies (in the classical sense) Eq. (2.6) in R” x (0, +00).
Let us prove the following assertion:

Lemma 2.4.1. If x € R" andt > 0, then
[ w0l = )20y €.t (2.8)

Rn

absolutely converges.

Proof. By virtue of the absolute convergence of integral (2.7), the Fubini theorem is applicable to it,
i.e., €y (w,t) can be represented as

1 T T n —tﬁ? <1+ % a;j COS b1]§1> n 5 m;
on / / H e J=1 COS Z ;& — téi Z Qjj sin bl]& déi ... d&,.
ot Jeo i=1 i=1 7j=1
—_——
n times

The integrand of the last integral can be decomposed into a finite sum of the form

.
L (1+ i a;; cos bij&) ) m;
e =1 gi | ©i&i — t&; E a;jsinbg;&; |,

i=1 Jj=1

where either g;(7) = cos T or g;(7) = sin7. Hence, the last integral is a finite sum of terms of the form

+00 my .
n —tr2 (H— Zl a;j cos bij7'> ) 7 )
e i= gi | =T —t7 E a;jsinb;T | dr
=1

—00

7 7j=1

and only the term

+00 my )
n —tr2 (H— >~ ajj cos bij7> ) My
/ e g=1 cos | ;T —tT E a;jsin b7 | dr
i=1_"% j=1
[e%s) my
n —t72 <1+ > ajj cos bij7'> 7
=2" /e 7=t cos | miT — t72 g a;jsinb;7 | dr
i=1 7=1
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is different from zero. Any other term vanishes because it contains at least one zero factor: this is an
integral (of an odd function) of the form

00 i
+ —tT2 <1+Z CLij COSbijT> 9 m;
2 . .
/ e J sin | x;7 —tT g ai; sinb;;7 | dr.
e j=1

Thus, the function &, (z,1) is equal to

n —tr2 (1-{—2 aij COSbZ]T> ) My
H / cos | x;T —t1 E a;j sin b7 | dr.

i=1 j=1

Each factor of the last product is a function &,,p,(xi,t) = £(x4,t) of the form (2.2). Fix an arbitrary
positive t. Then, for any ¢ = 1,n, the functlon &(x;,t) is bounded on R'. Moreover, by virtue of
Lemma 2.2.1, the function a:?é'(aci,t) is bounded on R!. Therefore, the function (1 + 22)&(x;,t) is

bounded on R! as well, i.e., there exists a positive M such that |€(z;,t)| < g2 OO R! for i = 1,n.
T?

Therefore, the following inequality is valid in R™:

Em(@n) < 2"
H(l + 2?)
i=1
Now, let © be an arbitrarily large domain in R™. There exists a positive Ay such that Q C Q(A4y),
where Q(Ap) = {|a:z| < Ao‘z’ = 1,n}. Then

n d
[ Juote — € € 0]ae < 2a) swll [ ‘
Q(A0) a0 [T +€)
1=1
Ao J "
= (2M)" sup |ug| / ) +n772 = (4M arctan Ap)" sup |ug| < (20 M)" sup |ug].

_AO

Therefore, integral (2.8) absolutely converges and satisfies the same estimate.
This completes the proof of Lemma 2.4.1. [

Thus, the following function is defined in R™ x (0, 400):

/ Emy (1 — &, yun (€)de. (2.9)

ax?

Similarly to the representation of the function &) in Lemma 2.4.1, we represent

825&1‘ bi -
amg Hgak,bk (k1)
k=1
ki
It follows from Lemma 2.2.2 and the fact that £, satisfies Eq. (2.6) that function (2.9) can be
differentiated under the integral sign. This implies the following assertion.

as

Theorem 2.4.1. Let the operator —L,) be strongly elliptic in R™. Then function (2.9) satisfies (in
the classical sense) Eq. (2.6) in R™ x (0, +00).
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Note that function (2.9) is a solution of problem (2.6), (1.4) in the sense of generalized functions
(see, e.g., [16]).

To establish the uniqueness of the found solution, investigate (according to [16]) the real part of the
symbol of the elliptic operator L, contained in (2.6). For the specified symbol P(z1, ..., 2,) we have

P21, 20) ¥ PR)EPo+ir) EPloy +iry, ..., 00 +iT)

mg
:—E 21+ E agje ki
=1

mp mp
= (7',3 — a,% — 2iopT) | 1+ E akjeka cos byjoy — i g akjeka sin by oy,

k=1 j=1 j=1
Thus,
n my mg
ReP(z) = (T,? — a,%) 1+ E akjeka cos byjop | — 2057k E akjeka sin byjo,
k=1 7j=1 7j=1
n my, m
= |7 — |o]* + E (17 — o3) E ag ;€™ cos byjoy — 2047k E axj€™ ™ sin by ;o

Now, estimate the function Q(z,to,t) <! elt=t0)P(2) .

1Q(2, t, )| < 0 [CL(1+Ha)+Cae8IT]

From the last estimate, it follows (see [16, Ch. 2, Appendix 1]) that problem (2.6), (1.4) has at most
one solution in the sense of generalized functions.

Note that, as in the one-dimensional case, the uniqueness takes place for a wider classes of initial-
value functions as well (see Remark 2.2.2); however, due to the same reason, we consider only contin-
uous bounded initial-value functions. Similarly to Lemma 2.2.4, we can compute the integral of &,
over the space R™; it is equal to 7".

2.5. The Case of Several Spatial Variables: Stabilization of Solutions

In this section, we study the long-time behavior of u(z,t) for the case of several spatial variables.
Together with the differential-difference equation (2.6), consider the differential equation

ou " 9%
5 = Zpi 92" (2.10)
i=1 i
m;
where p; =1+ Z a;j, © = 1,n (note that the positivity of all such constants p; is proved above).
j=1

Denote the classical bounded solution of problem (2.10), (1.4) by v(z, ).
The following assertion is valid:

Theorem 2.5.1. For any x € R™, the limit relation tlim [u(z,t) —v(x,t)] = 0 holds.
—00

Proof. Take an arbitrary o % (29, ..., 20) from R".
0_ ¢
In (2.9), change the variables: 7; <! i~ 6 (¢ =1,n). This yields the representation

2/t
u(zo,t) = <2:t> /uo(azo — 2\/t7])5(n)(2\/t7],t)d77. (2.11)

R
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Taking into account that

n n n s — (1-{-2 [li]' COSbijT> m;
tzS(n)(Q\/tn,t) =t2 H / e J=1 cos 2777;T\/t —tr? Zaij sinb;;7 | dr
0

Jj=1

o0 2( B bz-jz m;

—z 1+Z ajj cos > 7 biiz
/e j=1 Vi cos | 2zm; —zzzaij sin \Z}t dz,
1y j=1
we obtain that

00 mq b,z .
2 n <1+Z a;; cos yt > i bz
u(xg,t) = ug(xg — 2Vt e g=1 cos | 2zm; — 22 a;;isin 7 dzdn.
( 0 ) <7‘r> / 0 0 \/77 1:[/ i Z 1] \/t n
=10

B i=1 j=1
We have
_ 1 0_ 0 _ -l€? 4
v(wo,t) = " ug (27 — 2v/pr1téa, . ..,y — 2v/pntéy)e g
T
R'n

The change of variables \/p;§; = n;, i = 1,n, reduces the last expression to the form
n 2
uo(2? — 2vtny, ..., 20 — 2Vt )e =17 d.

7I'g H\/pZR"

i=1
Thus,

9 n <1+ % ajj cos by;)
u(xOJt) - 'U(IL'O,t) = <7T> /UO To — 2\/t77 H € =t
0

R” =1

m;
Z Z
X COS 224—2'25 a;; sin ” dz —|| d
" 7=1 K t 2\/pl "

:<i>n /+ / et <72T>H(J1+J2), (2.12)

Q(A)  RMQ(4)

where A is a positive parameter and Q(A) denotes the cube {|$Z| < A‘z’ =1, n}

Let € > 0. By virtue of Lemma 2.3.2, for any ¢ = 1,n there exists a positive M; such that for any
7; > 1 and any t > 1, we have

o0 2( 0 bigE m;

—27| 14 2 aij cos ) : biiz M; _ 2M;
/e i=1 Ve cos | 2zn; — 22 E a;j sin v dz| < 22 < 22.
0 =1 Vit mo L

Moreover, for n; € [0,1], the left-hand part of the last inequality does not exceed

[e.e]

—C22 ef VT VT .
/ de 2 2¢0<\/0(1+n)

397



hence, for any real n;, we have
7

o0 2( m bijz> ms
—z%( 1+ 3 a4 cos i bis
p Vit . z
/e J=t cos | 2zm; — 22 E a;; sin K dz| < 9
0 jZl \/t 1 + 772

where M," = max <2Mi, \/g > .

Thus, the absolute value of the integrand in (2.12) does not exceed

n n 2
M* 5 1 _m
I, (I, ]

1+772‘ 4 \/pi

sup |uo|
i=1 i=1

Hence, integral (2.12) converges absolutely and uniformly with respect to ¢t € (1, +00); therefore, there

em™

exists a positive A such that |Jo| < ont

By virtue of Lemma 2.3.1, for any i = 1, n,

0 2 1 Wi L. bijz m;
z +j:1 a;j Cos Jt _— 9 . bijz p ‘oo T _va
e COS z1); z Q55 SIN zZ — e Pi
Vit 4p;

J=1

for any ¢ > 1. Fix that A and consider J; for ¢ > 1.

0

uniformly with respect to n; € (—o0, +00).

Since any internal (one-dimensional) integral of (2.12) is bounded (e.g., by the constant M), i

follows that

[e'e) g bz
n —22 <1+ > a;jcos > m; b n n2
. - Vit 2 . Z]Z —
l j=1 2 . .. d — P;
Jlim H e cos | 2zm; — z E a;; sin Vi z H\/ 4p; e
=17 7j=1 =1
uniformly with respect to n € R™.
Hence, there exists a positive T' such that for any t € (T, +00), we have
e my bz
n —22 <1+ > agjcos ¥ ) m; b n n?
: v/ . z T
e g=t "/ cos 2zm; — 22 E a;; sin K dz — H\/4 e pi
=1 0 j=1 \/t i=1 Di
em”
< b
— 922n+1 gn sup |UO‘
. en”™
ie., |Ji| < ; therefore, |u(xo,t) — v(xo,t)| < e.

on+1’
Since ¢ is selected arbitrarily, it follows that

tlg](r)lo[u(mo, t) —v(xo,t)] = 0.
Since z is selected arbitrarily, this completes the proof of Theorem 2.5.1.
Similarly to Sec. 2.3, this implies the following assertion:
Corollary 2.5.1. Ifx € R" and | € (—o0, +00), then
n
2z [ [y
i=1

1
1. = 1. -
Jim u(z,t) =1 — dim / uo(z) dz nI(2)
Br(p1,---pn)

9

398



2 2
$1+-~+$”<R}.

where Br(p1,...,pn) = qx € R"
n Pn

Remark 2.5.1. Theorem 2.5.1 is valid for the case n = 1 as well, i.e., the asymptotic closeness of
solutions for Eq. (2.1) and the equation

ou 0%u

ot ~ Pog2
takes place apart from Theorem 2.2.1; however, this provides no new information on the stabilization
of the solution: the necessary and sufficient condition of the stabilization of the solution of prob-
lem (2.1), (1.4), implied by such a closeness theorem, coincides with the assertion of Corollary 2.3.1.

2.6. The General Case of Inhomogeneous Elliptic Operators

In this section, the investigation is extended to the case where the right-hand part of Eq. (2.6)
contains low-order (nonlocal) terms as well. In detail, we consider only the aspects substantially
different from the prototype case of homogeneous elliptic operators, considered in detail in Secs. 2.4
and 2.5. Thus, instead of (2.6), consider the equation

n M2, n Mi; n Mo,

—A“Zzama ) (24 hPe; t +Zzbwa (e+her, ) 4> Y ciju(a+hl) e, t). (2.13)

=1 j5=1 =1 j=1 =1 j5=1

Here e; denotes the ith coordinate vector in the space R", my; € N for ¢ = 1,n and k = 0,2, and the
k)

coefficients a;;, b;j, ¢;;, and hl(-j are assumed to be real for : = 1,n, k =0,2, and j = 1, my.
Instead of (2.7), define the fundamental solution as follows:

) 1, [ eI O cos o ¢ — t(6)) e, (214
R'n
where
ma i mi; n ™Mo,
ZEZ Z a;; cos h” &+ Z & Z b;j sin h” i Z Z Cij COS h(
=1 j5=1
and
ma ; mi,q n Mo,
Zfl Za” smhw i Z&Zbu cos hzj i ZZCU smhw i
=1 j=1

The following assertlon is Vahd.

Theorem 2.6.1. Let the operator —L,) be strongly elliptic in R™. Then function (2.9) with &g,
defined by relation (2.14) satisfies (in the classical sense) Eq. (2.13) in R™ x (0,+00) and is a unique
solution (in the sense of generalized functions) of problem (2.13), (1.4).

To prove this theorem, we substitute function (2.14) in Eq. (2.13):

== [Tl + Gri] e 1 cos i — 166 de

2n T —
ot
Rn

/ Ga(€)e NEP+G1 O] in [ ¢ — 1Go(€)] de.

This can be reduced to

/ e EFHC1O] Gy (¢) sin [z - € — tG2(€))]

R”
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—G1 (&) cos [ - & — tG2(€)] — [€]* cos [z - € — tG(€)]) dE.
Further,

smh {Z sin [z - & — tG2(§)] — cosh {Z cos [z - & — tGo(&)] = — cos [a: £+ hg)f — tG2(§)} ,
—cosh 52 sin [z - £ — tG2(&)] — Slnh £Z cos [z & —tGo(§)] = —sin [ZL‘ -E+ hgjl-)ﬁ — tGg(&):| ,

and
—smh §Z sinfz - & —tG2(§)] + cosh §Z cos [z - & — tG2(§)] = cos [a: £+ hgjo-)f — tG2(§)} .
Therefore,
on a(;” = z; z:l aij /5?6‘4|§|2+G1(5)] cos [(:1: - hg)ei) € - tG2(§)} d¢
=1 J= R
-y Z bij / e~ 1P+ O sin (@ + nJ i) - €~ 1Ga(€) | de
=1 j=1 Rn
5 / OOl cos | (2 + nei) - €~ 1Ga(€) | de
=1 j=1 Rn
/ g2 1PN cos [ € — 1Ga(6)] de,
g / e IOl in [o - ¢ — 1G ()] d,
and
> /52 RO cos[o - ¢ — tGa(9)] .

Thus, the function &¢,)(z,1) satisfies Eq. (2.13) in R" x (0, 4+00).
Now, represent G1(§) as

ma mi mo,q n
Z (5 Z a;j cos h 52 +& Z bij sin h( ; — Z Cij COS hg?)&) def Z G1,i(&),
i=1 j=1 i=1

and represent G(§) as
n ma 4 mi4 ™o,
Z §Z Z a;; sin hzj i —& Z b;; cos hzj i Z Cij sin h( def Z G2,i(&)-
i=1 j=1 J=1

Then function (2.14) is equal to

/ / ﬁ e_t §2+G1 7,(52 coS Z zgz tG2 ) gz)] d€y - - - d&p.

%,_z

n times
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Taking into account that the function G1; is even and the function Gs; is odd for any i = 1,7, we
reduce the last expression (similarly to the proof of Lemma 2.4.1) to

H / ot HGLI(D)] cog 27 — tGoi(7)] dr. (2.15)
0

i=1

hence, to prove the solvability, it remains (see the proof of Lemma 2.4.1) to prove analogs of Lem-
mas 2.2.1 and 2.2.2 for the case where the function (of one spatial variable) £(x,t) has the form

/e_t[mcl(f)] cos [x7 — tGao(7)] dr,
0

where G and Gg are G ; and G ; with arbitrary ¢ = 1, n, respectively. To do this, as in Lemma 2.2.1,
fix a positive t and consider

[ee]
/e_t[72+G1(7)] cos [tGa(T)] cos zTdT.
0

Integrating by parts, reduce the last expression to

(e}

. = /
Slnxm' e—t[72+G1(T)] cos [tGa(T) /sm TT 2+ Ga(7)] cos [tGo(T )]) dr
0
. 1 7 . —t[7’2+G1(T)] !
=- /sm TT (e cos [tG2(7')]) dr
0

(the former factor of the integrated term vanishes at zero, while the latter vanishes at infinity);
/
(e_t[TZJrGl(T)] cos [tGQ(T)]) = et HG()] ([27 + G (7)] cos [tGa(T)] + tG5(7) sin [tGa(T)]) .

Obviously, G’ (0) = G2(0) = 0; hence, integrating by parts again, we obtain
"
/cos xT (e_t[TZJFGl(T)] cos [tG2(T)]) dr

0

1
2

because the integrated term vanishes again. The last integral is a bounded function of x; therefore,
Lemma 2.2.1 is valid for the specified case. In the same way, we prove the boundedness of the functions
9 0E 5 0%E .
and x for any positive t.

v oz Ox?

Further, arguing exactly as in the proof of Theorem 2.4.1, we prove the solvability.
As above, to prove the uniqueness, consider the symbol of the corresponding elliptic operator:

ma g 2 ) mi k &
o 2 —ihy,; J 2k —ih, .z
P(z) = —|z|* — sz E ap;e -1 E 2k Z byje ki
k=1  j=1
n Mok ©) n ma g @)
—in Pz, 2 2 . hy T (2)
+ E E cpje kTR = Z(Tk —0j, — 2iokTi) | 1+ Z agje ki "F cos hkj ok
k=1 j=1 k=1 j=1
mo k mi,k o
— 1 E ayje k] ’“smh,(w or | + E T — i0k) Zbk’ el T cosh,({:])ak
k=1 7j=1
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mi.k n Mok n Mok

k )7k ;(60)7'1@ (0) ; hl(co')Tk 0 ;0
— bke j Smhkjgk + cje i COShijk—Z cpje v smhkjak.

k=1 j=1 k=1 j=1
Hence,
n m2 k 2
ReP(z) = Z (i — o) [ 1+ Z ayje™i ™ cos h( )Uk
k=1 j=1
m2k @) mlk o
—201LTy Z aj;e i Tk gin h( )ak + T Z bije hii T cos h}(ﬂ)ak
Jj=1 j=1
mi.k o
1)
—UkZbkekkasmh( Uk+zck€kﬂkcosh()ak
This is equal to
n mzyk @)
ni? 2
m|? —[of* + Z (7§ — %) Z agje i "* cos h,(gj)ak
_ =
M2,k ( ) mik o)
—20,Tk Z agje hii ™ sin h( )Uk + T Z brje hii T cos h;(f])cfk
Jj=1 j=1

ok (1) ok 0
hy T (1) ) hk ’Th (0)
— o g bje # F sin hkj o + E cpje ik cos hkj ok
Jj=1 Jj=1

Thus, the function Q(z,to,t) satisfies the same estimate as in Sec. 2.4 (generally, with different con-
stants), which proves the uniqueness of the constructed solution.

To investigate the long-time behavior of problem (2.13), (1.4), consider (apart from the specified
problem) the problem

0

5; = Aw, z €R"¢t >0, (2.16)

w‘t:o = wy(z), z € R", (2.17)
where wo(z) = uo(y/P1 21, ..., /Pn Tn), i.e., the initial-value function depends on positive parameters

P1s---5Pn-
The classical bounded solution of the last problem (it exists and is unique due to the continuity
and boundedness of the function wy(x)) is denoted by w(z,t).

In the sequel, Without loss of generality, we assume that for any & = 1,n, the number sets

bpih (1) ml k and {cp; * do not increase. For any k = 1,n, denote min j by my & and denote
J"%kg J ) o
ki >

m1>n] by mq ; if k is such that bk]h( ) <0 (cxj <0) forany j =1,myy (j = 1,mox), then we assign
Ck]

ma i
mir = m;~+ 1,7 = 0,1. Denote the positive constant 1 4 Z ar; + Z bkjh,gj) by ok, k = 1,n. By
Jj=1 J=ma

L,y denote the elliptic operator at the right-hand part of (2.13). Together with L), consider the
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operator L acting as follows:

def - Ckj (0) Q‘bkj
EuzAu+Z Z Uku(:r+hkjek,t)— Z \/|h | ek, t)

k=1 | j<mox J<ma g

Note that nonlocal terms of the differential-difference operator £ have only zero order, but it depends
on the coefficients at high-order nonlocal terms of the original operator L.

n
1
Denote Z Z Chj — ZZ |bij| | I — £ by R. The following assertion is valid.
Tk J<mg J<mip

Theorem 2.6.2. Let R(§) be positive definite. Then

n ™0,k
“t X 3 ki ) + qut a0 + gt

lim |e *k=1J=t ]u(xo,t)—w< L yee, an ,t) =0

t—00 \/pl \/pn
for any x4t (29,...,20) from R™, where

ma; mi; mi,i mo,;

0) .
et S 2wy ) S [ ot 0= 30 S =

Proof. First, we prove that py,...,p, are positive under the conditions of the theorem. To do this,

we consider the positive definiteness condition for R(§):

n n

1 1 0 1
S| a2l +Her- S0 [ ayeoshfa-23 bl eos /Il | > Cle.
k=1 k J<mq Jj<mq k=1 k J<mq Jj<mi
Then we take an arbitrary k& € 1,n. The last inequality remains valid if we set &1, ... ,&—1,&k11,---,&n

to be equal to zero. Therefore, the inequality
1 0
Sooay—2 Y gl o2 Y Jbiylcos \/|h,§j>| G- . ayeoshle, > Cel
J<mo Jj<mi g Jj<mi g J<mo
holds for any positive &. This implies the following inequality:
1 0
C& < o1&} — 2Z|bk’j| <1 — cos \/|hl(€j)|gk> + Z Chj (1 — cos hlgj)gk) .
j<ﬁ11,k j<m0,k

Its right-hand part is equal to

0)
\/| )| &, he,
ol —4 Z |bgj| sin? +2 Z cxj sin’ ks
J<ma J<mo,k
e\ W06\ 2
2 _ g2 (| sin " ' & 012 [ sin %
= 0&i. — & Z ‘bijhkj ‘ i + 9 Z Ckj [hkj] () 3
= \/|hk. | &5 = by &k
J<miyg 23 J<mo,k 9
hence,
2
sin \/‘ (1)|£k 1 2 [ sin (0>§
_ 2 (0)] 2 >
Tk Z|bk9||hka \/|h(1-)|§k * Z Chj [hkﬂ h(® g, =
<m1 k ’;J j<m0’k 32

for any positive &.
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This yields the inequality
1 1 0)]?
ox— > lows A | + 5 > ek [hz(fj)] > 0.
J<mai J<mo,k
Indeed, assume the converse:
1 1 0)]2
ok = lowsllnf 1+, S e [ <o,
J<myq g J<mo,k

Then for any positive &, the constant C' does not exceed

ot D bl = D |bkj‘|hl(clj)|+; D [h;(goj)r—; D o {hz(f;)r

Jj<mai g Jj<mi g J<mgq J<mo,x
2
n JIrDle ' , sinh’(“(;)gk 2
(1) 2 (0) 2
= 3 Ilingg) I e > as (] Tl
J<in i J<mo,k "
2
0
—o— Y |bkj||hk,j|+2 Y [hm
j<ﬁllyk j<m0k
. \/\h(l) 2 ) héo-)ék 2
PO 1 O |5 "
- Z |kaHhkj| \/h(l) -1 +2 Z Ckj hk; hO ¢ -1/,
<. | S §<io N

which does not exceed

2
B¢\ 2 \/Ih &
1 12 | [ sin %% (1) sin
E Clj [hkj} (O) —1f - E |bk’j||hkj | L -1
2~ hy i &k = \/\h()
J<mo,k k]2 J<mig

Since all the sums are finite, one can select a small positive & such that the last expression does not

C
exceed 9" The obtained contradiction proves the positivity of

Ok _Z|bk’j||hl(glj)| + ; > ek [hz(f;-)]z

J<mi g J<mo,k
m2,k (0) 2
“1 Yot X bt - Sl +, o 1]
j>my g Jj<mi ]<m0,k
ma,k mik
1)
_1+Zakﬂ+zbkﬂhl(€] + ZC’W [ ka}

J<mo k

Hence, p;. is positive a fortiori.
Now, fix an arbitrary xg from R™. Then

y <a:(1] + g1t 20 + gt

_ 1 -5 5 ()
BT ,t>— ety R/ wo(y/P1 €1, -+ /P En)e de.
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The last expression is equal to
1 -1 Zn: (@ +a;t—n;)> _ & g+ vn)?
t 4p; 4p,
. we H T ay= L fwm—avige &
(2\/7Tt)n [I V/Di gn 2 V/Pi g
i=1 -

1

1 =2 4y,
T . /uo(mo +tg— Viy)e =Ty,
i=1

—_

7

where ¢ denotes the vector (qi,...,q,). Further, by virtue of (2.11) and (2.15), we have

u(zo, t) = <2f>n R/ uo(zo — 2\/tn)£[176—t 7 +G1i(7)] g [wtw — tGaa(r )} drdn

= <\7/rt> /uo(azo +tq — \/ty) H / e HGLM] ¢og [yﬂ'\/t —q;Tt — tG27i(T)] drdy.
R =17
Hence,

n M0,k

-t 3> ZCJ "
e 1 (mo,t):<i> /U0($0+tq—\/ty)

Rn
TLOO
XH/e
0

=1

mo,g
T +G1 Z(T + Z ng:|
i=1 cos [yn'\/t — Tt — tGg,i(T)] drdy,

which is equal to

™mQ,4

1\" n T2 tGlZ —t 3 i
< > /uo(azo +tq — \/ty)H/e =7 cos [ — g2Vt — tGa <\j >] dzdy.
" R® i=1p t
Thus,
n ™0,k

—t > > ey mO t .’EO t
e Kk=14=1 JU(l‘o,t)—w( 1+Q1"“’ n+Qn7t>
\/pl \/pn

mo,;
n

[oe)
1 n —z —tGlZ \2 —tzcij
= ug(xog +tg — Vit e j=1
(ﬂ)/m 0~V 11 [
0

Rn =1

X COS [ — gzt — tGa; < ﬂ dz — H ) 7; e 4p1> dy. (2.18)

=1

The following assertions are valid:

Lemma 2.6.1. Suppose that the conditions of Theorem 2.6.2 are satisfied and i € 1,n. Then

mo.q

o

— s _tGl’L z —t Z Cii _ 2 t—
/6 ( t) = COS [yz — Qiz\/t_tGQ,i <\jt>:| dz — 2\\//7;6 ‘?{pi —O>OO
) (2

uniformly with respect to y € (—oo, +00).
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Lemma 2.6.2. Suppose that the conditions of Theorem 2.6.2 are satisfied. Then for any i = 1,n
there exists M; depending only on the coefficients of Eq. (2.13) such that

mo,i

—Zz —tG i tzcz
'/ " ( ) J=1 Jcos yz—qZZ\/t—tng<\;t>] dz

<

y2

for any y € RMN\{0} and any t € [1,00).

To prove Lemma 2.6.2, we use the same scheme as in the proof of Lemma 2.3.2 (see also [57,
Lemma 5]).

To prove Lemma 2.6.1, we represent the power of the exponential function contained in the integral
as follows:

ma g h(2) miq h(l)z mo,; h(O)Z
22 Zamcos —z\/thijsin i]/t —I—thij (cos ij/t —1>

j=1 j=1
ma; (2) mi; sin hggl‘)z h(l) mo.; h(O)
_ 2 z" Ny e g E APRCRL
=—z2°|1+ Z ajj COS — 2Vt Z bij W — 2t Z Cij sin "
j=1 & j=1
Vit
m 2 m Wz m hY ?
2,1 \4 1,7 Sln ) 1 0,7 2 SIH )
— ;2 g ZJ Vit [0 2/t
=—2° |1+ Zaw cos Jt + Zb”h” o + P Cij [hij ] W0,
i Vi = 2/t
The independent variable of the cosine contained in the integral is represented as
my h(l)z ma.i h(2) smh( ) h(o)z
z y—qi\/t—l-\/thijcos K —22Zaijsin K —I—thU 0) Yo
— Vit — Vit h! Vi
Jj=1 j=1 i
Vit
which is equal to
)
m L0, o Smh( ma oR
z y—qi\/t+\/thijcos ij/t +x/thZ] Z? (0) _ZQZaijsin ij/t .
j=1 \/t j=1

The remaining part of Lemma 2.6.1 is the same as the proof of Lemma 2.3.1 (see also [57, Lemma 4]).
Now, we can decompose (2.18) into sum (2.12) and estimate it in the same way as in the proof of
Theorem 2.5.1 (using Lemmas 2.6.1 and 2.6.2 instead of Lemmas 2.3.1 and 2.3.2 respectively). This
completes the proof of Theorem 2.6.2. [l

Note that Remark 1.6.1 remains valid for Theorem 2.6.2 (i.e., for the case where principal terms of
the equation are nonlocal) as well.

Remark 2.6.1. It is easy to see that the function
w(z,t) <$1 —|—q1t’ el o+ qnt,t>
\/pl \/pn

is a classical bounded solution of the equation

n

ou 9%u " du
) :Zpiamz +Z%8x" (2.19)
i=1 ( i=1 t
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satisfying condition (1.4); therefore, in the theorem on the (weighted) closeness of solutions, one
can use problem (2.19), (1.4) instead of problem (2.16)-(2.17). Note that Theorem 2.6.2 establishes
a qualitatively new behavior of the solution compared with the prototype case of the homogeneous
elliptic operator at the right-hand part of the equation (see Theorem 2.5.1), and this qualitative novelty
is preserved even if there are no nonlocal high-order terms (cf. [57, Th. 2]). Thus, adding low-order
terms to a parabolic differential-difference equation, we can encounter qualitatively new effects (as in
the classical parabolic theory, see [29]).

2.7. The General Case of Nonfactorable Fundamental Solutions
Let ayj, hy; € R, k,j = 1,n. In R™x (0, +00), consider the equation
ou - 0%u
ot = Ly def Z Q4 o2 (ZL‘ + hkjej,t), (2.20)
k=1 k
where e; denotes the unit vector of the jth coordinate direction.
As in Sec. 2.1, consider the real part of the symbol of the operator L (cf. Sec. 1.6 and [102, §8]):

n

ReL(¢) = — Z ax;&2 cos hy&;.

k,j=1

We say that —L(&) is positive definite if there exists a positive C' such that —ReL(¢) > C|¢]? for
& € R™. Any operator —L possessing the specified property is called a second-order operator strongly
elliptic in the whole space.

In the sequel, we assume that the operator —L is strongly elliptic in the whole space.

Consider problem (2.20), (1.4), assuming that ug(x) is continuous and bounded in R™.

On R™x (0, +00), define the following function:

£ ) % £, (o, ) et / 1) cosfa - € — G ()] de, (2.21)
RTL
where G1(§) = 3 agj&F cos hy;&; and Go(€) = > ay;&7 sin hyé;.
k=1 kj=1
The strong ellipticity for the operator —L implies the inequality |E(z,t)| < / e‘cﬂﬂzdf , i.e., for
Rn

any tg, T from (0,+00), integral (2.21) converges absolutely and uniformly with respect to (x,t) €
R™x [to,T]. Therefore, £(z,t) is well defined on R" x (0, +00).
Formally differentiate £ with respect to ¢ under the integral sign:

o = [ OG € cosle €~ 1Ga(O)de + [ T OOGae)snli - € — 1Gal€)de
ot
R™ Rn
Taking into account that
sin hy;&; sinfx - € — tGo(§)] — cos hy;&j cosla - € — tGo(§)] = — cos[(z + hyje;) - & — tGa(§)],

we obtain the relation

8@‘? _ _/e—tGl(ﬁ) Z a;&h cos[(x + hyje;) - € — tG2(€)]dE
A k=1
=— Z arj / et 2 cos|(x + hijej) - & — tG2(&)]dE. (2.22)
kj=1  En
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Further, formally differentiating £ with respect to spatial variables under the integral sign, we obtain
the relation

2
0ut = / e cosfr - € — 1G(E)dE
hence,
o%e 2,~1Gi (€)
92 (x + hyjej,t) = —/ﬁke 1) cos|(z + hijej) - € — tGa(€)]dE. (2.23)
k

The absolute value of each of those improper integrals is bounded from above by

const / \§|26_Ct|§|2d§,
R’I’L

i.e., it converges absolutely and uniformly with respect to (z,t) € R™x [to, T] for any ¢y, T € (0, +00).
Therefore, differentiating under the integral sign is valid, and £(z,t) satisfies (in the classical sense)
Eq. (2.20) in R™ x (0, +00).

Fixing a positive ¢, estimate the behavior of the function £(z,t) and its derivatives as x — oco. To
do this, decompose the specified functions into the terms & (z,t) as Ea(z,1):

E(x,t) ! /e‘tGl(g) costGy(€) cosz-£dE and Ey(x,t) Lt /e‘tGl(g) sintGy(§) sinz-£ d€.
Rn R™
Let us prove the following assertion:
Lemma 2.7.1. Ifl € N and t > 0, then |z|'E(z,t) is bounded in R™.

Proof. Let t > 0 and ¢ € 1,n; then

xi&1(x,t) = ngnoo et cos tGo(&) 865-

l§I<R

sinz-€ d€

— lim / et cos tGy (&) sin z-€ cos (&, ei)ng—/ 0 [e‘tGl(g) costGg(ﬁ)] sinz-& d¢ |.
R—oo 851
l§l=R l¢|<R

The absolute value of the surface integral of the last expression is bounded by

/ e‘tGl(g)dsg < / C_Ctmzng — const Rn~leCtR? 230 0;
l€l=R |€|=R

therefore,

;&1 (z,t) /ag _tGl(g) costGo(§)| sinz-£ dE.

It is easy to see that the absolute value of the integrand does not exceed |P(€)]e™*%1€) where P is a
polynomial such that its coefficients depend only on ¢ (which is fixed) and the coefficients of Eq. (2.20);
therefore, the function x;&(z,t) is bounded in R™.

Further,

22 (z,t) = xl/(‘){ —tG(9) costGg(f)] sinx-£d€ = /8§ —tG(E) costGa(§) 0 cosx-£ dE.

9

408



Represent the last expression as follows:

lim aa [e_tGl(Q cos th(f)} cosz-£ d€

R—oo i
lEI<R

0
9

- 1 0 [ () .
= Rh—I>r<1>o / 9%, [e Cos tGg(E)} cosz-& cos(§, e;) dSe
l¢|=R

82
_/852 {e‘tGl(é) costGg(f)] cosx-£dE|.
i 95

As we see above, the absolute value of the integrand of the last surface integral does not exceed
|P(£)]e7¥1©); hence, the absolute value of the specified integral does not exceed

_ 2 Roo
e Ol |P(€)]dSe =5

I§|=R
This implies that
2 0

l§I<R

[e‘tGl ©) cos tGy (&) | cosx-& dE.

Differentiating the integrand, we see that its absolute value does not exceed |P(€)|e *“1(©) (in general,
the polynomial P might change), i.e., the function 22&;(z,t) is bounded in R™.
Continuing to integrate by parts and taking into account that

al
'555-
for any [ € N, while the coefficients of the polynomial P depend only on [,¢, and the coefficients of
Eq. (2.20), we obtain the boundedness of the function & (z,t) for any i € 1,7n; hence, the function
|z|'&1(,t) is bounded as well.

The boundedness of the function |z|'€,(z, ) is proved in the same way.
This completes the proof of Lemma 2.7.1. [ ]

|76 cos1Ga(€) || < [P()]e 1O (2.24)

Thus, the following function is defined in R™ x 00):

+
u(e, / Elx — & ug(€)de. (2.25)

Apply to representations (2.22) and (2.23) the procedure applied to integral (2.21) in Lemma 2.7.1.

Taking into account that estimate (2.24) remains valid for the functions {2 1S costGy(€) |,
: : 9’E :
k = 1,n, we see that the assertion of Lemma 2.7.1 holds for the functions ot and 92 as well. This
Ty,

means that function (2.25) can be differentiated under the integral sign. Since the function &(x,t)
satisfies Eq. (2.20), this implies the following assertion.

Theorem 2.7.1. Let the operator —L be strongly elliptic in R™. Then function (2.25) satisfies (in
the classical sense) Eq. (2.20) in R™x (0, +00).

Remark 2.7.1. The fact that function (2.25) satisfies problem (2.20), (1.4) in the sense of generalized
functions is known (see, e.g., [16]). The only novelty of Theorem 2.7.1 is the fact that this solution is
classical in R™ x (0, +00).
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To establish the uniqueness of this solution, investigate (according to [16]) the real part of the symbol
of the elliptic operator L contained in Eq. (2.20). The specified symbol P(z1, ..., 2z,) ¥ P(2) & P(o +
iT) def P(o1 +ity,...,0n +i7,) is equal to

n n n n
- E 22 E agje” kit = E (17 — oF — 2ioT) E agje ki
k=1 j=1 k=1 j=1
n n
= g (18 — 0% — 2ioyTy) E agjeliTi =Mk
n n n
= (1% — 02 — 2ioyTs) api€™i7 cos hiio; — iy agie™ i sin hy;o;
= k k kTk kj kj%j kj k95
k=1 7j=1 7j=1
Thus,
n n n
ReP(z) = (17 — 0}) E axje™ii cos hyjoj — 203y, E agj€™iTi sin hy;o;
k=1 j=1 j=1

Therefore, the function Q(z,to,t) <! e(t=10)P(2) gatisfies the estimate

10(2, to, )] < elt=t)[CLllHol)+CaeCslTT]

which implies (see [16, Ch. 2, Appendix 1]) that problem (2.20), (1.4) has at most one solution in the
sense of generalized functions.

Remark 2.7.2. In general, the uniqueness theorem for problem (2.20), (1.4) (in corresponding spaces
of generalized functions) holds for much more wide classes of initial-value functions than the class of
continuous bounded functions. In particular, it holds for Tikhonov classes and their generalizations
(see [2] and [40]). However, we consider only the case of continuous bounded initial-value functions
because we investigate the closeness of solutions of the specified problem and classical parabolic prob-
lems.

Now, investigate the behavior of u(x,t) as t — oo. First, we prove the following assertion.
n
Lemma 2.7.2. If the conditions of Theorem 2.7.1 are satisfied, then the constant pp 4 S agj 18
j=1
positive for any k € 1,n.

n

Proof. Let k € 1,n. Assume the converse: ) ay; < 0. Take the strong ellipticity condition for the

j=1
operator —L and assign §; = -+ = €1 = €1 = - = &, = 0 in that inequality. We obtain the
inequality
n
fg Z akj + QfJ COS hkké‘k Z C&%

j=1

J#k
Hence,

n n
C< Z agj + agk cos Ny + apr — agr, = Z ap; + agr(cos hgpér — 1) < agg(cos hypéy — 1)
j=1 k,j=1
J#k
provided that & is different from zero. Now, we can select & such that it is different from zero, but
its absolute value is sufficiently small to obtain a contradiction with the positivity of the constant C'.
This completes the proof of Lemma 2.7.2. [
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Together with the differential-difference parabolic equation (2.20), consider the differential parabolic
equation

n 2
du _ Zpka Y (2.26)
k=1
By v(z,t) denote the classical bounded solution of problem (2.26), (1.4) (it exists and is unique due
to the continuity and boundedness of the function wy).
The following assertion is valid:

Theorem 2.7.2. If the conditions of Theorem 2.7.1 are satisfied, then
tll)lélo[’ll/(l’, t) - 'U({L’, t)] =0

for any x € R™.

— &k

2/t

u(z, t) = <f>n R/ 2/, Hug(x — 2v/tn)dy.

Proof. Let x € R™. In (2.25), change the variables: v =1, k = 1,n. This yields the representa-

tion

Taking into account that

t2E(2Vtn,t) =tz / e~ cos[2V/tE 1) — 1Go(€)]dE

Rn
Jorto nfer-a G 3)
=le VTV cos | 220 — tGo e dz
t t
J VAR
and
1 o (xg,—Ep)?
v(z,t) = up(§)e =1 g

vty I1 vows
k=1

(since it is a solution of the Cauchy problem for a differential parabolic equation with constant coef-
ficients), we obtain the following representation of the estimated difference:

u(x,t) —v(x,t)

ot N T S T
= <W> /uo(ac—2\/t77)/e cos |2z -n — tGo WARI dzdn
Rn Rn

1 ¢ (z}i_ik)2
- n up(€e #=1 T dg
(2\/7Tt)n H \/kan
k=1

B e [ I I S T I
/

R’I’L

_ e = | an, (2.27)
I1 vrx
k=1

Let us prove the following two lemmas.
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Lemma 2.7.3. The relation

n 2
— #1 zZn z z 71'2 - Tkt o0
/e tGl(x/t""Vt) cos {2,2-77 —tGo (\/lt,..., \/"tﬂ dz — e k=1"F
Rn

holds uniformly with respect to n € R™.
Proof. Consider the integral

- i PrZE " n
/e =1 cos 2z-ndz = / H e PR cos | 2 Z Zkmk | dz.

n
The function cos <2 > zknk>

n
is a finite sum of terms of the form [] fi(22xmk), where each function fj
k=1

k=1
n
is either the sine or the cosine, and only one of those terms contains no sines; this term is [] cos 2z;n.

k=1
Therefore, the last integral is a finite sum of terms of the form

[e%¢) +oo n n —+00
/ / H e_pkzi%fk(sznk)dzl coodzy = H / e PR fe(npT)dT.
v k=1 k=1_"

—00
———
n times

Only one of those terms is different from zero; this is

n +o0

_ 2
H /e PET™ cos 2nT dT.
k=1

—0Q
All other terms vanish because each of them contains at least one factor of the form
+00

n
H / e P sin 2nT dT = 0.
k=1_1
Thus,
2
— 3 il n T 2 - e_zi
,IC n
/6 k=1 CcoS 2217(12 = on H / e_ka COS 27’]de7’ =T2 H .

Hence, the following relation is valid for the second factor of the integrand of the external integral
in (2.27):

n 2

z zZn n _ Mk

/e—tGl(\/lt»..,ﬁ) coSs |:2Z'77—tG2 <f/1t77\z/7";>:| ds — nﬂ'? e kz::u’k
R7 I<:Hl Pk

z 2Zn _ (L 2
/ <e_tG1<\/lt""’¢t> cos [22'77 —tGy (Zl : ﬂ —e kz:zlpkzk

n
\/ty...y\/t
R”

The absolute value of integral (2.28) is estimated from above by the sum

— 21 zn - Zn: prZp — min pglz|?
/e tGl(x/t"“’\/t>dZ+/e k=1 kdzg/e_mZ'de—i—/e k=1,n

R R

cos 2z'77> dz. (2.28)

dz < 0o.
Rn Rn
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Therefore, integral (2.28) converges absolutely and uniformly with respect to (t,17) € R x R™
Fix an arbitrary positive € and represent (2.28) as the sum / + / def 1 1,6 + I2,5. By virtue of

|z|]<6  |z|>8
. . €
the proved uniform convergence, there exists a value of the parameter § such that |l 4] < 5 for any

t e ]R}r and any n € R". Fix that 0 and consider the integral I; 5.
Its integrand is equal to

n 22 hp iz s
_ 2 —t > ap; Fcos KT LS pual
kz:zlpk% e ki=t e A= kcos 2z - —tG A1 Fn — 2z -
n A VAR cos2z -1

e

n

n n hpizs
=3 ppz? Zzi(pk—z:akjcos 7 J) - 2
—e k=1 F | g1 =1 v cos |:2Z"I’]—tG2 <\/1t”\/nt>] —Ccos2z -1

S Ul d Ry ozs
’ ‘ cos |2z n th [ cos 2z n
VTV
L U i Ry iz
- pr7 2> 22 > a;sin? kj%j B .
N e COS[2z-n—tG2< 17-.., ”H_COSZ,Z.??
Vi Vi
<z n n Ry oz
= X pezj; 23 2 > ap;sin2 FI°I ; B
—e =1 e AT Ve cos 2z - 1) COS [tG2< e nﬂ —cos2z -1
Vi Vi

n 2 n Py n .9 hka]-
- > pra} 2k2_:12k 21 akjsin® 00 . 21 Zn,
e km1 0 e k=l = sin2z - n sin |[tGa

AR, >} = Ai(n,t;2) + Aa(n, t; 2),

where

and
n n hp:z:
2 2., gin2 Ki%i
-3 P2 2k§' lzkakj sin® -,
J=

sin 2z-n sin [tGg <\Z/1t,..., Z)] .

First, estimate the latter term:

2 i |akj|213 z z
/ As(n,t; 2)dz| < / e k=t sin |:tG2 <\/1t”\/r;t>] dz
|z|<é |z|<é
252 3 agl n sz
~ . . Ngjzg
<e hi=t / sin |lag;| 22 sin dz
2
|z|<6 =
262 3" Jay,| n B2
— . k]Z]
<e hi=t / |ag;| 22 |sin dz
kz—:l ’ vt
|z|<8 "I
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262 30 iy

h
< & Z |ag;le  *i=1 K%
k,j=1 \/t
’ |z|<d
523 Jasl Oy +3¢C162
< il hle B /dzdéf
\/ kzzl J J \/t )

|z|<0

where the constants Cjy and C; depend only on the coefficients of Eq. (2.20).
160352n+6€20162

Denoting by Ty, we obtain that the following inequality holds for any ¢ > Ty and

2
€
any n € R™:

€
As(n,t; 2)dz| < .
|z|<d
It remains to estimate the former term:

2 o2 PkjZj

2 Zn: ay;zj, sin n Rz
/ Ai(n,t; 2)dz| < / e ki1 2 cos Z ay;2j sin I\C}t] — 1| dz. (2.29)
B |z|<é k,j=1

Without loss of generality, we assume that ¢ is sufficiently large to satisfy the inequality

The inequality

n
2 .2 & > |akj|hij

hij hk~2' krj=1
2 ag;iz2 sin’ J]<2(52 a 7 < ’
gzl FITEET ot ;J kil S 2t

is valid in the domain of integration of integral (2.29). Therefore, there exists a positive T} such that
for t > T, the value of the exponential function in (2.29) belongs to (1 — 7,1+ 7).
The inequality

& 3 |anjhul

h —
Z akaksm k] J < 62 Z |a ]\| ka]| mg=1
] Vit ~ Vit

is valid in the domain of integration of integral (2.29). Therefore, there exists a positive 75 such that
for t > Ty, the value of the cosine in (2.29) belongs to (1 —~,1 + ). Thus, for ¢ > max{7y,T>}, we
have

2 Zn: a2 sin? "hi%i
kji®k 2/t

1-37<(1—-79)?<e k-t Z akak sin \}t] <1472 <1+3.

k=1
om20" ¢
Hence, the integrand in (2.29) does not exceed 37y and integral (2.29) does not exceed 3~ al (1) =
2
Therefore, |1 5] < 5 ° for any t > max{7Ty,T1,T>} and any n € R™.

This completes the proof of Lemma 2.7.3 because the positive ¢ is selected arbitrarily. [ ]
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Lemma 2.7.4. There exists a positive M such that

—tG1(\/t, ’\/t) . Z1 M
/ cos |2z-m — tGy AL \/t dz |77|n+1

R'n
for any t > 1 and any n € R™.

Proof. Let t > 1,7 € 1,n. Represent the estimated integral as

/ o (\/ ’ ’\/ ) cos |:tG < ¥ ¥ >:|
t t 2 ey cos2z-ndz
t t
J VAR,

tG1 () [ <z1 Zﬂ)] - def
—|—/e Vi Ut) sin tGo ey sin2z-ndz < fi(t,n) + fa2(t,n)
t t
J VRSN

and estimate

_tGl(Zl 7”'7Zn) Zn
nifi(t,m) = 77i/€ VeV cos |:tG2 < ﬂ cos2z-ndz.
s Vi

The last expression is equal to

L lim e tGl(\/’“ 7\/’5) cos |tGo Zl,..., n 0 sin2z - ndz
2 R0 Vit Vit )] 0z

|z|<R

— 1 lim / e tG1<\/t7 7\/t) CoS [tGg <\/t n >} sin2z - ncos(z, €;) dS,

Y%

_ / 81 (e_tG1<f/1t7”"fZ> cos [th <\/t f;)]) sin 2z -1 dz

|z|<R

The absolute value of the surface integral in (2.30) does not exceed

_ R—o0
/ e tGl(W’ ’\/t)dS < / e_c|z|2dSz — const R"~le"CR* 0;
lz|=R lz|=R

hence, (2.30) is equal to

_;/8(2:1- (e_tG1<¢t’ ’\/t> coS [th <\/t 7)})511122'77&’3
RTL

1
def _ /g(z; t)sin2z - ndz.

2
R’)’L
Let us compute
s hgjzj
Z; z cos \}t n 5 . hkaj
= cos g a2, sin .
k,j=1 ¢
We obtain
n h Sz
i ei . hgizi -2 ay;jz2 cos ’i}tﬂ n )
szg aj COS E sin Y. e k=t COSE ()2 Sin
k= % t k,j=1

(2.30)

(2.31)

hijz;

Vi
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n hy 2

_ 2 kj*j n n n
kzil“k]’zkcos v . hijzj o Qkihg hiizi | . o . hgjzj

—e i 22 E aij sin Y + g 2 Y cos Y smE ak; 2, sin Ve
=1 tO t t kj—=1 t

Its absolute value does not exceed
n n )
4‘%‘ Z |CLZ']'| + 2 Z \akihmzz e_C‘Z\
Jj=1 k=1

(because t > 1). Hence, integral (2.31) converges absolutely and uniformly with respect to (¢,7) €
(1,400) x R™; therefore, n; f1(t,n) is a function bounded on the set {n € R",t > 1}.
Further,

W filtn) =~ /9(2; t)sin2z-ndz

2
Rn
1. 0
= lim g(z;t) cos 2z-n cos(z, e;)dS, — g(z;t) cos 2z-ndz |. (2.32)
4 R—oo 0z
|z|=R |z|<R

The absolute value of the integrand of the last surface integral does not exceed |g(z;t)|; it follows
from the estimate obtained above that the absolute value of the specified integral does not exceed

1
const (1 + R)R”e_CRZ. Therefore, (2.32) is equal to 4 / 88 g(z;t) cos 2z-ndz.
Zi
Rn

Differentiating g(z;t) and taking into account that ¢ > 1, we see that the absolute value of the last
integrand does not exceed P(|z|)e~C#", where P is a polynomial with positive coefficients. Therefore,
the function n?f1(t,n) is bounded on the set {n € Rt > 1}.

Continuing to integrate by parts, we obtain that the function ;" f1(¢,7) is bounded on the set
{n € R",t > 1} for any i = 1,n and any m € N; we take into account that ¢ > 1 and the function g is
such that the absolute value of the integrand is estimated from above by the function P(|z|)e~CI#*,
where P is a polynomial (in general, it depends on m and i) with positive coefficients.

In the same way, we prove the boundedness of the function 7." f2(¢,7) on the set {n € R",t > 1} for

any ¢ = 1,n and any m € N.
n
Since |n|" ! < constz 7;]" ™!, Lemma 2.7.4 is proved. ||
i=1
Now, we can get back to the proof of Theorem 2.7.2. To do this, we take an arbitrary positive &
and represent (2.27) as

1 n
<W> / + / © I3 (1) + Ta,r(1),
Inl<R  In=R
where R is a positive parameter. The integrand of (2.27) does not exceed

n

17 z z T2 - Zn: i
Sup|u0‘ /e—tGI(\/t7~~.7/t) CcOS |:2277_tG2 <\/1t” \/nt>:| dZ + " e k=1 Pk
v R" kﬂl V/Dk

Hence, by virtue of Lemma 2.7.4 (without loss of generality, we assume that ¢ > 1), the absolute value

n 2
g

1 —
of the integrand of Iy r(t) is bounded from above by the function const Iyl +e #=1"% | Since
n
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nnz

1 -
all of the functions |n|ntt and e *=1"* are integrable over the set {|n| > 1}, it follows that there
n

£
exists R > 1 such that |I4 r(t)| < 7T”2 for any ¢ > 1. Fix that R and consider I3 (t). By virtue of
Lemma 2.7.3, there exists T* > 1 such that the inequality

n 2
n Nk n n
_ z zZn - F
/e G (G ) cos [QZ'T]—tGQ (\Z/lt,...,ytﬂdz— nm e Z <Z; (2|)€|.
Sup |u
R™ kH1 \/pk R’P 0

holds for any ¢ > T* and any n € R"™. Then
nmal (1) e

<
4R™ sup |uyg|
NG [n|<R

[13,r(1)

/ uo(z — 2vtn) dn < 71";

for any ¢t > T™.
Thus, we found a positive T such that the absolute value of (2.27) does not exceed € once ¢t > T™*.
Since the positive ¢ is selected arbitrarily, it follows that tlim [u(z,t) — v(x,t)] = 0. This completes the
—00

proof of Theorem 2.7.2 because x is arbitrarily selected from R™. [

This implies the following assertion:

Corollary 2.7.1. Let x € R" and | € (—o00,+00). Then

n
27rgH\/p¢
i=1

. . 1
Qim w(z,t) =1 < lim . / uo(x) dz = et l,
BR(p1;--Pn)
x? x>
where Br(p1,...,pn) = qx € R" ) +...+pn<R )
1 n

The proof consists of the direct application of Theorem 2.7.2 and the classical stabilization theorem
for the classical bounded solution of problem (2.26), (1.4) (see, e.g., [9]).

For the case where the spatial variable is unique (the unique positive constant p; is redenoted by p
then), the following assertion is valid as well:

Corollary 2.7.2. If w(z,t) is the classical bounded solution of the Cauchy problem for the equation
ou
ot

To prove this, it suffices to consider the integral representation of the function w(x, pt); we see that
it coincides with the integral representation of the function v(z,t).

= Au with the initial-value condition (1.4), then tli}m [u(z,t) — w(x,pt)] =0 for any real .

Remark 2.7.3. Note that Theorem 2.7.2 and Corollary 2.7.1 are valid under same conditions, but
the theorem treating the closeness of solutions is a stronger assertion: unlike the corollary treating
the stabilization of solutions, it provides information on the behavior of the solution even in the case
where the (necessary and sufficient) stabilization condition is not satisfied. In the same way, for n = 1,
Corollary 2.7.2 is a stronger assertion (in the same sense) than Corollary 2.7.1.

Now, we extend the investigation to a more general case of homogeneous elliptic differential-
difference operators containing mized second-order derivatives as well. In detail, we consider only the
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aspects substantially different from the prototype case considered above. Thus, instead of Eq. (2.20),
we consider the equation

ou P O*u

o = L% Z U 3 D (% + hijmem, t)- (2.33)

k,j,m=1

As above, the coefficients ayjy, and hyj,, are assumed to be real and the operator —Lj, is assumed to

be strongly elliptic, i.e., there exists a positive Cj, such that G (&) > Cy|€|? for any € from R”, where
n

k,j,m=1
Then the fundamental solution (2.21) is well defined on R"™x (0, +00).
The following assertion is valid:

Theorem 2.7.3. Let the operator —Ly, be strongly elliptic in the space R™ and the functions G1 and
Go be defined by relations (2.34). Then function (2.25) satisfies (in the classical sense) Eq. (2.33)
in the subspace R™ x (0,4+00) and is the unique solution (in the sense of generalized functions) of
problem (2.33), (1.4).

To prove this, we take the fundamental solution (2.21) with the functions G1(§) and G2(§) defined
by relations (2.34) and substitute (2.21) in Eq. (2.33). Taking into account that

sin hk]mgm sin[z - § —tG2(§)] — cos hk’]mgm cos[z - & — tG2(§)]
= —cos[(z + hijmem) - & — tG2(&)],

we obtain the relation

gi = —/e_tcl(g) Z akjm&psy cos[(T + hyjmem) - §G2(€)]dE
R™ k,j,m=1
Y g / GO g6 cosl(@ + hijmem) - € — 1Ga(€)]dE.
k,j,m=1

Further, we have
%€
ox EZLj

—— [ Ohg cosla - € ~ tGae)e

R
Therefore, the function £(x,t) satisfies Eq. (2.33) in R™ x (0,+00) (formal differentiation under the
integral sign is valid because, by virtue of the strong ellipticity of the operator — Ly, all the integrals
obtained by means of the specified formal differentiating converge absolutely and uniformly with
respect to (x,t) € R™x [tg,T] provided that 0 < tg < T < 0).

For the considered function £(z,t), Lemma 2.7.1 is proved in the same way as in the prototype
case of pure second-order derivatives. Only the coefficients of the polynomials P(£) are changed in
the general case, but those coefficients still depend only on [, ¢, and the coefficients of Eq. (2.33).

The proof of the uniqueness is entirely the same as in the prototype case.

To investigate the long-time behavior of the solution, we introduce the differential operator

62
def
Z ak]m&r 81‘] Z ]8$k8$

k,j,m=1 k,j=1

and prove the following analog of Lemma 2.7.2:

Lemma 2.7.5. If the operator — Ly, is strongly elliptic in R™, then the operator —Lg is elliptic.
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Proof. Assume the converse, i.e., for any (sufficiently small) positive C' there exists £ from R™ such

n
that Lo(¢) 4 Z bii&ké; < C|¢ 2. Then, since the polynomial Ly(¢) is homogeneous, it follows that
k,j=1
a stronger assertion is valid as well: for any (sufficiently small) positive C and r there ezists £ from
R” such that || =7 and Lo(€) < C|&%

Indeed, fix arbitrary positive C' and r and take n from R"™ such that Ly(n) < C|n|?. If n = 0, then
the continuous function Lg(&) is strictly negative at the origin. Hence, there exists a ball centered
at the origin such that it is strictly negative in that ball, i.e., there exists n # 0 such that the last
inequality is still valid. Therefore, taking  from R" such that Lo (n) < C|n|?, we can assume (without

def . Tl

loss of generality) that 1 # 0. Then we can define §; < r‘ E J = 1,n. This yields the relation
n

RS r? o m\ ) 2
L@ = 10 Y s <l =C (1) e (1) | = el
nl* 5= ] ] ]
where || = r. On the other hand, G1(§) can be represented as
n n n
.9 ijm§ .9 Pigjm&
> arimérés <1 — 2sin? J’; m> = D am&G& =2 D agméré;sin’ ]’; "
k7j7m:1 k7j7m:1 k7j7m:1
= D &G D) akim — 2 akjm&sin® ]’; m
k=1 m=1 k,j,m=1
.o g
= D b =2 aggm&edysin® " 4 Lo(€) + Ro(€),
k,j=1 k,j,m=1
1 n
where [Rg,(§)] < > |akjm||£k||£j|£%h%jm. Thus, for all (sufficiently small) positive C' and r
k7j7m:1

there exists £ from R™ such that |£| = r and
1 n
GLO < CEP+ ., D lawjmlhismlérll€sIEn:
k,j,m=1
hence, for all (sufficiently small) positive C' and r there exists § from R™ such that || = r and
Gl(ﬁ) < Cr? + Co,hT4,

where Cpj, depends only on the coefficients ayj,, and hyjp, of Eq. (2.33).

However, the inequality G1(£) > Cy|€|> = Cpr? holds for the found ¢ (as well as for any ¢ from R™)
by virtue of the strong ellipticity of the operator Ly.

Thus, for all (sufficiently small) positive C' and r there exists £ from R™ such that

Cpr? < G1(€) < Or? + Copr, ie., Cn < C+ Copr

Then, selecting sufficiently small positive C' and 7, we obtain a contradiction.
This completes the proof of Lemma 2.7.5. [ ]

Thus,
ou
ot
is a parabolic differential equation with constant coefficients. Hence, problem (2.35), (1.4) has a unique
classical bounded solution; denote it by v(z,t).
The following assertion is valid:

= Lou (2.35)
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Theorem 2.7.4. If the conditions of Theorem 2.7.3 are satisfied, then
tliglo[u(x’ t) - U(l‘, t)] =0
for any © € R™.

The scheme of the proof is the same as for the proof of Theorem 2.7.2. For the case where the
functions G1(§) and Ga(§) are defined by relations (2.34), it suffices to prove the following analogs of
Lemmas 2.7.3 and 2.7.4 respectively:

Lemma 2.7.6. The limit relation

_ 21 zZn - i brjzr2j t—o00
/ e tGl(%t""Vf)cos [22'77—th <\Z/1t j;)] —e kit JCOSQZ“TI dz — 0

R”
holds uniformly with respect to n € R™.

Lemma 2.7.7. There exists a positive M such that

_ 21 zZn M
/e tGl(ﬁ""Vt) cos [22'17—1502 <f/1t”\z/1:t>} dz| < 1
n

Rn
for any t > 1 and any n € R™.

Proof of Lemma 2.7.6. The absolute value of the considered integral is estimated from above by the

sum
_ z1 zZn — Z bijij
/e tGl(ﬂ""’%t)dz—i-/e k=1 dz = /e_ChZde—l—/e_C(J'Z'de < 00,

where Cf dlinotes the ellipticity Clinstant of the opera‘?or Ly; hence, tlie specified integral converges

absolutely and uniformly with respect to (t,n) € Ri € R™. Fix an arbitrary positive £ and represent

the specified integral as / + / def I s + I 5, where ¢ is a positive parameter. By virtue of the
<6 |2]>8

uniform convergence of the integral, there exists ¢ such that |I5 ;| < ; for any positive ¢ and any 7

from R"™. Fix that § and consider the integral I; 5. Its integrand is equal to

n hi 2 n
— S apjmagzjcos MM Py P — > brjzkz;
o kim=1 ’ ' cos [22"77 —tGy <\/1t,..., \Z)] e kL cos 2z-m
n n h . zZm n
— >0 ZkZj D, Gkjm COS ki z z — > brjakz;
n n hii 2m
- > zkz-( > agjm cos kjm —bk-) > Py
= e Lol | ¢ kiz1 U= Ve "/ cos [22"77 —tGy < ! s, >] —cos2z-m |,
Vit Vit
which can be reduced to the form
n n hii 2m
— X zpzj >, apjm(cos kgm=m _q P Py
e Lo [ ¢ k=t m=1 ( v ) cos {224] —tGo <\/1t’ cee \/ntﬂ —cos2z:m

n n R Z2m
2 > zkzj D Qkjm sin? kgm z z
— e Lo(®) [ g kiz1 " Tm=a 2 cos 2z-1 €08 {th (\/lt,---, \/ntﬂ —cos2z-m
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- -2 PjmEm
2 Z ZkZj D, Gkjm Sin 2/t

4 e Lo k=1 T m= sin 2z-m sin [tGg <\Z/1t \/t>} LA (n, t;2)+ Az (n, t; 2).

The further proof is entirely similar to the remaining part of the proof of Lemma 2.7.3. [l

Proof of Lemma 2.7.7. Let t > 1,79 € 1,n. Repeat the arguments in the proof of Lemma 2.7.4 until
relation (2.31). In the specified relation, assign
n hkjmz'm n
a - Z Gk jm k%25 COS Vit . hk]mzm
g(z;t) = e o oS Z Al jm 2% Sin

Oz k,j,m=1 Vi
Differentiating and taking into account that ¢ > 1, we obtain (as in the proof of Lemma 2.7.4) the
inequality

9= D) < [P(2)]e” ML,

where P is a polynomial with coefficients depending only on the coefficients ay;p, and hyjr,, of Eq. (2.33).
The further proof is entirely similar to the remaining part of the proof of Lemma 2.7.4. |1

Remark 2.7.4. For the general case of Eq. (2.33), a stabilization theorem is valid as well. It is an
analog of Corollary 2.7.1 valid for Eq. (2.20). The domains of integration of the initial-value function,
included in the (necessary and sufficient) condition of the stabilization of the solution, are determined
by the coefficients by; of Eq. (2.35), which is a parabolic differential equation with constant coefficients
(see [9]).

CHAPTER 3

SINGULAR INTEGRODIFFERENTIAL EQUATIONS

In this chapter, nonlocal terms of studied equations are special generalized translation operators intro-
duced in [41]; they play a role of translation operators in the theory of equations containing the Bessel
operator. The specified generalized translation operators are integral ones. Therefore, the studied
equations are not differential-difference anymore: they are integrodifferential. Thus, the development
of this research direction is motivated both by the interest to extend models of [91, 103, 120-123] to
the singular case and by the interest in purely theoretical aspects of passage from differential-difference
equations to integrodifferential ones.

3.1. Basic Definitions and Notation

In this chapter, we use the following notation:
1 0 ovi1 O _82+2u+18
y>+1 oy dy) Oy y dy

is the Bessel operator with respect to y;

def
B, %

F(U+1
V(v

is the corresponding generalized translation operator;

) 2"TI'(v + 1
]V(y) d;f (y,/ )

is the corresponding (uniformly) normalized Bessel function of the first type.

T;f(y) def /f \/y + h2? — 2yh cos 9) sin®” 0d6

Ju(y)
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We investigate the case of Bessel operators with positive parameters at the singularity; therefore,
1
we assume that v > — _.

The following problem is considered:

(9u ° h
o = Byu + Zakaku, x>0,t>0, (3.1)
k=1
ou
—0,t>0, 3.2
Ox lz=0 ( )
u‘tzo = up(z), = > 0. (3.3)

Here ug is a continuous and bounded function and a, h € R?.

Note that, in general, any solution of problem (3.1)—(3.3) is defined only in the quarter (0,+o00) x
(0,+00) of the plane, while, to apply the generalized translation operator, we need it to be defined
for negative values of the variable = as well. To provide this, we use the even (with respect to x)
extension of the solution; the specified extension exists by virtue of the evenness condition (3.2).
In other words, we can consider problem (3.1)—(3.3) in the whole half-plane (—oo, +00) x (0, 400),
replacing condition (3.2) by the evenness (with respect to the variable z) requirement imposed on
the solution. For differential parabolic equations containing Bessel operators, such problems are well
defined (see, e.g., [36-38, 4245, 47] and references therein).

3.2. Fundamental Solutions of Singular Integrodifferential Equations

On (0, +00) x (0, 4+00), define the following function:

7 —t]€2- 52 apju (hif)
E (1) & €, (1) &f / etle [ s Lm@de (3.4)
0
Since [j,(2)| < 1, it follows that
s o) i lag|t oo XS: lag|t
> laglt Dl —te? ek=1 B I'(v +1)er=t
[ (x,1)] < =1 / Grttede =", / ez = 2t3+1
0 0

Thus, for all ty, T € (0, +00), integral (3.4) converges absolutely and uniformly with respect to (z,t) €
[0, +00)X[tg, T; hence, E(x,t) is well defined on [0, +00) % (0, +00). Formally differentiate £ under the
integral sign:

o T u 2= 3 apju (hif)
ot /52y+1 [Zakjy(hkﬁ) —52] Ju(@€)e [ = }dﬁ

Since T¢ j, (ax) = j,(ax)j,(ay) (see, e.g., [34, p. 19]), it follows that

o€ 7 i . —t|&2— XS: agjv(hi€) 7 . —t|&? - i arjv (hig)
o = [ € e ). -0 e [t £ s
0 k=1 0

s 7 —t[€2- 32 arjv ()
=ZakT£k5—/§2”+3j,,(x§)e [ o }dg

Further, B,j, (z€) = —£%j,(z€) (see, e.g., [34, p. 18]); hence,
T ]2~ 32 axju ()
B.E = - / &3, (z)e [ E it d

0
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Thus, £(z,t) formally satisfies Eq. (3.1).
Moreover, we have

M+ 2) S okt
v ek=
|BoE| < o2
and
00 e iy
0
i S i lak|t
—t 52_2 agjv(hi§) F(l/ + 1)€k:1
2v+1 —
§/§ ‘ { = }déé opr+1
0
Therefore,
> Jaxlt
of| o= M +1) | D(v+2)
ot 2 tv+l tv+2 )

i.e., the formal differentiation and formal generalized translation under the integral sign are valid for all
terms of Eq. (3.1). Hence, function (3.4) satisfies (in the classical sense) Eq. (3.1) on (0, +00) x (0, +00).

We call £(x,t) the fundamental solution of Eq. (3.1). To show the reasonability of this term, we
prove below that the generalized convolution (see [34, §1.8]) of &, with any bounded initial-value
function coincides with that initial-value function on the initial semiaxis.

3.3. Generalized Convolutions of Fundamental Solutions and Bounded Functions

Let us estimate the behavior of the function £(z,t) as © — oo (assuming that a positive ¢ is fixed).
1

To do this, introduce the function g, (z) < 277, (2). Then "¢, (2) = g,_1(2) (see, e.g., [80, p. 333]),
z

i.e., g,.1(2) = 2g,(2); therefore, g](az) = a’zg,(az). Hence,

o0

1 —t |:z2_ i akjl,(hkz)i| J (.’132)
& t) = v+l k=1 v d
2w+ 1)) /Z ‘ (w2)r
0
i z iaj(hz)} o0 Saj(hz)}
= - kJuiith — 2 aJvlhi 9
= / k=1 Jl/(xz x2V+2 /6 T Zgy(xZ)dZ
0 0
1S9 B S akju(hkz) , 1 el ZS: akju(hkz):| z=+o00
- a:2l’+2 /e Gy (x2)dz = p2v+2 gui1(zz)e L k=1
z=0

o
T

2z + Z akhzzj,,ﬂ(hkz) gu+1(x2)dz
k=1 i

n t]oe t[ZQ > ak]u(hkz)}
0

o
—t [z2— akjy(hkz)} i ]
T p2vta /e = 2+Zakhiju+1(hkz) 2?z2g,41(22)dz
0 L k=1 |

2+ Z arhiju+1(hi2) | gl o(z2)dz.
L k=1 i
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The last expression is reduced to the form

13 u 9 —t {zz— ZS: akju(hkz)} F=too
22v+4 guy2(22) |2+ Z aphijvri(hiz)| e k=1

k=1

2=0

o0 S !
—t 22— Z akju(hkz) 5 .
— / e { k=1 } 24> akhijuﬂ(hkz)] Gu+2(wz)dz

o s
t —t [zz— > akju(hkz)}
e e k=1
$21/+4
0

2
S
t|2+ Z akhij,,ﬂ(hkz)] z
k=1

+ Z arhizivro(hez) | goao(z2)dz
k=1

o s .
- ak]u(hkz):|
$2u+6 €

0

s 2
t{24 ) akhiju-i-l(hkz)]

k=1

+ Z arhijura(hz) | 2229, 10(x2)dz

k=1
[e'e] s . (h ):| s 2
- ak]l/ k% 3
a;2”+6 /e t|2+ Z akh]%],/_l,_l(th)]

+ > aphijura(hiz) | glos(w2)dz.
k=1

Continuing to integrate by parts, we obtain (assuming that the positive ¢ is fixed) that for any positive
integer m there exists a bounded function f,;, such that

7 —t|z —iaju(h z)
0
This implies that
% 22— S a jv(hiz)
2zx+2m5 /6 R }fm(z)zxy+mzy+mj,/+m(xZ)dZ,
0

ie.,
7 —t z2—§: agjv(hiz)
x”+m5(x,t) :/6 { k=1 kJv itk :|fm( ) ”+m+1JV+m(a;z)dz
0

b —t ZQ—ZS: agjv(hikz)
:/e { = }fm(z)\/zzJ,,er(mz)szr”Jr;dz ! ;
0

VT
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therefore,

* —t]22= 3 agju (hiz)
x”+m+5€(:r,t):/zm+”+5e [ = }fm(Z)f(ZEZ)dza
0

where f(7) = \/TJy4m(7) € Loo(0,400) for any m > 1.
Thus, by virtue of the boundedness of the functions f, f,,, and j, and the fact that m is selected

arbitrarily, the following assertion is proved:
Lemma 3.3.1. Leta>0,t >0, and a,h € R™. Then
lim z%E(x,t) = 0.

T—00

Due to the evenness of the normalized Bessel function and the continuity of the generalized trans-
lation operator (see, e.g., [34, p. 18-19]), this implies that the function

[ e omzues (35)
0
is well defined on (0, +00) x (0, +00).
Now, let us estimate the behavior of the functions B,E, T, ;”“ £, and gf at infinity:

[e.e] B Z2_ s " 'V .
! B,E(x,t) = — /22V+3e t[ kz::1 wdv (B )} Ju(22) dz
2”F(l/ + 1) (l‘z)lj
0
1Tt e Tt S i)
:_wy/zy+3€ [ = }Ju(ﬂfz) gg2y+2/€ = L%}%g,,(:rz)dz
0 0
o |: s :| |: s :| !/
1 —t|22= 37 apju(hiz) 1 —t]22— 3 apju(hiz)
T T w2 /z2e = Goi1(22)dz = a:2u+2/ e = Gu+1(z2)dz.
0 0

As above, continuing to integrate by parts, we obtain (assuming that a positive ¢ is fixed) that for any
positive integer m, the function #2*+2™ B £(x,t) is a finite sum of terms of the form

b —t z2—§: agjv(hikz)
/e |: k=1 + * }fB(Z)ZﬁgVJ’_m(.TZ)dZ,

0
where 8 > 1 and fg is a bounded function. Then ¥ B,&(x,t) is a finite sum of terms of the form

i —t 22—25: agjv(hgz)
/6 |: k=1 rvATE :|fB(Z)Zm+V+6JV+m(.TZ)dZ

0

7 —t z2—§: agjv(hgz)
:\/1 /e { i MR }fﬁ(z)zm""”"'ﬁ_é\/sz,,+m(xz)dz;
T
0

therefore, x”+m+éBIS(az, t) is a finite sum of terms of the form /zp(z)f(mz)dz, where
it A ]
(1) =7 f(1)e k=1 7
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ie., ¥ € L1(0,+00) and f(7) = /T4, (7) (as above); hence, f € Lo (0, +00).
This implies the following assertion.

Lemma 3.3.2. Let a > 0,t >0, and a,h € R™. Then lim z*B,E(z,t) = 0.

T—00
Further,
h % L]
TIRE(z,t) = [ 2" e k=1 Ju(hg2)ju(z2)dz
0

y —t| 22— XS: agjv(hgz)
= L /jy(hkz)e { i Lgy(ajz)dz
0

x21/

—t {22—]?; akju(hkz):|

I
= o2 /jl,(hkz)e g, (x2)dz
0

1 . —t [zQ— > akju(hkz)} F=teo
= 22v+2 Gu+1(x2) ]y (hiz)e k=1

2=0

o0 3

22— Z akju(hkz)

+/9u+1(l’z)€_t[ =t } [h%zjm(hw)

0

+ tzj, (hi2) Z hiakjy(hkz) + 2tzj,,(hkz)] dz
k=1

The last expression is equal to

1 2 adm)| [,
22042 /e { = } [hi]uﬂ(hkz)
0

+ tj,(hiz) Z hiakj,,(hkz) + 2tj,,(hkz)] 2gy+1(x2)dz

k=1
1 Tt 22— 3 agju(he2) .
= x2u+4/6 [ =t } [hijm(hkz)
0

+ t]y(hkz) Z h%akju(hkz) + 2tju(hkz)] 91//+2 (:Ez)dz
k=1

1 —t| 22— Y an(hy2) ,
= p2v+4 gl/+2($z)e |: =t } [h%]V—i—l(hkz)

z=-400

+ tjl/(hkz) Z h%akjl/(hkz) + thu(hkz)]
k=1

2=0

T —t|22= 3 anju(h2) ‘
—/9u+2($2) (6 { k=1 } [hzjwrl(hkz)

0
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!/

+ tjy(hkz)thakjy(hkz)+2tj,,(hkz)] dz
k=1

1 r —t|22= 3 v (hez) )
- C p2v+4 /gy+2(a:z) € [ = } [h%]w&-l(hkz)
0

/
s

+ tj,(hy2) hzakjy(hkz)+2tj,,(hkz)] dz.
k=1

Continuing to integrate by parts and taking into account the boundedness of the function j,(z),
we obtain (assuming that a positive ¢ is fixed) that for any positive integers m and k there exist
nonnegative M and § such that

—t {22 _1;::1 ajv (ha 2)}

g TImThg (g 1) = /e fo(2)gvim(x2)dz,
0

where | fo(2)] < M(1 + 27).
Then

g2/ H2m ZakTng(x,t) = /zp(z)f(mz)dz,

where 1) € L1(0,+00) and f(7) € Loo(0,+00). Taking into account that £(z,t) satisfies Eq. (3.1) in
(0, +00) x (0, 4+00), we obtain the following assertion.
Lemma 3.3.3. Leta>0,t >0, and a,h € R™. Then
lim ¢ o€ = 0.
T—00 ot
Further, we note that the Bessel operator and the generalized translation operator commute each
other (see, e.g., [34, p. 35]), which implies the following assertion:

Theorem 3.3.1. Function (3.5) satisfies (in the classical sense) Eq. (3.1).

3.4. Solutions of Nonclassical Cauchy Problems

Introduce the following notation:

1 [e.e]
we ) e e EE T (e (3.
0

Since the generalized translation operator is self-adjoint (see, e.g., [34, p. 19]), we have the relation

_ 1 O02111 T
W) = a4 1y | €T OTEEE e
0

Since the function Tgé’ (&,t) is even with respect to the variable x (see, e.g., [34, p. 35]), it follows
that the function u(z,t) satisfies condition (3.2).

Let us show that it satisfies condition (3.3) as well.

The function u(zx,t) is defined on (0,400) x (0, +00). Take an arbitrary nonnegative z¢ and inves-
tigate the behavior of u(xzg,t) as t — +0.
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The change of variables n = yields the relation

1
2Vt

Q2421 [ -
u(xo,t) = T2 + 1) /17 vHLe v, t)T;O\/t uo(2nV/t)dn
0
Further,
[ s 1] 2 auin o)
eving = [erre L o eV de
0
o S
—Z2+t Z arju hyz
:t_u_l/ZQVHe =N (W)ju(%z)dz.
0
Thus,
—z +t akjl,
U(.To,t) = F2(1/+1) /n2u+1Tz2(§7\/tu0 o /22 \/t I/(znz)dZdn
0 0

Now, let us prove the following auxiliary assertions.

Lemma 3.4.1. There exist C > 0 and o > 1 such that

[e.e]

21/+1/Z2z/+1 —2* Z a“”( m) iv(2n2)dz| < C

n = e

0
for any t from (0,1) and any positive 1.

Proof. We have

o
2v
2Vfu+1)/z
0

1T e aa (")
= zy+1e k=1 T\ v J,,(Q?]Z)dz
(2n)¥ /
0

—22+t i apjv hi=
o (%) Jv(2n2)dz

o0
1 -z +t Z akjv
7 0
o) s
1 =2+t 3 arju hx/kz
= ()22 /e h=t ( t>(277)229u(277z)dz
0
o) s
1 —224t S akju(h\/k:) ,
- k=1 2nz)dz
o) 2v+2 / € Gy (
(2n) J
o
1 —224t Z ak]u hkz = —224¢ Z agjv
= gu+1(2nz)e = e (" ) Ger (202)dz
(2n)2v+2
y !
[ ] oo S ()
—z4+t agjv
(2n)2v+2 /9u+1 2nz) 2z+thkakj,,+1 (\7)] e =) g
(2n) 0 k=1 t
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[e.e]

1
= 20)%gu+1(202)
o) 2v+4 / (
(2n) /
The last expression is equal to

2+ Zhiakju—i-l (@:)] i Z a“”( Vi >dz.
k=1

o0

1 /
2nz)
on)2v+4 / Gu+a(
(@)t

Integrating it by parts, we obtain the expression

o . /
; y h —224t Y argu (M
_(277)21/4-4 /gu+2(2772') < 2+ thakju-i-l < j:)] e = k (\/ )) dz

0 k=1

° 2 - . hkz

3 h —74t 3 and

2+ h%akjuﬂ (\?:)] e = %k (w >dz.
k=1

o0 2y i apj (hkz)
- (2n)2v+4 /9V+2(2772)6 k=1 Vi

0
- h Z 2 Z S h Z
APt <k>z+ hiarj <k>dz
P RO+l Vi t; k Ok Ju42 Y
o0 S
—22 4+t 30 apjy h\’f
- (2n) 2u+6/ 2290 12(2n2)e k=1 ( t>
0
X 24 thak]u—i-l < > thakjy+2 < > dz
k=1 Vi
0 S
1 —Z2+t Z akjy(h\]/cz)
- (2n)2v+6 /91//+3(2772)6 k=1 k
0
s hyz i 1< hpz
< o oen ()] 4 ptoniea (7)) 2=
kZ:l kOkJv+1 Vi th::l 4 o 9

Hence, the estimated integral can be represented as follows:

1 T —Z +t Z ak]u( Vit )
- v 27’]25)
9p7)2v+6 /9 +3( [
(2n) J
!/
- . hz oz
X 2+ thakju-i-l < g > thakjl/+2 < y > dz
k=1 \/t
79 (2772)e_z e kz ak]”( Vit ) 2+ ZS: n2a j <hkz> ’ p
- Y - kJv
(2m)2v+6 ) 3 2 karduri ),
- . h z h >
2+Zh%akax+1< k >] thakjy+2< k >
k=1 \/t
- s . iz s i hiz Z o ) hiz
+ 2+ h2ay7, < > hiagi, < > + KSari, < > e
t kZ:l EQkJv41 N 1;1 KAk Jv+2 N 2 ; BOkJu+3 Vi P
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Continuing to integrate by parts, we obtain that for any positive integer m, the integral

N —224¢ XS: akj,,(hkz)
/22V+16 k=1 Ve Jv(2n2)dz
0

is a finite sum of terms of the form

hy

1 —224¢ f; akju( ﬂz) ) hiz
7]2V+2mtl O/Zgu-i-m(znz)e k=1 Jv+i+1 < \/t > fi(z,t)dz,

where [ is a positive integer not exceeding m — 1, while f; is a bounded function.
Estimate (3.9), assuming (without loss of generality) that ¢ < 1:

i (hw) 2uF(u+1)Ju+l+1<fi§f) QVF(V—i—l)\/}iijl,HH(}ijf)
fl I = :

l—v—1
2

v41+1
t 2

hiz

AL 41
hy, z t Ut

v—I+1

(3.9)

The absolute value of the last expression does not exceed z” ~=312+"2"" because the function

VTJy1141(7) is bounded.
v—I+1

3
Further, = + > 0 provided that [ < v + o i.e., to satisfy the last inequality, it suffices to

4 2

5
assume that m < v + o) then the absolute value of (3.9) does not exceed

0 2 S . hpz
const |gy+m (2nz)| —="+t kgl ak]u( VA )d
7721/—i-2m / zu+l+; € *

o] S e
_ const 5 g | Jvm (2n2)] —z2+tk21ak]u( */kt)d
T 2v+2m (772) v4-2 ¢ - ®
n 5 z 2
o0 S
24 i (e?
const FHt 3 kg ( Vi )dz

71
= [ e
0

o0 S . hpz
_ const i1 -2+t Y argv (") const
o ,’7V+m+é /Z \/2772\J,,+m(2772)|e = dz < ,’7V+m+é .
0

1 1 3
Note that 21/+1—m—1/—2:1/+2—m<—1 providedthatm>1/+2.

Thus, to satisfy the assertion of the lemma, it suffices to select a positive integer m € (1/ + g, v+ g] .

1
Such m exists for any v > —y which completes the proof of Lemma 3.4.1.

Lemma 3.4.2. The limit relation

[ee] s
—224t Y ag (] (v +1
/Z2V+1€ k=1 k ( \/t >]y(2772)d2 t_>_+>0 (U; ) 6—172
0
holds uniformly with respect to n > 0.
Proof. We have
o0 o0
r 1 r 1
/Z2V+1€_22ju(2772)d2 = (Vj )/z”+16_22Jy(2nz)dz = (U; )e_’72
n
0 0
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(see, e.g., [88, p. 186]).
Therefore,

[e.e]

—224¢ Z agju
/Z2l/+l kJ (\/t) V(an)dz _ F(V + 1) e—n2

2
0
[ e 3 (] [ ¢ 3w ()
aijv agjv
= /22”+16_Z2ju(277z) e k=1 AV —1] dz| < /z2”+1e_z e i1 NV | gz,
0 0

Let € > 0. Select a small ¢y such that
~to S ol t0 3 ol (4 2 ., %
e = e k= — .
’ 'v+1) T'v+1)

Then
tZakjy <h’f> S (—tZIaMJZIaM)

for any t from (0,%p); hence, due to the monotonicity of the exponential function, we have

(e} (e}

/z2”+le_z2 etkzlak]u( W) —1ldz < 2¢ /z2”+1e_22dz = ¢,
F'v+1)
0 0

Since ¢ is selected arbitrarily, the proof of Lemma 3.4.2 is completed. [

Take an arbitrary nonnegative xg and consider the difference

o o S hiz
4 =22+t 3 apgu (5
u(wo,t) — uo(zo) = 2(v+1) /772V+1T§(?\/t uo(zo) /ZQVH@ = % )ju(2772)dZd77
0 0
i T +1)
2w+, U
2w+1) /77 2 ¢ 1
0
[ee] [ee] 2 El . hkz
/,’721/+1 T2n\/t UO Z0 /Z2 z44+t k2::1akjy< \/t>
(v+1)
0 0
F( ) A 9
v+1 2
x jy(2n2)dz — | dnp = def I + D).
en)dz —ufa) S e =y [ [ )
0 A
Take an arbitrary positive €. The following inequality is valid:
—z +t a Ju 1
I SSUP\UO\/ 7]2y+1/Z2y+1 k \/t u(2n2)dz|dn + sup uo| (V2+ )/n2u+1e—n2dn_
A 0 A

By virtue of Lemma 3.4.1 (without loss of generality, we assume that ¢ < 1), we obtain that the former
[ee]

d C
integral at the right-hand part does not exceed C / Z = fl-a’ where o > 1. This and the conver-
n
[ee]
: w1, —n? g . s (v +1)
gence of the integral [ n e~ dn imply that there exists a positive A such that |I5| < 3 €
0

431



for any t from (0, 1). Select such A and fix it. It remains to estimate /;. To do this, we note that

uQ (IL’()) — Up (xo)

Fv+1) i < 9 > . 9 (v+1) / 9
= +4n’t — 4 tcosd Y 0do — Y 0do
Val(v + 1) 0 ug \/xo 7 zonVtcosd | sin VT + ! up (o) sin

r 1 [
(v +1) ) / [uo <\/SE3 + 4t — dzonV/t cos 9> - Uo(afo)} sin® 6dd.
0

ng\/t

0

- 1
Vrl(v+,

Let 6 > 0. By virtue of the continuity of the function ug at the point xg, one can select a small ¢g such
that for any ¢ from (0,tp), any 7 from [0, A], and any 6 from [0, 7], the following inequality holds:

‘ U (\/m% + 42t — dxonVt cos@) — uo(azo)‘ < 6.

Since 0 is selected arbitrarily, it follows that T:f(?‘/t uo(z0) ey (z0) uniformly with respect to n €
[0, A]. This and Lemma 3.4.2 imply that there exists a positive ¢y such that for any ¢ from (0, ) and
any 7 from [0, A], we have

(e}

—24t 5 (") T(v+1) 2|  (+1)T2v+1
‘ng\/t Uo(ﬂﬂo)/zzyﬂe k=1 (W)Ju(%z)dz—uo(ifo) ( 5 ) e ( 4ilzui2 )57
0
ie.,
2 4 A2I/+2
n| < 4 v+ 1)I*v+1) 5/772V+1d77:5y+1 _c
wy+1) 4A%v+2 A +220+2 2

0
Since ¢ is selected arbitrarily, it follows that

u(zo,t) — uo(xo) marcy}

Thus, the function u(z,t) satisfies condition (3.3) because xg is selected arbitrarily.
Thus, the following assertion is proved.

Theorem 3.4.1. Let a function ug(x) be continuous and bounded for nonnegative x. Then the func-
tion u(z,t) defined by relation (3.6) is a classical solution of problem (3.1)—(3.3).

In particular, using the proved theorem, one can compute the weight integral of the fundamental
solution over the whole positive semiaxis:

Lemma 3.4.3. The following relation is valid:

0o s
/:E2”+1€(:E, t)dx = 4"T?(v + 1)et &
0
Proof. Consider the function ug(x) = 1. It is continuous and bounded. Therefore, by virtue of
Theorem 3.4.1, the function
+o0
TE L BN Rt CUL:
0
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satisfies problem (3.1)—(3.3) with the initial-value condition y| o = 1. However, y(z,t) does not

depend on x; hence, y(t) satisfies the ordinary differential equation y' —y > ar = 0 and the initial-
k=1

s
tZak

value condition y(0) = 1. Therefore, y(t) = e *=1 | which completes the proof of Lemma 3.4.3. | |

3.5. Inmhomogeneous Equations

Consider the equation

ou

S
5 Byu + ZakTgﬁ”ﬂu = f(z,t), x >0,t >0, (3.10)

k=1
assuming that f continuous and bounded.
Let us show that, using the fundamental solution defined by relation (3.4), one can obtain an integral
representation for the (classical) solution of problem (3.10), (3.2), (3.3) as well.
To do this, we fix an arbitrary positive g and introduce the function

Gl / £ (6,1 — VTS E w0, m)dg
0

defined for ¢t > 7 > 0.
The following assertion is valid:

Lemma 3.5.1. There exists a positive to > 0 such that G(t,T) is bounded in the domain (0,t) % (0,1).

Proof. Take into account the self-adjointness of the generalized translation operator and change the

¢ . This yields the relation

2Vt

variable: n =

G(t,7) =+ / PELE @7, TV TEW (o, t — )iy
0

o0 o0 Z2+T akj (hkz) 1 0
= /172”+1/z2 k=1 VT jy(an)dszg\/Tf(xo,t—T)dn: /+/ def 7o 4 1.
0 0 0 1

To estimate |I4|, we apply Lemma 3.4.1 (without loss of generality, we assume that ¢ < 1) and obtain
that there exists o > 1 such that

e
1] < csup|f|/ srgo|1f|
Under the same assumptions, we have
s 0o
21/+1 Z |a| QW1 —22
|13 <sup\f\ k=1 22 g
0
<su |f|ekzi:1ak|7 20+ g 7Z2u+1e_zzdz _sup |[fIT(v + 1)ek2ijl\ak|
< sup ™ dn = D 7
0 0

which completes the proof of Lemma 3.5.1. | ]
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Therefore, the following function is defined on [0, 4+00) X (0, +00):

t oo

def 1 2v+1 3 _

U(l‘,t) = 4VF2(U—|—1) //5 + g(&,t)wa(l‘,t T)dng (311)
0 0

Let us show that the specified function satisfies Eq. (3.10) and the homogeneous initial-value condition.
To prove the former assertion, we note that it is proved in Secs. 3.2-3.3 that the function £(x,t)

satisfies Eq. (3.1) in [0, 400) x (0,400) and tends to zero (as well as the functions £ and B;€) as

ot
x — +oo faster than any negative power of |x|.
Therefore, it remains to prove the following lemma:
Lemma 3.5.2. If xg > 0 and tg > 0, then
[ee]
- 1 241 ¢
Jm sra 41y [ €7 € 0 =TT, (0, 7)dE = oo to)
0
Proof. We have
[ee]
[ €116t = TS w0, = 441G, 7
0
o0 o0 S
_22+7— Z a jz/ hk‘rz
_ 4V+l/U2V+1T3(§7\/Tf(l‘0,t—T)/22V+le = (\/ )jy(QUZ)dZd’I’}
0 0
(see the proof of Lemma 3.5.1).
Therefore,
o
! /§2”+1f(§ to — 7)T5, E (o, T)dE — f (20, to)
T2 (v +1) ’ o ’ ’
0
o0 [e.e]
4 w1 |2 2w+1
= oy [ 7 T St ) [
0 0
—2247 ZS: akjv hkj T 1
X e =t <¢ >jl,(2nz)dz - (U; )e_’72f(a:0,t0) dn
A o0
4 def 4
= < Is + I
I2(v+1) /+/ T I2(v+1) (Is + Jo),
0 0
where A is a positive parameter.
Let € > 0. We have
n i 2247 XS: arj (hkz> F(l/ —+ 1) 7
tol < supl ] [opert| [aerie A nays|dn -+ supl Y [ean
A 0 A

By virtue of Lemma 3.4.1 (without loss of generality, we assume that 7 < 1), there exists a > 1 such
that the first term of the right-hand part of the last inequality is less than or equal to

Ood C'su
ol [ 4= oI
1

a—1
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[ee]
This and the convergence of the integral / e_”an imply that there exists a positive A such that
. 0
|Ig| < ) for any 7 € (0,1). Fix such A and estimate I5.

Consider

F(v+1)

T277\/T ,t _ —
o f($0 0 T) \/WP(V"‘%

) /f <\/§L‘% +4An2(tg — 7) — dxgn/to — TCOSO) sin? 6d6.
0
By virtue of the continuity and boundedness of the function f, the last expression tends to f(xg,to) as

7 — +0 uniformly with respect to n € [0, A]. This and Lemma 3.4.2 imply that there exists a positive
7o such that for any 7 < 79 and any n € [0, A], we have

€ v+1

o0 El
—224t 3 agu ("E7) 'v+1 2
Tu,f(?\/tf (xg,to—T /22”+16 k=1 (\/t)],,(an)dZ— ( 5 )f(mo,to)e T < 4 AT () 4 1)
0

o |15 < . This completes the proof of Lemma 3.5.2. I
It remains to prove that v(zg,t) =50 for any nonnegative xg.
t

To do this, we represent v(zg,t) as / G(t,7)dr and use Lemma 3.5.1. This yields that

(v +1)
there exists a positive ¢y such that

4
[v(z0,t)| < sup |G|t
’ 2(v 4+ 1) teqo,to]
for any t from (0, o).
Taking into account that the nonnegative zq is selected arbitrarily and the function T, gé’ (&, 1) is
even with respect to the variable x, we prove the following assertion.

Theorem 3.5.1. Let ug be continuous and bounded in [0,4+00) and f be continuous and bounded in
[0, +00) x (0,+00). Then the function

[e%e) t oo
1 2v 3 2v 13 _
#T2(0 4+ 1) O/E +1€(£,t)Tzuo(a:)d£+O/O/g e, TS f(x,t — 7)dédr

is a classical solution of problem (3.10), (3.2), (3.3).

CHAPTER 4

SINGULAR FUNCTIONAL DIFFERENTIAL EQUATIONS

In this chapter, we study the nonclassical Cauchy problem for singular parabolic equations of the
most general type: they are not only integrodifferential, but differential-difference as well. Apart from
the specified theoretical aspect, this problem is interesting from the point of view of applications:
the motivation is to extend models of [91, 103, 120-123] for the case of media with characteristics
degenerated along selected directions.

We find fundamental solutions of the specified equations, investigate their properties, and obtain
integral representations of solutions of the investigated problem (the initial-value function and the
right-hand part are assumed to be continuous and bounded). Thus, we prove the solvability theorem.
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To prove the uniqueness of the solution, the method of Fourier transforms is applied. The function-
theory technique necessary to apply the specified method (the Fourier—Bessel transformation and

the scale of generalized functions, corresponding to the degenerated measure Hylklda:dy) is deeply

l
and comprehensively developed in [34] (see also references therein); therefore, following the general
scheme of [16], one could apply the specified method to investigate the solvability as well. However,
the specified method yields only solutions in the sense of generalized function. Moreover, it is not
guaranteed that such a solution belongs to any Sobolev class or Schwartz class of generalized function.
Unlike this case, we obtain a classical solution, i.e., a function differentiable (up to the order of the
equation) and satisfying the equation and the boundary-value conditions at each point.

4.1. Statement of the Problem

We use the following notation.
k; =2y, + 1 is a positive parameter (I € 1,n);

0 ? k0
By ( ! > +
ko =k oy \"C oy ) T oy T o

is the Bessel operator with respect to the variable y;;

I'(v+1)

h
Tf() \/7TFI/+

/f \/y —l—h2—2yhcos€)81n2”9d9

is the corresponding generalized translation operator (with scalar variable y).

In the case where y and h are vectors, the generalized translation operator is defined as the super-
position of the one-dimensional operators: T; = T;”ll - T ;’n”

Let R"*" denote the set

{(az,y)‘xeRm,yl >0,...,Yn >O}.

n ]RTJF" x (0,00), consider the equation

m m; n ny
Z 2 5+ > asulz + his,y, )] > <Bkl,ylu +) berzj’f’“u> = f(z,y,1) (4.1)
1=1 Z s=1 =1 r=1

with the boundary-value conditions

ou
=0(l=1,n), t>0, 4.2
oy ‘ylzo ( ) (42)
and
ul,_y = uo(@,y), (z,y) € RTH". (4.3)
Here uy, f, of s of , and of s are continuous and bounded functions, f satisfies condi-
85131 8mm 8y1 ayn

tion (4.2), h;s are vectors parallel to the ith coordinate axis of the space R™, i € 1, m, for any s, and
the coefficients a;s, by, and g;,- are assumed to be real for all values of their indices.

Similarly to Chap 3, problem (4.1)—(4.3) can be considered in the whole subspace R™*™ x (0, 4+-00)
if condition (4.2) is replaced by the requirement that the function u is even with respect to each
variable y;; for differential parabolic equations with Bessel operator, such problems are well defined
(see, e.g., [37, 38, 42-45, 47]).
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Fundamental Solutions of Singular Functional Differential Equations

4.2.
Let f(z,y,t) =0.
Assigning
—t |§|2—§ WZL:Z a;s cos hjs-& LA
E1(x,t) Lt / e ( i=1s=1 ) cos <ac €+ tZZais sin hg - 5) dg (4.4)
B i=1 s=1
and
dof T 7 Kt {77?— gj birdu, (gzmz)} ,
Ex(y, ) S [ [ e U = Gy (i) i, (4.5)

define the function
5(337 Y, t) déf gl ($7 Y, t)g2 (:Ev Y, t)

on R x (0,00).
For all tg,T € (0,4+00), integrals (4.4) and (4.5) converge absolutely and uniformly with respect

o (z,y,t) € R x[to,T] (note that |5,(z)| < 1); therefore, the function £(z,y,t) is well defined.
Substitute (formally) £ in Eq. (4.1):

0  0& 0& 9% 0°& .

= E+E = E(i=1
o~ o 2T la " og? = ggz U= M)
D%Es 0&s
Bkl ylg &l 8 2 + 51 ayl = 5lBkl,yl<€2 (l = 1,n),

E(x + h,y,t) = Sl(a: + h,y,t)E for any h € R™,

and
T3 = ET)E (2, y,t) for any g € R™.

Thus,
o€ _ Z 222’ + EZ: CLZ'SS(IE + his, Yy, t)] — Z (Bkl ylg + Z bergl7 )

ot i=1 ( s=1 =1 r=1
—& | % ae —iia- E(x + his, y, 1)
2 ot zC1 Lo 2 isC1 isy Y,
0E & N
+ &1 ot — Z Bkhyng + Z beryl752 . (4.6)
=1 r=1

It is known from [67] that the former term of sum (4.6) vanishes; consider the latter one

> Z birguy (g1rm)— \77|2}t n .
an Yu (yeme) dmy

o B / /lzzblr]w glﬂ]l ‘7]|2] |:l 1r=1 l
=1

ot
0" =1 r=1
%/—/
n times
n {Z Z birju, (g1rm) |77\2}t i
T s k

/ / SO T (o HM (o) €512 T] nitan

0 =1 r=1
a,_/ n;él

n times
437



n LN}

T 5 5 bndg (grm) Il e 7
/ / nkl”Hn e[l = } 115w i) dmy
0 0

=1 =1
n;él

n tlmes

because Ty j, (ax) = j,(ax)j,(a ) (see, e.g., [34, p. 19]).

Further, By, ,jv, (yimi) = l]l,l (yym) for any [ (see, e.g., [34, p. 18]); hence,
n M
£ & tdntamm-Ple ,oh
BkhylS? / / ==t 77I2H 77;];“,71/& (Yrni) dnis.-
k=1
n tlmes

Thus, the latter term of sum (4.6) vanishes in R’ x (0,+00) as well. This means that the function
E(x,t) formally satisfies Eq. (4.1).
Note that the inequalities

[ee]
|Bkl yl€2| <constH/17k”e "thn / kl+2e ”ltdm
k=1 0

Kk#l
and

o
n
™ k - 2t
‘Tgll 52‘ < constH/nlle Wt dny,
=1
0

are valid for all [ and r. Therefore,

In the same way,

< const = ;

&
ot
hence, the formal differentiation and the formal generalized translation under the integral sign are

valid for all terms of Eq. (4.1). Therefore, the function € satisfies Eq. (4.1) in R x (0, +00).

We call &£(x,t) the fundamental solution of Eq. (4.1). To show the reasonability of this term,
we prove below that the generalized convolution (see [34, §1.8]) of £ with any bounded initial-value
function coincides with that initial-value function at the initial half-plane.

4.3. Generalized Convolutions of Fundamental Solutions and Bounded Functions

On R x (0,+00), consider the function

/ T € (€m0 uola — €, y)dédn. (4.7)
=1

RTH™ T
The following assertion is valid:
Theorem 4.3.1. Function (4.7) satisfies (in the classical sense) Eq. (4.1).

Proof. First, we prove that function (4.7) is well defined. To do this, we apply the following estimates
established for functions (4.4) and (4.5) in Secs. 1.4 and 3.3 respectively:

"€ (2, 1) < C (4.8)
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and

ny

o0

Z by ju (glrm) .
/ m b : Jur (i) dmy
0

(those estimates are valid for any positive ¢t and o and any [ € 1,n).

For all positive tg and T, the constants of inequalities (4.8) and (4.9) depend only on to and 7' but
do not depend on ¢ € [tg,T]. This and the boundedness of the function ug imply that integral (4.7)
converges absolutely and uniformly with respect to ¢ € [tg, T] for any fixed T'. Indeed,

a

Yi <c (4.9)

1 n
/]Inwam W%@—&N%M§2wm%|/IIWWW&%M%M- (4.10)

+ +
Rm n Rm+n

The integrand function at the right-hand part of the last inequality is extended to the whole space
R™*™ as a function even with respect to each variable y;. The inequality itself is understood in the
following sense: if its right-hand side converges, then its left-hand side converges as well, and the
inequality is valid; note that the normalized Bessel function is even and the generalized translation
operator is continuous (see, e.g., [34, p. 18-19)]).
By virtue of the smoothness of the factors of the function £(§,n,t) and estimates (4.8)-(4.9), the
n

integrand function of the last integral can be represented as ‘fo,t(ﬁ) Hfl,t(m) such that its factors

=1

satisfy the following inequalities for ¢ € [to, T]:

My
<
|f0,t(£)| =14+ |£|m+1
and M
l
<
FRCIE S

where My, ..., M, are positive constants.

Let Q be an arbitrary large bounded domain in R™*", Without loss of generality, we assume that
it contains the domain Q(1) %L {|¢] < 1,|m| < 1,1 = 1,n}. There exists Ay from the interval (1, +o0)
such that

Q C Q(Ao) € {¢] < Ao, Im| < Ao, 1 =1,n}.

The function ‘ Jo,e(§) H f l,t(m)‘ is integrable over Q(Ap) by virtue of the boundedness of that domain;

=1
hence, the Fubini theorem is applicable:

Lﬂm HMmWM—/m mH/vmwm

l€]< Ao =1,

0
n
dz
< M, M, 242
<0 een) Ly [ e | 202
1
<M (4 M>n 2rm 2 /dr 2™ Mo <4 M>n(1+ )
max == max m).
B mI () T (%)) r? mI' () \ =1 :

Therefore, the integral at the right-hand part of inequality (4.10) converges and satisfies the same
estimate. This implies that function (4.7) is well defined on R x (0, +00). Further, by virtue of

n
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the self-adjointness of the generalized translation operator in the corresponding weight space (see,
e.g., [34, p. 19]), function (4.7) is equal to

/ Hm uo(&,MTE(x — &y, t)ddn.

Rm+n

To complete the proof, it remains to justify the validity of differentiating and applying the generalized

translation operator under the integral sign in (4.7). To do this, we must estimate the behavior of

the functions A&, By, 4,&, and Tg”S at infinity. The inequality ‘Tg”é" = ‘jw (glryl)é’! < !5! is valid.
|| =00

Further, it is proved in Sec. 1.4 that |z|™ ™ A, & (x,t) — 0 for any positive ¢ and it is proved in

Sec. 3.3 that

0 ny
ot % (o) y—oo
Yl Br, .y, / n'e r=1 Ju, (yem) dyy — 0
0

for any positive ¢, any positive «, and any ! € 1,n. This and inequalities (4.8)-(4.9) imply (as above)
that the differentiation and generalized translation under the integral sign are valid in (4.7), which
completes the proof. | ]

4.4. Solutions of the Nonclassical Cauchy Problem for Singular Functional Differential

Equations
Introduce the following notation:
def on—m n i
wan P [ [ - enTee . gaan @1
WmH2le2 ( l2 >RT+n =1

=1
The following assertion is valid:

Theorem 4.4.1. The function defined by relation (4.11) is a solution of problem (4.1)—(4.3).

Proof. 1t follows from Theorem 4.3.1 that the function u(x,y,t) satisfies Eq. (4.1). By virtue of the
evenness of the function T/E(€, y,t) with respect to the variables yi, ...,y (see, e.g., [34, p. 35]), it
follows that wu(z,y,t) satisfies condition (4.2). It remains to show that it satisfies condition (4.3) as
well.

Take an arbitrary (zo,0) < (29,...,29 49, ...,40) from
function u(xg,yo,t) as t — +0.

Noting that Ty f(y) = T f(n) (see, e.g., [34, p. 19]) and denoting

R’ and investigate the behavior of the

2n—m

- k+1
ﬂmH2k1F2< l;_ >

=1

by C, we

obtain that
(oo, ) =C [ Hm uo(wo — & M TIE(E, n, t)dedn.

Rm+n

&i

t=1,m) and p; =

Change the variables as follows: (; = (I =1,n); this reduces the last

m
2/t
relation to the form
m+n+|k|

2

= omintlkl oy

=1
m—+n
RY
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where |k| 4 k) + - + &, is the length of the multi-index.
Without loss of generality, we assume that

Redenote b;; by b;. Redenote g1 by g; (I = 1,n). Redenote a;1 by a;. Let h; denote |h;1] if the vector
hi1, © = 1,m, coincides with the positive direction of the ith coordinate axis of the space R™ and
denote —|h;1| otherwise. Then &;(x,t) can be represented as

m
2mH / —t(T —a; cos h;T) COS(%T + CLZ tsin h; T)d
=1 0

(see Sec. 1.4 and [67]); therefore,

E(2CVE, 2pVE t) = 2mH / (7% ~ai coshiT ) cos(2VEGT + agtsin hiT)dT
0

=1

=1

(o]
n
% 1_[/77 ze—t nZ—bijv, (91m) ] (2\/tpl771) dn;.
0

Change the variables as follows: 7v/t = z and n;v/t = &,1 = 1,n. This reduces the last expression to
the following form:

2m e 224 a;tcos i hiz
etk H / i vt cos | 2z(; + a;t sin Jt dz
t

=1 0
n o0
<11 / ghie 01 () 1, (26p) e (4.12)
Thus, taking into account the self-adjointness of the generalized translation operator, we see that
u(@o, yo, t) = 22" HHC / Tif\/t ug(zo — 2¢V't, o)
R

m

o0
—224q;tcos Mi* . hZZ>
X e ’ vt cos | 2z(; + a;t sin dz
Il / ( Gt aitsin "7
=1y

. Hp’” / g+ (0) 5, (o) dedcdp. (4.13)

Further, we use the following assertions:

Lemma 4.4.1. The limit relation

oo

- —224a;tcos "i? . hiz t—+0 \/7T " 2
H/e ’ vt cos | 2z(; + a;t sin dz —> e~ l¢l
Vit 2
0

i=1

holds uniformly with respect to ¢ € R™.
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Lemma 4.4.2. For any i € 1,m and any positive A there exists M; depending only on a; and h; such
that for any t from (0,1) and any (; from (A,+00) the inequality

o

224 aitcos i . hiz M;
/e FHaiteos Uy cos <2z§i +a;tsin >dz !
0

<

Vit

1s valid.
Lemma 4.4.3. For anyl € 1,n, the limit relation
[o.¢]
\/é‘kl g +blt]l/l( ) (2§pl) § t—>_+>0 F(Ul + 1) e—pl2

2
0

holds uniformly with respect to p; from [0, +00).

Lemma 4.4.4. For anyl € 1,n there exist a positive C; and « from (1,400) such that the inequality

00 ) c
ph / ekt (00 5, (2 py) de| < p’

s l

is valid for any t from (0,1) and any positive p;.

Lemmas 4.4.1 and 4.4.2 are proved in Sec. 1.3 and [67] respectively. Lemmas 4.4.3 and 4.4.4 are
proved in Sec. 3.4.

We have

/Ekle_gjyl(%m)dﬁ = F(Vl; 1 e Pt

0

(see, e.g., [88, p. 186]); hence,
gmt2n 00 oo
uo(zo,%0) = / (zo,v0) [ [ /e_z2 cos 22¢; dz [ [ o} /5kl€_§2jyl (28p1) d€dCdp.
w02 +1) mie =19 =1}
=1

Now, consider the difference wu(zg, yo,t) — uo(zo,yo); it is equal to

n
g2mintik o /prl T;f\/tuo(mo—%\/t,yo)

m—+n
RJr
“+o00
m
.2 . h;z hz
+at .
xH/e 2GRS Ut cos <2z§i+aitsm \; >dz

i=1Y ¢

v H/gkl —&%+bitjy, ﬁ)j,, (2¢p,) d€dCdp
0

=1
—+00

~ (o) [ [ cos2g dzH / e, (26p1) de | dCdp
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_ gemintltlc /+ / aef g2mint kg, 4 1), (4.14)
Q(a)  rR™HI\Q(4)

where A is a positive parameter and Q(A) denotes the domain

{(¢p) e ry*

|d<Lm<AJ=Ln}

Take an arbitrary positive €.

Integral (4.14) converges absolutely and uniformly with respect to ¢t € (0,1). Indeed, by virtue of
Lemmas 4.4.2 and 4.4.4 and the boundedness of the function ug, for any A from (0,4+o00) and any ¢
from (0, 1), the absolute value of its integrand function is estimated from above by

Tzn - 11212
sup [ug| [Hflz Gi) Hle (p1) 2m+n Hr(yl +1e I<1*=lpl ] ’

=1 =1
C
=14
is satisfied for any ¢ from (0,1). Fix the

where 0 < fi,(¢;) < ) 22, =1,m,and 0 < fgl(pl) , Il = 1,n. Therefore, one can select
i
a positive A such that the inequality |I3| < 2m+n+\k|+1c

selected A and consider I;:

T20V" ug(wo — 20Vt yo) — wo (0, yo) = 7 2 11 1
Yo P F(Vl—l- 2)
X / /uo [az?—ZCl\/t,...,xgl—Q(m\/t,
ARRRE
————
n times

\/(99)2 + dptt — 4y p1Vtcos by, .. .,

n
\/(y2)2 +4p2t — 4y20n\/t cos 0, ] H sin®” 6,d6),
I=1
K K

Ty +1) -
-7 l s 2v
-7 2 H 1 / /uo(azo,yo)Hsm 1 0,d6,
i Pt ) AR e
———
n times
L 1/ —|—1
_n I
=72 u — 201Vt . O — 2V,
e rt / /<0[ avh, i
=1 0 0
ntlmes

\/(y?)2 +4p3t — 4ydp1Vtcosby,. . .,

n
\/(yg)2 +4p2t — 4y0p,V/t cos Qn} ug(zo, y0)> Hsin2”l 0,d0,.
=1
Let § > 0. By virtue of the continuity of the function wug at the point (zg, o), one can select sufficiently
small ¢y such that for any ¢ from (0,tp), any (¢, p) from Q(A), and any 6; from [0, 7], [ = 1,n, the
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following inequality is valid:

U [:1:(1] — 20Vt .., 20 — 20V, \/(y?)2 + 4p2t — 4y p1Vt cos by, . . .,

\/(3/2)2 + 4p2t — 430 p\/t cos Hn] — ug(z0,yo)| < 0.

This means (take into account that the positive ¢ is selected arbitrarily) that

t—+0
T;f\/t uo(zo — 20Vt yo) "= uo (20, Yo)

(
uniformly with respect to (¢, p) from Q(A). This and Lemmas 4.4.1 and 4.4.3 imply that there exists
a positive £y such that for any ¢ from (0,%) and any (¢, p) from Q(A), we have the inequality
2 iz . P2
Tyzop\/t uo(xp — 2C\/t,y0) H / e F HHOS U cos <2z§i + a;t sin \;t> dz
=17
+o0o

/ ghe 0 (00) 1, (o) dédcdp — uo(aoyo) [ [¢* cos2etda
0 =1 0

=

X

N
Il
—

n

- mD (5) [[(k + 1)
/ ¢he=€5, (26p) de | dCdp| <, i=1 :,
0

X

=

2 Amtnt|k|92mtnt|k|+1)

=1

i.e.,
ﬂ.’;Am—i-n—i-\HE X
l I
|11] < n / le dCdp = 22m+n+\k|+10

922mAn+kl+1Cm D (T;) H(kl +1) g(a) =1
=1
Since the positive € is selected arbitrarily, it follows that
t—+0
u(@o, Yo, t) — uo(z0,yo) ‘= 0.
Since the point (zg,y0) is selected arbitrarily, it follows that the function u(x,y,t) satisfies condi-
tion (4.3), which completes the proof of Theorem 4.4.1. I

In particular, using the proved theorem, one can compute the weight integral of the fundamental
solution over RT+”: the following assertion holds.

n
ﬂ.mHFQ <kl + 1> - o
- k =1 2 t(z 2aistX X blr)
Hy lg(l‘,y,t)dxdy = _Qn—m—\k| e \i=ls=1 I=1r=1
=1

Lemma 4.4.5. The relation

m—+n
R+
1s valid.

Proof. Consider ug(z,y) = 1. It is continuous and bounded; hence, by virtue of Theorem 4.4.1, the
function

9n-
y(z,y,t) L / Hm’”g (& m, t)ddn

ﬂ-mH2le2 <kl ;_ 1> man =1

=1
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satisfies problem (4.1)—(4.3) with the initial-value condition
y(e,y,0) = 1.

However, y(x,y,t) does not depend on = and y. Hence, the function y(t) satisfies the ordinary

differential equation
y/_y (Zzazs +Zzblr> =0

i=1 s=1 =1 r=1
and the initial-value condition

y(0) = 1.

, (£ et Lo _
Hence, the relation y(t) = e \i=ts=1 =1r=1 holds. This completes the proof of Lemma 4.4.5. ||

4.5. Inhomogeneous Singular Equations

In this section, we assume that the right-hand part of Eq. (4.1) is different from the identical zero.
Let us show that, under the specified assumption, the fundamental solution £(x,y,t) can still be used

to obtain integral representations of solutions of problem (4.1)—(4.3).

Rm—i—n

Take an arbitrary (zo,yo) from and define the following function for ¢t > 7 > 0:

G(t, 7) el 2~2m—n-IK / Hnlffn, PYTIE (0 — €0, 7)dEdn,

Rm+n
The following assertion is valid.

Lemma 4.5.1. There exists a positive ty such that the function G(t,T) is bounded in the domain
(0,20) x (0,1).

Proof. Change the variables as follows: (; = i=1,m,and p; = ,l =1,n. Then, taking into

&
27’ 2\/

account the self-adjointness of the generalized translation operator, we obtain the relation

G(t,7) = g-my "y / Hp T;p\/Tf (xo — 2CV/T, Yo, t — T)E(2CN/T, 2p\/T, T)dCdp.

=1
m+n
R+

Now, similarly to the proof of Theorem 4.4.1, we assume (without loss of generality) that

redenote by by by, redenote g;1 by g, = 1,n, and redenote a;; by a;. Also, by h; we denote |h;| if the
vector h;; coincides with the positive direction of the ith coordinate axis of the space R™, i = 1, m; if it
coincides with its negative direction, then h; denotes —|h;;|. Then &(2(V/t, 2pV't,t) is equal to (4.12).
Therefore,

m e 2 h;z hz
/ H / e FTTHTCOS U eos <2zCi + a,;7 sin \/Z > dz
T
=1

R

« Hpkl /ékl —¢ +bmvz(w)jy (26p1) dE T2V f(ao — 2C/T, yo, t — T)dCdp.

=1

Since the function f is bounded, it follows that the last integral converges absolutely and uniformly
in the triangle {0 < 7 < t < 1} (the proof is totally identical to the proof of the absolute and uniform
convergence of the first term of integral (4.14)).
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Thus, we have the following estimate of the function G:

—+00 0o

|G(t, )| <27 "sup|f| H / / —#+ai cos jT cos <22Q —i—aZTsmiL/ > dzd(;

1% 0
n —+o0o i oo - ot
XH/ o1 l/fkle_g * ZTJVI(\/T)jVL (28p1) d€ dpy.
I=1" 0

In the last expression, each external (one-dimensional) integral (i.e., each integral over the real axis)
1

can be represented as / + / + / . Taking into account the boundedness of the internal integrals,

-0 — 1
we assign A = 1, assume (without loss of generality) that ¢t < 1, and apply Lemmas 4.4.2 and 4.4.4.
We obtain that there exists a from (1, +00) such that

r r
|G(t,7)| < const 2—1—2/ 2 2+2/r0‘
1 1

This completes the proof of Lemma 4.5.1. [

Therefore, the following function is defined on R x (0, +00):

v(z,y,t) % / / Hm'”é’ (&7 f(z — &y, t — T)dEdndr. (4.15)
2 kl + 1 —
mHF Rm+n
Since the function T,/E(&,y,t) is even with respect to the variables yq,...,y,, it follows that func-

tion (4.15) satisfies condition (4.2). Let us show that the specified function satisfies Eq. (4.1) and the
homogeneous initial-value function.
To prove the former assertion, we note that it is proved in Sec. 4.2 that the function £(x, y, t) satisfies

Eq. (4.1) in R?"*" x (0,400). Taking into account the decay estimates (established in Sec. 4.3) for
its factors and their derivatives of the corresponding order as |x| — oo and |y| — oo, we see that it
remains to prove the following lemma:

Lemma 4.5.2. Let (z9,0) € RTJF” and tg > 0. Then

2n—m—|k\

lim / Hnl é. n,to — T)Tgy()g(wo - 57 Yo, T)dgd’l’] = f(ﬂj’o, Yo, tO)

7—+0 kl+1
m F m+n =1
ol (M)

=1
Proof. We have

/ Hm (6,m,to — )T o — &, yo, T)dedn = 224G 1y, 7)

Rm+n

_ hqz h;
— 22m+n+\k| / H / 2%+a;T cos Jr oS <2ZCZ + a;7sin \/Z> dz
r

RT_‘_HZ 1%
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n o} I 91€ ) -
<[] /Ekle S Z(W)Jw (2€p1) dETGENT f (0 — 20/, o, o — T)dCdp
=1

(see the proof of Lemma 4.5.1).
Therefore, the difference

on—m-—|k|

n / Hm (&;myto — 7)) E(xo — &, y0, 7)dEdn — f(xo, Yo, to)
ﬂ-mHFQ <kl + 1> man =1
2
=1
can be represented as follows:

2m+2n

n / HP [ TV f(wo — 20/, 5o, to — 7)
mHIQ kl+1 m+n T

T 5 R

=1

I

— 224 a7 cos MF . hiz
e TS e cos ( 226 + a;T sin \/Z dz
T

.
—

n

W?HF <kl ;_ 1)

<1 e, pyde = 07T PR gt | dedp
m+2n ~
= n ? / / déf O(I?; + 14)7 (416)

ki+1
! =1 < 2 > R ' R

where A is a positive parameter.

Let € > 0.

By virtue of the boundedness of the function f, integral (4.16) converges absolutely and uniformly
with respect to 7 € (0,1); the proof is totally identical to the proof of the absolute and uniform
convergence of integral (4.14). Therefore, one can select a positive A such that |I4| < 25 for any 7
from (0,1). Fix the selected A and consider I3.

The generalized translation

Tyzop\/q—f(xo - 2(\/7-7 Yo, to — T)
can be represented as follows:

™ m

n
Vl—l-l
. H / /f[:E?—2{1\/T,...,x2n—2(m\/7',
=1 T+ 4
0 0
———
n times

\/(y?)2 +4piT — Ay p1v/7 cos by,

n
. \/(yg)2 +4p27 — 4yQ pp\/T cos b, to — 7'} Hsinzw 6,do),.
=1
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By virtue of the continuity and boundedness of the function f, the last expression tends to f(xo,yo,to)
as 7 — +0 uniformly with respect to (¢,p) € Q(A). This and Lemmas 4.4.1 and 4.4.3 imply that
there exists a positive 7y such that for any 7 < 79 and any 7 from Q(A), we have

m

“+o00
.2 . h;z . h
TV f (2o — 20V, 50, t0 — 7) [ | / e 7T U cos <2ZC¢ + a;7 sin \;i) dz

i=1 7
n
m ki+1
n T 2 HF < l;_ >
€24 b7y _ L1122
XH/Ekl St \/T>]I/ (2p)dg — 12m+n e ISP £ (20, o, o)
0

=1

n

mD () [ (ke +1)

=1
ACT 2 AmAn+|k|

This completes the proof of Lemma 4.5.2. [l

. E
e, e, |B) <

It remains to proof that v(xg, yo, 1) 2490 for any (o, yo) from R
To do that, we represent v(zg, yo,t) as
2m+2n
): f

ﬂmHFQ (kl +1

=1

and use Lemma 4.5.1: there exists a positive ¢ty such that

2m+2n sup |G|
te|0,to]

t
- ki+1
m F2
-1 ("))

for any t from (0, ¢y). Since the point (zg, yo) is selected arbitrarily, this implies the following assertion:

[v(o, 1)] <

Theorem 4.5.1. Let ug be a continuous and bounded in RTJF” function. Let f be a function con-
tinuous and bounded in RT™ x (0,+00) such that it satisfies condition (4.2) and the functions
of of .1 9f of

e an e
0y ’ ' 0T, 591’ ’ 8yn
tion

are continuous and bounded in RTT™ x (0,+00). Then the func-

2n—m—\k| n
Wyt =, | e nizyuste - & ey
m I‘2 kl+1 m+n =1
T H 2 R-‘-
=1
/ / Hn{”ssn, YT f(x — &,,t — 7)dédndr (4.17)
ORm+n -

is a solution of problem (4.1)—(4.3).
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4.6. The Uniqueness of the Solution of the Singular Problem
First, we prove the following assertion:

Lemma 4.6.1. For any positive T, function (4.17) is bounded in RTJr” x [0,T].
Proof. Using (4.13), we represent the solution of problem (4.1)—(4.3) as follows:

m+°o

_ ) hiz h.:
u(z,y,t) = Cy / Ty2p\/t ug(z — 20Vt y) H / e Ztaiteos cos <22C¢ + a;tsin \Zf) dz
=179

m—+n =1
RY

[e'e) t
n ) ¢
<] ot / ehie €t (U0) 5 (9¢p) dedcdp + / / T2V f(z — 20/, y,t — 7)
=1

0 0 RZH-’I

“+o00
M 224 a7 cos MiF hiz
X H/e ¢ v7 cos | 22(; + a;7T sin Y dz
=1 0 T

n 7 _ 2 i 91€
<[ o / et 0min(U2) 5 (26) dedcdpdr | 4 4 [Ty, 1) + To(, 4, )]
=1 0

Here we impose (without loss of generality) the same assumptions regarding the coefficients of the
equations as in the proof of Theorem 4.4.1, but we take into account that, in general, the right-hand
part of the equation is different from the identical zero.

Integrate
—+00

2 ) h;z hz
/6 z"+a;t cos vVt cos <2Z<2 + a;tsin \;t> dz, 1 =1m,

by parts twice. We obtain (see [67]) that if 0 < ¢ < T and (; # 0, then the absolute value of the last

M;(1 4 T)elwlT

integral does not exceed , where the constant M; depends only on the coefficients of

¢
Eq. (4.1).
3 5
Denote by ng the only positive integer lying in <Vl + ooV + 2} and integrate
7 ¢
2 . (9

[ene sy, e e, 1= 1n

0
by parts ng times. We obtain (see [59]) that if 0 < ¢ < T and p; > 0, then the absolute value of the last

M, (T)eloT —

integral does not exceed i klea , where the function M; is a linear combination of power functions

P
with nonnegative powers such that its coefficients depend only on the coefficients of Eq. (4.1).

Use the obtained estimates for |(;| > 1,7 = 1,m, and p; > 1,1 = 1,n. If |(;| < 1 and p; <1,
Jmel@lT

5 and

then the absolute values of the specified integrals are obviously estimated from above by

T 1elbdlT
(v + e respectively.

Using the obtained estimates and the boundedness of the functions ug and f, we complete the proof
of the lemma. [ ]

449



Now, we can investigate the uniqueness of the found solution of problem (4.1)-(4.3) by means of
the Fourier transforms (see [16, Ch. 2, §4, and Appendix]), using the Fourier—Bessel transformation
(see, e.g., [34, Ch. 1]). To do this, following [16, Ch. 1], we introduce special spaces of test functions
(cf. [34, §1.1]) below, assuming that condition (4.2) is replaced by the equivalent condition of evenness
of the function uw with respect to each variable y;, [ = 1,n, and, correspondingly, considering the
problem in the subspace R™*" x (0, +00) (see Sec. 4.1).

Let u; and w; be continuous increasing on [0, +00) functions such that

1#i(0) = w;(0) = 0 and lim wi(r) = li_>m wi(r) =o00,i=1,m +n.

Define the following concave functions on [0, 400):

T T

M;(r) et / i(p)dp and Q;(r) ! /wi(p)dp.
0 0
Define the space of test functions WM & def WQl’ ’SX/}”T as the set of entire functions of complex variables

T1,...,Tm and y1,...,y, even with respect to each variable y;, [ = 1,n, and satisfying the estimate

‘So(mlw” s Tms Y1y - - - 7yn)|

- i M;(a;Rex;)— i M1 (i Reyr)+ in: Qi(ﬁilmri)+i Qo 11(BImy;)
< Ce i=t =1 i=1 =1 R (4.18)

where the constants C, aq,...,min, and S, ..., Bmin may depend on the test function .
Introduce the classical topology of test functions: we say that a sequence {¢,}5°, converges to
zero in Wz\% if it uniformly converges to zero in any bounded domain of C™™" and the constants C,
A1,y Qmin, and B, ..., Bytn (from the definition of test functions) do not depend on the index v.
Correspondingly, a set Q C Wz\% is called bounded if there exist absolute constants C, a1, ..., Qpmin,
and B1, ..., Bm+n such that all elements of @) satisfy estimate (4.18).
The Fourier—Bessel transformation is defined on WA% as follows:

fen  mpe TT ot (e (o, )y

Rm+n =1

Denote by W, ’B the subset of WM such that each its element satisfies inequality (4.18) with o and
replaced by & and 8 respectively for all

dl <ay,... Jdmri-n < Qp4n and /61 > /817 s 7/Bm+n > /Bm-i-n-

The following assertion is valid:

Lemma 4.6.2. Suppose that functions ]\Z and SNZZ are dual in the Young sense to the functions €; and
M; respectively, i =1,m +n. Then the Fourier—Bessel transformation is a bounded operator mapping

1
WQi wnto VV~ v, where
1 < 1 1 > d 1 < 1 1 >
= ey an = e .
(e aq Om+n /6 /61 /Bm-‘rn

M, g
1
Proof. For any v > — AL have

1

I'v+1) _
oot = \/7TFI/+ /e“'fy £y i
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(see, e.g., [34, (1.5.8)]). Therefore, the following estimate holds:
4, (z + iy)| < const el¥.

The remaining part of the proof is totally identical to the proof of Theorem 4 from [16, Ch. 1, §3].
This completes the proof of Lemma 4.6.2. [

Consider the elliptic operator A contained in Eq. 4.4.1:

Au déf Z 85132 + Z aisu(l' + hi87 Y, t)
i=1 i =1

? s

n ny
+) (Bkhylu +) beril7'u) : (4.19)

=1 r=1
Let us find its symbol
P(2) © P21, zign) Y P(oy + im0, O + i)

It suffices to consider the case where m; = ny =1 (i.e., the case where there are one special and one
nonspecial spatial variables). Then

mi ni
P21, 22) = =27 + Y aree” ™M — 25 4> " bipji, (1022)
s=1

r=1

(see [34, (1.3.5) and (1.3.8)]) and

mi ni
ReP(z) = |o|® — |7> + Z arse™sT cos higor + Z birRejy, (91r22)-

s=1 r=1

Using [34, (1.5.8)] again, we see that
1
Rejy, (z2) = const /(1 - t2)”1_ée_72t cos oatdt.
1

Therefore,

1
Rejy, (g1rz2) = const /(1 — tz)”l_%e_g”mt cos(g1roat)dt.
1

Now, estimate the function Q(z,to,t) <! elt=t0)P(2)

my a2
(t—to><lcrl2+2 |a1s|eM1sT14const 3 \bv-le“‘”’“‘”) 2, (1 oCsT
‘Q(Zat07t)| <e s=1 r=1 e(t_to)[(l—HU‘) +Coe™s ]

The last estimate and Lemma 4.6.2 imply (see [16, Ch. 2, Appendix 1]) that problem (4.1)—(4.3) from

Sec. 4.1 has at most one solution bounded in any layer R"*" x [0, T]. Then, taking into account that
Eq. (4.1) is linear, we deduce the following assertion from Lemma 4.6.1.

Theorem 4.6.1. Function (4.17) is the unique solution of problem (4.1)—(4.3) such that it is bounded
mn RT*” x [0,T] for any positive T.

Remark 4.6.1. The requirement of the boundedness of the function f and its derivatives can be
weakened: it can be replaced by the requirement of their boundedness in any layer RTJF” x [0, T].
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4.7. Long-Time Behavior of Solutions of Singular Problems

In this section, we investigate the long-time behavior of the solution of problem (4.1)—(4.3). To do
this, we consider the operator A introduced by relation (4.19) and introduce the operator £ acting as

follows:
Lu &t Z Py + ZBkhyz“ + Z aisu(x + his, y, t) + Z b T u.
=1 ? =1 a;s<0 blr<0
Further, without loss of generality, we redenote the vector h;s by (0,...,0,hs,0,...,0) (note that
N——

i—1 times
here h;s is a scalar parameter).

Now, denote the operator Z ;s + Z bir | I — L by R and consider the real part of its
ai5<0 blr<0
symbol:

RQR(&??) = Z Qis + Z blr + |£|2 + |77|2 - Z ;5 COS hzsgz - Z blrjl/z (glrnl)
a;s<0 blr<0 a;s<0 bl7.<0
(cf. [102, §8]). We say that R(£,n) is positive definite if there exists a positive C' such that

ReR(¢,n) > C (€% + nf?)

for any (£,7) from R
Together with Eq. (4.1), consider the equation

ow = Pw — S
ot = 8,172 + ZBkl7ylw7 (':Evy) € R+ s t> 0, (420)
i= ( =1
and the initial-value condition
wl,_o = wo(z,y), (x,y) € RTH, (4.21)

where wy is continuous and bounded.

It is known from [36] (see also [37] and [47]) that problem (4.20), (4.2), (4.21) has a unique classical
bounded solution w(z,y,t).

The following assertion is valid:

Theorem 4.7.1. Let f(x,y) =0 and R(&,n) be positive definite. Then the following limit relation is
valid for any (z,y) from R

m My n N
(£ et o) ¢ ¢
e \&aA™ T A" u(z,y,t)—w<xl+q1 L Fm T mt b ,t)tﬂf 0, (4.22)
b1 Pm Pm+1 Pm4n
where
1 my mg
pi= |1+ 9 Zaish?y qi = Zaishi87 i=1,m,
s=1 s=1
1 L
Pm+li + 2(1{31 + 1) rz::l Ir9ips , 1,
and

wo(.’B, y) = uO(plmly <oy PmTmsy Pm+1Y1, - - - pm—l—nyn)'
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Proof. First, we prove that p1, ..., Dmitn are well defined and different from zero under the assumptions
of the theorem. Assuming, without loss of generality, that the (ﬁmte) sequences {a;s}or 1 i =1,m,

and {b;}.L,, | = 1,n, do not decrease, we denote mlnos by mZ and denote gnlnor by nl; if 7 or [ is
@is > >

such that all the coefficients are negative, then we assign m? =m;+1 (n? = n; + 1 respectively).
Let i € 1, m. From the condition of the theorem, we deduce that

> ais+& = Y aiscoshisls > C&
s<m? s<m?
for any positive §; (indeed, we take the inequality of the positive definiteness condition and assign
&= =¢&-1=¢&+1=%&n =m = -+ =10, = 0 in that inequality). This implies the inequality
Z aish?s > —1 (see proof of Theorem 1 in [72]), i.e., p1,...,pm are well defined and positive.
s<m?
Now, let I € 1,n. Then
Z bir + 1 — Z birju, (giem) > Cif
r<n? r<n?
for any positive 7;; hence,
07712 < 77l2 + Z blr [1 - jI/l (glrnl)] :
r<n?
We have the following representation of the normalized Bessel function:

22 ) 22
sw+1) T O") = 1-jule) = A +1)

Therefore, there exists a neighborhood of the origin such that the following inequality holds in that
neighborhood:

Jv(z) =1- +0(2h.

Z bir gy + O(11}).

7"<1’Ll

4(1/1 —I— 1
This implies the inequality
c<1 b O
<1440, +1 > bigiy + O().

7"<7’Ll

Therefore,

oy > bug + O(n}) —

2 ST gy 4 1) 2l T OUE) = 5

T’<Tll
i.e., there exists a (small) neighborhood of the origin such that
c 1
0 <1 b b
< 5 = + 4(1/[ + 1 Z lrglr v+ 1 Z l?”glr
r<nl 7“<nl

Thus, pmt, - - -, Pmin are well defined and positive.
Now, we prove the following auxiliary lemma.

Lemma 4.7.1. Let the conditions of Theorem 4.7.1 be satisfied. Then for anyl € m + 1,m + n, the

limit relation
o0

2 iy 91y o2
9 —ni+t 3 |dv -1 ¢ I'vp+1) -5
/nl Vl+1e r:1[ l( Vit ) ].71/1(2p771)d771 —o0 ;pkH_l ) »j

l
0
holds uniformly with respect to p > 0.
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Proof. First, we note that the sum symbol and the index r can be omitted because it is obvious that
it suffices to prove the lemma for the case where the summand is single. We omit the index [ as well
because it is selected arbitrarily and redenote p? by p. Further,

o0
o2 . 1 T(v+1) _o?
/nzVHe g @pmdn = ( ) ).

0
Therefore, it suffices to prove that

[ee]
/ g (2pm) (e‘”“bt[ﬁ(éﬂ) ) e‘i”’?2> dn =% 0

uniformly with respect to p > 0.

First, we prove that the last integral converges absolutely and uniformly with respect to (¢, p). To
do this, we take into account that the parameter p is positive and the function j, is bounded and see
that it suffices to estimate the power of the first integrated exponential function. We assume that
b < 0 because the claimed convergence is obvious otherwise.

Let the parameter a be negative. Estimate the function f(z) 4 22 — a[j, (2) — 1]:

z . 1 .
f/(z) =2z+ a2y + 2]zx+1(z) =2z |1+ a4y + 4]1/+1(z) >0
for ‘ @ ‘ < 1, which is equivalent to the inequality a > —4v — 4.
v+ 4

Thus, for a > —4v — 4, the function f does not decrease on [0, 4+00). Since f(0) = 0, it follows that
if a > —4v — 4, then the function f is nonnegative on the real axis (by virtue of its evenness).

Now, let a > —4v — 4. Then there exists « from (0, 1) such that 1 “ > —4v — 4. Therefore,
-«

a

F(2) - a2 = (1- )2 —aljy(z) ~1] = (1 a) ( ln(z) - 1]) >0

Thus, for a > —4v — 4, there exists a positive a such that f(z) > az? on RL.

gz by z. The power to be estimated takes the form

v

T l-a

Now, redenote

22t

—g HUE =1 == 4 (-0 - 1)

Since bg? > —4v — 4, it follows that there exists a positive o such that the last expression does not

to
exceed — 222 — —an?. Therefore, the last integral converges absolutely and uniformly.
9

[ [eS)
Then decompose it into the sum / + / def 1, + I, where ¢ is a positive parameter. Take an

0 1)
arbitrary positive € and, using the proved absolute and uniform convergence of the last integral, select

a positive J such that |I5| < ; for any t from (1, +00). Fix the selected § and estimate I;. Its absolute

value does not exceed
o

o2
/772V+1e PN

0
To estimate the last expression, represent the function j,(z) as
J0) o 30 4

.VO ./0 ,

e(p—l)n2+bf[ju<gﬂ>_1] — 1ldn.
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where 6 € [0, 2].
Take into account that

]V(O) = 17
jll/(o) =0,
1
.1/ _
jl/(o) - 21/ + 27
and
j///(e) _ 39ju+2(9) . 93ju+3(9)
v Av+Dv+2) 8v+1)(v+2)(v+3)
Thus,
1 2,2 Nadnd
jy<gn>_1:_ g vl tgr
where

396 (99)?
OIS g0 ) w+2) T a8+ D+ D + 3)
for any ¢ > 1 and n < 4.

Therefore, the power of the second exponential function in the last integral is equal to

[ b ] 2 W0 _ 0(n,)0°n° gor V(0.1)
Aw+1)]" Vi ViVt

and there exists a positive M such that |¢(n,¢)| < M for any n € [0,6] and ¢t > 1.
Thus,
5 ~
P(n,t)
|Il| < /77211-1-16—17772‘6 \/nt _1‘d77

0
M M

Select to from [1,+00) such that eV e Vo e [1 — 8,1+ &), where
5 -1
5y = ; /7721/+16—;my?d77
0
Then |I;| < © for any t > ¢y by virtue of the monotonicity of the exponential function. This completes

the proof of Lemma 4.7.1. [ ]

Now, we pass directly to the proof of the limit relation (4.22). Obviously, it suffices to do this for
the case where
therefore, we omit the second indices of the coefficients a, b, h, and g.

Let (z0,%0) = (29,...,2%,,99,...,4%) be an arbitrary element of RT+”. Applying relation (4.13),
we represent

—t(i az‘-i-zn: bl)
e =t =1 Ju(xo, Yo, 1)

as follows:

2m+2n 2pv/t
m TPV ug (o — 2CV't, o)
Tm H F2(I/l + 1)

m—+n
i=1 Ry
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=1

“ —z +al cos iz— ) . hiz
X H Vi cos | 22¢; + a;tsin vt dz
0

Sl / ghie €+l (V) 215, (o) dedcap.
=1

In the sequel, we assume, without loss of generality, that m = n = 1. Then the last expression is equal
to

T2 ( k+1 // PP g (29 — 20Vt o)

—z +at cos Z 1) . hz
X e cos | 2z( + atsin dz
/ ( ‘ ¢t>
0
k §2+bt ],, ) 1] )
x [ eke v (26p) d€dCdp.
0

Together with this expression, consider

+oo

ah2
sz k+1 / / kT2p\/t uo(xo — 20V, Yo) / —(14+57)2? cos(2¢ + ah\/t)z dz

/gk l+2(k+1 ¢ Jv (28p) d€dCdp = / / kT2p\/t uo(zo — 2¢V't, yo)

7TF2 k 1
X /e_pl cos(2¢ + ahv/t)z dz/&ke_p§§2jy (2&p) dedCdp
0
k: 20Vt \/ (2C+q12\/t)2—p§
T,V ug(zo — 2¢VE 1 P2 dCdp. 4.23
\/wF ppgﬂ// o(zo — 2¢Vt, yo)e Cdp (4.23)

On the other hand, it is known from [37, 38, 42-45, 47] that

00 00
2 2
W(xo,yo,t) \/ﬂ'r k+1 / / pke <oe Ty20p\/tw0($0 —2C\/t,y0)dCdp
0 —oo

Therefore,
00 00 2
. 2<+q1¢t) 2
w <IL’0 +q1 : y07t> - / / pke 4p? TyQOpzp\/tUO(«TO - 2(\/t,yo)dCdP
P P2 \/WT ) p1
0 —c
. (2C+q12\/i)2 _ pi
T2p tuO (zg — 2C\/t yo)e 4py P2 dCdp.
\/7TF ]9117]26—Irl / / *
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T t
Thus, expression (4.23) is equal to w ( ot , o , t> , 1.e., to deduce relation (4.22), we must inves-

b1 P2
tigate the long-time behavior of

+00
hz
/ / szp\/t uo(zo — 2Vt y0) /e_z2+at(ws \/t_l) Ccos <22C + at sin il/zt> dz
0
_ (2¢ta v)? T 0
X / gre ()1, ogpyae - Ve wt TV D T geay (4.24)
; 2p1 2pl2€+1

First, we prove that the last integral converges absolutely and uniformly with respect to t € [1,4+00).

By virtue of the boundedness of the function wug, the absolute value of the second term of the speci-
0 2 2

fied integral is estimated from above by const / e p1 d¢ / pre "2 dp; hence, it suffices to prove the
—o0

absolute and uniform convergence of its first term. Change the variable: y = 2¢ + g/t; this reduces

the specified term to the form

—+00
zZ

.2 hz _ h
/ / k:T2p\/t UO T — y\/t — qt, yO) / z +at<cos Vit 1) cos <yz — Q\/tz + atsin \/Zt> dz
0

. / gre 0 (0) 15, agp) dedydp.
0

It is proved in Sec. 2.3 that if the conditions of Theorem 4.7.1 are satisfied, then there exists a positive
M such that

+00
_ .2 hz _ h
‘ /e z +at<ws Vi 1> oS (yz—q\/tz+atsin \Z) dz| <
0

provided that ¢ > 1 and y > 0.
Further, it is known from 3.3 that

[ el (), og
0

is a finite sum of terms of the form

o
1 ; —&24bt |5 (95 )-1] . g€
p2u+2mtl/fJu+m(2P§)€ (%) ]]zx+l+1 <\/t

where j,(2) = 2" J,(2), fi is a bounded function, and [ is a positive integer not exceeding m — 1.
For t > 1, the absolute value of (4.25) does not exceed

) Ji(€, 1) dg, (4.25)

o / 6o m(2p€)e () g, (4.26)
Further, we have
1 2p€)VHmt s
€ (206) = 5 (206 " (206) = P T 20 (206,
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bg?

dv +4
a such that the power of the exponential function in (4.26) does not exceed —aé? (see the proof of
Lemma 4.7.1). Taking into account the boundedness of the function 1/7.J,(7), we see that this implies
that the absolute value of expression (4.26) does not exceed

However, under the assumptions of Theorem 4.7.1, i.e., for 1+ > 0, there exists a positive

[e.e]
const £m+y+g oo’ dé = const
p21/+2m+1—1/—m—é pm—i-u—i-;
0

3
Thus, selecting an integer m from the interval (1/ + 2,c>o> , we obtain that the there exists £ from
(1,400) such that

/ gre 0t (5) 7115, (26p) de < CCZZSt-

0
Use this estimate for p > 1; if p € (0,1), then we use the boundedness of the last integral (as a
function of variables ¢ € [1,00) and p € (0,1)) implied from the boundedness of the function j,(-)
and the above-mentioned estimate of the power of the integrated exponential function, obtained in
Lemma 4.4.1. By virtue of the boundedness of the function ug, this completes the proof of the absolute
and uniform convergence of the first term of the integral (4.24).
Now, decompose integral (4.24) into the sum

+ / def 7. 4 1.
{I¢l<ds,0<p<d}  RI\{[¢|<6,0<p<d}
Take an arbitrary positive €. By virtue of the proved absolute and uniform convergence of the specified
integral, there exists a positive § such that |I4] < for any t from [1,00). Fix the selected § and

consider I3.
By virtue of the boundedness of the function ug, we have the estimate

6 6
|I3] < const//pk
0 =6 0

o0
2 . e\ _ (24+q1\/t) r 1 _p?
x/gke &+t (2 l]jl, (26p) de — ;Z wp T+1) —5

00
_ .2 hz _
e z +at(cos vt 1)

hz
cos | 2z( + atsin dz
( ‘ ¢t>

d¢dp. (4.27)
2p]2€+1

By virtue of [72, Lemma 1], the limit relation

e 224 t( hz _1> hz \/7_r (26t V)2 :
/e AN ve ™) cos [ 22¢ + at sin dz — e a} =20
Vit 2p

holds uniformly with respect to ¢ € R!.
This and Lemma 4.7.1 imply that there exists a positive ¢y such that for any ¢ from (to, +00), the
5 6 -1

expression under the modulus sign in (4.27) does not exceed ; / / prd¢dp

0 —¢
This completes the proof of Theorem 4.7.1. [ ]

Similarly to the regular case of [72], imposing the additional condition of the symmetry of the
elliptic operator contained in the considered equation, we obtain a weight stabilization of the solution
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u(z,y,t) (apart from the weight closeness of solutions, proved in Theorem 4.7.1). More exactly, the
following assertion is valid.

Corollary 4.7.1. Let the conditions of Theorem 4.7.1 be satisfied and the operator A be symmetric.
Then for any real l, the assertion
_t(§ 5
lim e \i=ts=
t—o0

i n
w2 S )
1 P e u(z,y,t) =1 for any (z,y) € Rg_ﬁ_n

is valid if and only if

. Conk Sk
RO B | (R
=1

Bt (p,t)
where
n
i (o) (M) e (M) LR
m,n,k —
7’ kn+kn - kn+kn—1+kn— |k mo I
F( ' 1+1)F< . 2+1)...r(2 +1) 27 L(m +n + |k[) lpilnlpf;gi}
1= =
and
B*(p,t) = {(:E,y) eRTIMD 4N T <t }
=1 Pi =] P
To prove this, it suffices to note that ¢; = --- = ¢, = 0 under the conditions of Corollary 4.7.1

and apply theorems on the stabilization of solutions of singular differential parabolic equations. For
details, see the Appendix.

Remark 4.7.1. Since T;f(y) = Ty_hf(y), it follows that the singular part of the operator A is always
symmetric. Therefore, the symmetry assumption for the operator A can be replaced by the symmetry
assumption for the following differential-difference operator:

0%
Aregu déf Z axz + Z aisu(l‘ + hi87 y7 t)] ‘
=1

i s=1
Remark 4.7.2. If the conditions of Corollary 4.7.1 are satisfied, then the symmetry requirement
for the operator A,., can be weakened: it can be replaced by the requirement that a;Lh;, where
a; = (ail, e ,aimi) and hz = (h”ila vy hzml)a 7= 1,m.

Remark 4.7.3. It follows from Corollary 4.7.1 that in the differential-difference case, surfaces bound-
ing averaging domains of the initial-value function in the stabilization condition are not guaranteed to
be segments of spheres anymore: in general, they are segments of ellipsoids. Note that in the classical
case of differential equations, such an effect arises if the operator

n
Ap AL+ By,
=1
is replaced by an operator with different coefficients at different second derivatives:

n 52 n
2 2

Zpi 2 + me—i-lBk’l,yz'

=1 ? =1

Remark 4.7.4. Remark 1.6.1 is completely correct in the singular case as well.
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APPENDIX. SINGULAR DIFFERENTIAL PARABOLIC EQUATIONS

5.1. Stabilization of Solutions of the Cauchy Problem: Prototype Case

In this section, we study the long-time behavior of Cauchy problem solutions for equations of the

form
ou 10 ou ou 10 ou
ot U ykay (y 8y> o a()[ U ykay (y 8y>]

The solvability and uniqueness of solutions of such questions are investigated in [36, 46, 47] and a

number of other papers. In the regular case (i.e., for £ = 0), the long-time behavior of solutions is
investigated in [95, 96].

5.1.1. The Cauchy problem for the singular heat equation. The following notation are used:

e R” is the real Euclid n-dimensional space;
e R/ is the half-space {(z,y)|z € R",y > 0};

0? 0? 0? ko
e A= 022 + -+ 022 and By, = 8;; + y 8;’ where k is a positive parameter.
Consider the following problem:
0
8:; =(A+Biy)u, z€R", y>0,t>0, (5.1)
ou
u‘t:O: o(x,y), oy ‘yzoz 0. (5.2)

Here the function ¢(x,y) is assumed to be continuous and bounded in ]R’}FH.

It is proved in [36] that problem (5.1)-(5.2) has a unique bounded solution and it is a classical
solution, i.e., all its derivatives included in the equation exist in the classical sense and are continuous
(for y = 0, the right-hand derivative with respect to y is treated as the derivative with respect to y)
and relations (5.1) and (5.2) are satisfied pointwise (on the hyperplanes {t = 0} and {y = 0}, they
are satisfied in the sense of limit values as t — 04 and y — 0+). Note that, investigating the Cauchy
problem in this chapter, we always mean classical solutions.

Theorem 5.1.1. Let u(z,y,t) be a bounded solution of problem (5.1)-(5.2), | be real, x belong to R™,
and y be nonnegative. Then the relation

Jim u(z,y,t) =1 (5.3)
is valid if and only if the following relation is valid:
ntk+l o[ _ (3
A / y oz, y)dedy = P (v l, (5.4)
B4 ()

where By (A) denotes the semiball {|z|> + 3> < A%|y > 0}.

Proof. Without loss of generality, we assume that n = 1.
We decompose the proof into three stages. In the first stage, we prove the theorem for the case
where £ = y = [ = 0. In the second stage, we prove that the assertions “tlim 1(0,0,¢t) = 0” and
— 00

“tlim u(zx,y,t) = 0" are equivalent to each other provided that (z,y) € R?fl. In the third, we extend
—00

the proof to the case of arbitrary real values of [.

460



Stage 1. Sufficiency.

Let
1
Jim / yFo(x, y)dudy = 0.
By (t)
It is known (see, e.g., [46]) that
00 +00
92— k— 1t_ k_1 aZ4y?
u(0,0,t) = T ( k+21 //yk@ z,y)e & dxdy.
— o0

Introduce a function vy(z,y) as follows: vo(z,y) = [go(z y) + ¢(—z,y)]. Then

\Mﬂ ')

¢
1 1
(k2 / Y cp(a; y)dzdy = o / rkHvo(r cos a, T sin ) sin®a dodr
B+(t) 0
and
00 +00 [elelNee)
1 . 2k+3 e
/ / ykgo y)e~ +y dedy = //ykvo x,y)e +y dxdy,
+1 2
0 —oo 0 0
where 7 = 2\/t
Denote //y vo(tx, ty)e _yzdm‘dy by v(t). Let us show that v(t) 2.

Apply the polar change of variables; this yields the following relations:
5

[e.e]
v(t) = //rk+1vo(tr cos a, trsin o) sin® o e " dadr
0

0
00 rt
_ k+3 € kt1,,
= 2/T (r)h+2 // 0(n cos nsma)sm a dadndr
0
5 rt 5

e~
bt (rt)b+2 // ktly 0(n cos ar, n sin @) sin adadndr
(r

I

DO
o

-

[ rt o5
T
+2/rk+3 ret Jo // F+Luo(n cos a, nsin ) sin®or dadndr F T, (t;6) + Ja(t;6),
1)

where § is a positive parameter.

[

¢
1
Since vg(z,y) is bounded, it follows that 49 / nkH (n cos a, sin @) sina dadn is bounded as
0

0
well. Therefore, there exists M such that the following inequality is valid for all positive r and t¢:
5

tk+2 M.

¢
1
// 0(1 cos a, n sin ) sin®a dadn| <
0
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§
Hence, |J1(t;9)| < 2M/7‘k+3e_r2dr for all positive 6 and ¢. Select ¢ such that |J;(¢;0)] < ; and fix
0

the selected 9.
By the condition, for any positive € there exists a positive R such that the following inequality is
valid for any ¢ from [R, +00):

t Tzr o0 -1
1
fhr2 //yk+lvo(ycosa,ysina) sinfa dady| < ; 2/rk+3e_Tzdr
00 s
Therefore,
[ee] -1 [e.e]
€ €
|J1(t;9)] < 5 2/rk+3e_r2dr 2/rk+3e_T2dr =,
é §

for any ¢ from [R,+00).

Thus, for any positive ¢ there exists a positive R such that |v(t)| < € for any ¢ from [R, +00). Since
7 and t either both tend to infinity or do not, it follows that the sufficiency is proved.

Necessity.

Introduce the function fo(r) = / yFo(x,y)dS, where S, (A) denotes the semicircle {22 + y? =

S4(r)
A%y > 0} and dS denotes the circle measure. Obviously, fo(r) is continuous and it satisfies the
estimate | fo(r)| < CrF*t!, where C' = 7sup |¢(z,y)|. Then
2

R+
00 400 o
1 k _2?4y? k+2 2
tatl / / yrelz,y)e a dedy = /6 fo(rr)dr.
0 —oo 0

Since 7 and t either both tend to infinity or do not, it follows that it suffices to prove the following
assertion:

Lemma 5.1.1. Let a continuous function f(t) satisfy the estimate |f(t)] < Ct*+1 fort > 0. Let the

following relation be valid:

: 1 2
tliglo s /e flrt)dr = 0.
0

Then

t

1

lim f(r)dr =0.
/

t—00 tk+2

Proof. We use the following corollary from the Wiener Tauberian theorem (see [13, p. 163]):

“if p € L1(0,00), g € Loo(0,00), and /cp(t)tiwdt %0 for any real x and
0

1
lim © <t> g(t)dt =0,

r—oo r
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then the relation
o

lim [ <t> g(#)dt =0

r—oo I r
0

holds for any function v from L1(0,00).”

Denote TJ;ER by g(r). This function belongs to Lo (0,00). Change the variables: rt = p; this yields
1 —r2 k+1_—z?
P go r)dr, where p(z) =x"""e " € L1(0,00).
0 0
On the other hand,
t o]
1 1 Hhifr <1
2 /f(r)dr =, /1/1 <Z> f(r)dr, where ¢(z) = {g’ ifalz >m 1_’ ie., ¥ € L1(0,00).
0 0
Finally,
o r LT ke 1 (k424
/ ()t dt = / e Pkt gy — / e Y g = p (P AT gramma
2 2 2
0 0 0

where m = 0,+1,4+2, ...
The last expression is well defined on the real axis. It does not vanish provided that x is real. Thus,
the specified corollary from the Wiener Tauberian theorem is applicable. Hence,

troo,
thk+2 / f =

This completes the proof of Lemma 5.1.1. [

Since the function fy(¢) satisfies the assumption of Lemma 5.1.1, it follows that the necessity is
proved.

Let us pass to the second stage of the proof of Theorem 5.1.1.

Following [41], introduce the generalized translation operator with respect to the variable y:

k+1

T, f(y ) def \1; F /f \/y + n? —2yncos€)smk Lods.

This operator commutes with the Bessel operator By, , (see, e.g., [34, p. 35]).
Introduce the function w as follows: u(z,§,y,n,t) = Tju(z + £, y,t). Then

ou 9% )
— B = TT7
ot ~ oe  Drat= L‘)t

because u(x,y,t) satisfies problem (5.1)-(5.2).
Denote T)/o(z + &,y) by ¢(z,&,y,n). Obviously, ¢ is continuous and bounded and

ﬂ|t:0: @(.T, 67 Y, 77)

2

Ox2 ’LL(I’ + 57 Y, t) - Bk7yu($ + 57 Y, t) =0

($+£7y7t) -

u
877 ‘17:0: 0
Thus, the function u(z, &, y,n,t) is the classical bounded solution of the problem
ou 0*u
ot 02

Moreover, it is known from [41] that

+ By, E€RY, >0, t>0, (5.5)



~ ~ Ju
U|t20: 90(33757%77)7 67]‘77:0: 0, (56)

where x is a real parameter and y is a positive parameter.
It is proved in the first stage that tlim u(x,0,y,0,t) = 0 if and only if
—00

1

t m
tlim 2 //karl sin®o o(z, peos a,y, psin o) dadp = 0.
—00

0 0

Now, let us prove the equivalence of the condition of stabilization of the solution at an arbitrary point
to the condition of its stabilization at the origin. To do this, assume that a is real and b is nonnegative
and consider the integral

| ¢ e+ (n - b7 dednae,

Da.0,0

where D, .. denotes the semiball {(z — a)? + (7 — b)? + (£ — ¢)? < t?|y > 0}.
Change the variables as follows: £ = ysina and n = ycosa. We obtain that the last integral is

equal to
vl (K
r (k+(12)) / ykTybgo(m + a,y)dzdy.
>/ Bio

Thus,

k+1
/ VTl + a,y)drdy = | (FQ ) / &0 (2,V/€2 4 n?) dodnd.
By (t) v (2 ) Dq,—b,0

Let us prove that for any real a, any nonnegative b, and any function ¢(x,y) continuous and bounded
in Ri, the relation

. 1 _ . 1 _
tim L [ (e e ) dednds = lim L [N (0 /624 2 dedndg (5.7)
Dq,—b,0 Do,0,0

is valid in the following sense: if there exists one of the limits, then the other exists as well, and they
are equal to each other.
Define the sets

fap {(w,n,f) € R?’((m a4 2 (b <t 2P > t2}

and
i {(az,n,f) € R?"xz LI <t (r—a)?+E+ (n+b)? > tQ}.

We have the inequality

tk1+2 / &y ("’37 Ve + 772) dzdnd§ — tk1+2 / &y (95, Ve + 772) dxdndg
D

a,—b,0 Do,0,0
1 _ _ 2M
— | [ € (nve ) dodnds - [ ¢t (g ) dodde] < % s,
Q;;a,b Q;’;a,b

where M = sup |p(z,y)| and S is the volume of Q.
7
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Estimating S as a function of variable ¢, we obtain the inequality

(O G R

This implies (5.7), which completes the proof of Theorem 5.1.1 for [ = 0.
Let us pass to the third stage of the proof of Theorem 5.1.1. To do this, we consider (apart from
problem (5.1)-(5.2)) the problem

ow  0*w L
at _8x2+Bk,yw7$€R7y>Oat>Oa (58)
ow
w‘t:o: wO(ny)7 ay ‘y:OZ 07 (59)

where wqy(z,y) = ¢(z,y) + 1.
Obviously, if u(z,y,t) and w(z, y,t) are solutions of problems (5.1)-(5.2) and (5.8)-(5.9) respectively,
then w(x,y,t) = u(z,y,t) + L.
Note that
k+2 I (k+1
k+2 T(5+1)
B4 ()

Hence, the validity of the relation

yrr(53)
t—o0 th2 (k+2)0(5 +1)

B4 ()

1
lim / yPwo(z, y)dedy =
implies the validity of the relation

{00 th+2
By (t)

1
lim / yFo(x, y)dudy = 0;

this implies (as is proved in the second stage of the proof) the validity of the limit relation
Jim u(z,y,t) =0,

which means that lim w(z,y,t) = .
t—00

Thus, condition (5.4) imposed on the function wg(z,y) is sufficient for the function w(z,y,t) to
satisfy (5.3). The necessity of the specified condition is proved in the same way.
This completes the proof of Theorem 5.1.1. [ ]

Theorem 5.1.1 implies the following fact: if the stabilization of the classical bounded solution of
problem (5.1)-(5.2) takes place at at least at one point (z°,7°) of the half-space R’}fl, then it takes
place at any other point (z,y) of ]R’}FH and the limit of the solution is the same as at the point
(2°,°). This means that no stabilization of the classical bounded solution of problem (5.1)-(5.2) to

a function V' (z,y) different from a constant is possible. Thus, the following alternative takes place
for the classical bounded solution of problem (5.1)-(5.2): either this solution stabilizes to a constant

in the half-space R’}FH or it stabilizes at no point of the specified half-space, i.e., there is no point

(x,y) € R’}fl such that a limit of the function u(x,y,t) as t — oo exists. For the regular case, the
long-time behavior of the solution is investigated in [95, 96].
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5.1.2. The Cauchy problem for singular parabolic equations with time-dependent coef-
ficients. Consider the equation
ou
ot
where a(t) is continuous and positive for ¢ > 0.
Let ¢(z,y) be continuous and bounded for z € R™ and y > 0. Consider problem (5.10), (5.2). The
existence and uniqueness of the classical bounded solution of that problem are established in [36].
Investigate the long-time behavior of the solution.

=a(t)(A+ Biy)u, x€R", y >0, t>0, (5.10)

oo

Theorem 5.1.2. Suppose that /a(t)dt diverges and u(x,y,t) is the classical bounded solution of

0
problem (5.10), (5.2). Then for any x from R™, any nonnegative y, and any real l, relation (5.3) is

equivalent to relation (5.4).

Proof. Tt is known, e.g., from [110], that

e~ |?+n?
u(w,y,t) = n+k+1 //77 o&n)Tye 14w d&dn,

0 Rn»

where A(t) = [ a(r)dr and C,, ;, depends only on n and k.

—

5o

The functio
limit relation

A(t) tends to infinity if and only if ¢ tends to infinity. Therefore, for any real [, the

le—2|? 402

i e / / o€ m)Tye 0" dedy =1

t—>oo
0 R~

holds if and only if the limit relation

. 1 7 _le- z\ +n?
lim / / rh(€ m)Te dedn = 1
ro2

r—00
0 R»
holds.
Taking into account Theorem 5.1.1, we see that this implies the assertion of Theorem 5.1.2. [ ]
o
Theorem 5.1.3. Suppose that /a(t)dt =ag < 00. Then tllglo u(z,y,t) = v(x,y,ao), where the func-
0

tions u(x,y,t) and v(z,y,t) are the classical bounded solutions of problem (5.10), (5.2) and prob-
lem (5.1)-(5.2) respectively.

Proof. For any positive tg, the integral

n*p(€,n) _le=a)?+n?
// n+k+1 T7Z7/e ar d&dn

0 R»

converges uniformly with respect to (:r,y,t) from R™ x [0,4+00) X [tg,+00). Hence, one can pass to
the limit as ¢ — oco. This yields the relation

_lg—x|24n2
lim u(z,y,t) = MH / / n p(§,mT, a0 d&dn.

t—o00
0 R7
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Obviously, its right-hand part is equal to v(z,y, ap).
This completes the proof of Theorem 5.1.3. [ ]

e}

Note that if the integral / a(t)dt converges, then the stabilization of the solution takes place

0
regardless of the behavior of the initial-value function; however, the limit of the solution is, in general,
not a constant anymore: it is a bounded function of x and y.

5.1.3. Properties of weight integral means. Let p(z,y) be a continuous and bounded in R?fl
function and « be a positive constant. Define the function S¥p(r) as follows:

(e} 1 (e}
&ﬂﬂzmmﬂl/ywwwww-

By (r)
Theorem 5.1.4. Letn > 1, a >0, 8> 0, and a # 5. Then there exists a bounded function ¢ from
C=(RTHY) such that SSp(r) has a limit as r — oo, while SEo(r) has no limit as r — cc.

Proof. First, we note that the considered limits can be only finite because the function ¢ is bounded.
The following two lemmas precede the proof.

Lemma 5.1.2. Let G ={0 = (61,...,0,)0 <6, <m,...,0 <0, <m}. Then there exists a function

g(0) from C*°(G) such that J, = 0 and Jz # 0, where J, denotes /g(@) Hsin”+7_j9jd9 (v is a
G j=1
nonnegative parameter).

Proof. The functions [] sin®™*~76; and [] sin®"#~76; are linearly independent elements of the

j=1 g=1
Hilbert space Lo(G). Therefore, there exists an element g(6) of the space Ly(G) such that g(0) is
orthogonal to [] sin”*®~76; but is not orthogonal to [] sin A= 0;,1ie., Jo =0and Jg = A > 0 (for
=1 =1
definiteness).

Since C*°(G) is dense in Ly(G), it follows that one can select a sequence {g,,(0)}2°_; C C®(G)

such that g, —— g(0) in Ly(G). Assuming that ~ is nonnegative, denote / gm(0) H sin" 777 0; df
G 7=1

by Jym. Then li_r}n Jom = 0 and lim Jg,, = A by virtue of the continuity of the scalar product.

m—0o0

m—r00
By C, denote
n
1_
HF <n+7; j>

J=1

/H sin" 77 0; df = T2
¢ J=1
(see [87, p. 386]). Obviously, C is positive provided that 7 is nonnegative. Introduce the following

def (9) _ Ja,m

new function: g,,(0) < gm o this function is infinitely differentiable in G. Now, compute the
«

scalar products

'§m(0), H sin?ta—i 9], and am(9)7 H sintB—i 9]
j=1 j=1

/ Gun(8) T S0+ 640 = Ju — S = 0
G =t
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and
n

- . i C
/gm(Q) H sin" A7 0,d0 = Jgm — Jam Ci.
G j=1
) A ) e e C,
Now, take € from the interval ( 0, 5 ) There exists a positive integer m such that |Jq n| < 5
B

A
and |Jgm| > ) + ‘; Then

C A e e A
:2>O.

~ T n+B-ig. 49 — — A —
/ gm/(Q)jl:Ilsm 10;d0 = Jg.mr — Jovm c.” a2 te g
J -

n .
Thus, the function g, belongs to C*°(G), is orthogonal to [] sin”*t®77§;, and is not orthogonal to
j=1

n .
Hl sin™ 8- 0;.
‘]:
This completes the proof of Lemma 5.1.2. [

The following assertion is provided (without a proof) in [96] for the case where o and (3 are positive
integers.

Lemma 5.1.3. Let f(r) be continuous and bounded for nonnegative r. Let o > 0 and > 0. Then
S¢ f(r) has a limit as r — oo if and only if ng(r) has a limit as r — oco.

Proof. We have

T

S0 f(r) = Tia /Taf(f)df - i /wa (7) sy
0 0

where

kit <1
wk(T)_{OifT>1

provided that k& > 0.
Obviously, 1, belongs to L1(0,+00) and f belongs to Lo (0,+00). Further,

0o 1 1 1
/’(/Jk(T)Tide = /Tkeiz(log THITIM) g = o= 2TME /Tk cos(z log 7)dr + i/Tk sin(z log 7)dt
0 0 0 0
— ¢ 2mme /0 e+ cos atdt + i /O eF D gin ptdt | = o (k+1—ix)
z? + (k+1)2 '
s “o0

The real part of the obtained expression is positive for any integer m, any real x, and any nonnegative k.
[ee]

Therefore, the function / 1[)k(7)7iwd7 has no real zeros provided that k is nonnegative.

0
Suppose that lim S§ f(r) exists; denote it by C,,. The function 13 belongs to the space L1(0, 4+00);
r—00

therefore, by virtue of the corollary from the Wiener Tauberian theorem (see [13, p. 163]), there exists
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r—oo T

[e.e]
1
lim /1/16 (p) f(p)dr, ie., lim ng(r), and this limit is equal to
r r—00
0

1 -1

Co o a+1 . o
51 /7’ dr :ﬂ+1rlgrolosof(7").
0

This completes the proof of Lemma 5.1.3 because « and (8 are selected arbitrarily. [ ]
Let us pass directly to the proof of Theorem 5.1.4.
In / y*o(x,y)dxdy, change the variables as follows:
By (r)
x1 = pcosby,

To = psin 6y cos b,

Ty = psinfysinbs...sinb, 1 cosb,,

y = psinfy sinf,...sinf, 1sinb,.

‘We obtain the relation

1 I
Sue(r) = i //v(p, 0)p"* [ [ sin™*~7 6; dodp,
0 G j=1

where
v(p,0) = p(pcos by, psinf cosby,...,psinfsinby...sinb,_1cosb,, psinf;sinbs...sinb,_1sinb,).

Take a function f(r) such that it is bounded and infinitely differentiable on the positive semiaxis,
T

1 1
fr)y=0for r < o and lim f(p)dp does not exist; for example, one can take the Kzhizhanskii
r

r—00

0
function (see [14, p. 337]) and smooth it out. Then, by virtue of Lemma 5.1.3, for any nonnegative k,
T
1
no limit of k1 /ka(p)dp as r — oo exists. Assign v(p,0) = f(p)g(6), where g(6) is the function,

0
the existence of which is proved in Lemma 5.1.2.
The constructed function v(p,#) uniquely defines a function ¢(z,y) bounded and infinitely differ-
entiable for z from R™ and y from [0, +00). On the other hand, the following relation is valid:

T
1 noo
SEe) = iiys [ 95 0do [ 9(6) [T w6 do
0 G 7=l
This implies that SY¢(r) has a limit as r — oo (moreover, it is equal to the identical zero), while

SBo(r) has no limit as r — cc.
This completes the proof of Theorem 5.1.4. | ]

Remark. For n = 0, the assertion opposite to the assertion of Theorem 5.1.4 is valid: if « and 8 are
nonnegative and the function ¢(y) is continuous and bounded on [0,400), then the limit li_>m Sge(r)
s o

exists if and only if rli)ngo Sggo(r) exists. If the limit exists, then rli)ngo Sko(r) = k41 rliglo SQp(r).
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This follows directly from Lemma 5.1.3.

To get back to the stabilization of solutions of singular parabolic equations, we assume that the
o

integral /a(t)dt diverges and denote the classical solution of problem (5.10), (5.2) by ug(z,y,t).

0
Theorems 5.1.2-5.1.4 and the remark to the last theorem imply the following two assertions.

Theorem 5.1.5. Letn > 1, a >0, 8 >0, and a # 5. Then there exists a bounded function ¢ from
C=(R*Y) such that for any (z,y) from R, tllglo uq(x,y,t) exists, but tllglo ug(z,y,t) does not exist.

Theorem 5.1.6. Let n = 0, ¢(y) be a bounded function, and « and B be nonnegative. Then the
ezistence of tlim ua(y,t) is equivalent to the existence of tlim ug(y,t). If those limits exist, then
—00 —00

ptl lim ug(y,t).
a4+ 1tooo p\Y>

Jim ua(y, 1) =
5.1.4. Cauchy problems with unbounded initial-value functions. Let us prove that if the
initial-value function of the Cauchy problem is not bounded, then (similarly to the regular case) the
stabilization condition is not necessary anymore. It suffices to consider problem (5.10), (5.2) for the
case where n = 0.

Define the initial-value function ¢(y) as follows:
o(y) = 2(k + 1) cos y? — 4y? siny/%.

Obviously, ¢(y) = By, ®(y), where ®(y) = siny?.
Now, consider

T T T

1 2(k+1) 2
rk+1 /ykgo(y)dy: k1 /yk cos y*dy — k+1/ kL 9y singy2dy
0 0
2(k+1) K 9 2 bl i ) ,
=kl /y cosy dy—rkﬂ —yF* cos y? +(k+1) | y"cosy“dy| = 2cosr.
0 0

The last expression has no limit as » — oo.
T

Thus, even a pointwise stabilization of / y*T Yo(z)dy as r — oo does not take place.

Pl
0
On the other hand,
o o
1 kry _n? k: \/t -
A Tie won a " plav/t)da
2
0 0

Further, ¢(y) = By, ®(y); hence, p(av/t) = Bkﬂ\/tCI)(a\/t). We have
By avi®lavt) = alk ;a [ak gi (aw)} - g,f ;a [o/fcb’(m/t)]
= td"(aV/t) + \/t];@’(a\/t) = tBy, i P(aVt) = to(av/t).

1
Therefore, p(ay/t) = tBk7a<I>(a\/t).
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This implies that

[ee] o0 [ee]
1 2 1 Y, _a? 1 o2 Y
1 /nka?’e_ i p(n)dn = ; /oszO)/te— 4 Bro®(aVt)da = ; /ozke_ 1+ T B o®(aVt)da
t 2
0 0

by virtue of the self-adjointness of the generalized translation operator in the space Lg (0, +00)
(see [33, 34, 41]). Since the generalized translation operator commutes with the Bessel operator, it
follows that the last expression is equal to

o0 oo

1 a2 Y 1 a2 Y
; /ozke_ 1 By oTo" ®(aVt)da = ; /oszk,ae_ 1 T ®(av/t)do
0 0
k 2 a y 2 y >
+ O; [e_oil 8aTo/t<I>(a\/t) + Ze_oil To/tfb(a\/t)] 0

(we use integration by parts twice).
Let us show that the integrated term is equal to zero for any nonnegative y and any positive t.
Obviously, its second term is equal to zero (because the function ®(y) is bounded). Further, we have

2 T“yté(a\/t) = 2 7<I> \/y2 + a2t — 2ayV/t cos 0 | sin* ! §df
oa” O
0
= /(Qta — 2yt cos ) cos(y? + ot — 20Vt cos ) sin" 1 0dB| < 2(ta + yVi)T;
0

hence, the first term is equal to zero as well.
Hence, for any nonnegative y and any positive ¢, the following relation is valid:

o) o ”
1 o2 Y 02 2 k 1 T\/t@ +

/OékBk; a4 Ta\/t q)(oz\/t)doz _ /ozke_ " « . + o (Oé\/ )da
¢ ’ 47 2 ¢

0

For any positive ¢, the last integral converges uniformly with respect to (y,t) € [0,+00) X [tg, +00).
)
Since the inequality |7, ®(an/t)| < 1 holds for any nonnegative y, any nonnegative a, and any posi-

tive ¢, it follows that

o0 Y
koo (o k1) To " @(avt) | oo
4 9 ) doo —— 0

uniformly with respect to y € [0, +00).
Thus, the solution stabilizes to zero uniformly on the semiaxis, while even a pointwise stabilization
of the weight mean of the initial-value function does not take place.

5.1.5. Stabilization of solutions for equations with dissipation. Consider the equation

ou
ot

where a(t) is continuous and positive for ¢ > 0.
The classical bounded solution of problem (5.11), (5.2) is equal to

=(A+Bpy)u—a(t)u, xeR", y>0,t>0, (5.11)

u(z,y,t) = e A Oo(z,y,t),
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t
where v(z,y,t) is the classical bounded solution of problem (5.1)-(5.2) and A(t) = /a(r)dT.

0
Then, by virtue of the boundedness of the function v(x,y,t), the following assertion is valid:

Theorem 5.1.7. If /a(T)dT diverges, then the classical bounded solution of problem (5.11), (5.2)
0

uniformly stabilizes to zero as t — oo provided that the initial-value function p(x,y) is continuous
and bounded. If the specified integral converges, then for any x from R™, any nonnegative y, and any

real [, the limit relation u(x,y,t) 1201 s valid if and only if the limit relation

. o n+k+1 k . F(k—gl) ao
tgr& ﬂ-gtn—i-k—i-l / y SO(:L"y)dxdy_ F(n+§+1) ¢ l

By (t)

is valid, where u(z,y,t) is the classical bounded solution of problem (5.11), (5.2) and ag denotes

/ a(7)dr.

0

5.2. The Case of Coefficients Depending on Spatial Variables

In this section, we investigate the long-time behavior of solutions of the Cauchy problem for equa-

tions of the form 5 5 5
U 1 L O0u
)y = dut o (50,
The solvability of such problems and uniqueness of their solutions are investigated in [36, 46, 47] and
a number of other papers. For the regular case (i.e., for k = 0), the long-time behavior of solutions is
investigated in [124] (see also [9] and references therein).

The main result of this section (Theorem 5.2.1) is proved by a method proposed in [26]. The
principal idea of the specified method is to reduce the question on the stabilization of the solution of
the original problem to the question on the stabilization of the solution of the Cauchy problem for
Eq. (5.1) investigated in the previous section.

Note that in this section (similarly to the previous one), we deal only with the pointwise stabilization
of the Cauchy problem with a bounded initial-value function; therefore, the above-mentioned method
is applicable.

5.2.1. Main theorem: claim.

Definition. Let € be a closed domain of a Euclidean space, m be a positive integer, and « belong to
(0,1). The space HS (Q2) is the set of functions defined on 2 such that each such function and all its
derivatives until order m (inclusively) are continuous and bounded and satisfy the Holder condition
of order a on 2.

In the sequel, we omit indices of the operator By, (if no misunderstanding can arise).
The following notation are used:

om _ B2 if m is even
Agp=A+B, D' = ,i=1n, D= 0 _m-
B + oy J Py 9 B 21, if m is odd,
Yy

and DP = D?}...ngDf”“, where 8 = (B1,...,0Bn,Bnt1) is a multi-index and || is its length:
8] = B1+ Ba+ -+ B+ Bnt1.
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Together with the space H2 (£2), introduce the space H2 (£2). It is the set of functions f defined on
Q) and such that for any g such that |3] < m, the function DP f is continuous and bounded on § and
satisfies the Holder condition of order o on Q If @ = 0, then the requirement to satisfy the Holder
condition is taken off the definition of the spaces H® and H%. By H§(Q) =H*(Q) =H Q) = H*(Q)
we denote the set of functions that are continuous and bounded on 2 and satisfy the Holder condition
of order o on Q. By HO(Q) = H(Q) = H°(Q) = H(Q) we denote the set of functions continuous and
bounded on €.

Remark. Defining spaces H (€2), we assume that € is contained in the subspace {y > 0}.

Consider the equation

ou
p(z,y) Y

where p(x,y) > pg > 0 and p(z,y) € H(err“).

The existence and uniqueness of a classical bounded solution of problem (5.12), (5.2) (under the
assumption that k is positive and ¢ is continuous and bounded) is established in [36]. Investigate the
long-time behavior of that solution.

=Apu, z€R" y >0, t>0, (5.12)

Theorem 5.2.1. Let u(x,y,t) be the classical bounded solution of problem (5.12), (5.2), k > 0,
p(z,y) > po >0, and ¢ € H(R?fl). Let p(z,y) satisfy the following conditions:

p(z,y) € Hﬁb+k+1](Rﬁ+1), where a € (0,1), (5.13)

2

d"p n+k+1| .
aymb:o:ofm’m:l,...,[ 0 ] ifn+k>1, (5.14)
and there exists a constant b such that
1

Jm o / YTy |p(z + &, y) — bldedy = 0 (5.15)

B4 ()

uniformly with respect to (§,n) € R’}FH.

Then for any x from R™, any nonnegative y > 0, and any real I, the limit relation u(z,y,t) LNy

is valid if and only if the limit relation

k41 i w2 (F4)
Hm e / yro(a,y)drdy = p(r l
By (t)

15 valid.

Note that in the regular case (i.e., in the case where k& = 0), the Gushchin-Mikhailov condition
(see [26, 124]) corresponds to condition (5.15). Therefore, it is reasonable to call condition (5.15) the
weight Gushchin—Mikhailov condition.

In the sequel, without loss of generality, we assume that b = 1.

Introduce the following function: q(x,y) % p(x,y) — 1. Then the weight Gushchin-Mikhailov

condition takes the following form:

1
lm ey [ 9 Tlae € pldady =0 (5.16)

By (t)

: : +1
uniformly with respect to (§,7) € R,
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Let v(z,y,t) be the classical bounded solution of Eq. (5.1), satisfying the following boundary-value
conditions:

ov

v],_o=p(@, )02, y), oyl =0 (5.17)

y=0

We must prove that tlim [u(z,y,t) — v(z,y,t)] = 0 for any (z,y) from R
—00

Introduce the following function f(¢) depending on parameters z and y:
t

£ [lutey.7) oo,y 7
0

Let us prove the following two auxiliary assertions, assuming that the conditions of Theorem 5.2.1 are
satisfied.

Theorem 5.2.2. If (z,y) € R, then

Theorem 5.2.3. If (z,y) € R, then
1
f"t)=0 <t> as t — oo.

5.2.2. Proof of Theorem 5.2.2. In this section (as well as in the next one), we assume that all
conditions of Theorem 5.2.1 are satisfied.

Apply the Laplace transformation with respect to ¢ to the functions u(zx,y,t) and v(x,y,t). The
obtained functions (denoted by u(x,y,\) and a(x,y,\) respectively) are solutions of the following
problems:

—Apt+ Ap(x,y)t = p(x,y)p(z,y), © € R, y >0, (5.18)
oul - _y (5.19)
Y |,—o
and
—Apt + A0 = p(x,y)p(z,y), © € R", y >0, (5.20)
- (5.21)
1,0

Indeed, for any function g(z,y) from C§°(R™*1), the function u(z,y,t) satisfies the following integral
identity:

ou
/ y"* o P& y)g(, y)dedy — / v u(z,y,t)Apg(x, y)dzdy = 0.
R’iJrl R’iJrl
Take a positive e, N from (e, +00), and a complex A such that ReA > 0. Multiply the last identity by

e~ and integrate it with respect to ¢ from ¢ to N. Then, changing the order of the integration and
integrating by parts, we obtain the relation

| oot ngte.s) [ute.p Ny — e,y Ny dady

n+1
R+

N
+ / o (e, y)g (@, y) — Apg(e,y) / (e, y, didady = 0.

n+1
RJr

474



The limit relations

N

(e, N) T 0, ule,y,e) T pley),  and / e My, )t =" Az, y, )
— 00

£

hold uniformly with respect to (x,y) € K, where K is any compact set of R"*1. Hence, @(z,y, \)
satisfies the integral identity

/ J* (e, y)g(e,y) — Apgle,y)] i, y, Ndady = / o pla, )9z y) (. y)dady

n+1 n+1
R" R

for any function g(z,y) from C§°(R™1).

Therefore, for any compact set K C R**+! and any (fixed) complex A, the function @(z,y, A) belongs
to the Kipriyanov space ng(K ) (see [33]) and satisfies Eq. (5.18) almost everywhere.

This proof is valid for o(z,y, A) as well: it suffices to assign p(z,y) = 1.

Since the functions u(z,y,t) and v(z,y,t) are bounded, it follows that the functions @(z,y, A) and

0(x,y, A) are bounded with respect to (z,y) € ]R’}FH and are analytic with respect to A provided that

ReX > 0. The solution of problem (5.20)-(5.21) (as well as the solution of problem (5.18)-(5.19))

bounded with respect to (z,y) € ]R’}FH and analytic with respect to A for ReA > 0 is unique. On

the other hand, one can obtain this solution by directly applying the Laplace transformation to the
function

C,, —x|?
@y t) = / ke Ty< > p(&, )&, n)dédn
t 2
Ri“

(the constant C), j, depends only on n and k).
Further, we have

,[)(x’y’)\) :Cn,k/ / nkp(gy ) (5 77) —)\t ‘5 Tye 4t dfdndt

n+k+1
t

0 Rn+1

G / / kPN Mff 77)T,§f< —ai= 16 >dtd§dn

]RTH-I

The change of the order of integration is valid because for ReA > 0, the integral converges absolutely

(moreover, this convergence is uniform with respect to (z,y) from ]R’}FH). Arguing in the same way, we
can change the order of the following two operations: integrating with respect to t and the generalized
translation. Finally, this yields the relation

Koo (VM= a2 +72)) »
(g —app +op)i T 02

n+k+1 n+k 1

By A) =275 O /n’“p(&n)so(ém)T#

R+
For ReA > 0, define the operator My on H(R™) as follows:

Ko (\/A(\f—i\iin?)) .

(1§ —z>+n*) =

n+k+1

Myf(z,y) =2 Onk>\n+k ' /nkf(&n)T%’

n+1
R+
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This is the resolving operator of problem (5.20)-(5.21) with the right-hand part f(x,y). Therefore, if
Rel >0, g € WikJOC(RTrl), and (—Ap + \)g € H(R'™), then My(—Ap + \)g = g. For ReX > 0,
define the operator Ly on H(R’™) as follows:

Laf(z,y) = AMxlq(z,y) f (2, y)]
Koo (VM= a2 +72))

n+k—1 77

(I§ =l +n?)

n+k+1 n+k+3

n+1
R+

The function u(z,y, ) is a solution bounded with respect to (z,y) € R’}fl and analytic with respect
to A, ReA > 0, of the equation

Here the right-hand part is analytic with respect to A, ReA > 0, and is bounded with respect to

(z,y) € ]R’}fl for any fixed A, ReA > 0. Therefore, the operator M) can be applied both to the
right-hand part and left-hand part of the last relation.

Since u belongs to sz,k,loc(RiH)’ it follows that My(—Ap + \)u = u.

Since M), is the resolving operator of problem (5.20)-(5.21) and p(z, y)¢(z,y) belongs to H(R"),
it follows that M)y [p(z,y)p(z,y)] =0

Since @ belongs to H(R”) for any A, ReX > 0, it follows that My[Aq(z,y)u] = AM,[q(z,y)u] =
Lyu.

Thus, u(z,y, \) satisfies the integral equation

u(z,y, A) + Lau(z, y, A) = v(z,y, A). (5.23)
In the sequel, we assume (in this section) that all the constants depend only on n and k unless
otherwise stated.
Lemma 5.2.1. Let D, = {)\ € (CHarg)\\ <m— a}, where 0 < o < w. Then, if A € D, then Ly is a
bounded operator acting in H(R") and &i‘mo [ILx|| = 0.
AEDs

Proof. 1t is known (see, e.g., [26]) that for v > 0, the function K, (z) satisfies the estimate K, (z) <

Cay(|z]) in the domain {|argz| <" ; U}, where

rVfor0<r<1
a,(r) = { e~(r=1)
VT
and C and g are positive constants depending only on o.
Assuming that A € D,, consider the expression

forr>1

oo (VAP )|

. o k
Jn,k(myya )‘) - / Ui T7Z7J|Q(§+x’n)| (|€‘2 _|_7]2) 4

n+1
R+

b1 ap / 1" TYq(& + x,m)|dédn | dp.
B+ (p)

7an+k 1 \/|)\|p
0
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Since a,(r) is a piecewise-smooth function, it follows that it is possible to integrate by parts; this
yields the inequality

Ontk—1 \/‘)\‘p
: n+<k_1 > /nkTq%’lq(erxm)ldfdndp
2

By (p)

Jn,k(x,y;A)s—c/ 0
0 % P

On+k—1 \/|>\|p
? n+(k1 ) /nkTT?IQ(&Jr:r,n)IdEdn
2

P B (o)
Qntk—1 \/‘)\‘p
? n+<k_1 > /nkT#IQ(ﬁﬂr,n)ld&dn-
2

By (p)

Obviously, the former limit is equal to zero. Taking into account that

/ 1T q(€ + x,m)|dédn < const p™ T

By (p)

+ C lim

p—00

— C'lim
p—0 p

n+k—1 n+4+
o Al e p
limit is equal to zero as well.
Thus, Jnk(@,y;A) < T k1 (2, Y3 A) + Jn g1 (2,45 A), where

1
and Qn+k—1 <\/ || p) = .., brovided that p is sufficiently small, we see that the latter
2 2

Cln+k—1) " |

n+Kr—

Jnk1 (@, 95 A) = e / k1 /nkTﬁlq(erx,n)\dédnpdp
P

4 2
0 B (p)
and

const 7 6_70\/”“’) 1
/ ik (\/M\er) / 1 TY|q(€ + =, n)|dEdnpdp;
2

B (p)

Ini2(@,y; ) <
NE

VIAl
note that the constants in this lemma depend on o as well.
Thus,

p

1

VIAl
1 1
I,k (2, y; A) < const AM_I/ nth—1 /nkT%’IQ(SJr:r,n)IdEdnpdp
p 2

4
By (p)

oo

1 1 n+k
+ A4 / / 1Ty a(& + )| dédnp > <1+
p 2

\/TM B (p)

by virtue of the boundedness of the function

1
k1 /n"”T#IQ(SJr:r,n)IdEdn-
p 2
B(p)

This implies the boundedness of the operator L.

)iy < o

A"

1
VIAlp
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Indeed,

Kt (VAER +172)
ntk—1 U
(Ief2 +n2)"

n+k+3

Laf ()| = const A" / PTYg(E + 2,0) f (€ + 2.7)
Rf;“

g ConSt |)\| 4 ||f||H(R1+1)Jn’k(:L" y7 )\) g ConSt ||f||H(R1+1)7

i.e., for any fixed o, the operator L) is bounded uniformly with respect to A € D,.
Let us pass to the proof of the second assertion of Lemma 5.2.1. From the estimate obtained for
|Lxf(z,y)|, it follows that

LAl < const A5 sup T g(x, v N).
(zy)eR}H

It follows from (5.16) that for any positive ¢ there exists N(e) such that

1
il / n*TY\q(€ + @, n)|dédn < &

B (p)

for any p from [N(e),+o0) and any (x,y) from R’}fl. Therefore, the inequality

[ee]
n N2(e) ¢ n 1
[\l e Jn(x,y; A) < const | |Al 2( ) + 5 +z—:/7« +h g (1 + >e‘”’°’“dr
r
1
N2(e)
Take an arbitrary positive § and select a positive ¢ to satisfy the inequality

o0
n 1 )
const © +z—:/r 3h 1+ e Tdr| <
2 r 2

is valid for |A| <

(where the constant is the same as in the previous inequality). Obviously, one can select a positive /3
N2(e) 6

such that for any A from D, the inequality |[A| < § implies the inequality const |)| 2( ) < 9’ ie.,
for any positive § there exist N and [ such that |>\|n+§+3 Jnk(x,y; A) < d. This proves Lemma 5.2.1
for the case where n is positive.

If n = 0, then the proof is similar, but one has to consider three cases separately: k=1, k < 1, and
k> 1. If k = 1, then we use the estimate of |K(z)| via ag(|z]) (see, e.g., [26]). If & < 1, then we use
the evenness of | K, (z)| with respect to v.

This completes the proof of Lemma 5.2.1. [

The functions u(x, y; ) and v(x, y; A), being the Laplace transforms of analytic functions, are defined
only for positive ReA. However, the right-hand part of relation (5.22) is analytic in the domain
{largA| < m}. Therefore, using relation (5.22), we analytically extend the function v(z,y;\) to the
domain {|arg\| < 7} such that the extended function belongs to the space H(R’™") with respect to
the variables x and y. By virtue of Lemma 5.2.1, for any positive o, there exists a positive § such
that [|Ly]| < 1 for any A from {|\| < 0} N D,. Then the function u(z,y; A) is analytically extended to
the domain A € {|A\| < 6} N D, such that the extended function belongs to the space H(R':*!) with
respect to the variables x and y (because it is a solution of the integral equation (5.23)).

Thus, for any positive o there exists a positive § such that the functions u(z,y; A) and v(x,y; \) are
analytic with respect to A € {|\| < §} N {larg\| < m — o} and continuous and bounded with respect
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to (z,y) € R™!. From the boundedness of the functions p(z,y) and ¢(z,y) and from the estimate of
K, (z) via o, (|z]) (see Lemma 5.2.1), it follows that the inequality

Koo (VA€ =2l +72))
n+k—1 d ”7

k
| o meten 6 — o 7)™

R1+1
00
< const [ o5 avager (VA lo)dp = Mji’i;ig
0
is valid for n+ k > 1. This and relation (5.22) imply that ||o(x, y; )‘)HH(R"“) < CT;Ft for any A € D,
+

provided that o > 0.
The last estimate is valid for n 4+ k < 1 as well. Indeed, if n =0 and k = 1, then

~ t t
[0z, y; M) < CT;F /Tao(r)dr - CT;S :
if n=0and k£ < 1, then
~ const k+1 const
|’U(:L’,y; )\)| < /al—k (7‘)7’ 2 dr =
AL By

(the constants depend only on n, k, and o).
Then relation (5.23) implies the inequality

~ ~ const

const

) < A is valid for any

By virtue of Lemma 5.2.1, this implies that the inequality [|u(z, y; )|, '+
+

A from D, N{|A| < ¢}. Further, from relation (5.23), we obtain that
< | Lxl| const . 1
HRYT) = |A| N [A|

for A € D, N{|\| < ¢} because ‘IA%mO |ILx|| = 0 due to Lemma 5.2.1.

XeDg
Thus, the following assertions are valid:

< |l y: V)] ) as [A] = 0

(1) The functions u(z,y,t) and v(z,y,t) are continuous and bounded.
(2) The functions u(z,y; A) and v(x,y; \) are their Laplace transforms analytically extended (for
positive values of the parameter o) to the domain {|\| < 6(c)} N{|argA| < m — o} such that the

extended functions are continuous and bounded with respect to (z,y) € Rt
(3) For any positive o there exists a positive § = §(o) such that the relation

~ ~ 1
i) = T 5 )y =0 () 35 A0
is valid in the domain {|A| < (o)} N {|arg\| < 7 — o}.
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Then, as is known from [26], the limit relation
t
1
u(x,y,7) — v(x,y, 7)|dr 1z
[ty ) —via,y,7)
0

holds for any (z,y) from R’
This completes the proof of Theorem 5.2.2.

5.2.3. Proof of Theorem 5.2.3. First, we note that, since condition (5.14) is satisfied, it follows
}(R?fl); this
is proved in [31]. Further, following [34] (see also [33]), we introduce the following functional spaces.

Let C(£2) denote the space of functions even with respect to y and infinitely differentiable on

(as above, we assume that © C R'T1). Define the set L, x(R), p > 1, as the set of functions such that
the following their norm is finite:

that the space Hﬁb+§+1](Rﬁ+l) in condition (5.13) can be replaced by the space I}?L+§+l

P

1, o = /ﬁﬂﬂ%mMMy

Q

The space WJ.(€) is the completion of the set C7(€2) with respect to the following norm:

1
2

I lwr = | 2 ID°FI, )

|8]<m

In the sequel, if no misunderstanding regarding the domain can arise, the norm in W37 is denoted by
| - ||lm, the norm in Lsj is denoted by || - [|o, and the norm in H is denoted by || - ||. The variable y is
denoted by z,41 whenever it is convenient.

Let us pass to the proof of Theorem 5.2.3.

by ¥(z,y). It follows

0 0
Take an arbitrary oy and fix it. Denote 5; by w(x,y,t) and denote 811“ 1=,

from [47] that ¢ € H e +2(R7}r+1) and w(z,y,t) is the classical bounded solution of the following
2

problem:
ow "
p(z,y) ot =Apw, v €R", y >0, t> do, (5.24)
ow
w‘t:(;(): 1/}(:1:7y)7 ay ‘y:OZ 0. (525)
Together with problem (5.24)-(5.25), consider the problem
0%z "
p(z,y) 2 = ApZ, z€R", y >0, t>do, (5.26)
07z 0Z
Z‘t=60: O’ 8t ‘t:&O: 1/}(‘1:7 y)? ay |y:0: 0 (527)

Lemma 5.2.2. There exists a positive C' such that for any t from [0g, +00), for any x from R™, and
for any nonnegative y, the inequality

|Z(x,y, )| < Ct"2 (t+y)s 2]

where {x} denotes the fractional part of x, is valid.
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Proof. By the condition, the function v belongs to the space H [kt +2(}R7}r+l). Therefore, it belongs
2
n+
to the space W2[ k. loc HQ(R"H) as well. Using the Duhamel integral, we deduce from [3] that Z €

[n+k+1}+2 n+2 n+2 n
W27k’,loc (R%77), where R\ = = {(m,y,t)‘t > 0,z € R™ Yy > 0}.

Take an arbitrary point (zo,yo) from R’ and an arbitrary number to from (Jo, +00). Without
loss of generality, one can assume that pg = 1, i.e., p(z,y) > 1. Then (see, e.g., [108, p. 93]) the value
of the function Z(z,y,t) at the point (z¢, yo,to) depends only on the values of the function ¢ (x,y) for
|z — 202 + (y — v0)? < (to — 60)? and y > 0. Take a function 1g(x,y) such that

(a) The support of the function 1 is a subset of {|z — zo|> + (v — y0)? < t2, y > 0}.

(b) If | — 2o|* + (y — y0)* < (to — do)* and y > 0, then o (z, y) = ¢(z,y).

0

(c) We have P |y:0:

(d) The function 1y has the same smoothness as the function .

To find a function ¥y (x,y) possessing the properties (a) and (b), it suffices to multiply ¥ (z,y) by an

appropriate cut-off function.
Let ug(z,y,t) be a solution of the following problem:

2u
p(l"ay)aaﬁo = Apug, x € R", y >0, t > g, (5.28)
aUO Oug
uO‘t:éo ) |t do iﬁo(m y) 8y |y:0: 0. (529)

Taking into account that the function ug belongs to Wiwoc(R?}Ff) and the support of the function
uo(z,y,t) is compact for any fixed t, we obtain the following relation between energy integrals:

ou g\ 2
2 0 0
[ o pen (5) +Z<ax]> (o) || 2o
RT—l t=to
g\ 2 "/ Oug \ 2 oug\
_ k 0 0 0
= [ p(“’“’y)<8t> +Z<ax]~> +<ay> ey
R7H 7= =00

Taking into account that
supp ) C {|z — @o|* + (y — y0)* < 5, y > 0}
and
suppuo(z, y,to) C {|x — ol* + (y — yo)® < 44, y > 0},

change the integration domains in the last relation:

/ k ( ) auo 2+zn: auo 2+ 8’LLO 2 dad

YT ot 2\ O By v

09 Jj=1 t=to

_ k Uup OJug Oug 2

= [t (50) <3 (o) () || o
=00

o

where Q9 = {|z — 20> + (y — y0)> < (jt)%, y > 0}, j = 1,2.

481



kE+1
Assuming that n + k > 1, introduce the following functions for m =1,..., [n * 5 * ] :
m
U
tm(w,9,6) = (1)
: n+k+1 : e :
Then the function u,,, m =1, , satisfies Eq. (5.26) and the following initial-value condi-
tions:
aum 1 2 . .
um‘t:&): 0 and |t 50— <p(m,y) AB> Yo(x,y) if m is even
1 " )
2 Um . .
um‘t:%: <p(a;,y)AB> Yo (z,y) and Py ‘t:&): 0 if m is odd .
) Oup, (n+k+1
Obviously, ay |y o=0,m=1 5 .
Thus, the following energy integral identity holds for the functions wu,(x,y,t):
/yk’ p(z,y) < 8tm> + Z Vit )? dxdy
9(2) L t=to
:/yk p(z,y) < 8?) +Z Vum dxdy
Q(l) t=4¢
( m 2 (5.30)
1 2 5.30
k
yp(z,y AB> Yo(z,y)| drdy
/ () [<p(w,y) ( )]

o
if m is even (including the case where m = 0)

4ykp(m,y) <V <p(xl,y)AB> ]) dxdy

if m is odd (including the case where m = 0).

0 o 0

ere V <83}1’ ’8$n’8y> and V=(-) = (V-, V")

1 O™R n+k+1
Let = . Th =0, m=1,. . Then the following Leibnit

et R(z,y) (@) en oy |y:0 , m ) ,[ 5 ] en the following Leibnitz
formula holds (see [3]):
o 1 OUR . 92y
m _ m 12,7
(Ru) = RB™u + Z G s By BJlR@yZ? B2y,

i1 +ig+241 +2jo+s=2m
i1 +ig+j1>1
i1=0,1; ip=0,1
where C’Zf;f depends only on m, i1, j1, 42, and jo.
Use this formula and consider the operators acting on 9y(x,y) and p(x,y) at the right-hand part of
inequality (5.30): the order of the operator D acting on ¢y (z,y) does not exceed m, while the order of
the operator D acting on R(z,y) (i.e., on p(x,y))does not exceed m — 2. This yields that the following
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k+1
inequality is valid provided that m < [n + 0 * ] :
& O \ 2 2 n+1 k
v ey | g )t (Vum) drdy < Cpty™ (to + yo)", (5.31)
Qg t=to
where C,,, does not depend on =z, 39, and tg.
Further,
O, 1 A i
ot li=ty (p(x,y) B> tol iy

if m is odd, while

Oty 0 1 2 Oty o[ 1 H

Ox;j lt=ty  Ox; <p($7y) B> uo|t:t° an oy li=ty Oy <p(x,y) B> u0|t=to

if m is even.

2
U
Further, if m is even, then we use the nonnegativity of < a;”) ; if m is odd, then we use the

nonnegativity of (Vi) Then inequality (5.31) yields the estimate

- m 2
k 1 2
y© |V Ap uo(z,y,t0)| dxdy
p(z,y)

Q9 -

if m is even (including the case where m = 0)

r m—+1
2

1

k

Yy AB)

/ <p(m, y)

Q9 -
if m is odd (including the case where m = 1)

< Crt ™ (to + yo)F, (5.32)

2
UO(aj7 Y, tO)] dl‘dy

where C}, does not depend on xg, yg, and tg.
Introduce the denotation

D DP f(,y)? (D' f(a,y)]” and Y [Df(w,y)]* DL f (2, y)]*.
|B]= 1Bl=1
Let m = 0. Then inequality (5.32) implies that

/yk [Vug(z,y, to)]2 dxdy < Cgtg“(to + yo)k.
03
Therefore,
/yk [ﬁluo(:r,y,to) ? dxdy < C’Stg“(to +y0)".
03
This means that
Juo (2, y, to)lIF < Gt ™ (to + wo)",
where C~’0 = Cj.
Let m = 1. Then inequality (5.32) implies that
[ o (oo, to)? dody < G IpIP65 10 + o).
03
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Since the support of the function ug(x, y, tp) is compact, it follows that there exists an absolute constant
C such that the inequality

luo(a, g, t0) |3 < C / o [Apug(z, y. to))? dudy
9
holds. Then

o,y to)l13 < Cutg ™ (to + 0)"
Let m = 2. Then inequality (5.32) implies that

1 2 o
/yk [V <p(m y)ABuo(HC,y,to))} drdy < C3ta™™ (to + yo)*.

2

We must estimate |Jug(z,y,t0)l|3, i-e.,

P 2 2
[ (| g Buotevto)] + | D2uotegeto)| ) dody.
0

For j = 1,n, consider the following integral:

ou 2 ) 2

k 0 [k

/y [AB (895]- (l’,y,to)>] dl'dy—/y [amjABuo(x,y,to)] dxdy
0 0

Q2 Q2
—/k 0 (z,9) ! Apug(z,y,to) 2dxd<2/kap ! Apug(z t)zdxd
Q9 Q3
+2/yk p(z,y) 9 1 Apug(x,y,to) 2da:dy < C~’*t"+1(t +y )k
/ ) 633] p(iU,Z/) o\4, Y, Lo > Lalg 0 0) »
Q2

where Cj = 2 (H o
81‘]'

2
Cr+ ||p||205>-
Let m = 3. Then inequality (5.32) implies that

1 ? x n
[ o (30 () Bt} | oy < GBI o)

2

We must estimate ||ug(z,v,t0)||3. Consider the integral

1 2
/y"“ [A%uo(x,y, to)]” dady = /y’“ [AB <p($,y)p(m 0 ABUO(:c,y,to)ﬂ dzdy.
Q5 2

Applying the Leibnitz formula to the integrand, we see that the last integral is equal to
1 1
k
Yy pa:,yAB< AB’LL(] $7y7t0>+2<2v]9 x,y,V< AB’LL(] x,Y,to >>
[ [ () p(z,y) ( ) @) p(z,y) ( )
QZ

1 2 k4T

+ ABP(ZL'ay)ABUO(x,y,tO)} dady < Citg™ (to + wo)",
p(z,y)

where Cf = 4(C5||p||* + 2||D'p||C5 + Ctlp|* || Asp|?).
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Since
2
[uo(z, y, o) |5 < COHSt/yk [A%uo(,y,t0)]” dady
0
(because the support of ug(x,y,ty) is compact), we have the estimate

luo(z, y,to)|I3 < Cstp™ (to + yo)*.

Note that at the mth step, the finiteness of the norms || D?p||, j < m — 1, is used. By the condition,
n+k+1
those norms are finite provided that j < * 5 + ]

n+k‘—|—1]

. Therefore, the procedure described above can

be continued until the [ th step (inclusively). At the specified step, we apply the Leibnitz

ol k+1
formula and take into account that P Z;.‘y_oz Oforj=1,..., [n * 5 + ] . This yields the estimate
yi ly=
HUO('I7y7tO)”fn+§+l]+1 < C[n+§+1]t8+l(to +10)¥, (5.33)
where the constant C[n+§+1] does not depend on zg, yo, and tg.
n+k+1
Since the function ug(z,y,t) belongs to WQ[’kaC hz(RTf), it follows that the function ug(z,y,T)
n+k+1 3
belongs to W2[,k,120c HQ(RTFI) for any fixed T from (dp,+00) (see [33]). Therefore, the function

[ 4
uo(z,y,to) belongs to W ke toe (RT).

n+k+1
Now, we apply the following embedding theorem (see [32]): if f(x,y) € WQ[k ? ]H(R?}fl) and

suppf C {|az\2 +y2 <1,y > O}, then f(z,y) € C(]RT}FH) and

ntk+1 2
7O < const | lpuogory =eonst | [ [BLH T | dgan

n+k+1
Now, let g € WQ[k 2 ]H(RTI) and supp g C {|z|* +y? < 4(to +yo)?, y > 0}.

Introduce the function f(z,y) % g[2(to + vo)z, 2(to + yo)y]. The specified embedding theorem is
applicable to this function; it yields

n+k+1]+1

l9(0) = [£(0)] < 00n8t< / " 2(to + o)) "2

n+1
R+

5l

2 2
X Dato-+uo)e 20t0+vo)m 9(2(t0 +90)¢, 2(to + yo)n)] dgd”) '

Change the variables in the last integral: z; = 2(to + y0)&;,j = 1,n, and y = 2(to + yo)n. We obtain
~ [n+k+1]+l_ n+k+1
that |g(0)] < C(to +yo)l 2 2

Taking into account that supp ug(z,y,t0) C {|z — zo|* + y* < (2to + 2y0)?, y > 0}, treat the point
(20,0) = (29,...,22,0) as the origin in R"*! and assign g(z,y) = uo(z,y,to). This yields the relation

||g||[n+§+1]+l, where C' depends only on n and k.

n+k+1]+1_ n+§+1

|Z (0, 90, to)| = |uo(o, g0, to)| < Clto + o)l "2 luo .y, to)llmser) 41-
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It follows from (5.13) that

n+1 n
|Z(x0,y0,t0)| < constty? C(to+ yo)’§+1—{ HSH}’

which completes the proof of Lemma 5.2.2 because zq,¥yg, and tg are selected arbitrarily and the
constant does not depend on xg, 39, and tg.

Remark. If n+ k < 1, then it suffices to apply inequality (5.32) for m = 0 (note that it is valid only
for m = 0 then) and the embedding theorem.

Lemma 5.2.2 is proved. | ]

Let us show that

[e.e]

Z(ZL‘ Y, A) dﬁf/ —(t= 50))‘2(:1: y,t)dt
)

has at most a power growth as y — oo, i.e., there exists s such that E(m,y, A) =0(y™) as y — oc.
To do that, we note that

|Z(z,y,\)| < C|€5°A|/le‘”lt"?lC(t+y)’5+1—{”+§“}dt

_ T (” ; 3) ARedoy [ 2 (” ; g {n " ]; " 1] +3, yReA) :

where G(a1, ag, z) is the confluent hypergeometric function of the second type (see [79, p. 246]). From

the asymptotic representation of this function as z — oo (see [79, p. 283]), it follows that Z(z,y, \)
has at most a power growth with respect to y at infinity.
Further, for positive Re), the function Z(x,y, \) satisfies the equation

~ApZ + Np(x,y)Z = p(x, y)v(z,y)-
Indeed, let g(x,y) belong to C§°(R™™1). Then

/ykABZ(x,y,t)g(af,y)dxdyz /ykZ(af,y,t)ABg(w,y)dwdy
RT‘I RT‘I
and

o= [ [ ot -0 [pwn’,? - anz] dsaya

) RT_I
T
= / yk <g($, y)p(xa y) [ - (T - 50)1/}(1’, y) + Z(IL‘, Y, T)} - ABQ(.T, y) /(T - t)Z(‘Tv Y, t)dt) dxdy
]Ri“ do

Multiply the last identity by e_(T_‘SO))‘, where ReA > 0, and integrate with respect to T from &g to oo.
We obtain that

o0 o0
0= / yk /e AZ (2, y, T + 80)dT — g, y)p( /TS_T)\dT
RT_I 0 0
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—Apg(x,y /e T’\/ Z(x,y,0 + 6o)dOdr|dxdy
0

- [ [g(x,wp(m,y)Z(x,y,A)—g(ﬂ”’y)p(i’f)‘“m’y) —ABg<x,y>Z(ﬁ§’”]dmy.

n+1
R+

Since g(z,y) is selected arbitrarily, it follows that the function A (z,y,\) belongs to W22,k,l OC(RTI)
and satisfies the equation

~ApZ + Np(x,y)Z = p(x, y)i(z,y)-
Let A be real and positive. Consider the following problem:

—ApZ + Np(z,y)Z = p(z,y)(z,y), v € R",y >0, (5.34)
0z,
ay |y=0_

The function Z(z,y,\) satisfies problem (5.34), (5.35), it is analytic with respect to A from (0, +00)
and bounded with respect to x from R", and it has at most a power growth with respect to y at

infinity. Such a solution of problem (5.34), (5.35) is unique. On the other hand, it is proved in the
previous section that the function w(x,y, \) is a solution analytic with respect to A from (0, +00) and

0. (5.35)

bounded with respect to x from x € RTI of the problem
—Apw + Ap(z, y)w = p(x,y)Y(x,y), v € R",y > 0; (5.36)
ow
Y \y ,=0. (5.37)
Such a solution of problem (5.36), (5.37) is unique as well. Hence,
W(x,y,\) = Z(w,y,VA) (5.38)

for positive A. The function Z(z,y, A) is analytic for |arg \| < ;T Therefore, the function Z(z,y, vV/A)

is analytic with respect to A for |arg A| < m. Hence, using (5.38), one can extend the function w(x,y, \)
to the domain |arg A\| < 7 such that the extended function is analytic with respect to A in the specified
domain and bounded with respect to z from R™ and it has at most a power growth with respect to y
at infinity.

Lemma 5.2.3. For any x from R™, any nonnegative y, and any positive o, the limit relation

\)\|—>oo

1Z (l’ YA ——
holds uniformly with respect to |arg A S 5

Proof. We have

oo

|Z (m Yy, \)| = /e_(t_50))‘Z(m,y,t)dt < C/e_TRe)‘(T +50)[n+§+1}+1(7' + &g +y)kd7'

)
c [ P p g
< P 5 ) dp.
—wsmg/e <|A| sin g +°> (w *”y) g
0
const

If |\| is sufficiently large, then |)\|sing > 1; therefore, | Z(xz,y,\)| < N

[

, where the constant does

not depend on A.
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This completes the proof of Lemma 5.2.3. [ ]

Lemma 5.2.4. For any positive o there exists a positive 0 such that the function ||w(z,y,\)|| is
bounded for \ € {|)\| < 5‘|arg)\| < —O‘}.

Proof. We have

w(z,y,\) :/e—(t—%ﬂw(az,y,t)dt:/e—(t‘éo)*g?(x,y,t)dt
50 50

i At At o
= / e “u(x,y,t + do)dt + e Mu(x,y,t + do) .
0

do
= AeAéoﬁ(aj7 Y, >\) - U(ZL‘, Y, 50) —A / e_(t_ao))\u(wv Y, t)dt
0

It is proved in the previous section that for any positive o there exists a positive ¢ such that u(z,y, A) is
analytic for |arg \| < 7 — o and |A| < 0. Hence, the last relation is valid (at least) for |arg\| <7 — 0o

and |A] < . Now, fix o from (0, Z) It is proved in the previous section that the inequality

la(z,y, N)||< ¢ is valid provided that |arg A\| < m — ¢ and |A| < d(c). Therefore, the inequality

onst
Al
[ Aer0a(z,y, \)|| < const e®ReA < 9% ig valid for |arg \| < m — o and |A\| < §. The function u(z,y, &)
does not depend on A and is bounded with respect to (z,y) € R™ x [0,4+00). It remains to estimate
the third term:

‘6_(t_60))\‘ = elo—tReA oAb %0 g |A] < 6.

This implies that
)
)\/e_(t_‘so)’\u(a:,y,t)dt < |\|Goe®®|[u(z, y, t)|| < 880’ ||p(z, )| for [A] < 6.
0
This completes the proof of Lemma 5.2.4. [ ]

It follows from Lemma 5.2.3 that for any = from R™ and any nonnegative y, the function w(z,y, \)

3 . . . . .
is bounded on I' = {| arg \| < 4 }, and the integration contour in the inverse Laplace transformation

w(z,y,t + o) = / M (x,y, \)dX
ReA=00>0
can be replaced by the contour T'.

By virtue of Lemma 5.2.4, there exists a positive ¢ such that the function w(z,y,\) is bounded
in the domain {0 < || < §} NG, where G = {|arg \| < m — o}. Moreover, the function w(x,y, \)
is analytic in the domain G. Thus, either the origin is a regular point of the function w(z,y,\) or
the specified function has a removable singularity at the origin. Thus, the function w(x,y, \) can be
defined for A = 0 to preserve its continuity; now, the function w(z,y, \) is analytic in the domain G
and continuous in its closure.

By virtue of Lemma 5.2.3, lim w(z,y,A) = 0; therefore, the function w(x,y, ) is bounded on I'

[A|—= o0
aerl

indeed.
Now, on the complex plane A = Ay + i\o, consider the contour bounded by the following five
segments:
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the segment of the line Ay = R such that —R < \; < oy;
the segment of the line Ay = —R such that —R < A1 < oy;
the segment of the line Ay = Ay such that —R < \; < 0;
the segment of the line Ay = —A; such that —R < A\ < 0;
the segment of the line \y = oy such that —R < Ay < R.
Denote this contour by I'g.
The Cauchy theorem is applicable to the integral / e)‘tw(m y,A)d\ . Passing to the limit as

I'r
R — oo, we obtain the relation

/ Mz, y, \)d\ = /eMw(a: Y, A)dA.

ReA=00p>0 r

Fix an arbitrary x from R™ and an arbitrary nonnegative y. Taking into account the boundedness of
the function w(z,y, A) on I', we see that

_pt t
/ Mw(z,y, \)dA| < C / eRAGN =20 / e Vadp = CO?S .

r
ou const . . .
Thus, Y ) for t > dp. Since the function v(x,y,t) satisfies problem (5.12), (5.2) for p(z,y) =
. . . |0v const
1, it follows that the inequality ot is valid provided that ¢ > §y. Therefore, the relation

") =0 <1> ast — 0o

holds for any x from R™ and any nonnegative y.
This completes the proof of Theorem 5.2.3.

5.2.4. Proof of the main theorem. Now, we can pass directly to the proof of Theorem 5.2.1.

Fix a point (z,y) from R’}FH and denote u(x,y,t) — v(z,y,t) by g(t). Obviously, the function g(t) is
bounded. Denote g(t)+tg'(t) by h(t). It follows from Theorem 5.2.3 that the function A(t) is bounded
at least for t > 1. Since we are investigating the long-time behavior of g(t), it follows that, without
loss of generality, one can assume that g(¢t) = 0 for 0 < ¢ < 1. Therefore, the function h(t) is bounded
on the positive semiaxis.

t
Further, it is easy to check that g(¢ / h(r)dr. By virtue of Theorem 5.2.2, the limit relation
0

T

o\N

t
g(T)dr 12200 is valid, i.e., / / p)dpdr 1229, 0. Since the function h(t) is bounded, it
0

t
follows that the limit relation / h(r)dr 12200 is valid as well (by virtue of [96, Lemma 1]); there-

fore, tlim g(t) = 0. This means that for any x from R", any nonnegative y, and any real [, the limit
— 00

relation u(z,y,t) 2%, 1 s valid if and only if the limit relation v(z,y,t) 2% s valid.
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By virtue of Theorem 5.1.1, the last relation is equivalent to the relation

W’;F k+1
lim n;ﬁjll / y'p(a,y)e(x, y)dedy = F(,H(,;il)) L.
By (r)
The following inequality holds:
1 k [l k
1 /y a(z,y)e(z,y)dedy| < 0 /y lq(z,y)|dzdy.
B4 (r) By (r)

The right-hand part tends to zero as r — oo (because the function ¢(x,y) satisfies condition (5.16)
and the function ¢p(x,y) is bounded. This completes the proof of Theorem 5.2.1 because p(z,y) =

q(z,y) + 1.
Theorem 5.2.1 is proved completely.
Theorem 5.2.1, Theorem 5.1.5, and Theorem 5.1.6 imply the following assertions.

Theorem 5.2.4. Letn>0,a >0, 8>0, and o # 3. Let ug(z,y,t) be the classical bounded solution
of problem (5.12), (5.2). Let the conditions of Theorem 5.2.1 be satisfied for k = o and k = 3. Then

there exists a bounded function ¢ from COO(R?FH) such that for any x from R™ and any nonnegative 1,
the limit tlim Uz, y,t) exists, while the limit tlim ug(x,y,t) does not exist.
—00 — 0

Theorem 5.2.5. Let n = 0, a > 0, 8 > 0, and o # 3. Let ui(y,t) be the classical bounded so-
lution of problem (5.12), (5.2). Let the conditions of Theorem 5.2.1 be satisfied for k = « and
k = B. Then for any continuous and bounded function ¢ and any nonnegative y, the existence
of tliglo U (y,t) is equivalent to the existence of tliglo ug(x,y,t). If the specified limits exist, then

. _B+1
tlgéloua(y,t) = a+ 1 tlifgouﬁ(wvyvt)

Remark. Consider the (n + 2)-dimensional integral

| & o (o ver+ - ap) | dnande

Da0,0

depending on parameters a from R” and d from [0, +00); here D, . denotes the (n + 2)-dimensional
semiball {zx € R", n >0, { € R[]z — al? + (n — b)* + (£ — ) <12}
Change the variables: n = ycosf and & = ysinf. We obtain that this integral is equal to

/ /yk sin*~1 9 ‘q <m, \/y2 sin? 0 + y2 cos2 6 + 2dy cos 6 + d2> ‘ dfdzdy,
Dao 0

where D, denotes the (n 4 1)-dimensional semiball {z € R",y >0 Ha; —al*+ (y—b)* <r?}. The
last integral is equal to

PG T rtto oty — £ 2 FTVlg(E + a,m)|ded
F(k+1) y yq 7y y_r(k+1) 77 17q 777 77
2 Duo 2 Bl

Thus, condition (5.15) is equivalent to the following condition: there exists a constant b such that

. 1 _
Hm e / prt ‘p (é, Vi + /72) - b‘ dédndp = 0

Dz,—y,0

uniformly with respect to (z,y) € R*+1.
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