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FUNCTIONAL DIFFERENTIAL PARABOLIC EQUATIONS:
INTEGRAL TRANSFORMATIONS AND QUALITATIVE PROPERTIES
OF SOLUTIONS OF THE CAUCHY PROBLEM

A. B. Muravnik UDC 517.9

Abstract. In this monograph, we examine the Cauchy problem for second-order parabolic functional
differential equations containing, in addition to differential operators, translation (generalized trans-
lation) operators acting with respect to spatial variables. The specified problems have important
applications, such as the multilayer plates and envelopes theory, the diffusion processes theory, includ-
ing biomathematical applications, models of nonlinear optics, etc. The main concern of the present
work is the long-time behavior of solutions of studied problems.
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INTRODUCTION

We examine the Cauchy problem for second-order parabolic functional differential equations contain-
ing, in addition to differential operators, translation (generalized translation) operators acting with
respect to spatial variables. The investigation of such nonlocal problems was started in the classical
works of Tamarkin, Picone, and Carleman. Further development of the theory of functional differen-
tial (in particular, differential-difference) equations refers to Myshkis. Nowadays, this theory is deeply
and actively developed by various mathematicians (see monographs [1, 28, 102] and the references
therein as well as the series of papers [111–116, 119] devoted to functional differential equations in
Banach spaces). The general theory of elliptic and parabolic functional differential equations (solv-
ability, smoothness of generalized solutions, spectral properties of operators) was developed in [11, 12,
17, 18, 30, 39, 82–84, 97–107, 118, 123].

The specified problems have important applications, such as the multilayer plates and envelopes
theory (see [81, 102]), the diffusion processes theory, including biomathematical applications (see [100,
117, 123]), models of nonlinear optics (see [91, 103, 104, 109, 120–122]), etc.

The main concern of the present work is the long-time behavior of solutions of studied problems.
Recall that a stabilization of solutions frequently takes place for parabolic problems. This phenomenon
(found by Petrovskii and Tikhonov in the first half of the 20 century) is the existence of a finite limit
(in any sense) of the solution as t → ∞. A well-known example is the necessary and sufficient condition
of the (pointwise) stabilization of the Cauchy problem solution for the heat equation with a bounded
initial-value function: the specified solution tends to a constant if and only if the limit

lim
r→∞

1

mes{|x| < r}
∫

|x|<r

u0(x)dx

exists and is equal to the same constant. This condition is obtained in [95] (see also [96]). Further,
the stabilization theory for parabolic equations was developed in [4–6, 9, 10, 19–27, 49, 69, 85, 86,
92–94, 124–129] and many other papers of various authors.

The stabilization of solutions also occurs in the elliptic theory. In particular, it takes place for the
Dirichlet problem in subspaces (see [7, 8, 61, 77]): the direction of the stabilization is orthogonal to
the boundary hyperplane, and the necessary and sufficient condition of the stabilization coincides with
the classical condition from [95]. Thus, the behavior of the solution of the specified elliptic equation
is similar to the behavior of solutions of parabolic equations. However, the complete coincidence does
not take place: unlike the parabolic case, the fundamental solution decreases as a power.

At the moment, the classical stabilization theory can be regarded, in general, as complete: the
research interest transits to nonclassical parabolic problems. This refers to the present work as well:
it is devoted to functional differential parabolic equations.

Apart from regular equations (i.e., equations such that their coefficients have no singularities), we
study singular functional differential parabolic equations containing the Bessel operator

1

yk
∂

∂y

(
yk

∂

∂y

)
=

∂2

∂y2
+

k

y

∂

∂y

with positive parameter k acting with respect to one or several spatial variables.
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Singularities of the above type arise models of mathematical physics such that the characteristic of
the media (e.g., diffusion characteristics or heat–conductivity characteristics) have degenerate power-
like heterogeneities.

Function-theory methods necessary for the investigation of such singularities and the general theory
of the specified singular equations are developed in [34] (see also [31–33, 35]). A thorough investigation
of parabolic equations containing the Bessel operator is given in [36–38, 42–45, 47] (see also references
therein). Necessary and sufficient conditions of the stabilization of solutions of the specified singular
parabolic equations are found in [48, 60, 64].

In the present work, we examine (apart from the Bessel operator) the general translation operator
introduced and investigated in [41]. Thus, the functional differential equations studied are not only
differential-difference ones, but are integrodifferential as well.

The work consists of the current introduction and four chapters.
In the first chapter, we use equations such that only low-order (more exactly, zero-order) terms

are nonlocal. It is known that such terms characterize dissipation properties of the described process,
and they become nonlocal once the dissipation delays. The case of the anisotropic media is the most
interesting: the diffusion process is multidimensional and the delay is different for different directions
(see, e.g., [100, 123]). Also, nonlocal terms of the above type arise in mathematical models of nonlinear
optical systems with two-dimensional feedback, used, e.g., in contemporary computer technologies and
in the study of laser bundles (see, e.g., [91, 103, 104, 120–122]).

The main result of Chap. 1 is Theorem 1.5.1 on the classical unique solvability of the Cauchy problem
and Theorem 1.6.1 on the generalized weight asymptotic closeness of the investigated solution and the
Cauchy problem solution with a transformed initial-value function for the heat equation; the latter
theorem implies corollaries about the (pointwise) stabilization.

Note that the existence of generalized (in various senses) solutions of the specified problem was
proved much earlier (see, e.g., [15, 16, 89, 90]), but stabilization theorems treat the solution behavior
on low-dimensional manifolds (including one-dimensional ones), while the existence of a trace on such
a manifold is not guaranteed even for strong solutions. Classical solutions, i.e., solutions possessing
all derivatives (included to the equation) in the classical sense, satisfying the equation at any point of
the half-space R

n×(0,+∞), and satisfying the initial-value condition (in the sense of one-sided limits
as t → +0) for any x from R

n, possess the required properties; that is why its existence and integral
representation are considered quite thoroughly (Secs. 1.1–1.4).

The proven weight asymptotic closeness of solutions is understood as follows: the difference between
the solution of the studied functional differential equation, multiplied by the corresponding weight
function, and the solution of the “standard” differential equation (more exactly, the heat equation)
tends to zero if the independent variable of the studied solution tends to infinity along the ray rotated
to a certain angle with respect to the initial-value hyperplane; this angle is uniquely determined by
the coefficients of the low-order (i.e., nonlocal) part of the functional differential equation:

lim
t→+∞

⎡
⎣e−t

n∑

j=1

mj∑

k=1
ajk

u(x, t) −w

(
x1 + q1t

p1
, . . . ,

xn + qnt

pn
, t

)⎤
⎦ = 0,

where w(x, t) is the bounded solution of the Cauchy problem for the heat equation with the initial-
value function u0(p1x1, . . . , pnxn) and the constants pj and qj are determined by the coefficients of the
nonlocal part of the original functional differential equation (here ajk are the coefficients at translation
operators).

This behavior of the solution is a qualitatively new effect compared with the classical case of
differential equations: this phenomenon also occurs in the classical case, but this takes place only
if the equation includes first-order terms. It turns out that zero-order terms can cause the same
effect though their physical interpretation is principally else. Thus, qualitatively new effects caused
by nonlocal terms of equations arise even in the case where the principal part of the equation is still
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classical one. Note that this entirely corresponds to the general parabolic theory (see [29]): low-order
terms of a parabolic equation (unlike, e.g., the elliptic case) might have a principal impact to the
qualitative properties of its solution.

The second chapter is devoted to regular equations with nonlocal principal terms, i.e., equations
containing superpositions of second derivatives (including mixed ones) and translation operators with
respect to any (spatial) coordinate directions. We consider the Cauchy problem solution in the sense
of distributions (more exactly, in the sense of [15, 16]), and we prove (see Theorem 2.7.3) that the
solution is classical in the subspace R

n × (0,+∞); this allows us to consider the behavior of solutions
on one-dimensional manifolds and obtain theorems on the asymptotic closeness of solutions and on
their stabilization. The main result (obtained in Theorem 2.7.4) is as follows: if the right-hand part
of the equation is a homogeneous strong elliptic operator, then the asymptotic closeness takes place
for the investigated solution and the Cauchy problem solution (with the same initial-value function)
for the differential parabolic equation obtained from the original functional differential equation by
means of setting all translations equal zero:

lim
t→∞[u(x, t)− v(x, t)] = 0,

where u(x, t) is the solution of the (functional differential) equation

∂u

∂t
=

n∑
k,j,m=1

akjm
∂2u

∂xk∂xj
(x1, . . . , xm−1, xm + hkjm, xm+1, . . . , xn, t)

and v(x, t) is the solution of the (differential) equation

∂v

∂t
=

n∑
k,j,m=1

akjm
∂2v

∂xk∂xj

(with the same initial-value function).
If the equation includes low-order terms (apart from the nonlocal principal part), then we obtain

a weight asymptotic closeness; if the specified low-order terms are nonlocal ones, then effects specific
for the nonlocal case described in Chap. 1 arise.

Note that the strong ellipticity assumption is quite important for the second chapter. Similarly
to the case of bounded domains (see [102, §9]), there is an essential distinction between the strong
ellipticity for differential and differential-difference operators.

In the third chapter, we study a parabolic integrodifferential equation with one spatial variable
such that the Bessel operator and a linear combination of generalized translation operators act with
respect to that variable; this is treated as a prototype case for singular functional differential equations.
Similarly to the case of differential singular equations (see, e.g., [34]), we add the following condition
to ensure the uniqueness of the solution: the solution is assumed to be even with respect to spatial
variable. The unique solvability of such a problem is proved in Theorem 3.5.1. The properties of the
one-dimensional fundamental solution constructed in this chapter are applied in the next chapter to
construct the fundamental solution for the general singular case.

The fourth chapter is devoted to the general singular case: there are spatial variables such that
second derivatives and translation operators act with respect to them (nonspecial variables) and spatial
variables such that Bessel operators and generalized translation operators act with respect to them
(special variables). Apart from the initial-value condition, we impose the evenness (with respect to
special variables) condition for the solution. For the above problem, we prove the unique solvability
(see Theorems 4.5.1 and 4.6.1) and the weight asymptotic closeness of its solution and the solution of
a similar problem for certain differential singular equation (see Theorem 4.7.1).

Acknowledgments. The author is deeply grateful to Professor A. L. Skubachevskii for his long-
standing concern and support. The author is supported by the President’s Grant for Government
Support of the Leading Scientific Schools of the Russian Federation No. 4479.2014.1.
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Chapter 1

EQUATIONS WITH NONLOCAL LOW-ORDER TERMS

In this chapter, we consider equations of the type

∂u

∂t
= Δu+

∑
h∈M

ahu(x− h, t), (1.1)

where M is a finite set of vectors of R
n parallel to the coordinate axes (or any other orthogonal

vector system). The motivation to study such equations relates both to the pure theory (nonclassical
low-order terms are added to a parabolic equation) and applications, e.g., to problems of nonlinear
optics: it is known (see, e.g., [121]) that a nonlinear optical system with so-called multipetal waves is
described by the equation

∂u

∂t
+ u = DΔu+K(1 + γ cos ug),

where u(x, t) is the phase of the light wave, ug = u(g(x), t), g is a one-to-one transformation of spatial
variables, different from the identity, the positive coefficients D and γ are the diffusion coefficient and
the visibility of the interference picture respectively, and K (different from zero) is the nonlinearity
coefficient depending on the intensity of the input field.

In [103, 104], this quasilinear equation is linearized to the form

∂v

∂t
= DΔv − v −Kγ sinωvg,

where the constant ω (the so-called spatially homogeneous stationary solution) is the root of the
transcendental equation ω = K(1 + γ cosω).

If g(x) is a translation operator, then the linearized equation coincides with Eq. (1.1) such that the
set M consists of two elements (one of them is the zero vector).

1.1. Fundamental Solution (Single Spatial Variable)

Let a, h ∈ R
m. In R

1×(0,+∞), consider the equation

∂u

∂t
=

∂2u

∂x2
+

m∑
k=1

aku(x− hk, t). (1.2)

Define the following function on R
1×(0,+∞):

E(x, t) def
= Ea,h(x, t) def

=

∞∫

0

e
−t(ξ2−

m∑

k=1

ak cos hkξ)
cos(xξ − t

m∑
k=1

ak sinhkξ)dξ. (1.3)

It is easy to see that

|E(x, t)| ≤
∞∫

0

e
−t(ξ2−

m∑

k=1

ak coshkξ)
dξ ≤

∞∫

0

e(1−ξ2)tdξ = et
∞∫

0

e−η2 dη√
t
=

et√
t

√
π

2
.

Thus, for any t0, T ∈ (0,+∞) integral (1.3) converges absolutely and uniformly with respect to
(x, t) ∈ R

1×[t0, T ]. Therefore, E(x, t) is well defined on R
1×(0,+∞). Formally differentiate E under

the integral sign:∣∣∣∣∣
∂m

∂tl∂xm−l

(
e
−t(ξ2−

m∑

k=1
ak cos hkξ)

cos(xξ − t
m∑
k=1

ak sinhkξ)

)∣∣∣∣∣P (ξ)e
−t(ξ2−

m∑

k=1
ak coshkξ)

,

349



where P (ξ) is a polynomial of power not exceeding m+ 2l. Hence,∣∣∣∣∣
∂m

∂tl∂xm−l

(
e
−t(ξ2−

m∑

k=1

ak coshkξ)
cos(xξ − t

m∑
k=1

ak sinhkξ)

)∣∣∣∣∣ ≤ Aξm+2le
(

m∑

k=1

|ak |−ξ2)t
.

Further,
∞∫

0

ξm+2le
(

m∑

k=1
|ak|−ξ2)t

dξ = e

m∑

k=1
|ak|t

∞∫

0

ξm+2le−ξ2tdξ = e

m∑

k=1
|ak|t

∞∫

0

ηm+2l

t
m+2l

2

e−η2 dη√
t

=
e

m∑

k=1
|ak |t

t
m+2l+1

2

∞∫

0

ηm+2le−η2dη =
Γ(m+2l+1

2 )e

m∑

k=1

|ak|t

2t
m+2l+1

2

.

Therefore, the integral obtained by the formal differentiating of the integrated function converges
absolutely and uniformly with respect to (x, t) ∈ R

1× [t0, T ] for any t0, T ∈ (0,+∞). Hence, the
function E defined by relation (1.3) is infinitely differentiable on R

1×(0,+∞) and integration under
the integral is valid. This implies that

∂E
∂t

=

∞∫

0

[
(

m∑
k=1

ak cos hkξ − ξ2)e
−t(ξ2−

m∑

k=1
ak coshkξ)

cos(xξ − t

m∑
k=1

ak sinhkξ)

+ e
−t(ξ2−

m∑

k=1
ak cos hkξ)

sin(xξ − t
m∑
k=1

ak sinhkξ)
m∑
k=1

ak sinhkξ

]
dξ

=

∞∫

0

e
−t(ξ2−

m∑

k=1
ak coshkξ)

[
(

m∑
k=1

ak cos hkξ − ξ2) cos(xξ − t

m∑
k=1

ak sinhkξ)

+ sin(xξ − t
m∑
k=1

ak sinhkξ)
m∑
k=1

ak sinhkξ

]
dξ,

∂E
∂x

= −
∞∫

0

ξe
−t(ξ2−

m∑

k=1
ak coshkξ)

sin(xξ − t

m∑
k=1

ak sinhkξ)dξ,

and

∂2E
∂x2

= −
∞∫

0

ξ2e
−t(ξ2−

m∑

k=1
ak coshkξ)

cos(xξ − t
m∑

k=1

ak sinhkξ)dξ.

Therefore,

∂E
∂t

− ∂2E
∂x2

=

∞∫

0

e
−t(ξ2−

m∑

k=1

ak coshkξ)
[

m∑
k=1

ak cos hkξ cos

(
xξ − t

m∑
k=1

ak sinhkξ

)

+
m∑
k=1

ak sinhkξ sin

(
xξ − t

m∑
k=1

ak sinhkξ

)]
dξ.

The latter relation is equal to

m∑
k=1

ak

∞∫

0

e
−t(ξ2−

m∑

k=1
ak coshkξ)

cos hkξ cos

(
xξ − t

m∑
k=1

ak sinhkξ

)
dξ
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+

m∑
k=1

ak

∞∫

0

e
−t(ξ2−

m∑

k=1

ak coshkξ)
sinhkξ sin

(
xξ − t

m∑
k=1

ak sinhkξ

)
dξ

=

m∑
k=1

ak

∞∫

0

e
−t(ξ2−

m∑

k=1
ak coshkξ)

cos

[
(x− hk)ξt

m∑
k=1

ak sinhkξ

]
dξ =

m∑
k=1

akE(x− hk, t).

Thus, the function E(x, t) satisfies (in the classical sense) Eq. (1.2) in the domain R
1×(0,+∞).

We call E(x, t) the fundamental solution of Eq. (1.2). To show the reasonability of this term, we
prove below that the convolution of Ea,h with any bounded initial-value function coincides with that
initial-value function on the initial axis.

1.2. Fundamental Solution: Convolutions with Bounded Functions

Assuming that a positive t is fixed, estimate the behavior of E(x, t) as x → ∞.
Let us prove the following assertion:

Lemma 1.2.1. Let t > 0 and a, h ∈ R
m. Then

lim
x→∞x2E(x, t) = 0.

Proof. Decompose the function E(x, t) into its even and odd (with respect to x) terms E1(x, t) and
E2(x, t):

E1(x, t) =
∞∫

0

e
−t(ξ2−

m∑

k=1
ak coshkξ)

cos xξ cos

(
t

m∑
k=1

ak sinhkξ

)
dξ

and

E2(x, t) =
∞∫

0

e
−t(ξ2−

m∑

k=1
ak coshkξ)

sinxξ sin

(
t

m∑
k=1

ak sinhkξ

)
dξ.

Change the variable: η = xξ. This yields the relation

E1(x, t) = 1

x

∞∫

0

e−t( η
x)

2

e
t

m∑

k=1
ak cos

hkη

x
cos

(
t

m∑
k=1

ak sin
hkη

x

)
cos η dη =

1

x

∞∫

0

ψ
(η
x

)
f(η)dη,

where

f(τ) = cos τ ∈ L∞(R1
+),

ψ(τ) = e−tτ2e
t

m∑

k=1

ak cos τ
cos

(
t

m∑
k=1

ak sin τ

)
∈ L1(R

1
+).

Denoting e−tτ2 by ψ0(τ), we see that ψ0(τ) ∈ L1(R
1
+). Further, the Mellin transform of the function

ψ0(τ) is defined on the real axis and it has no real zeros; indeed,

∞∫

0

τ ixψ0(τ)dτ =
1

2t
1+ix

2

∞∫

0

z
ix−1

2 e−zdz =
Γ(1+ix

2 )

2t
1+ix

2

.

Further,

1

r

∞∫

0

ψ0

(τ
r

)
f(τ)dτ =

√
π

2
√
t
e−

r2

4t

r→∞−→ 0 .
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Then

1

r

∞∫

0

ψ
(τ
r

)
f(τ)dτ

r→∞−→ 0

due to the Wiener Tauberian theorem (see [13, p. 163]), i.e., E1(x, t) tends to zero as x → ∞ for all
fixed t > 0 and a, h ∈ R

m.
Now, consider E2(x, t).

Denote the function e−tτ2e
t

m∑

k=1
ak coshkτ

sin

(
t

m∑
k=1

ak sinhkτ

)
by ψ(τ) ∈ L1(R

1
+). Denote the func-

tion sin τ by f(τ) ∈ L∞(R1
+). Then

1

r

∞∫

0

ψ0

(τ
r

)
f(τ)dτ =

r

2t
F

(
1,

3

2
,−r2

4t

)
r→∞−→ 0,

where F denotes the confluent hypergeometric function of second type.
Thus, the assumptions of the Wiener Tauberian theorem are satisfied. Hence, for all fixed t > 0

and a, h ∈ R
m, we have

E2(x, t) = 1

x

∞∫

0

ψ
(τ
x

)
f(τ)dτ

r→∞−→ 0 .

Thus,

lim
x→∞ E(x, t) = 0

for any positive t and any a, h ∈ R
m.

However, the obtained limit relation is not sufficient to prove the convergence of the convolution
of the fundamental solution with bounded initial-value functions. We must estimate the rate of the
proved decay. To do that, we integrate the term E1(x, t) by parts:

∞∫

0

e
t(

m∑

k=1
ak coshkξ−ξ2)

cos(t

m∑
k=1

ak sinhkξ) cos xξdξ

=
1

x

⎡
⎣et(

m∑

k=1
ak cos hkξ−ξ2)

cos(t

m∑
k=1

ak sinhkξ) sinxξ
∣∣∣ξ=∞
ξ=0

+ t

∞∫

0

e
t(

m∑

k=1
ak coshkξ−ξ2)

×
(
(2ξ +

m∑
k=1

hkak sinhkξ) cos(t

m∑
k=1

ak sinhkξ) + sin(t

m∑
k=1

ak sinhkξ)

m∑
k=1

hkak cos hkξ

)
sinxξdξ

]

=
t

x

∞∫

0

e
t(

m∑

k=1
ak coshkξ−ξ2)

(
2ξ cos(t

m∑
k=1

ak sinhkξ) +

m∑
k=1

akhk sin(hkξ + t

m∑
k=1

ak sinhkξ)

)
sinxξdξ.

Denote the derivative (with respect to ξ) of

e
t(

m∑

k=1

ak coshkξ−ξ2)
(
2ξ cos(t

m∑
k=1

ak sinhkξ) +

m∑
k=1

akhk sin(hkξ + t

m∑
k=1

ak sinhkξ)

)

by ψ(ξ) and integrate by parts again. We see that

E1(x, t) = t

x2

[
e
t(

m∑

k=1
ak coshkξ−ξ2)

(
2ξ cos(t

m∑
k=1

ak sinhkξ)
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+

m∑
k=1

akhk sin(hkξ + t

m∑
k=1

ak sinhkξ)

)
cos xξ

∣∣∣ξ=0

ξ=∞
+

∞∫

0

ψ(ξ) cos xξdξ

⎤
⎦ =

t

x2

∞∫

0

ψ(ξ) cos xξdξ,

i.e., x2E1(x, t) = t

x

∞∫

0

ψ
(η
x

)
cos ηdη.

Since ψ(ξ) ∈ L1(R
1
+), it follows that the assumptions of the Wiener Tauberian theorem are satisfied.

Hence, x2E1(x, t)
x→∞−→ 0 for all fixed t > 0 and a, h ∈ R

m.
In the same way, consider the second term of the fundamental solution.

E2(x, t) = 1

x

[
e
t(

m∑

k=1
ak coshkξ−ξ2)

sin(t

m∑
k=1

ak sinhkξ) cos xξ
∣∣∣ξ=0

ξ=∞

−
∞∫

0

e
t(

m∑

k=1
ak coshkξ−ξ2)

(
t(

m∑
k=1

akhk sinhkξ + 2ξ) sin(t
m∑
k=1

ak sinhkξ)

− t cos(t

m∑
k=1

ak sinhkξ)

m∑
k=1

akhk cos hkξ

)
cos xξdξ

]
.

Thus, the second term of the fundamental solution is equal to

− t

x

∞∫

0

e
t(

m∑

k=1
ak coshkξ−ξ2)

(
2ξ sin(t

m∑
k=1

ak sinhkξ)−
m∑
k=1

akhk cos(hkξ + t
m∑
k=1

ak sinhkξ)

)
cos xξdξ

= − t

x2

[
sinxξ e

t(
m∑

k=1
ak coshkξ−ξ2)

(
2ξ sin(t

m∑
k=1

ak sinhkξ)−
m∑

k=1

akhk cos(hkξ+ t
m∑

k=1

ak sinhkξ)

)∣∣∣ξ=∞
ξ=0

−
∞∫

0

ψ(ξ) sin xξdξ

⎤
⎦ =

t

x3

∞∫

0

ψ(
η

x
) sin ηdη,

where

ψ(ξ)=

[
e
t(

m∑

k=1
ak coshkξ−ξ2)

(
2ξ sin(t

m∑
k=1

ak sinhkξ)−
m∑
k=1

akhk cos(hkξ + t
m∑
k=1

ak sinhkξ)

)]′
∈ L1(R

1
+).

By virtue of the Wiener Tauberian theorem, this implies that x2E2(x, t)
x→∞−→ 0 for all fixed t > 0 and

a, h ∈ R
m, which completes the proof of Lemma 1.2.1.

Estimate the behavior of derivatives of the fundamental solutions as x → ∞.
The following assertion is valid.

Lemma 1.2.2. Let t > 0 and a, h ∈ R
m. Then

lim
x→∞x2

∂2E
∂x2

(x, t) = 0.

Proof. Consider the function

∂2E1(x, t)
∂x2

= −
∞∫

0

ξ2e
−t(ξ2−

m∑

k=1
ak coshkξ)

cos(t
m∑
k=1

ak sinhkξ) cos xξ dξ.
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Integrating by parts, we see that

∂2E1(x, t)
∂x2

=
1

x

[
ξ2e

−t(ξ2−
m∑

k=1

ak coshkξ)
cos(t

m∑
k=1

ak sinhkξ) sin xξ
∣∣∣ξ=0

ξ=∞

+

∞∫

0

(
ξ2e

−t(ξ2−
m∑

k=1

ak cos hkξ)
cos(t

m∑
k=1

ak sinhkξ)

)′

sinxξ dξ

⎤
⎦

=
1

x

∞∫

0

(
ξ2e

−t(ξ2−
m∑

k=1
ak coshkξ)

cos(t
m∑
k=1

ak sinhkξ)

)′

sinxξ dξ.

Integrating by parts again, we obtain the relation

∂2E1(x, t)
∂x2

=
1

x2

⎛
⎝
[
ξ2e

−t(ξ2−
m∑

k=1
ak cos hkξ)

cos(t

m∑
k=1

ak sinhkξ)

]′
cos xξ

∣∣∣ξ=0

ξ=∞

+

∞∫

0

[
ξ2e

−t(ξ2−
m∑

k=1

ak coshkξ)
cos(t

m∑
k=1

ak sinhkξ)

]′′
cosxξ dξ

⎞
⎠ =

1

x3

∞∫

0

ψ
(η
x

)
cos η dη,

where

ψ(ξ) =

[
ξ2e

−t(ξ2−
m∑

k=1
ak coshkξ)

cos(t
m∑
k=1

ak sinhkξ)

]′′
∈ L1(R

1
+).

Thus, the assumptions of the Wiener Tauberian theorem are satisfied. Hence, x2
∂2E1(x, t)

∂x2
x→∞−→ 0 for

all fixed t > 0 and a, h ∈ R
m.

In the same way, we have

∂2E2(x, t)
∂x2

= −
∞∫

0

ξ2e
−t(ξ2−

m∑

k=1
ak cos hkξ)

sin(t

m∑
k=1

ak sinhkξ) sinxξ dξ.

Integrating by parts, we see that the last expression is equal to

1

x

[
ξ2e

−t(ξ2−
m∑

k=1
ak cos hkξ)

sin(t
m∑
k=1

ak sinhkξ) cos xξ
∣∣∣ξ=∞
ξ=0

−
∞∫

0

(
ξ2e

−t(ξ2−
m∑

k=1
ak coshkξ)

sin(t
m∑
k=1

ak sinhkξ)

)′

cos xξ dξ

⎤
⎦

= −1

x

∞∫

0

(
ξ2e

−t(ξ2−
m∑

k=1

ak coshkξ)
sin(t

m∑
k=1

ak sinhkξ)

)′

cos xξ dξ.

Integrating by parts again, we obtain the relation

∂2E2(x, t)
∂x2

= − 1

x2

⎛
⎝
[
ξ2e

−t(ξ2−
m∑

k=1
ak coshkξ)

sin(t

m∑
k=1

ak sinhkξ)

]′
sinxξ
∣∣∣ξ=∞
ξ=0

−
∞∫

0

ψ(ξ)sin xξdξ

⎞
⎠ ,

where

ψ(ξ) =

[
ξ2e

−t(ξ2−
m∑

k=1
ak coshkξ)

sin(t
m∑
k=1

ak sinhkξ)

]′′
∈ L1(R

1
+).
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Thus, the assumptions of the Wiener Tauberian theorem are satisfied. Therefore,

x2
∂2E2(x, t)

∂x2
=

1

x

∞∫

0

ψ(
η

x
) sin η dη

x→∞−→ 0,

which completes the proof of Lemma 1.2.2.

Since E(x, t) satisfies Eq. (1.2) in R
1×(0,+∞) (see the previous section), Lemmas 1.2.1 and 1.2.2

imply the following assertion.

Lemma 1.2.3. Let t > 0 and a, h ∈ R
m. Then

lim
x→∞x2

∂E
∂t

(x, t) = 0.

This lemma can be proved directly as well (the proof is the same as the one for Lemma 1.2.2).
From Lemmas 1.2.1–1.2.3 and the fact that E(x, t) satisfies Eq. (1.2) in R

1×(0,+∞), we deduce the
following assertion:

Theorem 1.2.1. Let u0(x) be continuous and bounded in R
1. Then the function

+∞∫

−∞
E(x− ξ, t)u0(ξ)dξ

satisfies (in the classical sense) Eq. (1.2) in R
1×(0,+∞).

Remark 1.2.1. The assumption of the continuity and boundedness of the function u0 can be replaced
by the assumption of its belonging to L∞(R1). Under this assumption, in general, the specified
convolution is not a classical solution of Eq. (1.2) anymore; it is its a. e. solution.

Remark 1.2.2. Continuing to integrate by parts in Lemmas 1.2.1-1.2.2, we see that

lim
x→∞xm

∂k+lE
∂tk∂xl

(x, t) = 0

for all positive integers m,k, and l and any positive t.

1.3. Solutions of Cauchy Problems

Introduce the notation

u(x, t) =

+∞∫

−∞
E(x− ξ, t)u0(ξ)dξ

and impose to Eq. (1.2) the initial-value condition

u
∣∣
t=0

= u0(x), (1.4)

where u0(x) is continuous and bounded in R
1.

The function u(x, t) is defined on R
1 × (0,+∞). Take an arbitrary real x0 and investigate the

behavior of u(x0, t) as t −→ 0.
Change the variable by the formula

η =
x0 − ξ

2
√
t
.

This yields the relation

u(x0, t) = 2
√
t

+∞∫

−∞
E(2√tη, t)u0(x0 − 2

√
tη)dη.
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Further, we have

√
t E(2

√
tη, t) =

√
t

∞∫

0

e
−t

(

ξ2−
m∑

k=1

ak coshkξ

)

cos

(
2
√
tηξ − t

m∑
k=1

ak sinhkξ

)
dξ

=

∞∫

0

e
−z2+t

m∑

k=1
ak cos

hkz√
t
cos

(
2zη − t

m∑
k=1

ak sin
hkz√

t

)
dz.

Hence,

u(x0, t) = 2

+∞∫

−∞
u0(x0 − 2

√
tη)

∞∫

0

e
−z2+t

m∑

k=1
ak cos

hkz√
t
cos

(
2zη − t

m∑
k=1

ak sin
hkz√

t

)
dzdη. (1.5)

On the other hand, the following relation holds: u0(x0) =
1√
π

+∞∫

−∞
u0(x0)e

−η2dη.

Consider the following difference:

1

π

+∞∫

−∞
E(x0 − ξ, t)u0(ξ)dξ − u0(x0)

=

+∞∫

−∞

⎡
⎣ 2
π
u0(x0 − 2

√
tη)

∞∫

0

e
−z2+t

m∑

k=1
ak cos

hkz√
t
cos

(
2zη − t

m∑
k=1

ak sin
hkz√

t

)
dz

− 1√
π
u0(x0)e

−η2
]
dη =

−A∫

−∞
+

A∫

−A

+

+∞∫

A

def
= I1 + I2 + I3. (1.6)

Let us prove the following assertion.

Lemma 1.3.1.
∞∫

0

e
−z2+t

m∑

k=1
ak cos

hkz√
t
cos

(
2zη − t

m∑
k=1

ak sin
hkz√

t

)
dz

t→+0−→
√
π

2
e−η2

uniformly with respect to η ∈ R
1.

Proof. We must prove that for any positive ε, there exists a positive δ such that for any t ∈ (0, δ) and
any real η the following inequality holds:∣∣∣∣∣∣

∞∫

0

e
−z2+t

m∑

k=1
ak cos

hkz√
t
cos

(
2zη − t

m∑
k=1

ak sin
hkz√

t

)
dz −

∞∫

0

e−z2 cos 2zη dz

∣∣∣∣∣∣ < ε.

Let ε > 0. Consider
∞∫

0

e−z2

[
e
t

m∑

k=1
ak cos

hkz√
t
cos

(
2zη − t

m∑
k=1

ak sin
hkz√

t

)
− cos2zη

]
dz

=

∞∫

0

e−z2

[
e
t

m∑

k=1
ak cos

hkz√
t

(
cos 2zη cos

(
t

m∑
k=1

ak sin
hkz√

t

)
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− sin 2zη sin

(
t

m∑
k=1

ak sin
hkz√

t

))
− cos2zη

]
dz.

Select a small δ from (0, 1] such that the sine is monotone on

(
−δ

m∑
k=1

|ak|, δ
m∑
k=1

|ak|
)

and the

inequality

sin

(
δ

m∑
k=1

|ak|
)

<
ε

2

⎛
⎝e t

m∑

k=1

|ak |
∞∫

0

e−z2dz

⎞
⎠

−1

holds for any t ∈ (−δ, δ). Then the following inequality holds provided that t ∈ (0, δ):
∣∣∣∣∣∣
∞∫

0

e−z2e
t

m∑

k=1
ak cos

hkz√
t
sin 2zη sin

(
t

m∑
k=1

ak sin
hkz√

t

)
dz

∣∣∣∣∣∣

≤ ε

2

⎛
⎝et

m∑

k=1
|ak|

∞∫

0

e−z2dz

⎞
⎠

−1 ∞∫

0

e−z2e
t

m∑

k=1
|ak|

dz =
ε

2
.

It suffices to show that the specified (sufficiently small) δ can be chosen to satisfy the following
inequality for any real z and η:

|cos2zη|
∣∣∣∣∣e

t
m∑

k=1
ak cos

hkz√
t
cos

(
t

m∑
k=1

ak sin
hkz√

t

)
− 1

∣∣∣∣∣ ≤
ε

2

⎛
⎝

∞∫

0

e−z2dz

⎞
⎠

−1

.

Thus, it suffices to show that

e
t

m∑

k=1
ak cos

hkz√
t
cos

(
t

m∑
k=1

ak sin
hkz√

t

)
t→+0−→ 1

uniformly with respect to z ∈ R
1.

We have

e
t

m∑

k=1
ak cos

hkz√
t
cos

(
t

m∑
k=1

ak sin
hkz√

t

)
− 1

= e
t

m∑

k=1
ak cos

hkz√
t

[
1− 2 sin2

(
t

2

m∑
k=1

ak sin
hkz√

t

)]
− 1

= e
t

m∑

k=1
ak cos

hkz√
t − 1− 2e

t
m∑

k=1
ak cos

hkz√
t
sin2

(
t

2

m∑
k=1

ak sin
hkz√

t

)
.

Select a small t such that sin2

(
t

2

m∑
k=1

|ak|
)

≤ ε

8
e
−

m∑

k=1

|ak|
. Since there exists a (sufficiently small) sem-

ineighborhood of the origin such that the sine is monotone in it, it follows that the inequality

2 sin2

(
t

2

m∑
k=1

ak sin
hkz√

t

)
≤ ε

4
e
−

m∑

k=1
|ak|
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is valid for the selected t. Without loss of generality, we assume that the selected t belongs to (0, 1).
Therefore, the following inequality holds for any real z:

2 sin2

(
t

2

m∑
k=1

ak sin
hkz√

t

)
e
t

m∑

k=1

ak cos
hkz√

t ≤ ε

4.

Thus, it suffices to estimate e
t

m∑

k=1
ak cos

hkz√
t − 1.

Without loss of generality, we assume that t is sufficiently small to satisfy the inequality

1− ε

4
< e

−
m∑

k=1
|ak|t

< e

m∑

k=1
|ak |t

< 1 +
ε

4
.

Hence, the inequality

1− ε

4
< e

−
m∑

k=1
|ak|t

< e
t

m∑

k=1
ak cos

hkz√
t
< e

m∑

k=1
|ak|t

< 1 +
ε

4

is valid for any z ∈ R
1.

This implies that ∣∣∣∣∣e
t

m∑

k=1

ak cos
hkz√

t − 1

∣∣∣∣∣ <
ε

4

for any z ∈ R
1, which completes the proof of Lemma 1.3.1.

Now, we can estimate the integrals of sum (1.6).
First, estimate |I3|:

∞∫

0

e
−z2+t

m∑

k=1
ak cos

hkz√
t
cos

(
t

m∑
k=1

ak sin
hkz√

t

)
cos 2ηzdz

= e
−z2+t

m∑

k=1
ak cos

hkz√
t
cos

(
t

m∑
k=1

ak sin
hkz√

t

)
sin 2ηz

2η

∣∣∣z=∞
z=0

− 1

2η

∞∫

0

[
e
−z2+t

m∑

k=1

ak cos
hkz√

t
cos

(
t

m∑
k=1

ak sin
hkz√

t

)]′

z

sin 2ηz dz

= − 1

2η

∞∫

0

[
e
−z2+t

m∑

k=1
ak cos

hkz√
t
cos

(
t

m∑
k=1

ak sin
hkz√

t

)]′

z

sin 2ηzdz

(since η > A > 0).
The last expression can be estimated as follows:

− 1

2η

⎛
⎝
[
e
−z2+t

m∑

k=1
ak cos

hkz√
t
cos

(
t

m∑
k=1

ak sin
hkz√

t

)]′

z

cos 2ηz

2η

∣∣∣z=0

z=∞

+
1

2η

∞∫

0

[
e
−z2+t

m∑

k=1
ak cos

hkz√
t
cos

(
t

m∑
k=1

ak sin
hkz√

t

)]′′

z

cos 2ηzdz

⎞
⎠

=
1

4η2

[
e
−z2+t

m∑

k=1
ak cos

hkz√
t
cos

(
t

m∑
k=1

ak sin
hkz√

t

)]′

z

cos 2ηz
∣∣∣z=∞
z=0
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− 1

4η2

∞∫

0

[
e
−z2+t

m∑

k=1
ak cos

hkz√
t
cos

(
t

m∑
k=1

ak sin
hkz√

t

)]′′

z

cos 2ηz dz.

Taking into account that η > A > 0, we see that the last expression is equal to

− 1

4η2

∞∫

0

[
e
−z2+t

m∑

k=1
ak cos

hkz√
t
cos

(
t

m∑
k=1

ak sin
hkz√

t

)]′′

z

cos 2ηzdz.

The last integral converges uniformly with respect to η ∈ R
1 and if t < 1, then its absolute value

is estimated from above by a constant depending only the vectors a, h ∈ R
m; denote that constant

by M . The same estimate holds for
∞∫

0

e
−z2+t

m∑

k=1
ak cos

hkz√
t
sin

(
t

m∑
k=1

ak sin
hkz√

t

)
sin 2ηz dz,

which is the second term of the internal integral in I3.
Thus,

|I3| ≤ 4M sup |u0|
π

∞∫

A

dη

η2
+

sup |u0|√
π

∞∫

A

e−η2dη = sup |u0|
⎛
⎝4M

πA
+

1√
π

∞∫

A

e−η2dη

⎞
⎠ .

It is obvious that |I1| satisfies the same estimate.
Let ε be an arbitrary positive number. Without loss of generality, we assume that t ≤ 1. Select a

(sufficiently large) positive A such that |I1| < ε

3
and |I3| < ε

3
and fix that A. Consider

I2 =

A∫

−A

⎡
⎣ 2
π
u0(x0 − 2

√
tη)

∞∫

0

e
−z2+t

m∑

k=1
ak cos

hkz√
t

× cos

(
2zη − t

m∑
k=1

ak sin
hkz√

t

)
dz − 1√

π
u0(x0)e

−η2

]
dη.

By virtue of Lemma 1.3.1 and the continuity of the function u0(x) at the point x0, there exists a
positive δ such that the inequalities t < δ and |2√tη| < δ imply the inequality∣∣∣∣∣∣

2

π
u0(x0 − 2

√
tη)

∞∫

0

e
−z2+t

m∑

k=1
ak cos

hkz√
t
cos

(
2zη − t

m∑
k=1

ak sin
hkz√

t

)
dz − u0(x0)√

π
e−η2

∣∣∣∣∣∣ <
ε

6A
.

Denote min

(
δ,

δ2

4A2

)
by t0; then |I2| < ε

3
once t < t0. Since ε is chosen arbitrarily, it follows that

lim
t→+0

⎡
⎣ 1
π

+∞∫

−∞
E(x0 − ξ, t)u0(ξ)dξ − u0(x0)

⎤
⎦ = 0.

Taking into account the real x0 is taken arbitrarily, we prove the following assertion.

Theorem 1.3.1. Let u0(x) be continuous and bounded in R
1. Then the function

u(x, t) def
=

1

π

+∞∫

−∞
E(x− ξ, t)u0(ξ)dξ

is a classical solution of problem (1.2), (1.4).
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In particular, using this theorem, one can compute the integral of the fundamental solution over
the real axis:

Lemma 1.3.2. ∞∫

−∞
E(x, t)dx = πe

m∑

k=1
akt

.

Proof. Assign u0(x) ≡ 1. This function is bounded. Hence, by virtue of Theorem 1.3.1, the function

y(x, t) def
=

1

π

+∞∫

−∞
E(x− ξ, t)dξ

satisfies Eq. (1.2) in R
1×(0,+∞) and the initial-value condition y(x, 0) ≡ 1 on R

1. However, the
function y(x, t) does not depend on x:

+∞∫

−∞
E(x− ξ, t)dξ =

+∞∫

−∞
E(ξ, t)dξ = y(t),

i.e., y(t) satisfies an ordinary differential equation

y′ −
m∑
k=1

aky = 0

and the initial-value condition y(0) = 1. Thus, y(t) = e

m∑

k=1
akt

, which completes the proof.

1.4. Multidimensional Case

Let x ∈ R
n. In R

n×(0,+∞), consider the equation

∂u

∂t
= Δu+

m∑
k=1

aku(x− bkh, t), (1.7)

where a and b are arbitrary parameters from R
m and h is a fixed vector of length 1 in R

n.
In R

n×(0,+∞), define the function

Ea,b,h,n(x, t) def
= E(n)(x, t) def

=

∫

Rn

e
−t(|ξ|2−

m∑

k=1

ak cos bkh·ξ)
cos

(
x · ξ− t

m∑
k=1

ak sin bkh · ξ
)
dξ. (1.8)

Then

|E(n)(x, t)| ≤
∫

Rn

e
t(

m∑

k=1
ak cos bkh·ξ−|ξ|2)

dξ ≤
∫

Rn

e
(

m∑

k=1
|ak |−|ξ|2)t

dξ

≤ e

m∑

k=1
|ak|t ∫

Rn

e−t|ξ|2dξ = e

m∑

k=1
|ak|t

∞∫

0

∫

|ξ|=r

e−t|ξ|2dSξdr

= Cne

m∑

k=1
|ak|t

∞∫

0

e−tr2rn−1dr =
Cn

2
e

m∑

k=1
|ak|t

Γ
(n
2

)
t−

n
2

(here dSξ denotes the surface measure in R
n and Cn is the area of the unit sphere in R

n).
Hence, integral (1.8) converges absolutely and uniformly with respect to (x, t) ∈ R

n×[t0, T ] for all
t0, T ∈ (0,+∞), i.e., E(n)(x, t) is well defined in R

n×(0,+∞).
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Formally differentiate E(n)(x, t):
∂E(n)
∂t

=

∫

Rn

(
m∑

k=1

ak cos bkh · ξ − |ξ|2)e
t(

m∑

k=1
ak cos bkh·ξ−|ξ|2)

× cos(x · ξ − t

m∑
k=1

ak sin bkh · ξ)dξ +
∫

Rn

e
t(

m∑

k=1
ak cos bkh·ξ−|ξ|2)

× sin(x · ξ − t

m∑
k=1

ak sin bkh · ξ)
m∑
k=1

ak sin bkh · ξdξ.

This expression is equal to

∫

Rn

e
t(

m∑

k=1
ak cos bkh·ξ−|ξ|2)

[
(

m∑
k=1

ak cos bkh · ξ − |ξ|2) cos(x · ξ − t

m∑
k=1

ak sin bkh · ξ)

+

m∑
k=1

ak sin bkh · ξ sin(x · ξ − t

m∑
k=1

ak sin bkh · ξ)
]
dξ.

Therefore,

∂E(n)
∂t

=

∫

Rn

[
m∑
k=1

ak cos

(
(x− bkh) · ξ − t

m∑
k=1

ak sin bkh · ξ
)

− |ξ|2 cos(x · ξ − t
m∑

k=1

ak sin bkh · ξ)
]
e
t(

m∑

k=1
ak cos bkh·ξ−|ξ|2)

dξ.

Further, we have

∂2E(n)
∂x2j

= −
∫

Rn

ξ2j e
t(

m∑

k=1
ak cos bkh·ξ−|ξ|2)

cos(x · ξ − t
m∑
k=1

ak sin bkh · ξ)dξ, j = 1, n,

which implies that

ΔE(n) = −
∫

Rn

|ξ|2 e
t(

m∑

k=1
ak cos bkh·ξ−|ξ|2)

cos(x · ξ − t
m∑
k=1

ak sin bkh · ξ)dξ.

Therefore, we have

∂E(n)
∂t

−ΔE(n) =
m∑
k=1

ak

∫

Rn

e
t(

m∑

k=1
ak cos bkh·ξ−|ξ|2)

cos

[
(x− bkh) · ξ − t

m∑
k=1

ak sin bkh · ξ
]
dξ.

Thus, function E(n) formally satisfies Eq. (1.7).
Let us check whether the above formal differentiating is legible:∣∣∣∣∣

∂l+|m|

∂tl∂xm1
1 . . . ∂xmn

n

[
e
t(

m∑

k=1
ak cos bkh·ξ−|ξ|2)

cos(x · ξ − t
m∑
k=1

ak sin bkh · ξ)
]∣∣∣∣∣ ≤ P (ξ)e

t(
m∑

k=1
ak cos bkh·ξ−|ξ|2)

,

where P (ξ) is a polynomial of power not exceeding |m| + 2l (here |m| = m1 + · · · + mn + 2l is the
multi-index length). Hence,∣∣∣∣∣

∂l+|m|

∂tl∂xm1
1 . . . ∂xmn

n

[
e
t(

m∑

k=1
ak cos bkh·ξ−|ξ|2)

cos(x · ξ − t
m∑
k=1

ak sin bkh · ξ)
]∣∣∣∣∣ ≤ A|ξ||m|+2le

(
m∑

k=1
|ak|−|ξ|2)t

.
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Further, we have

∫

Rn

|ξ||m|+2le
(

m∑

k=1
|ak|−|ξ|2)t

dξ = Ce

m∑

k=1
|ak|t

∞∫

0

r|m|+2l+n−1e−tr2dr =
CΓ
(
m+n
2 + l

)
2t

m+n
2

+l
e

m∑

k=1
|ak|t

.

Therefore, the integral obtained by the formal differentiating of the function E(n), for all t0, T ∈
(0,+∞), converges absolutely and uniformly with respect to (x, t) ∈ R

n× [t0, T ]. Therefore, the
function E(n)(x, t) defined by relation (1.8) is infinitely differentiable in R

n×(0,+∞) and satisfies (in
the classical sense) Eq. (1.7).

Now, investigate the behavior of the function E(n)(x, t) and its derivatives as |x| → ∞. Without
loss of generality, assume that m = 1 and a1 = 1; redenote the vector b1h by h. Further, rotate the
coordinate system ξ1, . . . , ξn to an angle such that x · ξ = |x|ξ1 (the Jacobian of this change of variable
is equal to unity). Then

E(n)(x, t) =
∫

Rn

et(cos h̃·ξ−|ξ|2) cos(|x|ξ1 − t sin h̃ · ξ)dξ,

where h̃ is, in general, different from the vector from the vector h (moreover, h̃ depends on x; precisely,

it depends on the ray containing the point x), but |h̃| = |h|. Assuming that h̃ = (|h̃|, 0, . . . , 0), we
obtain that

E(n)(x, t) =
∫

Rn

et(cos |h̃|ξ1−|ξ|2) cos(|x|ξ1 − t sin |h̃|ξ1)dξ

=

∫

Rn−1

e−t|ξ′|2dξ′
+∞∫

−∞
et(cos |h̃|ξ1−ξ21) cos(|x|ξ1 − t sin |h̃|ξ1)dξ1

= Cn−1Γ

(
n− 1

2

)
t
1−n
2 E1,|h̃|(|x|, t) = Cn−1Γ

(
n− 1

2

)
t
1−n
2 E1,|h|(|x|, t), (1.9)

where E1,|h| = E is still defined by (1.3).

However, the assumption that h̃ = (|h̃|, 0, . . . , 0) does not restrict the generality because the Laplace

operator is invariant with respect to rotations. This means that h̃ in relation (1.9) varies from one
ray to another, but the function E1,|h| is the same for all x ∈ R

n. Therefore, by virtue of Remark 1.3,
the limit relation

lim
|x|→∞

|x|n+1E(n)(x, t) = 0

holds for all positive t and |h|.
In the same way, we have

ΔE1,n = −
∫

Rn

|ξ|2et(cos |h̃|ξ1−|ξ|2) cos |x|ξ1 cos(t sin |h̃|ξ1)dξ.

The last integral is equal to

−
n∑

j=1

∫

Rn

ξ2j e
t(cos |h̃|ξ1−ξ21−···−ξ2n) cos |x|ξ1 cos(t sin |h̃|ξ1)dξ

= −
∫

Rn

ξ21e
t(cos |h̃|ξ1−ξ21−···−ξ2n) cos |x|ξ1 cos(t sin |h̃|ξ1)dξ

−
n∑

j=2

∫

Rn

ξ2j e
t(cos |h̃|ξ1−ξ21−···−ξ2n) cos |x|ξ1 cos(t sin |h̃|ξ1)dξ.
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The last expression is equal to

−
∫

Rn−1

e−t(ξ22+···+ξ2n)dξ′
+∞∫

−∞
ξ21e

t(cos |h̃|ξ1−ξ21) cos |x|ξ1 cos(t sin |h̃|ξ1)dξ1

−
n∑

j=2

∫

Rn−1

ξ2j e
−t(ξ22+···+ξ2n)dξ′

+∞∫

−∞
et(cos |h̃|ξ1−ξ21) cos |x|ξ1 cos(t sin |h̃|ξ1)dξ1

= 2
∂2E1
∂x2

(|x|, t)
∫

Rn−1

e−t|ξ′|2dξ′ − 2E1(|x|, t)
n∑

j=2

∫

Rn−1

ξ2j e
−t|ξ′|2dξ′.

Compute the integral in the second term:

∫

Rn−1

ξ2j e
−t|ξ′|2dξ′ =

∫

Rn−2

e−t|η|2dη
+∞∫

−∞
ξ2j e

−tξ2j dξj

= Cn−2Γ
(n
2
− 1
)
t1−

n
2

∞∫

0

τ2e−tτ2dτ =
1

2
Cn−2Γ

(
3

2

)
Γ
(n
2
− 1
)
t−

n+1
2 .

This implies that

ΔE1,n = Cn−1Γ

(
n− 1

2

)
t
1−n
2

∂2E1
∂x2

(|x|, t)− nCn−2Γ

(
3

2

)
Γ
(n
2
− 1
)
t−

n+1
2 E1(|x|, t).

Computing ΔE2,n in the same way and taking into account Remark 1.2.2, we see that the limit relation

lim
|x|→∞

|x|n+1ΔE(n)(x, t) = 0

holds for all positive t and |h|. Then, arguing as in the proof of Lemma 1.2.3, we obtain that

lim
|x|→∞

|x|n+1 ∂E(n)
∂t

(x, t) = 0

for all positive t and |h|. Thus, the following assertion is proved:

Theorem 1.4.1. Let a function u0(x) be continuous and bounded in R
n (belong to the space L∞(Rn)).

Then the function

∫

Rn

E(n)(x− ξ, t)u0(ξ)dξ satisfies Eq. (1.7) in the classical sense (a. e. respectively).

To prove that the constructed solution satisfies the corresponding initial-value condition as well
(apart from Eq. (1.7)), we represent the fundamental solution as follows:

∫

Rn

e
t(

m∑

k=1
ak cos bkξ1−|ξ|2)

cos(x1ξ1 + · · ·+ xnξn− t

m∑
k=1

ak sin bkξ1)dξ

=

∫

Rn

e
t(

m∑

k=1

ak cos bkξ1−ξ21)
e−t|ξ′|2 cos(x1ξ1− t

m∑
k=1

ak sin bkξ1) cos x
′ · ξ′dξ

−
∫

Rn

e
t(

m∑

k=1
ak cos bkξ1−ξ21)

e−t|ξ′|2 sin(x1ξ1− t

m∑
k=1

ak sin bkξ1) sinx
′ · ξ′dξ.
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The last expression is equal to

∞∫

−∞
e
t(

m∑

k=1
ak cos bkξ1−ξ21)

cos(x1ξ1 − t
m∑

k=1

ak sin bkξ1)dξ1

∫

Rn−1

e−t|ξ′|2 cos x′ · ξ′dξ′

−
∞∫

−∞
e
t(

m∑

k=1

ak cos bkξ1−ξ21)
sin(x1ξ1 − t

m∑
k=1

ak sin bkξ1)dξ1

∫

Rn−1

e−t|ξ′|2 sinx′ · ξ′dξ′

= 2Ea,b(x1, t)
∫

Rn−1

e−t|ξ′|2 cosx′ · ξ′dξ′

(the second term vanishes because the integrand of its first factor is even).
Compute the last integral.
Without loss of generality (more exactly, up to a rotation of the coordinate system ξ1, . . . , ξn), we

have x′ · ξ′ = |x|ξ2. Therefore,
∫

Rn−1

e−t|ξ′|2 cos x′ · ξ′dξ′ =
∫

Rn−1

e−t|ξ′|2 cos |x′|ξ2dξ =

+∞∫

−∞
e−tξ22 cos |x′|ξ2dξ2

∫

Rn−2

e−t|ξ′′|2dξ′′

=

√
π√
t
e−

|x′|2
4t

∫

Rn−2

e−t(ξ23+···+ξ2n)dξ′′ =
(π
t

)n−1
2

e−
|x′|2
4t .

Thus, E(n)(x, t) = 2
(π
t

)n−1
2 E(x1, t)e−

|x′|2
4t , where x′ = (x2, . . . , xn) is a vector from R

n−1.

Let (y0, x
0
1, . . . x

0
n−1)

def
= (y0, x

0) be an arbitrary element of Rn. Introduce the following notation:

u(x, t) def
=

1

(2π)n

∫

Rn

E(n)(x− ξ, t)u0(ξ)dξ. (1.10)

Consider the difference u(y0, x
0, t)− u0(y0, x

0).
Change the variables:

y0 − ξ1

2
√
t

= η,
x0j − ξj+1

2
√
t

= zj , j = 1, n− 1.

This yields the relations

u(y0, x
0, t)=

2

π
n+1
2

∫

Rn

√
tE(2√tη, t)e−|z|2u0

(
y0 − 2

√
tη, x01 − 2

√
tz1, . . . , x

0
n−1 − 2

√
tzn−1

)
dηdz

=
2

π
n+1
2

+∞∫

−∞

∫

Rn−1

√
tE(2

√
tη, t)e−|ξ|2u0

(
y0 − 2

√
tη, x0 − 2

√
tξ
)
dξdη

and

u0(y0, x
0) =

1

π
n
2

+∞∫

−∞

∫

Rn−1

e−η2−|ξ|2u0(y0, x0)dξdη.
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Thus, we have

u(y0, x
0, t)− u0(y0, x

0)

=
2

π
n+1
2

+∞∫

−∞

∫

Rn−1

e−|ξ|2
[√

tE(2√tη, t)u0

(
y0 − 2

√
tη, x0 − 2

√
tξ
)
−

√
π

2
u0(y0, x

0)e−η2
]
dξdη.

The last difference can be represented as

2

π
n+1
2

+∞∫

−∞

∫

Rn−1

e−|ξ|2
[
u0

(
y0 − 2

√
tη, x0 − 2

√
tξ
)

×
∞∫

0

e
−z2+t

m∑

k=1

ak cos
bkz√

t
cos

(
2zη − t

m∑
k=1

ak sin
bkz√
t

)
dz −

√
π

2
u0(y0, x

0)e−η2

⎤
⎦ dξdη

(see the deduction of representation (1.5) in the previous section).

Now, let A > 0, G1 =
{
(η, ξ)
∣∣∣η ∈ (−A,A), |ξ| < A

}
, andG2 =R

n\G1; then u(y0, x
0, t)−u0(y0, x

0)=

J1 + J2, where

Jj =
2

π
n+1
2

∫

Gj

⎡
⎣

∞∫

0

u0

(
y0 − 2

√
tη, x0 − 2

√
tξ
)
e
−z2+t

m∑

k=1
ak cos

bkz√
t

× cos

(
2zη − t

m∑
k=1

ak sin
bkz√
t

)
dz −

√
π

2
u0(y0, x

0)e−η2

]
e−|ξ|2dηdξ,

j = 1, 2.
First, we estimate the integral J2:∣∣∣∣∣∣
∫

G2

u0(y0, x
0)e−|ξ|2−η2dηdξ

∣∣∣∣∣∣ ≤ sup |u0|
∫

|ξ|2+η2≥A2

e−|ξ|2−η2dξdη = Cn sup |u0|
∞∫

A

rn−1e−r2dr
A→∞−→ 0

(due to the convergence of the last integral and boundedness of u0).
To estimate the remaining term of the integral J2, we decompose the integrating domain as follows:

G2 =
{
η > A, ξ ∈ R

n−1
} ∪ {η < −A, ξ ∈ R

n−1
} ∪ {η ∈ [−A,A], |ξ| ≥ A} def

= G2,1 ∪G2,2 ∪G2,3;

correspondingly, for j = 1, 2, 3, denote

∫

G2,j

e−|ξ|2
∞∫

0

u0

(
y0 − 2

√
tη, x0 − 2

√
tξ
)
e
−z2+t

m∑

k=1
ak cos

bkz√
t
cos

(
2zη − t

m∑
k=1

ak sin
bkz√
t

)
dzdηdξ

by
π

n+1
2

2
J2,j .

Then

J2,1 =
2

π
n+1
2

∫

G2,1

u0

(
y0 − 2

√
tη, x0 − 2

√
tξ
)

×
∞∫

0

e
−z2+t

m∑

k=1
ak cos

bkz√
t
cos 2zη cos

(
t

m∑
k=1

ak sin
bkz√
t

)
dzdηdξ
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+
2

π
n+1
2

∫

G2,1

u0

(
y0 − 2

√
tη, x0 − 2

√
tξ
)

×
∞∫

0

e
−z2+t

m∑

k=1

ak cos
bkz√

t
sin 2zη sin

(
t

m∑
k=1

ak sin
bkz√
t

)
dzdηdξ def

= J2,1,1 + J2,1,2.

Earlier, estimating the integral I3 in (1.6), we obtained that

∣∣∣
∞∫

0

e
−z2+t

m∑

k=1
ak cos

bkz√
t
cos 2zη cos

(
t

m∑
k=1

ak sin
bkz√
t

)
dzdηdξ

∣∣∣ ≤ M

η2

provided that η ≥ A and t ∈ (0, 1]. Therefore,

|J2,1,1| ≤ 2M sup |u0|
π

n+1
2

∫

Rn−1

e−|ξ|2dξ
∞∫

A

dη

η2
=

2M sup |u0|
πA

.

Estimating J2,1,2 in the same way, we see that |J2,1| ≤ 4M sup |u0|
πA

.

In the same way, we obtain the inequality |J2,2| ≤ 4M sup |u0|
πA

.

Let us estimate

J2,3 =
2

π
n+1
2

∫

|ξ|≥A

e−|ξ|2
A∫

−A

u0

(
y0 − 2

√
tη, x0 − 2

√
tξ
)

×
∞∫

0

e
−z2+t

m∑

k=1
ak cos

bkz√
t
cos 2zη cos

(
t

m∑
k=1

ak sin
bkz√
t

)
dzdηdξ.

For t ∈ (0, 1], we have

∣∣∣
∞∫

0

e
−z2+t

m∑

k=1

ak cos
bkz√

t
cos 2zη cos

(
t

m∑
k=1

ak sin
bkz√
t

)
dz
∣∣∣ ≤ et

∞∫

0

e−z2dz ≤
√
π

2
e.

Therefore,

|J2,3| ≤ 2 sup |u0|e
π

n
2

A

∫

|ξ|≥A

e−|ξ|2dξ =
2Cn sup |u0|e

π
n
2

A

∞∫

A

rn−2e−r2dr.

The last expression tends to zero as A → ∞. Indeed, we have

x

∞∫

x

rn−2e−r2dr = x

⎛
⎝Γ
(
n
2

)
√
2

−
x∫

0

rn−2e−r2dr

⎞
⎠ =

Γ(n
2 )√
2

−
x∫

0

rn−2e−r2dr

1
x

.

Computing the limit

lim
x→∞

Γ(n
2 )√
2

−
x∫

0

rn−2e−r2dr

1
x

by means of the L’Hospital rule, we obtain the it is equal to lim
x→∞xne−x2

= 0.
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Thus, for an arbitrary positive ε, one can select a positive A such that |J2| < ε

2
; fix such A and

consider the integral J1.
By virtue of the continuity of u0 at the point (y0, x

0) and Lemma 1.3.1, one can select a small
positive t0 such that for any t from (0, t0) and any (η, ξ) from G1, we have∣∣∣∣∣∣u0

(
y0 − 2

√
tη, x0 − 2

√
tξ
) ∞∫

0

e
−z2+t

m∑

k=1
ak cos

bkz√
t
cos

(
2zη − t

m∑
k=1

ak sin
bkz√
t

)
dz

−u0(y0, x
0)

√
π

2
e−η2
∣∣∣∣ < ε

2

π
n+1
2

2

1

(2A)n
, i.e., |J1| < ε

2
.

Since the positive ε is selected arbitrarily, this implies that

lim
t→+0

u(y0, x
0
1, . . . , x

0
n−1, t) = u0(y0, x

0
1, . . . , x

0
n−1).

Since the real x01, . . . , x
0
n−1, and y0 are selected arbitrarily, this proves the following assertion:

Theorem 1.4.2. Let u0(x) be continuous and bounded in R
n. Then the function defined by (1.10) is

a classical solution of problem (1.7), (1.4).

1.5. Uniqueness of Solutions

Take an arbitrary positive T and consider the function u(x, t) = u(x′, xn, t) defined as

2

π
n+1
2

+∞∫

−∞

∫

Rn−1

u0

(
x′ − 2

√
tξ, xn − 2

√
tη
)
e−|ξ|2

∞∫

0

e
−z2+t

m∑

k=1
ak cos

bkz√
t
cos

(
2zη − t

m∑
k=1

ak sin
bkz√
t

)
dzdξdη

(1.11)
and satisfying (by virtue of Theorem 1.4.2) problem (1.7), (1.4).

Let us prove the following assertion:

Theorem 1.5.1. Let u0(x) be continuous and bounded in R
n. Then function (1.11) is a unique

bounded solution of problem (1.7), (1.4) in the domain R
n×(0, T ).

Proof. First, we prove that function (1.11) is bounded.

Treating cos

(
2zη − t

m∑
k=1

ak sin
bkz√
t

)
as the cosine of a difference, decompose

π
n+1
2

2
u(x, t) into two

terms; it suffices to estimate one of them. Estimate

I1
def
=

+∞∫

−∞

∫

Rn−1

u0

(
x′ − 2

√
tξ, xn − 2

√
tη
)
e−|ξ|2

×
∞∫

0

e
−z2+t

m∑

k=1
ak cos

bkz√
t
cos 2zη cos

(
t

m∑
k=1

ak sin
bkz√
t

)
dzdξdη.

In I1, represent the domain of integrating with respect to the variable (ξ, η) as G1 ∪G2 ∪G3 ∪G4,
where

G1=
{
(ξ, η)
∣∣∣η ∈ (−1, 1), |ξ| < 1

}
, G2=

{
(ξ, η)
∣∣∣η > 1, ξ ∈ R

n−1
}
,

G3=
{
(ξ, η)
∣∣∣η < −1, ξ ∈ R

n−1
}
, and G4=

{
(ξ, η)
∣∣∣η ∈ [−1, 1], |ξ| ≥ 1

}
.
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The terms of the integral I1 are denoted by J1, J2, J3, and J4 respectively. Estimate those terms.

|J1| ≤ |G1| sup |u0|e
t

m∑

k=1
|ak|

∞∫

0

e−z2dz ≤ 2n−1√π sup |u0|e
T

m∑

k=1
|ak|

.

The absolute value of the internal integral in J4 is estimated from above by

e
t

m∑

k=1
|ak|

∞∫

0

e−z2dz ≤ e
T

m∑

k=1
|ak|

√
π

2
.

Therefore,

|J4| ≤
√
π sup |u0|e

T
m∑

k=1
|ak| ∫

Rn−1

e−|ξ|2dξ = π
n
2 sup |u0|e

T
m∑

k=1
|ak |

.

To estimate the term J2, represent its internal integral as follows:

− 1

4η2

∞∫

0

[
e
−z2+t

m∑

k=1
ak cos

bkz√
t
cos

(
t

m∑
k=1

ak sin
bkz√
t

)]′′

z

cos 2ηz dz. (1.12)

Denote t
m∑
k=1

ak cos
bkz√
t
and t

m∑
k=1

ak sin
bkz√
t
by f1(z) and f2(z) respectively. Then

f ′
1(z) = −√

t
m∑
k=1

akbk sin
bkz√
t
, f ′′

1 (z) = −
m∑
k=1

akb
2
k cos

bkz√
t
,

f ′
2(z) =

√
t

m∑
k=1

akbk cos
bkz√
t
, and f ′′

2 (z) = −
m∑
k=1

akb
2
k sin

bkz√
t
.

This implies the inequalities

|fj| ≤ t

m∑
k=1

|ak|, |f ′
j | ≤

√
t

m∑
k=1

|ak||bk|, and |f ′′
j | ≤

m∑
k=1

|ak|b2k (j = 1, 2). (1.13)

Further, we have

[e−z2+f1(z)]′ = (f ′
1(z)− 2z)e−z2+f1(z),

[e−z2+f1(z)]′′ = [(f ′
1(z)− 2z)2 + (f ′′

1 (z)− 2)]e−z2+f1(z),

[cos f2(z)]
′ = −f ′

2(z) sin f2(z),

and

[cos f2(z)]
′′ = −f ′′

2 (z) sin f2(z)− [f ′
2(z)]

2 cos f2(z).

Hence,[
e−z2+f1(z) cos g(z)

]′′
= −e−z2+f1(z)

(
f ′′
2 (z) sin f2(z) + [f ′

2(z)]
2 cos f2(z)

)

− 2f ′
2(z) sin f2(z)[f

′
1(z)− 2z]e−z2+f1(z)+cos f2(z)e

−z2+f1(z)
(
[f ′

1(z)]
2 − 4zf ′

1(z)+4z2+f ′′
1 (z)− 2

)
.

The absolute value of the last expression does not exceed

e
t

m∑

k=1

|ak|
e−z2
(|f ′

1|2 + 4z|f ′
1|+ |f ′′

1 |+ 4z2 + 2 + 4z|f ′
2|+ 2|f ′

1||f ′
2|+ |f ′′

2 |+ |f ′
2|2
)
.
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This and estimates (1.13) imply that the absolute value of (1.12) does not exceed

e
t

m∑

k=1
|ak|

2η2

∞∫

0

e−z2

⎡
⎣2t
(

m∑
k=1

|ak||bk|
)2

+ 4z
√
t

m∑
k=1

|ak||bk|+
m∑
k=1

|ak|b2k + 2z2 + 1

⎤
⎦ dz

≤ M(1 + T )e
T

m∑

k=1
|ak|

η2
,

where M depends only on (complex) parameters a and b.
Thus,

|J2| ≤ M(1 + T )e
T

m∑

k=1

|ak |
sup |u0|

∫

Rn−1

e−|ξ|2dξ
∞∫

1

dη

η2
= M(1 + T )e

T
m∑

k=1

|ak|
sup |u0|π

n−1
2 .

In the same way, we estimate |J3|.
Thus, the boundedness of I1 is proved. Therefore, the boundedness of u(x, t) is proved as well.
Further, Eq. (1.7) can be represented as

∂u

∂t
=

m+1∑
r=1

LrPru,

where Pm+1 = Δ, Lm+1 = I, Pr = arI, r = 1,m, and the operators Lr, r = 1,m, act as follows:
Lrg(x) = g(x− brh). It is known from [2] that no nontrivial bounded solutions of the Cauchy problem
for such an equation exist for u0(x) ≡ 0.

Since Eq. (1.7) is linear, it follows that Theorem 1.5.1 is proved.

Now, consider problem (1.7), (1.4) in the half-space R
n×(0,∞). The function u(x, t) defined by

relation (1.11) is a classical solution of the specified problem such that for any t0 from (0,+∞) the
function u(x, t) is bounded in the layer R

n × [0, t0]. Let us show that Theorem 1.5.1 implies the
following assertion.

Corollary 1.5.1. Function (1.11) is the unique solution of problem (1.7), (1.4) in the half-space
R
n×(0,∞) bounded in R

n × [0, t0] for any positive t0.

Proof. Assume the converse: there exist two different solutions u1(x, t) and u2(x, t) possessing the

above property. Then the function v(x, t) def
= u1(x, t) − u2(x, t) is different from the identical zero, is

bounded in R
n × [0, t0] for any positive t0, satisfies Eq. (1.7), and satisfies Eq. (1.4) with the trivial

initial-value function. There exists (x∗, t∗) from R
n× (0,+∞) such that v(x∗, t∗) �= 0. Then, denoting

t∗ + 1 by T, we see that for any finite T there exists a bounded solution of problem (1.7), (1.4) with
the trivial initial-value function. This contradicts Theorem 1.5.1.

Corollary 1.5.1 is proved.

Remark 1.5.1. We used the uniqueness of the bounded solution of problem (1.7), (1.4), but the
assertion of [2, Theorem 2] is stronger: it defines a wider uniqueness class. Therefore, solution (1.11)
is unique in a wider class as well. More exactly, it is the class of functions satisfying the following
estimate for any positive T :

sup
t∈[0,T ]

|u(x, t)| ≤ Ceq|x| log(|x|+1)

if q <
1

max
1≤k≤m

|bk| .
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1.6. Asymptotic Properties of Solutions

In this section, we consider Eq. (1.7) in the following form:

∂u

∂t
= Δu+

n∑
j=1

mj∑
k=1

ajku(x+ bjkhj , t), (1.14)

where hj
def
= (hj1, . . . , hjn) are vectors of unit length pairwise orthogonal (for j = 1, n) in R

n and
ajk, bjk ∈ R

1 for k = 1,mj , j = 1, n.
Then function (1.11), which is (by Theorem 1.5.1) the unique solution of problem (1.14), (1.4) in

the half-space R
n×(0, T ) bounded in R

n × [0, t0] for any positive t0, is represented as follows:

(
2

π

)n∫

Rn

u0(x− 2
√
tη)

n∏
j=1

∞∫

0

e
−z2+t

mj∑

k=1

ajk cos
bjkz√

t
cos

(
2ηjz + t

mj∑
k=1

ajk sin
bjkz√

t

)
dzdη. (1.15)

Without loss of generality, assume that the (finite) number sequence {ajk}mj

k=1, j = 1, n, does not

decrease. For any j ∈ 1, n, denote min
ajk>0

k by m0
j ; if j is such that ajk < 0 for any k ∈ 1,mj , then

denote mj + 1 by m0
j . Denote the differential-difference operator at the right-hand part of Eq. (1.14)

by L. Also, consider the operator L acting as follows:

Lu def
= Δu+

n∑
j=1

∑
k<m0

j

ajku(x+ bjkhj , t).

Denote the operator
n∑

j=1

∑
k<m0

j

ajkI − L by R and consider the real part of its symbol (or, which is the

same, the symbol of the operator R+R∗):

ReR(ξ) =

n∑
j=1

∑
k<m0

j

ajk + |ξ|2 −
n∑

j=1

∑
k<m0

j

ajk cos bjkξj

(see [102, § 8]). We say that R(ξ) is positive definite if there exists a positive C such that ReR(ξ) ≥ C|ξ|2
for any ξ from R

n. Similarly to the case of differential operators (see, e.g., [108, p. 66 and p. 78]),
any operator R possessing the above property can be called a second-order operator strong elliptic
in the whole space. Note that, similarly to the case of bounded domains (see [102, § 9]), the strong
ellipticity of differential operators differs essentially from the strong ellipticity of differential-difference
ones. Therefore, the impact of difference terms is principally important.

The main result of the section is the following theorem.

Theorem 1.6.1. Let R(ξ) be positive definite. Then, for any x from R
n, we have

lim
t→+∞

⎡
⎣e−t

n∑

j=1

mj∑

k=1
ajk

u(x, t) −w

(
x1 + q1t

p1
, . . . ,

xn + qnt

pn
, t

)⎤
⎦ = 0, (1.16)

where w(x, t) is the bounded solution of the Cauchy problem for the heat equation with the initial-value
function u0(p1x1, . . . , pnxn),

pj =

√√√√1 +
1

2

mj∑
k=1

ajkb
2
jk, and qj =

mj∑
k=1

ajkbjk, j = 1, n.
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Proof. First, we note that p1, . . . , pn are well defined and different from zero under the assumptions
of the theorem. Take an arbitrary j ∈ 1, n. From the assumption of the theorem, it follows that∑

k<m0
j

ajk + ξ2j −
∑
k<m0

j

ajk cos bjkξj ≥ Cξ2j

for any positive ξj (the positive definiteness condition with ξ1, . . . , ξj−1, ξj+1, . . . , ξn assigned to be
equal to zero). This implies that

Cξ2j ≤ ξ2j +
∑
k<m0

j

ajk(1− cos bjkξj) = ξ2j + 2
∑
k<m0

j

ajk sin
2 bjkξj

2
= ξ2j +

ξ2j
2

∑
k<m0

j

ajkb
2
jk

(
sin

bjkξj
2

bjkξj
2

)2
.

Hence, 1 +
1

2

∑
k<m0

j

ajkb
2
jk

(
sin

bjkξj
2

bjkξj
2

)2
≥ C for any ξj > 0. Therefore,

1

2

∑
k<m0

j

ajkb
2
jk > −1. Indeed, as-

suming, to the contrary, that
1

2

∑
k<m0

j

ajkb
2
jk ≤ −1, we see that the following inequality holds for any

positive ξj :

C ≤ 1 +
1

2

∑
k<m0

j

ajkb
2
jk −

1

2

∑
k<m0

j

ajkb
2
jk +

1

2

∑
k<m0

j

ajkb
2
jk

(
sin

bjkξj
2

bjkξj
2

)2
≤ 1

2

∑
k<m0

j

ajkb
2
jk

⎡
⎣
(
sin

bjkξj
2

bjkξj
2

)2
− 1

⎤
⎦ .

Since we deal with a finite sum, it follows that one can select a small positive ξj such that the last

expression does not exceed
C

2
. The obtained contradiction proves the positivity of

1

2

∑
k<m0

j

ajkb
2
jk + 1

Therefore, pj is defined and it is positive.

Now, we must prove two preliminary assertions.

Lemma 1.6.1. Let the assumptions of Theorem 1.6.1 be satisfied and j ∈ 1, n. Then

∞∫

0

e
−z2+t

mj∑

k=1
ajk

(
cos

bjkz√
t
−1

)

cos

(
2zη − t

mj∑
k=1

ajk sin
bjkz√

t

)
dz −

√
π

2pj
e
− (2η−qj

√
t)2

4p2
j

t→∞−→ 0

uniformly with respect to η ∈ R
1.

Proof. Let j ∈ 1, n. Redenote mj by m, m0
j by m0, pj by p, qj by q, ajk by ak, and bjk by bk; k = 1,m.

The relation √
π

2p
e
− (2η−q

√
t)2

4p2 =

∞∫

0

e−p2z2 cos(2η − q
√
t)zdz,

holds for any real η and any positive t. Therefore,

∞∫

0

e
−z2+t

m∑

k=1
ak

(
cos

bkz√
t
−1

)

cos

(
2zη − t

m∑
k=1

ak sin
bkz√
t

)
dz −

√
π

2p
e
− (2η−q

√
t)2

4p2 = I1 + I2,

where

I1 =

∞∫

0

e−z2

(
cos 2ηz

[
e
−2t

m∑

k=1
ak sin2

bkz

2
√

t
cos

(
t

m∑
k=1

ak sin
bkz√
t

)
− e(1−p2)z2 cos(qz

√
t)

])
dz
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and

I2 = sin 2ηz

[
e
−2t

m∑

k=1

ak sin2
bkz

2
√

t
sin

(
t

m∑
k=1

ak sin
bkz√
t

)
− e(1−p2)z2 sin(qz

√
t)

]
dz.

Consider the first term:

I1 =

∞∫

0

e−z2 cos 2ηz

[
e
−2t

m∑

k=1
ak sin2

bkz

2
√

t
cos

(
t

m∑
k=1

ak sin
bkz√
t

)
− e(1−p2)z2 cos(qz

√
t)

]
dz

=

δ∫

0

+

∞∫

δ

def
= I3,δ + I4,δ.

Take an arbitrary positive ε. First, we estimate I4,δ.

The absolute value of the second term of its integrand does not exceed e−p2z2 . Consider its first
term:

2t

m∑
k=1

ak sin
2 bkz

2
√
t
= 2t

m∑
k=1

ak
sin2 bkz

2
√
t

b2kz
2

4t

b2kz
2

4t
=

z2

2

m∑
k=1

akb
2
k

(
sin bkz

2
√
t

bkz
2
√
t

)2

.

Therefore, the absolute value of the specified term of the integrand does not exceed

e
−z2− z2

2

m∑

k=1
akb

2
k

⎛

⎝
sin

bkz

2
√

t
bkz

2
√

t

⎞

⎠

2

.

By virtue of the assumption of Theorem 1.6.1, the inequality

−1

2

∑
k<m0

akb
2
k < 1

holds. Then

−1

2

∑
k<m0

akb
2
k

(
sin bkz

2
√
t

bkz
2
√
t

)2

< 1

because any ak of the last sum is negative. Therefore, the power of the last exponential function can
be represented as

−z2 − z2

2

∑
k<m0

akb
2
k

(
sin bkz

2
√
t

bkz
2
√
t

)2

− z2

2

∑
k≥m0

akb
2
k

(
sin bkz

2
√
t

bkz
2
√
t

)2

< −z2

2

⎡
⎣1 + ∑

k≥m0

akb
2
k

(
sin bkz

2
√
t

bkz
2
√
t

)2
⎤
⎦ .

Thus, the absolute value of the last integrand does not exceed 2e−γz2 , where

γ = min

⎛
⎝p 2, 1 +

1

2
inf
z>0
t>0

∑
k≥m0

akb
2
k

(
sin bkz

2
√
t

bkz
2
√
t

)2⎞
⎠ = min(p 2, 1)

by virtue of the positivity of any ak of the last sum. Hence, γ > 0. Therefore, there exists a positive

δ such that
∣∣I4,δ∣∣ < ε

4
. Fix that δ and estimate I3,δ. The third factor of its integrand is equal to

e
−2t

m∑

k=1

ak sin2
bkz

2
√

t

[
cos

(
t

m∑
k=1

ak sin
bkz√
t

)
− cos(qz

√
t)

]
+ cos(qz

√
t)

[
e
−2t

m∑

k=1

ak sin2
bkz

2
√

t − e(1−p2)z2

]
.

(1.17)
Let us estimate the second term of sum (1.17):

e
−2t

m∑

k=1

ak sin2
bkz

2
√

t − e(1−p2)z2 = e
−2t

m∑

k=1

ak sin2
bkz

2
√

t − e
− z2

2

m∑

k=1

akb
2
k
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= e
− z2

2

m∑

k=1
akb

2
k

⎡
⎣e

m∑

k=1
ak

(
b2kz2

2
−2t sin2

bkz

2
√

t

)

− 1

⎤
⎦ ;

b2kz
2

2
− 2t sin2

bkz

2
√
t
=

b2kz
2

2
− b2kz

2

2

(
2
√
t

bkz

)2
sin2

bkz

2
√
t

=
b2kz

2

2

⎡
⎣1−
(
sin bkz

2
√
t

bkz
2
√
t

)2
⎤
⎦ = b2kz

2

2

(
1 +

sin bkz
2
√
t

bkz
2
√
t

)(
1−

sin bkz
2
√
t

bkz
2
√
t

)
.

Form any positive ε1 and any k = 1,m there exists a positive δ1,k such that for any x ∈ (−δ1,k, δ1,k)

the inequality
∣∣∣sinx

x
− 1
∣∣∣ < ε1

m|ak|b2kδ2
holds. On the other hand,

∣∣∣sinx
x

+ 1
∣∣∣ < 3 for any x. Hence,

|ak|
∣∣∣∣b

2
kz

2

2
− 2t sin2

bkz

2
√
t

∣∣∣∣ < 3ε1
2m

for any t >

(
bkδ

2δ1,k

)2
and any z ∈ [0, δ]. Select a small ε1 such that

e
3ε1
2 , e−

3ε1
2 ∈
(
1− εe−δ2

4
√
π
, 1 +

εe−δ2

4
√
π

)
.

Then

e
− z2

2

m∑

k=1

akb
2
k
= e

− z2

2

∑

k<m0

akb
2
k− z2

2

∑

k≥m0

akb
2
k ≤ e

− z2

2

∑

k<m0

akb
2
k ≤ ez

2 ≤ eδ
2

for any z ∈ [0, δ]. Hence, for the specified z and for any t > max
1≤k≤m

(
bkδ

2δ1,k

)2
, we have

∣∣∣∣∣ cos(qz
√
t)

[
e
−2t

m∑

k=1
ak sin2

bkz

2
√

t − e(1−p2)z2

] ∣∣∣∣∣ <
ε

4
√
π
=

ε

8

⎛
⎝

∞∫

0

e−z2dz

⎞
⎠

−1

. (1.18)

Now, estimate the first term of (1.17).

cos

(
t

m∑
k=1

ak sin
bkz√
t

)
− cos(qz

√
t) = cos

(
q
√
tz + t

m∑
k=1

ak sin
bkz√
t
− q

√
tz

)
− cos(qz

√
t)

= cos(q
√
tz)

[
cos

(
t

m∑
k=1

ak sin
bkz√
t
− q

√
tz

)
− 1

]

− sin(q
√
tz) sin

(
t

m∑
k=1

ak sin
bkz√
t
− q

√
tz

)
. (1.19)

t

m∑
k=1

ak sin
bkz√
t
− q

√
tz =

m∑
k=1

ak

(
t sin

bkz√
t
− bk

√
tz

)

=

m∑
k=1

akbk
√
tz

(√
t

bkz
sin

bkz√
t
− 1

)
=

m∑
k=1

ak(bkz)
2

√
t

bkz

(
sin bkz√

t
bkz√

t

− 1

)
.

lim
x→0

1

x

(
sinx

x
− 1

)
= lim

x→0

sinx− x

x2
= lim

x→0

cos x− 1

2x
= lim

x→0

− sinx

2
= 0;
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therefore, for any positive ε1 and any k = 1,m there exists a positive Tk such that∣∣∣∣∣
√
t

bkz

(
sin bkz√

t
bkz√

t

− 1

) ∣∣∣∣∣ <
ε1

m|ak|b2kδ2

for any t > Tk and any z ∈ [0, δ]. Therefore, for any t > max
1≤k≤m

Tk, we have

∣∣∣∣∣ sin(q
√
tz) sin

(
t

m∑
k=1

ak sin
bkz√
t
− q

√
tz

) ∣∣∣∣∣ < | sin ε1|.

Further,

∣∣∣∣∣ cos(q
√
tz)

[
cos

(
t

m∑
k=1

ak sin
bkz√
t
− q

√
tz

)
− 1

] ∣∣∣∣∣ =
∣∣∣∣∣− 2 cos(q

√
tz) sin2

t
m∑
k=1

ak sin
bkz√

t
− q

√
tz

2

∣∣∣∣∣

≤ 2 sin2
t

m∑
k=1

ak sin
bkz√

t
− q

√
tz

2
.

As above, one can select a large t such that the last expression is less than 2 sin2
ε1
2

for any z ∈ [0, δ].

Thus, selecting a small ε1 such that the inequality | sin ε1|+ 2 sin2
ε1
2

<
εe−δ2

4
√
π

holds and taking into

account the inequality

e
−2t

m∑

k=1
ak sin2

bkz

2
√

t ≤ e
−2t

m∑

k<m0

ak sin2
bkz

2
√

t ≤ e
− z2

2

m∑

k<m0

akb
2
k ≤ ez

2
,

we see that the absolute value of expression (1.17) does not exceed
ε

4

⎛
⎝

∞∫

0

e−z2dz

⎞
⎠

−1

provided that t

is sufficiently large. Hence, there exists a positive T such that if t > T, then
∣∣I3,δ∣∣ < ε

4
, i.e.,
∣∣I1∣∣ < ε

2
.

The term I2 is estimated in the same way:

e
−2t

m∑

k=1

ak sin2
bkz

2
√

t
sin

(
t

m∑
k=1

ak sin
bkz√
t

)
− e(1−p2)z2 sin(qz

√
t)

=

[
e
−2t

m∑

k=1
ak sin2

bkz

2
√

t − e(1−p2)z2

]
sin(qz

√
t)

+ e
−2t

m∑

k=1

ak sin2
bkz

2
√

t

[
sin

(
t

m∑
k=1

ak sin
bkz√
t

)
− sin(qz

√
t)

]
.

The first of those terms is estimated in the same way as (1.18). It remains to estimate the second one:

sin

(
t

m∑
k=1

ak sin
bkz√
t

)
− sin(qz

√
t) = sin

(
qz
√
t+ t

m∑
k=1

ak sin
bkz√
t
− qz

√
t

)
− sin(qz

√
t)

= sin(qz
√
t)

[
cos

(
t

m∑
k=1

ak sin
bkz√
t
− qz

√
t

)
− 1

]
+ cos(qz

√
t) sin

(
t

m∑
k=1

ak sin
hz√
t
− qz

√
t

)
;

this expression is estimated in the same way as (1.19). Thus, there exists a positive T such that∣∣I2∣∣ < ε

2
for any t > T .
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This completes the proof of Lemma 1.6.1.

Lemma 1.6.2. Under the assumptions of Theorem 1.6.1, for any j ∈ 1, n there exists Mj depending
only on the coefficients aj1, . . . , ajmj , bj1, . . . , bjmj and such that

∣∣∣∣∣
∞∫

0

e
−z2+t

mj∑

k=1
ajk

(
cos

bjkz√
t
−1

)

cos

(
yz − qj

√
tz + t

mj∑
k=1

ajk sin
bjkz√

t

)
dz

∣∣∣∣∣ ≤
Mj

y2

for any y ∈ (0,+∞) and t ∈ [1,+∞).

Proof. Take an arbitrary j ∈ 1, n and redenote mj by m, m0
j by m0, pj by p, qj by q, ajk by ak, and

bjk by bk; k = 1,m. It suffices to estimate one term of the last integral (the second one is estimated
in the same way). Let us estimate

∞∫

0

e
−z2+t

m∑

k=1
ak

(
cos

bkz√
t
−1

)

cos yz cos

(
q
√
tz − t

m∑
k=1

ak sin
bkz√
t

)
dz

or, which is equivalent,
∞∫

0

e
−z2+ 1

t2

m∑

k=1
ak(cos bkzt−1)

cos

(
qz

t
− 1

t2

m∑
k=1

ak sin bkzt

)
cos yzdz.

Integrating by parts two times, we obtain that the last integral is equal to − 1

y2

∞∫

0

g′′(z) cos yzdz, where

g(z) = e
−z2+ 1

t2

m∑

k=1
ak(cos bkzt−1)

cos

(
qz

t
− 1

t2

m∑
k=1

ak sin bkzt

)

(it is easy to check that the integrated terms vanish). Therefore, it suffices to show that for arbitrary
fixed values of the (vector) parameters a and b satisfying the assumptions of Theorem 1.6.1, the last
integral is bounded uniformly with respect to t > 0.

We have

g′(z) =
1

t
e
−z2+ 1

t2

m∑

k=1

ak(cos bkzt−1)
(

m∑
k=1

akbk

[
sin

(
qz

t
− bkzt− 1

t2

m∑
k=1

ak sin bkzt

)

− sin

(
qz

t
− 1

t2

m∑
k=1

ak sin bkzt

)]
− 2zt cos

(
qz

t
− 1

t2

m∑
k=1

ak sin bkzt

))

and

g′′(z) =
1

t
e
−z2+ 1

t2

m∑

k=1
ak(cos bkzt−1)

(
−2z − 1

t

m∑
k=1

akbk sin bkzt

)

×
(

m∑
k=1

akbk

[
sin

(
qz

t
− bkzt− 1

t2

m∑
k=1

ak sin bkzt

)
− sin

(
qz

t
− 1

t2

m∑
k=1

ak sin bkzt

)]

− 2zt cos

(
qz

t
− 1

t2

m∑
k=1

ak sin bkzt

))
+

1

t
e
−z2+ 1

t2

m∑

k=1

ak(cos bkzt−1)

×
(

m∑
k=1

akbk

[(
q

t
− bkt− 1

t

m∑
k=1

akbk cos bkzt

)
cos

(
qz

t
− bkzt− 1

t2

m∑
k=1

ak sin bkzt

)
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−
(
q

t
− 1

t

m∑
k=1

akbk × cos bkzt

)
cos

(
qz

t
− 1

t2

m∑
k=1

ak sin bkzt

)]

− 2t cos

(
qz

t
− 1

t2

m∑
k=1

ak sin bkzt

)

+ 2tz sin

(
qz

t
− 1

t2

m∑
k=1

ak sin bkzt

)(
q

t
− 1

t

m∑
k=1

akbk × cos bkzt

))
.

Note that

e
1
t2

m∑

k=1
ak(cos bkzt−1)

= e

1
t2

∑

k<m0

ak(cos bkzt−1)+ 1
t2

∑

k≥m0

ak(cos bkzt−1)

≤ e

1
t2

∑

k<m0

ak(cos bkzt−1)

≤ e
−2

∑

k<m0

ak
.

Further, the terms
∞∫

0

e−z2z2 cos

(
qz

t
− 1

t2

m∑
k=1

ak sin bkzt

)
dz,

∞∫

0

e−z2 cos

(
qz

t
− 1

t2

m∑
k=1

ak sin bkzt

)
dz,

and
∞∫

0

e−z2
m∑
k=1

akb
2
k cos

(
qz

t
− bkzt− 1

t2

m∑
k=1

ak sin bkzt

)
dz

are bounded uniformly with respect to t > 0. Thus, it suffices to estimate the integral
∞∫

0

e−z2 |Ψ(z; t)|dz,

where the function Ψ(z; t) is a sum of terms of the form(
2z

t
+

1

t2

m∑
k=1

akbk sin bkzt

)
m∑
k=1

akbk

[
sin

(
qz

t
− bktz − 1

t2

m∑
k=1

ak sin bkzt

)

− sin

(
qz

t
− 1

t2

m∑
k=1

ak sin bkzt

)]
,

m∑
k=1

akbk

[(
1

t2

m∑
k=1

akbk cos bkzt− q

t2

)
cos

(
qz

t
− bktz − 1

t2

m∑
k=1

ak sin bkzt

)]
,

and (
q

t2
− 1

t2

m∑
k=1

akbk cos bkzt

)
cos

(
qz

t
− 1

t2

m∑
k=1

ak sin bkzt

)

−2z sin

(
qz

t
− 1

t2

m∑
k=1

ak sin bkzt

)
1

t

(
q −

m∑
k=1

akbk cos bkzt

)
.

We have

q −
m∑
k=1

akbk cos bkzt =
m∑
k=1

akbk(1− cos bkzt) = 2
m∑
k=1

akbk sin
2 bktz

2
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and

1

t2

∞∫

0

e−z2 sin2
bktz

2
dz =

b2k
4

∞∫

0

e−z2

(
sin2 bktz

2
bktz
2

)2

z2dz ≤ b2k
4

∞∫

0

z2e−z2dz,

which bounded uniformly with respect to t > 0.
Also, we have

∞∫

0

z

t
e−z2 sin2

bktz

2
dz ≤

∞∫

0

ze−z2

∣∣∣ sin bktz
2

∣∣∣
t

dz =
|bk|
2

∞∫

0

z2e−z2
∣∣∣∣sin

bktz
2

bktz
2

∣∣∣∣ dz ≤ |bk|
2

∞∫

0

z2e−z2dz,

which is bounded uniformly with respect to t > 0.
Thus, it suffices to estimate the integral

∞∫

0

e−z2

∣∣∣∣∣
(
2z

t
+

1

t2

m∑
k=1

akbk sin bkzt

)
m∑
k=1

akbk

[
sin

(
qz

t
− 1

t2

m∑
k=1

akbk sin bkzt

)

− sin

(
qz

t
− 1

t2

m∑
k=1

akbk sin bkzt− bktz

)] ∣∣∣∣∣dz.

The difference of the sines in the last integral is equal to

2 sin2
bktz

2
sin

(
qz

t
− 1

t2

m∑
k=1

akbk sin bkzt

)
+ sin bktz cos

(
qz

t
− 1

t2

m∑
k=1

akbk sin bkzt

)
;

therefore, it suffices to estimate the integrals of

e−z2 z

t
sin2

bktz

2
, e−z2 | sin bktz|

t2
sin2

bktz

2
, e−z2 | sin bktz|

t2
| sin bktz|, and e−z2 z

t
| sin bktz|.

The initial three integrals are reduced to integrals estimated above, while the last one is equal to

|bk|
∞∫

0

z2e−z2
∣∣∣sin bktz

bktz

∣∣∣dz, i.e., it does not exceed |bk|
∞∫

0

z2e−z2dz; hence, it is bounded uniformly with

respect to t > 0.
This completes the proof of Lemma 1.6.2.

Now, we can pass directly to the proof of Theorem 1.6.1.
Let x0 = (x01, . . . , x

0
n) be an arbitrary point of Rn. Then, using the integral representation for the

solution of the Cauchy problem for the heat equation, we have the relation

w

(
x01 + q1t

p1
, . . . ,

x0n + qnt

pn
, t

)
=

1

π
n
2

n∏
j=1

pj

∫

Rn

e
−

n∑

j=1

(2ηj+qj
√

t)2

4p2
j u0(x

0
1 − 2η1

√
t, . . . , x0n − 2ηn

√
t)dη.

Hence, the difference

e
−t

n∑

j=1

mj∑

k=1
ajk

u(x0, t)− w

(
x01 + q1t

p1
, . . . ,

x0n + qnt

pn
, t

)

377



can be represented as

1

π
n
2

∫

Rn

u0(x
0
1 − 2η1

√
t, . . . , x0n − 2ηn

√
t)

×

⎡
⎢⎢⎢⎣

n∏
j=1

2√
π

∞∫

0

e
−z2+t

mj∑

k=1
ajk

(
cos

bjkz√
t
−1

)

cos

(
2ηjz + t

mj∑
k=1

ajk sin
bjkz√

t

)
dz − 1

n∏
j=1

pj

e
−

n∑

j=1

(2ηj+qj
√

t)2

4p2
j

⎤
⎥⎥⎥⎦dη.

Change the variables: yj = 2ηj + qj
√
t, j = 1, n. This reduces the last expression to the form

1

πn

∫

Rn

u0(x
0
1 + q1t− y1

√
t, . . . , x0n + qnt− yn

√
t)

⎡
⎣ n∏
j=1

∞∫

0

e
−z2+t

mj∑

k=1
ajk

(
cos

bjkz√
t
−1

)

× cos

(
yjz−qj

√
tz + t

mj∑
k=1

ajk sin
bjkz√

t

)
dz −

n∏
j=1

√
π

2pj
e
− y2j

4p2
j

⎤
⎦ dy, (1.20)

which can be represented as a sum

1

πn

⎛
⎜⎝
∫

Q(A)

+

∫

Rn\Q(A)

⎞
⎟⎠ def

= J1 + J2,

where A is a positive parameter.
Let ε > 0. Each internal (one-dimensional) integral in (1.20) is a bounded function of yj and t.

Indeed, the power of the exponent in the integrand does not exceed

−z2 + t
∑
k<m0

ajk

(
cos

bjkz√
t
− 1

)

= −z2 + t
∑
k<m0

ajk

⎛
⎝sin

bjkz

2
√
t

bjkz

2
√
t

⎞
⎠

2(
bjkz

2
√
t

)2
def
= − z2

⎡
⎣1 + 1

2

∑
k<m0

ajkb
2
jk

(
sinαz,t

αz,t

)2⎤⎦ .

All ajk in the last sum are negative; therefore,

−z2 + t
∑
k<m0

ajk

(
cos

bjkz√
t
− 1

)
≤ −z2

⎛
⎝1 + 1

2

∑
k<m0

ajkb
2
jk

⎞
⎠ def

= − γz2,

where γ > 0 by virtue of the assumption of the theorem. Then Lemma 1.6.2 implies that the
absolute value of each specified (one-dimensional) integral is bounded from above by the function

gj(ηj)
def
=

Mj

1 + η2j
, where Mj is a positive constant. Now, using the boundedness of the function u0,

select A such that J2 <
ε

2
for any t from [1,+∞). Fix the selected A and consider J1. By virtue of

Lemma 1.6.1 and the boundedness of the internal integrals of expression (1.20), the difference in the
square brackets of expression (1.20) tends to zero as t → ∞ uniformly with respect to y ∈ R

n. Indeed,
by virtue of Lemma 1.6.1, there exists a positive T such that for any t ∈ (T,+∞), any j ∈ 1, n, and
any ηj ∈ (−∞,+∞), we have
∣∣∣∣∣

∞∫

0

e
−z2+t

mj∑

k=1
ajk

(
cos

bjkz√
t
−1

)

cos

(
2ηjz + t

mj∑
k=1

ajk sin
bjkz√

t

)
dz −

√
π

2pj
e
− (2ηj+qj

√
t)2

4p2
j

∣∣∣∣∣ <
επn

2n+1An sup|u0|
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(note that no assumptions for the signs of the coefficients bjk are imposed in Lemma 1.6.1). Hence,

the last inequality holds if we take any real yj and assign ηj =
yj − qj

√
t

2
. Therefore, for any t from

(T,+∞), we have the inequality
∣∣∣∣∣

n∏
j=1

∞∫

0

e
−z2+t

mj∑

k=1
ajk

(
cos

bjkz√
t
−1

)

cos

(
yjz− qj

√
tz + t

mj∑
k=1

ajk sin
bjkz√

t

)
dz −

n∏
j=1

√
π

2pj
e
− y2j

2p2
j

∣∣∣∣∣
≤ επn

2n+1An sup|u0| .
This completes the proof of the theorem because x0 is chosen arbitrarily.

Remark 1.6.1. The exponential weight arising in the obtained closeness theorem for solutions is
caused not by the presence of difference terms in the equation but by the dissipativity of the problem.
The specified weight arises in the classical case as well: if all the coefficients bjk vanish, then the limit
relation (1.16) becomes the identity (for any t). Once we add low-order (more exactly, zero-order)
terms to a parabolic equation, the solution leaves the class of bounded functions (even if the initial-
value function is bounded), but, multiplying it by the corresponding exponential (with respect to t)
weight, we return the solution to the specified class.

Note that closeness theorems for solutions are, in general, stronger than stabilization theorems.
Thus, Theorem 1.6.1 establishes a more general type of behavior of the solution as t → ∞ than the
stabilization. However, it is worth showing an important special case where the classical pointwise
stabilization of the solution takes place: this is the case where the operator L is symmetric. In the
specified case, we can apply the following Repnikov–Eidelman result (see [95]): the stabilization of the
Cauchy problem solution for the heat equation (denote this solution by v(x, t)) takes place if and only
if the following limit relation holds for the bounded initial-value function (denoted by v0(x) here):

lim
t→∞

nΓ(n2 )

2π
n
2 tn

∫

|x|<t

v0(x)dx = l, (1.21)

where l is a real constant.
This implies the following assertion.

Corollary 1.6.1. Let the assumptions of Theorem 1.6.1 be satisfied, L be symmetric, and l ∈ R
1.

Then

lim
t→∞ e

−t
n∑

j=1

mj∑

k=1

ajk
u(x, t) = l for any x ∈ R

n

if and only if

lim
t→∞

nΓ(n2 )

2π
n
2 tn

n∏
j=1

pj

∫

n∑

j=1

x2
j

p2
j
<t2

u0(x)dx = l.

To prove this, it suffices to note that, since the operator L is symmetric, it follows that it can be

represented (see [102, Lemma 8.2]) as follows: Lu = Δu+
∑
h∈M

ahu(x− h, t), where M is a finite set

of vectors from R
n such that for any h belonging to M, the vector −h belongs to M as well and

ah = a−h for any h from M. This implies that q1 = · · · = qn = 0. It remains to apply the specified
stabilization theorem from [95] to the function w(x, t).

Remark 1.6.2. It follows from Corollary 1.6.1 that surfaces bounding the averaging domains of the
initial-value function are not spheres in the differential-difference case: they become ellipsoids. Recall
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that if we deal with the classical case of differential equations, then such an effect arises if the Laplace
operator is replaced by an elliptic operator with different coefficients at different second variables:
n∑

j=1

p2j
∂2

∂x2j
.

Remark 1.6.3. In Corollary 1.6.1, the symmetry assumption for the operator L can be weakened as
follows: we replace it by the assumption that aj⊥bj for any j ∈ 1, n, where aj = (aj1, . . . , ajmj) and
bj = (bj1, . . . , bjmj ).

It is known from [26] that if the function v0(x) satisfies the condition

lim
t→∞

nΓ(n2 )

2π
n
2 tn

∫

|x|<t

v0(x+ y)dx = l uniformly with respect to y ∈ R
n

(this condition is stronger than (1.21)), then the uniform stabilization of the function v(x, t) takes
place. This implies the following assertion.

Corollary 1.6.2. Let

lim
t→∞

nΓ(n2 )

2π
n
2 tn

n∏
j=1

pj

∫

n∑

j=1

x2
j

p2
j

<t2

u0(x+ y)dx = l

uniformly with respect to y ∈ R
n and the assumption of Theorem 1.6.1 be satisfied. Then

lim
t→∞ e

−t
n∑

j=1

mj∑

k=1
ajk

u(x, t) = l

for any x ∈ R
n.

1.7. The Sense of the Positive Definiteness Condition

The positive definiteness condition imposed on the auxiliary operator in Theorem 1.6.1 (as well as
the introduction of the specified auxiliary operator itself) looks rather artificial. Let us show that it
has a substantial sense.

As a prototype, consider the problem

∂u

∂t
= Lu def

=
∂2u

∂x2
+ au(x+ b, t), x ∈ R

1, t > 0; (1.22)

u
∣∣
t=0

= u0(x), x ∈ R
1 (1.23)

(the coefficients a and b are supposed to be real and the initial-value function u0 is supposed to be
continuous and bounded) and consider the positive definiteness condition for the auxiliary operator,
providing the validity of the theorem on the (weighted) asymptotic closeness (stabilization) of solutions.

Then the operator L and the operator R obeying the positive definiteness condition act as follows:

Lu =

⎧⎪⎪⎨
⎪⎪⎩

∂2u

∂x2
+ au(x+ b, t), a < 0,

∂2u

∂x2
, a ≥ 0,

and

Ru =

⎧⎪⎪⎨
⎪⎪⎩
au− ∂2u

∂x2
− au(x+ b, t), a < 0,

−∂2u

∂x2
, a ≥ 0.
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Therefore,

ReR(ξ) =

{
ξ2, a < 0,

a+ ξ2 − a cos bξ, a ≥ 0.

Thus, the positive definiteness condition for the operator R is satisfied for any nonnegative a; for
any negative a, the specified condition is equivalent to the existence of a positive C such that the
inequality ξ2 + a(1 − cos b ξ) ≥ Cξ2 holds for any real ξ. The last inequality is reduced to the form

ξ2 + 2a sin2
bξ

2
≥ Cξ2. In the sequel, we assume that a < 0. Let

ab2

2
> −1. Denote the positive

constant 1 +
ab2

2
by C. Taking into account that sin2

bξ

2
≤ b2ξ2

4
and the coefficient a is nonnegative,

we obtain the inequality 2a sin2
bξ

2
≥ ab2ξ2

2
; therefore,

ξ2 + 2a sin2
bξ

2
≥ ξ2
(
1 +

ab2

2

)
= Cξ2.

Hence, the condition
ab2

2
> −1 implies the positive definiteness condition for the operator R.

Now, assume that the constant 1 +
ab2

2
is nonpositive and prove that the positive definiteness

condition is not valid for the operator R. To do this, we represent ξ2 + 2a sin2
bξ

2
as

ξ2

⎡
⎢⎢⎣1 + ab2

2

⎛
⎜⎝
sin

bξ

2
bξ

2

⎞
⎟⎠

2
⎤
⎥⎥⎦

(on R
1\{0}) and assume the inverse, i.e., that the operator R is positive definite. Then there exists a

positive definite C such that

ξ2

⎡
⎢⎢⎣1 + ab2

2

⎛
⎜⎝
sin

bξ

2
bξ

2

⎞
⎟⎠
2
⎤
⎥⎥⎦ ≥ Cξ2 for any ξ �= 0,

i.e.,

1 +
ab2

2

⎛
⎜⎝
sin

bξ

2
bξ

2

⎞
⎟⎠

2

≥ C for any ξ �= 0.

Since the function g(ξ) def
= 1 +

ab2

2

⎛
⎜⎝
sin

bξ

2
bξ

2

⎞
⎟⎠

2

tends to 1+
ab2

2
as ξ → 0, it follows that there exists

a positive ξ0 such that g(ξ) <
C

2
for any ξ ∈ (0, ξ0). We arrive at a contradiction, which proves that

the assumption about the positive definiteness of the operator R is wrong.
Thus, for Eq. (1.22), the positive definiteness condition for the operator R is equivalent to the

condition 1 +
ab2

2
> 0 (regardless the signs of the coefficients a and b).

In the sequel, we assume that the above condition is satisfied.
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Then the weighted asymptotic closeness of the solution of problem (1.22)-(1.23) and the function

eatw

(
x+ abt√

C
, t

)
takes place, where w(x, t) is the solution of the problem

∂w

∂t
=

∂2w

∂x2
, x ∈ R

1, t > 0, (1.24)

w
∣∣
t=0

= w0(x)
def
= u0(

√
Cx), x ∈ R

1, (1.25)

C = 1 +
ab2

2
, and the weight is equal to e−at.

Together with Eq. (1.22), which is a differential-difference equation, and Eq. (1.24), which is a
differential one, consider the differential equation

∂v

∂t
=

(
1 +

ab2

2

)
∂2v

∂x2
+ ab

∂v

∂x
+ av, x ∈ R

1, t > 0. (1.26)

Define the function

v(x, t) def
= eatw

(
x+ abt√

C
, t

)
def
= eatw(·, t) (1.27)

and substitute it in Eq. (1.26):

∂v

∂t
= aeatw(·, t) + ab√

C
eat

∂w

∂x
(·, t) + eat

∂w

∂t
(·, t)

and
∂v

∂x
=

1√
C

eat
∂w

∂x
(·, t), ∂2v

∂x2
=

1

C
eat

∂2w

∂x2
(·, t).

Hence, (
1 +

ab2

2

)
∂2v

∂x2
+ ab

∂v

∂x
+ av = eat

∂2w

∂x2
(·, t) + ab√

C
eat

∂w

∂x
(·, t) + aeatw(·, t).

Since
∂2w

∂x2
(·, t) = ∂w

∂t
(·, t)

(this holds not only at the point (·, t) but at any point of R1× (0,+∞)), it follows that function (1.27)
is a solution of Eq. (1.26).

Further, v
∣∣
t=0

= w

(
x√
C
, 0

)
= u0(x). Therefore, the asymptotic closeness (with the same weight

e−at) holds for the solution of problem (1.22)-(1.23) and the solution of problem (1.26), (1.23); note
that e−at is the weight function returning the function v(x, t) (which solves a differential equation)
into the class of bounded functions.

The differential equation (1.26) is the differential-difference equation (1.22), where the nonlocal
term is changed for its Taylor expansion up to the order 2 (i.e., the order of the equation) inclusively.
The considered that the positive definiteness condition for the auxiliary operator is equivalent to the
parabolicity condition for the specified differential equation (i.e., the ellipticity condition for its right-
hand part). This holds for all (more general) cases of nonlocal low-order terms considered above as
well (the proof is the same).

Thus, the positive definiteness condition for the auxiliary operator, ensuring the validity of the
theorem on the (weighted) asymptotic closeness (stabilization) of solutions, is as follows: if all nonlocal
terms of the original differential-difference equation are changed for their Taylor expansions up to the
order 2 inclusively, then the obtained differential equation should be parabolic.

Note that this clearly illustrates the dual nature of low-order nonlocal terms: they play no role
for the solvability investigation because the solvability of the Cauchy problem depends only on the
principal terms (only the parabolicity of the equation obtained from the original one by means of the
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eliminating of all nonlocal terms is important), but, investigating asymptotic properties, we cannot
treat them as low-order terms anymore (the parabolicity of the equation constructed according to the
coefficients of those nonlocal terms is important)

Chapter 2

EQUATIONS WITH NONLOCAL PRINCIPAL TERMS

2.1. The Case of Factorable Fundamental Solutions

Let a, h ∈ R
m. In R

1×(0,+∞), consider the following equation:

∂u

∂t
= Lu def

=
∂2u

∂x2
+

m∑
k=1

ak
∂2u

∂x2
(x+ hk, t). (2.1)

Consider the real part of the symbol of the operator L:

ReL(ξ) = −ξ2 − ξ2
m∑
k=1

ak cos hkξ

(cf. Sec. 1.6). As in Sec. 1.6, we say that −L(ξ) is positive definite if there exists a positive C such
that −ReL(ξ) ≥ Cξ2 for any ξ ∈ R

1; any operator −L possessing the specified property is called a
second-order operator strongly elliptic in the whole space (see also [108, p. 66 and p. 78]).

In the sequel, we assume that the operator −L is strongly elliptic.
Note that the coefficients of the equation can be arbitrarily large under the strong ellipticity as-

sumption (see, e.g., [102, Ex. 8.1]).
Together with Eq. (2.1), consider condition (1.4), assuming that the initial-value function u0(x) is

continuous and bounded in R
1.

On R
1×(0,+∞), define the following function:

E(x, t) def
= Ea,h(x, t) def

=

∞∫

0

e
−tξ2(1+

m∑

k=1

ak coshkξ)
cos(xξ − tξ2

m∑
k=1

ak sinhkξ)dξ. (2.2)

Obviously, if the operator −L is strongly elliptic, then the inequality 1 +
m∑
k=1

ak coshkξ ≥ C holds for

ξ �= 0. Let us show that it is valid for ξ = 0 as well (perhaps, with another positive constant), i.e.,

1 +
m∑
k=1

ak > 0. Assume the converse: 1 +
m∑
k=1

ak ≤ 0. Then, for any ξ �= 0, we have

C ≤ 1 +
m∑
k=1

ak −
m∑
k=1

ak +
m∑
k=1

ak cos hkξ = 1+
m∑

k=1

ak +
m∑
k=1

ak(cos hkξ − 1)

= 1 +

m∑
k=1

ak −2

m∑
k=1

ak sin
2 hkξ

2
= 1 +

m∑
k=1

ak − 1

2

m∑
k=1

akh
2
kξ

2

(
sin hkξ

2
hkξ
2

)2

≤ −ξ2

2

m∑
k=1

akh
2
k

(
sin hkξ

2
hkξ
2

)2

.

Now, selecting sufficiently small positive ξ, we arrive at a contradiction with the positivity of the
constant C.

Therefore,

|E(x, t)| ≤
∞∫

0

e−Ctξ2dξ =

√
π

4Ct
,
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i.e., for any t0, T from (0,+∞), integral (2.2) converges absolutely and uniformly with respect to
(x, t) ∈ R

1× [t0, T ]; hence, E(x, t) is well defined on R
1×(0,+∞).

Formally differentiate E with respect to the variable t under the integral sign:

∂E
∂t

= −
∞∫

0

ξ2(1 +
m∑
k=1

ak cos hkξ)e
−tξ2(1+

m∑

k=1
ak coshkξ)

cos(xξ − tξ2
m∑
k=1

ak sinhkξ)dξ

+

∞∫

0

e
−tξ2(1+

m∑

k=1
ak coshkξ)

sin(xξ − tξ2
m∑
k=1

ak sinhkξ)

m∑
k=1

akξ
2 sinhkξdξ

=

m∑
k=1

ak

∞∫

0

ξ2e
−tξ2(1+

m∑

k=1

ak cos hkξ)
[
sin(xξ − tξ2

m∑
k=1

ak sinhkξ) sinhkξ

− cos(xξ−tξ2
m∑
k=1

ak sinhkξ) cos hkξ

]
dξ−

∞∫

0

ξ2e
−tξ2(1+

m∑

k=1
ak coshkξ)

cos(xξ−tξ2
m∑
k=1

ak sinhkξ)dξ

=

∞∫

0

ξ2e
−tξ2(1+

m∑

k=1
ak coshkξ)

(
m∑
k=1

ak cos

[
(x+ hk)ξ − tξ2

m∑
k=1

ak sinhkξ

]

+ cos(xξ − tξ2
m∑
k=1

ak sinhkξ)

)
dξ.

Further, formal differentiation of E with respect to the variable x under the integral sign yields:

∂2E
∂x2

= −
∞∫

0

ξ2e
−tξ2(1+

m∑

k=1

ak coshkξ)
cos(xξ − tξ2

m∑
k=1

ak sinhkξ)dξ.

The absolute value of both integrals is bounded from above by a linear combination of the form
∞∫

0

ξ2e−Ctξ2dξ =

√
π

4Ct
3
2

,

i.e., they converge absolutely and uniformly with respect to (x, t) ∈ R
1× [t0, T ] for all t0, T ∈ (0,+∞).

Hence, differentiating under the integral is valid, and the following relation holds in R
1× (0,+∞):

∂E
∂t

− ∂2E
∂x2

= −
∞∫

0

ξ2e
−tξ2(1+

m∑

k=1
ak coshkξ)

m∑
k=1

ak cos

[
(x+ hk)ξ − tξ2

m∑
k=1

ak sinhkξ

]
dξ

= −
m∑
k=1

ak

∞∫

0

ξ2e
−tξ2(1+

m∑

k=1
ak coshkξ)

cos

[
(x+ hk)ξ − tξ2

m∑
k=1

ak sinhkξ

]
dξ =

m∑
k=1

ak
∂2E
∂x2

(x+ hk, t).

Therefore, E(x, t) satisfies (in the classical sense) Eq. (2.1) in R
1×(0,+∞).

2.2. Cauchy Problem: Unique Solvability

Let us estimate the behavior of E(x, t) and its derivatives as x → ∞ (assuming that a positive t is
fixed). To do this, decompose it into the even and odd (with respect to x) terms E1(x, t) and E2(x, t) :

E1(x, t) =
∞∫

0

e
−tξ2(1+

m∑

k=1
ak coshkξ)

cos xξ cos(tξ2
m∑
k=1

ak sinhkξ)dξ
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and

E2(x, t) =
∞∫

0

e
−tξ2(1+

m∑

k=1
ak cos hkξ)

sinxξ sin(tξ2
m∑
k=1

ak sinhkξ)dξ.

Let us prove the following assertion.

Lemma 2.2.1. If t > 0, then the function x2E(x, t) is bounded in R
1.

Proof. Fix an arbitrary positive t and integrate
∞∫

0

e
−tξ2(1+

m∑

k=1
ak coshkξ)

cos(tξ2
m∑
k=1

ak sinhkξ) cos xξ dξ

by parts two times. This yields

1

x2

∞∫

0

[
e
−tξ2(1+

m∑

k=1

ak coshkξ)
cos(tξ2

m∑
k=1

ak sinhkξ)

]′′
cos xξ dξ

(it is easy to check that all the integrated terms vanish).
The last integral is a bounded function of the variable x; therefore, x2E1(x, t) is bounded. The

boundedness of the function x2E2(x, t) is proved in the same way. Lemma 2.2.1 is proved.

Thus, the following function is defined in R
1 × (0,+∞):

u(x, t) def
=

1

π

+∞∫

−∞
E(x− ξ, t)u0(ξ)dξ. (2.3)

The following assertion is valid.

Lemma 2.2.2. If t > 0, then the function x2
∂2E
∂x2

(x, t) is bounded in (−∞,+∞).

To prove this, we decompose
∂2E
∂x2

into its even and odd (with respect to x) terms and integrate the

former term

−
∞∫

0

ξ2e
−tξ2(1+

m∑

k=1
ak coshkξ)

cos(tξ2
m∑
k=1

ak sinhkξ) cos xξ dξ

by parts two times. The remaining part of the proof is similar to the proof of Lemma 2.2.1.

Obviously, Lemma 2.2.2 remains valid if we take
∂2E
∂x2

at the point (x + hk, t), k = 1,m, instead of

the point (x, t). Taking into account that E(x, t) satisfies Eq. (2.1) in R
1×(0,+∞) (see the previous

section), we deduce the following assertion from Lemma 2.2.1 and 2.2.2:

Lemma 2.2.3. If t > 0, then x2
∂E
∂t

(x, t) is bounded in (−∞,+∞).

Lemmas 2.2.1–2.2.3 and the fact that E(x, t) satisfies Eq. (2.1) in R
1×(0,+∞) imply the following

assertion:

Theorem 2.2.1. Let −L be a strongly elliptic operator in R
1. Then function (2.3) is a classical

solution of Eq. (2.1) in R
1×(0,+∞).

Remark 2.2.1. The fact that function (2.3) satisfies problem (2.1), (1.4) in the sense of generalized
functions is known (see, e.g., [16]). The only new value of Theorem 2.2.1 is the fact that the specified
function is a classical solution in R

1×(0,+∞).
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Let us prove the uniqueness of the specified solution. Following [16], investigate the real part of the

symbol of the elliptic operator L contained in Eq. (2.1). The specified symbol P(z) def
= P(σ + iτ) is

equal to

−z2

(
1 +

m∑
k=1

ake
−ihkz

)
= (τ2 − σ2 − 2iστ)

(
1 +

m∑
k=1

ake
−ihkz

)

= (τ2 − σ2 − 2iστ)

(
1 +

m∑
k=1

ake
hkτ−ihkσ

)

= (τ2 − σ2 − 2iστ)

(
1 +

m∑
k=1

ake
hkτ cos hkσ − i

m∑
k=1

ake
hkτ sinhkσ

)
.

Thus,

ReP(z) = (τ2 − σ2)

(
1 +

m∑
k=1

ake
hkτ cos hkσ

)
− 2στ

m∑
k=1

ake
hkτ sinhkσ.

The function Q(z, t0, t)
def
= e(t−t0)P(z) satisfies the following inequality

|Q(z, t0, t)| ≤ e(t−t0)[C1(1+σ4)+C2eC3τ ].

The last estimate implies (see [16, Ch. 2, Appendix 1]) that problem (2.1), (1.4) has at most one
solution in the sense of generalized functions.

Remark 2.2.2. As in the case of low-order nonlocal terms, the uniqueness of the solution of prob-
lem (2.1), (1.4) (in corresponding spaces of generalized functions) holds for a much wider classes
of initial-value functions than the class of continuous bounded functions; in particular, it holds for
Tikhonov classes and their generalizations (cf. Remark 1.5.1 and see [2] and [40]). However, we con-
sider only the case of continuous bounded initial-value functions because we investigate the closeness
of solutions of the specified problem and classical parabolic problems.

Remark 2.2.3. The uniqueness of the solution allows us to find the integral of the fundamental
solution over the whole real axis: the following assertion is valid.

Lemma 2.2.4.

∞∫

−∞
E(x, t)dx = π.

Proof. Consider the function u0(x) ≡ 1; it is continuous and bounded. Hence, the function

y(x, t) def
=

1

π

+∞∫

−∞
E(x− ξ, t)dξ

satisfies Eq. (2.1) in R
1×(0,+∞) and satisfies the initial-value condition

y(x, 0) ≡ 1.

However, y(x, t) does not depend on x :

+∞∫

−∞
E(x− ξ, t)dξ =

+∞∫

−∞
E(ξ, t)dξ = πy(t),

i.e., y(t) satisfies the ordinary differential equation y′ = 0 and the initial-value condition y(0) = 1.
Hence, y(t) ≡ 1.
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2.3. Long-Time Behavior of Solutions

In this section, we study the behavior of u(x, t) as t → ∞. Together with problem (2.1), (1.4),
consider the heat equation with the same initial-value condition (1.4). Denote its classical bounded

solution by v(x, t); denote the positive constant 1 +
m∑
k=1

ak by p.

The following assertion is valid:

Theorem 2.3.1. The limit relation lim
t→∞ [u(x, t)− v(x, pt)] = 0 holds for any real x.

Proof. Take an arbitrary real x0 and consider u(x0, t). Change the variable: η =
x0 − ξ

2
√
t
; we obtain

that

u(x0, t) =
2
√
t

π

+∞∫

−∞
E(2√tη, t)u0(x0 − 2

√
tη)dη.

Further,

√
t E(2

√
tη, t) =

√
t

∞∫

0

e
−tξ2(1+

m∑

k=1

ak coshkξ)
cos(2

√
tηξ − tξ2

m∑
k=1

ak sinhkξ)dξ

=

∞∫

0

e
−z2(1+

m∑

k=1
ak cos

hkz√
t
)
cos

(
2zη − z2

m∑
k=1

ak sin
hkz√

t

)
dz.

This implies that the function u(x0, t) can be represented as

2

π

+∞∫

−∞
u0(x0 − 2

√
tη)

∞∫

0

e
−z2(1+

m∑

k=1
ak cos

hkz√
t
)
cos

(
2zη − z2

m∑
k=1

ak sin
hkz√

t

)
dzdη.

Then

u(x0, t)− v(x0, pt) =
2

π

+∞∫

−∞
u0(x0 − 2

√
tη)

∞∫

0

[
e
−z2(1+

m∑

k=1

ak cos
hkz√

t
)

× cos

(
2zη − z2

m∑
k=1

ak sin
hkz√

t

)
− e−pz2cos 2zη

]
dzdη. (2.4)

To continue the proof, we need the following two lemmas.

Lemma 2.3.1. We have
∞∫

0

[
e
−z2(1+

m∑

k=1

ak cos
hkz√

t
)
cos

(
2zη − z2

m∑
k=1

ak sin
hkz√

t

)
− e−pz2cos 2zη

]
dz

t→∞−→ 0

uniformly with respect to η ∈ (−∞,+∞).

Proof. Fix an arbitrary positive ε and decompose the estimated integral as follows:

δ∫

0

+

∞∫

δ

def
= I1,δ + I2,δ.
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The absolute of this sum is estimated from above by 2

∞∫

0

e−Cz2dz; therefore, there exists a positive δ

such that |I2,δ| ≤ ε

2
for any real η and any positive t. Fix that δ and consider the integral I1,δ. Its

integrand is equal to

e−pz2

[
e
z2

m∑

k=1
ak

(
1−cos

hkz√
t

)

cos

(
2zη − z2

m∑
k=1

ak sin
hkz√

t

)
− cos 2zη

]

= e−pz2

(
e
2z2

m∑

k=1
ak sin2

hkz

2
√

t

[
cos 2zη cos

(
z2

m∑
k=1

ak sin
hkz√

t

)

+ sin 2zη sin

(
z2

m∑
k=1

ak sin
hkz√

t

)]
− cos 2zη

)

= e−pz2

(
cos 2zη

[
e
2z2

m∑

k=1
ak sin2

hkz

2
√

t
cos

(
z2

m∑
k=1

ak sin
hkz√

t

)
− 1

]

+ e
2z2

m∑

k=1

ak sin2
hkz

2
√

t
sin 2zη sin

(
z2

m∑
k=1

ak sin
hkz√

t

))
def
= A1(η, t; z) +A2(η, t; z).

The inequality ∣∣∣∣∣∣
δ∫

0

A2(η, t; z)dz

∣∣∣∣∣∣ ≤ e
2δ2

m∑

k=1

|ak|
δ∫

0

∣∣∣∣∣sin
(
z2

m∑
k=1

ak sin
hkz√

t

)∣∣∣∣∣ dz

holds for any η and t. Denote the fraction

16δ8
(

m∑
k=1

|ak||hk|
)2

e
4δ2

m∑

k=1

|ak|

ε2

by T0. Then the inequality ∣∣∣∣hkz√
t

∣∣∣∣ ≤ ε

4δ3e
2δ2

m∑

k=1
|ak|

|hk|
m∑
k=1

|ak||hk|
, k = 1,m,

holds for any t > T0; hence,∣∣∣∣∣sin
(
z2

m∑
k=1

ak sin
hkz√

t

)∣∣∣∣∣ ≤
∣∣∣∣∣z2

m∑
k=1

ak sin
hkz√

t

∣∣∣∣∣ ≤
ε

4δe
2δ2

m∑

k=1

|ak|

(because 0 ≤ z ≤ δ).

Thus,

∣∣∣∣∣∣
δ∫

0

A2(η, t; z)dz

∣∣∣∣∣∣ ≤
ε

4
if t > T0 and η is real. It remains to estimate the integral

δ∫

0

A1(η, t; z)dz.

Its absolute value does not exceed

δ∫

0

e−pz2

∣∣∣∣∣e
2z2

m∑

k=1
ak sin2

hkz

2
√

t
cos

(
z2

m∑
k=1

ak sin
hkz√

t

)
− 1

∣∣∣∣∣ dz.
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The difference in the integrand can be represented as follows:

e
2z2

m∑

k=1
ak sin2

hkz

2
√

t
cos

(
z2

m∑
k=1

ak sin
hkz√

t

)
− cos

(
z2

m∑
k=1

ak sin
hkz√

t

)
+cos

(
z2

m∑
k=1

ak sin
hkz√

t

)
−1

= cos

(
z2

m∑
k=1

ak sin
hkz√

t

)(
e
2z2

m∑

k=1
ak sin2

hkz

2
√

t − 1

)
+ cos

(
z2

m∑
k=1

ak sin
hkz√

t

)
− 1.

Select a large T1 such that

∣∣∣∣e
2z2

m∑

k=1
ak sin2

hkz

2
√

t − 1

∣∣∣∣ ≤ ε

8δ
for any t > T1 and any z ∈ [0, δ]. This is

possible because there exists a positive δ1 such that ex ∈
(
1− ε

8δ
, 1 +

ε

8δ

)
for any x ∈ (−δ1, δ1).

Thus, one can assign T1 =

δ4
m∑
k=1

|ak|h2k
2δ1

.

Further, there exists a positive δ2 such that the inequality 1− ε

8δ
< cos x < 1 +

ε

8δ
holds for any

x ∈ (−δ2, δ2). Assign

T2
def
=

δ6
(

m∑
k=1

|ak||hk|
)2

δ22
.

Then, for any t > T2 and any z ∈ [0, δ], we have

∣∣∣z2
m∑
k=1

ak sin
hkz√

t

∣∣∣ ≤ z2
m∑
k=1

|ak||hkz|√
T2

≤ δ3√
T2

m∑
k=1

|ak||hk| = δ2.

Therefore, the inequality ∣∣∣∣ cos
(
z2

m∑
k=1

ak sin
hkz√

t

)
− 1

∣∣∣∣ < ε

8δ

holds for any t > T2 and any z ∈ [0, δ]. Hence, for any t > max{T0, T1, T2} and any η ∈ (−∞,+∞),
we have ∣∣∣∣∣∣

δ∫

0

A1(η, t; z)dz

∣∣∣∣∣∣ <
ε

4
, i.e.,

∣∣I1,δ∣∣ < ε

2
.

This completes the proof of Lemma 2.3.1.

Lemma 2.3.2. There exists a positive M depending only on a and h such that∣∣∣∣∣
∞∫

0

e
−z2(1+

m∑

k=1

ak cos
hkz√

t
)
cos

(
2zη − z2

m∑
k=1

ak sin
hkz√

t

)
dz

∣∣∣∣∣ ≤
M

η2

for any t > 1 and any η ∈ R
1\{0}.

Proof. Represent the estimated integral as
∞∫

0

e
−z2(1+

m∑

k=1
ak cos

hkz√
t
)
cos 2zη cos

(
z2

m∑
k=1

ak sin
hkz√

t

)
dz

+

∞∫

0

e
−z2(1+

m∑

k=1
ak cos

hkz√
t
)
sin 2zη sin

(
z2

m∑
k=1

ak sin
hkz√

t

)
dz (2.5)
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and, for definiteness, consider the former term.

Denote the function e
−z2(1+

m∑

k=1
ak cos

hkz√
t
)
cos

(
z2

m∑
k=1

ak sin
hkz√

t

)
by g(z) (t is treated as a positive

parameter) and integrate

∞∫

0

g(z) cos 2ηzdz by parts. We obtain the relation

g(z)
sin 2ηz

2η

∣∣∣∣
z=+∞

z=0

− 1

2η

∞∫

0

g′(z) sin 2ηzdz = − 1

2η

∞∫

0

g′(z) sin 2ηzdz

because g(+∞) = 0 since 1 +
m∑
k=1

ak cos
hkz√

t
≥ C > 0. Integrating by parts again, we see that

g′(z)
cos 2ηz

4η2

∣∣∣∣
z=+∞

z=0

− 1

4η2

∞∫

0

g′′(z) cos 2ηzdz.

Let us prove that the integrated term vanishes. To compute lim
z→+0

g′(z)
cos 2ηz

4η2
and lim

z→+∞ g′(z)
cos 2ηz

4η2
,

differentiate the function g(z):

g′(z) = e
−z2(1+

m∑

k=1
ak cos

hkz√
t
)
[
−2z

(
1 +

m∑
k=1

ak cos
hkz√

t

)

+
z2√
t

m∑
k=1

akhk sin
hkz√

t

]
cos

(
z2

m∑
k=1

ak sin
hkz√

t

)

− e
−z2(1+

m∑

k=1

ak cos
hkz√

t
)
sin

(
z2

m∑
k=1

ak sin
hkz√

t

)(
2z

m∑
k=1

ak sin
hkz√

t
+

z2√
t

m∑
k=1

akhk cos
hkz√

t

)
.

The last expression can be reduced to the following form:

−e
−z2(1+

m∑

k=1
ak cos

hkz√
t
)
[
z2√
t
sin

(
z2

m∑
k=1

ak sin
hkz√

t

)
m∑
k=1

akhk cos
hkz√

t

− z2√
t
cos

(
z2

m∑
k=1

ak sin
hkz√

t

)
m∑
k=1

akhk sin
hkz√

t
+ 2z cos

(
z2

m∑
k=1

ak sin
hkz√

t

)
m∑
k=1

ak cos
hkz√

t

+ 2z sin

(
z2

m∑
k=1

ak sin
hkz√

t

)
m∑
k=1

ak sin
hkz√

t
+ 2z cos

(
z2

m∑
k=1

ak sin
hkz√

t

)]
;

therefore, g′(z) is equal to

e
−z2(1+

m∑

k=1

ak cos
hkz√

t
)
[
z2√
t

m∑
k=1

akhk sin

(
hkz√

t
− z2

m∑
l=1

al sin
hlz√
t

)

+ 2z
m∑
k=1

ak cos

(
hkz√

t
− z2

m∑
l=1

al sin
hlz√
t

)
− 2z cos

(
z2

m∑
k=1

ak sin
hkz√

t

)]
.
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Hence, g′(0) = g′(+∞) = 0; therefore,

∞∫

0

g(z) cos 2ηzdz = − 1

4η2

∞∫

0

g′′(z) cos 2ηzdz.

Obviously, there exists a polynomial P (z) such that its positive coefficients depend only on a and h

and the inequality |g′′(z)| ≤ e
−z2(1+

m∑

k=1
ak cos

hkz√
t
)
P (z) holds on [0,+∞) provided that t ≥ 1. Hence,

∣∣∣∣∣
∞∫

0

g(z) cos 2ηzdz

∣∣∣∣∣ ≤
1

4η2

∞∫

0

e−Cz2P (z)dz

for any t > 1 and any η ∈ R
1\{0}. Thus, the claimed estimate is valid for the former term of (2.5).

The latter one is estimated in the same way. This completes the proof of Lemma 2.3.2.

To complete the proof of Theorem 2.3.1, we decompose (2.4) into the sum

2

π

⎛
⎝

−R∫

−∞
+

R∫

−R

+

+∞∫

R

⎞
⎠ def

=
2

π
[I3,R(t) + I4,R(t) + I5,R(t)] ,

where R is a positive parameter. By virtue of Lemma 2.3.2 (without loss of generality, one can assume
that t > 1) and the boundedness of the function u0, we have

|I5,R(t)| ≤ sup
R1

|u0(x)|
+∞∫

R

(
M

η2
+

√
π√
4p

e
− η2

p

)
dη

The last integral converges. Hence, for any positive ε there exists R0 from (1,+∞) such that

|I5,R0(t)| ≤
πε

6
for any t from (1,+∞). Obviously, I3,R0 satisfies the same estimate.

Fix that R0 and consider I4,R0(t). Its absolute value does not exceed

sup
R1

|u0(x)|
+R0∫

−R0

∣∣∣∣∣
∞∫

0

[
e
−z2(1+

m∑

k=1
ak cos

hkz√
t
)
cos

(
2zη − z2

m∑
k=1

ak sin
hkz√

t

)
− e−pz2cos 2zη

]
dz

∣∣∣∣∣dη.

By virtue of Lemma 2.3.1, there exists T ∗ > 1 such that for any real η and any t > T ∗, the absolute

value of the internal integral in the last expression does not exceed πε

(
12R0 sup

R1

|u0(x)|
)−1

. This

implies that the absolute value of (2.4) does not exceed ε for any t > T ∗. Since ε is selected arbitrarily,
it follows that lim

t→∞ [u(x0, t)− v(x0, pt)] = 0. This completes the proof of Theorem 2.3.1 because x0 is

selected arbitrarily.

Corollary 2.3.1. Let x, l ∈ (−∞,+∞). Then

lim
t→∞u(x, t) = l ⇐⇒ lim

R→∞
1

2R

R∫

−R

u0(x)dx = l.

To prove this, it suffices to note that the assertion of the corollary is the classical pointwise stabiliza-
tion theorem (see [95]), i.e., it holds for the function v(x, t); further, it remains to apply Theorem 2.3.1
directly.
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Remark 2.3.1. Note that although Theorem 2.3.1 and Corollary 2.3.1 are valid under the same
conditions, the assertion of the theorem (treating the closeness of solutions) is stronger in the following
sense: unlike the assertion of the corollary (which is a stabilization theorem), it provides information
on the solution behavior even for the case where the (necessary and sufficient) stabilization condition
is not satisfied.

2.4. The Case of Several Spatial Variables

Let n,m1, . . . ,mn ∈ N and ai, bi ∈ R
mi , where ai denotes the vector (ai1, . . . , aimi) and bi denotes

the vector (bi1, . . . , bimi), i = 1, n. In the domain
{
x ∈ R

n
∣∣∣t > 0
}
, consider the equation

∂u

∂t
= L(n)u

def
= Δu+

n∑
i=1

mi∑
j=1

aij
∂2u

∂x2i
(x1, . . . , xi−1, xi + bij , xi+1, . . . , xn, t) (2.6)

and condition (1.4), assuming that u0 is continuous and bounded in R
n.

Similarly to Sec. 2.1 (see also [102, §8]), impose the positive definiteness condition on the symbol
of the operator −L(n): there exists a positive constant C such that

−ReL(n)(ξ) = |ξ|2 +
n∑

i=1

ξ2i

mi∑
j=1

aij cos bijξi ≥ C|ξ|2

for any ξ ∈ R
n.

As in the one-dimensional case, any operator −L(n) possessing the specified property is called a
strongly elliptic operator in the whole space.

Note that, as in the one-dimensional case (cf. also [102, Ex. 8.1]), the strong ellipticity condition
imposes no restrictions on the values of the coefficients of the equation.

Also, note that, as in the case of a bounded domain (see [102, §9]), the strong ellipticity of differential
operators substantially differs from the strong ellipticity of differential-difference ones; therefore, the
impact of difference terms has a principal meaning.

In R
n × (0,∞), denote the function

E(n)(x, t) def
=

1

2n

∫

Rn

e
−t

(

|ξ|2+
n∑

i=1
ξ2i

mi∑

j=1
aij cos bijξi

)

cos

⎛
⎝x · ξ − t

n∑
i=1

ξ2i

mi∑
j=1

aij sin bijξi

⎞
⎠ dξ. (2.7)

The power of the last exponent can be represented as

−t

n∑
i=1

ξ2i

⎛
⎝1 +

mi∑
j=1

aij cos bijξi

⎞
⎠ .

There exist positive constants C1, . . . , Cn such that for any ξ from R
n and any positive t, the last

expression does not exceed −t
n∑

i=1
Ciξ

2
i . Indeed, take an arbitrary i ∈ 1, n and apply the strong

ellipticity condition, assuming that ξ1 = · · · = ξi−1 = ξi+1 = · · · = ξn = 0. We see that ξ2i +

ξ2i

mi∑
j=1

aij cos bijξi ≥ Cξ2i for any real ξi. Hence, 1 +
mi∑
j=1

aij cos bijξi ≥ C for any ξi �= 0. Let us

show that the last inequality holds (perhaps, with another positive constant) for ξ = 0 as well, i.e.,

1 +
mi∑
j=1

aij > 0. Assume the converse: 1 +
mi∑
j=1

aij ≤ 0. Then, for any ξi �= 0, we have

C ≤ 1 +

mi∑
j=1

aij −
mi∑
j=1

aij +

mi∑
j=1

aij cos bijξi
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= 1+

mi∑
j=1

aij +

mi∑
j=1

aij(cos bijξi −1)=1+

mi∑
j=1

aij−2

mi∑
j=1

aij sin
2 bijξi

2

= 1+

mi∑
j=1

aij − 1

2

mi∑
j=1

aijb
2
ijξ

2
i

(
sin

bijξi
2

bijξi
2

)2
≤ −ξ2i

2

mi∑
j=1

aijb
2
ij

(
sin

bijξi
2

bijξi
2

)2
.

Now, we can select a small positive ξi such that we arrive at a contradiction with the positivity of the
constant C.

Therefore, for any [t0, T ] ⊂ (0,+∞), integral (2.7) converges absolutely and uniformly with respect
to (x, t) ∈ R

n × [t0, T ], i.e., the function E(n)(x, t) is well defined.
Formally differentiate E(n) with respect to the variable t under the integral sign:

2n
∂E(n)
∂t

=

∫

Rn

e
−t

(

|ξ|2+
n∑

i=1
ξ2i

mi∑

j=1
aij cos bijξi

)

× sin

⎛
⎝x · ξ − t

n∑
i=1

ξ2i

mi∑
j=1

aij sin bijξi

⎞
⎠ n∑

i=1

ξ2i

mi∑
j=1

aij sin bijξidξ

−
∫

Rn

⎛
⎝|ξ|2 +

n∑
i=1

ξ2i

mi∑
j=1

aij cos bijξi

⎞
⎠ e

−t

(

|ξ|2+
n∑

i=1
ξ2i

mi∑

j=1
aij cos bijξi

)

× cos

⎛
⎝x · ξ − t

n∑
i=1

ξ2i

mi∑
j=1

aij sin bijξi

⎞
⎠ dξ.

This can be represented as

n∑
i=1

mi∑
j=1

aij

∫

Rn

e
−t

(

|ξ|2+
n∑

i=1
ξ2i

mi∑

j=1
aij cos bijξi

)

ξ2i

[
sin bijξi sin

(
x · ξ − t

n∑
k=1

ξ2k

mk∑
l=1

akl sin bklξk

)

− cos bijξi cos

(
x · ξ − t

n∑
k=1

ξ2k

mk∑
l=1

akl sin bklξk

)]
dξ

−
∫

Rn

|ξ|2e
−t

(

|ξ|2+
n∑

i=1
ξ2i

mi∑

j=1
aij cos bijξi

)

cos

(
x · ξ − t

n∑
k=1

ξ2k

mk∑
l=1

akl sin bklξk

)
dξ,

which is equal to

−
∫

Rn

|ξ|2e
−t

(

|ξ|2+
n∑

i=1
ξ2i

mi∑

j=1
aij cos bijξi

)

cos

(
x · ξ − t

n∑
k=1

ξ2k

mk∑
l=1

akl sin bklξk

)
dξ

−
n∑

i=1

mi∑
j=1

aij

∫

Rn

ξ2i e
−t

(

|ξ|2+
n∑

i=1
ξ2i

mi∑

j=1
aij cos bijξi

)

cos

(
x · ξ + bijξi − t

n∑
k=1

ξ2k

mk∑
l=1

akl sin bklξk

)
dξ.
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Further, formal differentiation of E(n) with respect to the variable xi under the integral sign yields the
relations

2n
∂2E(n)
∂x2i

= −
∫

Rn

ξ2i e
−t

(

|ξ|2+
n∑

i=1
ξ2i

mi∑

j=1
aij cos bijξi

)

cos

(
x · ξ − t

n∑
k=1

ξ2k

mk∑
l=1

akl sin bklξk

)
dξ

and

2n
∂2E(n)
∂x2i

(x1, . . . , xi−1, xi + bij, xi+1, . . . , xn, t)

= −
∫

Rn

ξ2i e
−t

(

|ξ|2+
n∑

i=1
ξ2i

mi∑

j=1
aij cos bijξi

)

cos

(
x · ξ + bijξi − t

n∑
k=1

ξ2k

mk∑
l=1

akl sin bklξk

)
dξ.

Each of those integrals converges absolutely and uniformly with respect to (x, t) ∈ R
n× [t0, T ] for any

[t0, T ] ⊂ (0,+∞); therefore, E(n)(x, t) satisfies (in the classical sense) Eq. (2.6) in R
n × (0,+∞).

Let us prove the following assertion:

Lemma 2.4.1. If x ∈ R
n and t > 0, then∫

Rn

u0(x− ξ)E(n)(ξ, t)dξ (2.8)

absolutely converges.

Proof. By virtue of the absolute convergence of integral (2.7), the Fubini theorem is applicable to it,
i.e., E(n)(x, t) can be represented as

1

2n

+∞∫

−∞. . .

+∞∫

−∞︸ ︷︷ ︸
n times

n∏
i=1

e
−tξ2i

(

1+
mi∑

j=1
aij cos bijξi

)

cos

n∑
i=1

⎛
⎝xiξi − tξ2i

mi∑
j=1

aij sin bijξi

⎞
⎠ dξ1 . . . dξn.

The integrand of the last integral can be decomposed into a finite sum of the form

n∏
i=1

e
−tξ2i

(

1+
mi∑

j=1
aij cos bijξi

)

gi

⎛
⎝xiξi − tξ2i

mi∑
j=1

aij sin bijξi

⎞
⎠ ,

where either gi(τ) = cos τ or gi(τ) = sin τ . Hence, the last integral is a finite sum of terms of the form

n∏
i=1

+∞∫

−∞
e
−tτ2

(

1+
mi∑

j=1
aij cos bijτ

)

gi

⎛
⎝xiτ − tτ2

mi∑
j=1

aij sin bijτ

⎞
⎠ dτ

and only the term

n∏
i=1

+∞∫

−∞
e
−tτ2

(

1+
mi∑

j=1
aij cos bijτ

)

cos

⎛
⎝xiτ − tτ2

mi∑
j=1

aij sin bijτ

⎞
⎠ dτ

= 2n
n∏

i=1

∞∫

0

e
−tτ2

(

1+
mi∑

j=1
aij cos bijτ

)

cos

⎛
⎝xiτ − tτ2

mi∑
j=1

aij sin bijτ

⎞
⎠ dτ
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is different from zero. Any other term vanishes because it contains at least one zero factor: this is an
integral (of an odd function) of the form

+∞∫

−∞
e
−tτ2

(

1+
mi∑

j=1
aij cos bijτ

)

sin

⎛
⎝xiτ − tτ2

mi∑
j=1

aij sin bijτ

⎞
⎠ dτ.

Thus, the function E(n)(x, t) is equal to
n∏

i=1

∞∫

0

e
−tτ2

(

1+
mi∑

j=1
aij cos bijτ

)

cos

⎛
⎝xiτ − tτ2

mi∑
j=1

aij sin bijτ

⎞
⎠ dτ.

Each factor of the last product is a function Eai,bi(xi, t) = E(xi, t) of the form (2.2). Fix an arbitrary
positive t. Then, for any i = 1, n, the function E(xi, t) is bounded on R

1. Moreover, by virtue of
Lemma 2.2.1, the function x2i E(xi, t) is bounded on R

1. Therefore, the function (1 + x2i )E(xi, t) is

bounded on R
1 as well, i.e., there exists a positive M such that |E(xi, t)| ≤ M

1 + x2i
on R

1 for i = 1, n.

Therefore, the following inequality is valid in R
n:

|E(n)(x, t)| ≤
(2M)n

n∏
i=1

(1 + x2i )

.

Now, let Ω be an arbitrarily large domain in R
n. There exists a positive A0 such that Ω ⊂ Q(A0),

where Q(A0) =
{
|xi| < A0

∣∣∣i = 1, n
}
. Then

∫

Q(A0)

∣∣∣u0(x− ξ)E(n)(ξ, t)
∣∣∣dξ ≤ (2M)n sup |u0|

∫

Q(A0)

dξ
n∏

i=1

(1 + ξ2i )

= (2M)n sup |u0|
⎛
⎝

A0∫

−A0

dη

1 + η2

⎞
⎠
n

= (4M arctanA0)
n sup |u0| ≤ (2πM)n sup |u0|.

Therefore, integral (2.8) absolutely converges and satisfies the same estimate.
This completes the proof of Lemma 2.4.1.

Thus, the following function is defined in R
n × (0,+∞):

u(x, t) def
=

1

πn

∫

Rn

E(n)(x− ξ, t)u0(ξ)dξ. (2.9)

Similarly to the representation of the function E(n) in Lemma 2.4.1, we represent
∂2E(n)
∂x2i

as

∂2Eai,bi
∂x2i

n∏
k=1
k
=i

Eak,bk(xk, t).

It follows from Lemma 2.2.2 and the fact that E(n) satisfies Eq. (2.6) that function (2.9) can be
differentiated under the integral sign. This implies the following assertion.

Theorem 2.4.1. Let the operator −L(n) be strongly elliptic in R
n. Then function (2.9) satisfies (in

the classical sense) Eq. (2.6) in R
n × (0,+∞).
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Note that function (2.9) is a solution of problem (2.6), (1.4) in the sense of generalized functions
(see, e.g., [16]).

To establish the uniqueness of the found solution, investigate (according to [16]) the real part of the
symbol of the elliptic operator L(n) contained in (2.6). For the specified symbol P(z1, . . . , zn) we have

P(z1, . . . , zn)
def
= P(z) def

= P(σ + iτ) def
= P(σ1 + iτ1, . . . , σn + iτn)

= −
n∑

k=1

z2k

⎛
⎝1 +

mk∑
j=1

akje
−ibkjzk

⎞
⎠

=
n∑

k=1

(τ2k − σ2
k − 2iσkτk)

⎛
⎝1 +

mk∑
j=1

akje
bkjτk cos bkjσk − i

mk∑
j=1

akje
bkjτk sin bkjσk

⎞
⎠ .

Thus,

ReP(z) =
n∑

k=1

⎡
⎣(τ2k − σ2

k)

⎛
⎝1 +

mk∑
j=1

akje
bkjτk cos bkjσk

⎞
⎠− 2σkτk

mk∑
j=1

akje
bkjτk sin bkjσk

⎤
⎦

= |τ |2 − |σ|2 +
n∑

k=1

⎡
⎣(τ2k − σ2

k)

mk∑
j=1

akje
bkjτk cos bkjσk − 2σkτk

mk∑
j=1

akje
bkjτk sin bkjσk

⎤
⎦ .

Now, estimate the function Q(z, t0, t)
def
= e(t−t0)P(z) :

|Q(z, t0, t)| ≤ e(t−t0)[C1(1+|σ|4)+C2eC3|τ |].

From the last estimate, it follows (see [16, Ch. 2, Appendix 1]) that problem (2.6), (1.4) has at most
one solution in the sense of generalized functions.

Note that, as in the one-dimensional case, the uniqueness takes place for a wider classes of initial-
value functions as well (see Remark 2.2.2); however, due to the same reason, we consider only contin-
uous bounded initial-value functions. Similarly to Lemma 2.2.4, we can compute the integral of E(n)
over the space R

n; it is equal to πn.

2.5. The Case of Several Spatial Variables: Stabilization of Solutions

In this section, we study the long-time behavior of u(x, t) for the case of several spatial variables.
Together with the differential-difference equation (2.6), consider the differential equation

∂u

∂t
=

n∑
i=1

pi
∂2u

∂x2i
, (2.10)

where pi = 1 +

mi∑
j=1

aij , i = 1, n (note that the positivity of all such constants pi is proved above).

Denote the classical bounded solution of problem (2.10), (1.4) by v(x, t).
The following assertion is valid:

Theorem 2.5.1. For any x ∈ R
n, the limit relation lim

t→∞ [u(x, t)− v(x, t)] = 0 holds.

Proof. Take an arbitrary x0
def
= (x01, . . . , x

0
n) from R

n.

In (2.9), change the variables: ηi
def
=

x0i − ξi

2
√
t

(i = 1, n). This yields the representation

u(x0, t) =

(
2
√
t

π

)n ∫

Rn

u0(x0 − 2
√
tη)E(n)(2

√
tη, t)dη. (2.11)
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Taking into account that

t
n
2 E(n)(2

√
tη, t) = t

n
2

n∏
i=1

∞∫

0

e
−tτ2

(

1+
mi∑

j=1
aij cos bijτ

)

cos

⎛
⎝ 2ηiτ

√
t− tτ2

mi∑
j=1

aij sin bijτ

⎞
⎠ dτ

=

n∏
i=1

∞∫

0

e
−z2

(

1+
mi∑

j=1
aij cos

bijz√
t

)

cos

⎛
⎝2zηi − z2

mi∑
j=1

aij sin
bijz√

t

⎞
⎠ dz,

we obtain that

u(x0, t) =

(
2

π

)n ∫

Rn

u0(x0 − 2
√
tη)

n∏
i=1

∞∫

0

e
−z2

(

1+
mi∑

j=1
aij cos

bijz√
t

)

cos

⎛
⎝2zηi − z2

mi∑
j=1

aij sin
bijz√

t

⎞
⎠ dzdη.

We have

v(x0, t) =
1

π
n
2

∫

Rn

u0(x
0
1 − 2

√
p1tξ1, . . . , x

0
n − 2

√
pntξn)e

−|ξ|2dξ.

The change of variables
√
piξi = ηi, i = 1, n, reduces the last expression to the form

1

π
n
2

n∏
i=1

√
pi

∫

Rn

u0(x
0
1 − 2

√
tη1, . . . , x

0
n − 2

√
tηn)e

−
n∑

i=1

η2i
pi dη.

Thus,

u(x0, t)− v(x0, t) =

(
2

π

)n ∫

Rn

u0(x0 − 2
√
tη)

⎡
⎢⎣

n∏
i=1

∞∫

0

e
−z2

(

1+
mi∑

j=1
aij cos

bijz√
t

)

× cos

⎛
⎝2zηi − z2

mi∑
j=1

aij sin
bijz√

t

⎞
⎠ dz −

n∏
i=1

√
π

2
√
pi

e
− η2i

pi

⎤
⎦ dη

=

(
2

π

)n
⎛
⎜⎝
∫

Q(A)

+

∫

Rn\Q(A)

⎞
⎟⎠ def

=

(
2

π

)n
(J1 + J2), (2.12)

where A is a positive parameter and Q(A) denotes the cube
{
|xi| < A

∣∣∣i = 1, n
}
.

Let ε > 0. By virtue of Lemma 2.3.2, for any i = 1, n there exists a positive Mi such that for any
ηi ≥ 1 and any t > 1, we have∣∣∣∣∣∣∣

∞∫

0

e
−z2

(

1+
mi∑

j=1
aij cos

bijz√
t

)

cos

⎛
⎝2zηi − z2

mi∑
j=1

aij sin
bijz√

t

⎞
⎠ dz

∣∣∣∣∣∣∣
≤ Mi

η2i
≤ 2Mi

1 + η2i
.

Moreover, for ηi ∈ [0, 1], the left-hand part of the last inequality does not exceed

∞∫

0

e−Cz2dz def
=

√
π

2
√
C

≤
√
π√

C(1 + η2i )
;
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hence, for any real ηi, we have∣∣∣∣∣∣∣

∞∫

0

e
−z2

(

1+
mi∑

j=1
aij cos

bijz√
t

)

cos

⎛
⎝2zηi − z2

mi∑
j=1

aij sin
bijz√

t

⎞
⎠ dz

∣∣∣∣∣∣∣
≤ M∗

i

1 + η2i
,

where M∗
i = max

(
2Mi,

√
π

C

)
.

Thus, the absolute value of the integrand in (2.12) does not exceed

sup |u0|
[

n∏
i=1

M∗
i

1 + η2i
+
(π
4

)n
2

n∏
i=1

1√
pi

e
− η2i

pi

]
.

Hence, integral (2.12) converges absolutely and uniformly with respect to t ∈ (1,+∞); therefore, there

exists a positive A such that |J2| < επn

2n+1
for any t > 1. Fix that A and consider J1 for t > 1.

By virtue of Lemma 2.3.1, for any i = 1, n,

∞∫

0

e
−z2

(

1+
mi∑

j=1
aij cos

bijz√
t

)

cos

⎛
⎝2zηi − z2

mi∑
j=1

aij sin
bijz√

t

⎞
⎠ dz

t→∞−→
√

π

4pi
e
− η2i

pi

uniformly with respect to ηi ∈ (−∞,+∞).
Since any internal (one-dimensional) integral of (2.12) is bounded (e.g., by the constant M∗

i ), it
follows that

lim
t→∞

n∏
i=1

∞∫

0

e
−z2

(

1+
mi∑

j=1
aij cos

bijz√
t

)

cos

⎛
⎝2zηi − z2

mi∑
j=1

aij sin
bijz√

t

⎞
⎠ dz =

n∏
i=1

√
π

4pi
e
− η2i

pi

uniformly with respect to η ∈ R
n.

Hence, there exists a positive T such that for any t ∈ (T,+∞), we have∣∣∣∣∣∣∣
n∏

i=1

∞∫

0

e
−z2

(

1+
mi∑

j=1
aij cos

bijz√
t

)

cos

⎛
⎝2zηi − z2

mi∑
j=1

aij sin
bijz√

t

⎞
⎠ dz −

n∏
i=1

√
π

4pi
e
− η2i

pi

∣∣∣∣∣∣∣
≤ επn

22n+1An sup |u0| ,

i.e., |J1| ≤ επn

2n+1
; therefore, |u(x0, t)− v(x0, t)| < ε.

Since ε is selected arbitrarily, it follows that

lim
t→∞[u(x0, t)− v(x0, t)] = 0.

Since x0 is selected arbitrarily, this completes the proof of Theorem 2.5.1.

Similarly to Sec. 2.3, this implies the following assertion:

Corollary 2.5.1. If x ∈ R
n and l ∈ (−∞,+∞), then

lim
t→∞u(x, t) = l ⇐⇒ lim

R→∞
1

Rn

∫

BR(p1,...,pn)

u0(x) dx =

2π
n
2

n∏
i=1

√
pi

nΓ(n2 )
l,
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where BR(p1, . . . , pn) =

{
x ∈ R

n

∣∣∣∣∣
x21
p1

+ · · · + x2n
pn

< R

}
.

Remark 2.5.1. Theorem 2.5.1 is valid for the case n = 1 as well, i.e., the asymptotic closeness of
solutions for Eq. (2.1) and the equation

∂u

∂t
= p

∂2u

∂x2

takes place apart from Theorem 2.2.1; however, this provides no new information on the stabilization
of the solution: the necessary and sufficient condition of the stabilization of the solution of prob-
lem (2.1), (1.4), implied by such a closeness theorem, coincides with the assertion of Corollary 2.3.1.

2.6. The General Case of Inhomogeneous Elliptic Operators

In this section, the investigation is extended to the case where the right-hand part of Eq. (2.6)
contains low-order (nonlocal) terms as well. In detail, we consider only the aspects substantially
different from the prototype case of homogeneous elliptic operators, considered in detail in Secs. 2.4
and 2.5. Thus, instead of (2.6), consider the equation

∂u

∂t
= Δu+

n∑
i=1

m2,i∑
j=1

aij
∂2u

∂x2i
(x+h

(2)
ij ei, t)+

n∑
i=1

m1,i∑
j=1

bij
∂u

∂xi
(x+h

(1)
ij ei, t)+

n∑
i=1

m0,i∑
j=1

ciju(x+h
(0)
ij ei, t). (2.13)

Here ei denotes the ith coordinate vector in the space R
n, mk,i ∈ N for i = 1, n and k = 0, 2, and the

coefficients aij , bij , cij , and h
(k)
ij are assumed to be real for i = 1, n, k = 0, 2, and j = 1,mk.

Instead of (2.7), define the fundamental solution as follows:

E(n)(x, t) def
=

1

2n

∫

Rn

e−t[|ξ|2+G1(ξ)] cos [x · ξ − tG2(ξ)] dξ, (2.14)

where

G1(ξ) =

n∑
i=1

ξ2i

m2,i∑
j=1

aij cos h
(2)
ij ξi +

n∑
i=1

ξi

m1,i∑
j=1

bij sinh
(1)
ij ξi −

n∑
i=1

m0,i∑
j=1

cij cos h
(0)
ij ξi

and

G2(ξ) =

n∑
i=1

ξ2i

m2,i∑
j=1

aij sinh
(2)
ij ξi −

n∑
i=1

ξi

m1,i∑
j=1

bij cos h
(1)
ij ξi −

n∑
i=1

m0,i∑
j=1

cij sinh
(0)
ij ξi.

The following assertion is valid:

Theorem 2.6.1. Let the operator −L(n) be strongly elliptic in R
n. Then function (2.9) with E(n)

defined by relation (2.14) satisfies (in the classical sense) Eq. (2.13) in R
n × (0,+∞) and is a unique

solution (in the sense of generalized functions) of problem (2.13), (1.4).

To prove this theorem, we substitute function (2.14) in Eq. (2.13):

2n
∂En
∂t

= −
∫

Rn

[|ξ|2 +G1(ξ)
]
e−t[|ξ|2+G1(ξ)] cos [x · ξ − tG2(ξ)] dξ

+

∫

Rn

G2(ξ)e
−t[|ξ|2+G1(ξ)] sin [x · ξ − tG2(ξ)] dξ.

This can be reduced to ∫

Rn

e−t[|ξ|2+G1(ξ)] (G2(ξ) sin [x · ξ − tG2(ξ)]
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−G1(ξ) cos [x · ξ − tG2(ξ)]− |ξ|2 cos [x · ξ − tG2(ξ)]
)
dξ.

Further,

sinh
(2)
ij ξi sin [x · ξ − tG2(ξ)]− cos h

(2)
ij ξi cos [x · ξ − tG2(ξ)] = − cos

[
x · ξ + h

(2)
ij ξ − tG2(ξ)

]
,

− cos h
(1)
ij ξi sin [x · ξ − tG2(ξ)]− sinh

(1)
ij ξi cos [x · ξ − tG2(ξ)] = − sin

[
x · ξ + h

(1)
ij ξ − tG2(ξ)

]
,

and

− sinh
(0)
ij ξi sin [x · ξ − tG2(ξ)] + cos h

(0)
ij ξi cos [x · ξ − tG2(ξ)] = cos

[
x · ξ + h

(0)
ij ξ − tG2(ξ)

]
.

Therefore,

2n
∂En
∂t

= −
n∑

i=1

m2,i∑
j=1

aij

∫

Rn

ξ2i e
−t[|ξ|2+G1(ξ)] cos

[
(x+ h

(2)
ij ei) · ξ − tG2(ξ)

]
dξ

−
n∑

i=1

m1,i∑
j=1

bij

∫

Rn

ξie
−t[|ξ|2+G1(ξ)] sin

[
(x+ h

(1)
ij ei) · ξ − tG2(ξ)

]
dξ

+

n∑
i=1

m0,i∑
j=1

cij

∫

Rn

e−t[|ξ|2+G1(ξ)] cos
[
(x+ h

(0)
ij ei) · ξ − tG2(ξ)

]
dξ

−
∫

Rn

|ξ|2e−t[|ξ|2+G1(ξ)] cos [x · ξ − tG2(ξ)] dξ,

2n
∂En
∂xi

= −
∫

Rn

ξie
−t[|ξ|2+G1(ξ)] sin [x · ξ − tG2(ξ)] dξ,

and

2n
∂2En
∂x2i

= −
∫

Rn

ξ2i e
−t[|ξ|2+G1(ξ)] cos [x · ξ − tG2(ξ)] dξ.

Thus, the function E(n)(x, t) satisfies Eq. (2.13) in R
n × (0,+∞).

Now, represent G1(ξ) as

n∑
i=1

⎛
⎝ξ2i

m2,i∑
j=1

aij cos h
(2)
ij ξi + ξi

m1,i∑
j=1

bij sinh
(1)
ij ξi −

m0,i∑
j=1

cij cos h
(0)
ij ξi

⎞
⎠ def

=

n∑
i=1

G1,i(ξi),

and represent G2(ξ) as

n∑
i=1

⎛
⎝ξ2i

m2,i∑
j=1

aij sinh
(2)
ij ξi − ξi

m1,i∑
j=1

bij cos h
(1)
ij ξi −

m0,i∑
j=1

cij sinh
(0)
ij ξi

⎞
⎠ def

=

n∑
i=1

G2,i(ξi).

Then function (2.14) is equal to

1

2n

+∞∫

−∞. . .

+∞∫

−∞︸ ︷︷ ︸
n times

n∏
i=1

e−t[ξ2i +G1,i(ξi)] cos

n∑
i=1

[xiξi − tG2,i(ξi)] dξ1 . . . dξn.
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Taking into account that the function G1,i is even and the function G2,i is odd for any i = 1, n, we
reduce the last expression (similarly to the proof of Lemma 2.4.1) to

n∏
i=1

∞∫

0

e−t[τ2+G1,i(τ)] cos [xiτ − tG2,i(τ)] dτ. (2.15)

hence, to prove the solvability, it remains (see the proof of Lemma 2.4.1) to prove analogs of Lem-
mas 2.2.1 and 2.2.2 for the case where the function (of one spatial variable) E(x, t) has the form

∞∫

0

e−t[τ2+G1(τ)] cos [xτ − tG2(τ)] dτ,

where G1 and G2 are G1,i and G2,i with arbitrary i = 1, n, respectively. To do this, as in Lemma 2.2.1,
fix a positive t and consider

∞∫

0

e−t[τ2+G1(τ)] cos [tG2(τ)] cosxτdτ.

Integrating by parts, reduce the last expression to

sinxτ

x
e−t[τ2+G1(τ)] cos [tG2(τ)]

∣∣∣τ=∞
τ=0

− 1

x

∞∫

0

sinxτ
(
e−t[τ2+G1(τ)] cos [tG2(τ)]

)′
dτ

= −1

x

∞∫

0

sinxτ
(
e−t[τ2+G1(τ)] cos [tG2(τ)]

)′
dτ

(the former factor of the integrated term vanishes at zero, while the latter vanishes at infinity);(
e−t[τ2+G1(τ)] cos [tG2(τ)]

)′
= −e−t[τ2+G1(τ)] ([2τ +G′

1(τ)
]
cos [tG2(τ)] + tG′

2(τ) sin [tG2(τ)]
)
.

Obviously, G′
1(0) = G2(0) = 0; hence, integrating by parts again, we obtain

− 1

x2

∞∫

0

cos xτ
(
e−t[τ2+G1(τ)] cos [tG2(τ)]

)′′
dτ

because the integrated term vanishes again. The last integral is a bounded function of x; therefore,
Lemma 2.2.1 is valid for the specified case. In the same way, we prove the boundedness of the functions

x2
∂E
∂x

and x2
∂2E
∂x2

for any positive t.

Further, arguing exactly as in the proof of Theorem 2.4.1, we prove the solvability.
As above, to prove the uniqueness, consider the symbol of the corresponding elliptic operator:

P(z) = −|z|2 −
n∑

k=1

z2k

m2,k∑
j=1

akje
−ih

(2)
kj zk − i

n∑
k=1

zk

m1,k∑
j=1

bkje
−ih

(1)
kj zk

+
n∑

k=1

m0,k∑
j=1

ckje
−ih

(0)
kj zk =

n∑
k=1

(τ2k − σ2
k − 2iσkτk)

⎛
⎝1 +

m2,k∑
j=1

akje
h
(2)
kj τk cos h

(2)
kj σk

− i

m2,k∑
j=1

akje
h
(2)
kj τk sinh

(2)
kj σk

⎞
⎠+

n∑
k=1

(τk − iσk)

⎛
⎝

m1,k∑
j=1

bkje
h
(1)
kj τk cos h

(1)
kj σk
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− i

m1,k∑
j=1

bkje
h
(1)
kj τk sinh

(1)
kj σk

⎞
⎠+

n∑
k=1

m0,k∑
j=1

ckje
h
(0)
kj τk cos h

(0)
kj σk − i

n∑
k=1

m0,k∑
j=1

ckje
h
(0)
kj τk sinh

(0)
kj σk.

Hence,

ReP(z) =

n∑
k=1

⎡
⎣(τ2k − σ2

k)

⎛
⎝1 +

m2,k∑
j=1

akje
h
(2)
kj τk cos h

(2)
kj σk

⎞
⎠

−2σkτk

m2,k∑
j=1

akje
h
(2)
kj τk sinh

(2)
kj σk + τk

m1,k∑
j=1

bkje
h
(1)
kj τk cos h

(1)
kj σk

− σk

m1,k∑
j=1

bkje
h
(1)
kj τk sinh

(1)
kj σk +

m0,k∑
j=1

ckje
h
(0)
kj τk cos h

(0)
kj σk

⎤
⎦ .

This is equal to

|τ |2 − |σ|2 +
n∑

k=1

⎡
⎣(τ2k − σ2

k)

m2,k∑
j=1

akje
h
(2)
kj τk cos h

(2)
kj σk

−2σkτk

m2,k∑
j=1

akje
h
(2)
kj τk sinh

(2)
kj σk + τk

m1,k∑
j=1

bkje
h
(1)
kj τk cos h

(1)
kj σk

− σk

m1,k∑
j=1

bkje
h
(1)
kj τk sinh

(1)
kj σk +

m0,k∑
j=1

ckje
h
(0)
kj τk cos h

(0)
kj σk

⎤
⎦ .

Thus, the function Q(z, t0, t) satisfies the same estimate as in Sec. 2.4 (generally, with different con-
stants), which proves the uniqueness of the constructed solution.

To investigate the long-time behavior of problem (2.13), (1.4), consider (apart from the specified
problem) the problem

∂w

∂t
= Δw, x ∈ R

n, t > 0, (2.16)

w
∣∣
t=0

= w0(x), x ∈ R
n, (2.17)

where w0(x) = u0(
√
p1 x1, . . . ,

√
pn xn), i.e., the initial-value function depends on positive parameters

p1, . . . , pn.
The classical bounded solution of the last problem (it exists and is unique due to the continuity

and boundedness of the function w0(x)) is denoted by w(x, t).
In the sequel, without loss of generality, we assume that for any k = 1, n, the number sets

{bkjh(1)kj }
m1,k

j=1 and {ckj}m0,k

j=1 do not increase. For any k = 1, n, denote min
bkjh

(1)
kj >0

j by m̃1,k and denote

min
ckj>0

j by m̃0,k; if k is such that bkjh
(1)
kj ≤ 0 (ckj ≤ 0) for any j = 1,m1,k (j = 1,m0,k), then we assign

m̃i,k = mi,k +1, i = 0, 1. Denote the positive constant 1 +

m2,k∑
j=1

akj +
∑

j≥m̃1,k

bkjh
(1)
kj by σk, k = 1, n. By

L(n) denote the elliptic operator at the right-hand part of (2.13). Together with L(n), consider the
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operator L acting as follows:

Lu def
= Δu+

n∑
k=1

⎡
⎣ ∑
j<m̃0,k

ckj
σk

u(x+ h
(0)
kj ek, t)−

∑
j<m̃1,k

2|bkj |
σk

u(x+

√
|h(1)kj | ek, t)

⎤
⎦ .

Note that nonlocal terms of the differential-difference operator L have only zero order, but it depends
on the coefficients at high-order nonlocal terms of the original operator L(n).

Denote

n∑
k=1

1

σk

⎛
⎝ ∑

j<m̃0,k

ckj − 2
∑

j<m̃1,k

|bkj |
⎞
⎠ I − L by R. The following assertion is valid.

Theorem 2.6.2. Let R(ξ) be positive definite. Then

lim
t→∞

⎡
⎣e−t

n∑

k=1

m0,k∑

j=1
ckj

u(x0, t)− w

(
x01 + q1t√

p1
, . . . ,

x0n + qnt√
pn

, t

)⎤
⎦ = 0

for any x0
def
= (x01, . . . , x

0
n) from R

n, where

pi = 1 +

m2,i∑
j=1

aij +

m1,i∑
j=1

bijh
(1)
ij +

1

2

m0,i∑
j=1

cij

[
h
(0)
ij

]2
and qi =

m1,i∑
j=1

bij +

m0,i∑
j=1

cijh
(0)
ij , i = 1, n.

Proof. First, we prove that p1, . . . , pn are positive under the conditions of the theorem. To do this,
we consider the positive definiteness condition for R(ξ):

n∑
k=1

1

σk

⎛
⎝ ∑

j<m̃0,k

ckj−2
∑

j<m̃1,k

|bkj|
⎞
⎠+|ξ|2−

n∑
k=1

1

σk

⎛
⎝ ∑

j<m̃0,k

ckj cos h
(0)
kj ξk−2

∑
j<m̃1,k

|bkj | cos
√

|h(1)kj | ξk

⎞
⎠ ≥ C|ξ|2.

Then we take an arbitrary k ∈ 1, n. The last inequality remains valid if we set ξ1, . . . , ξk−1, ξk+1, . . . , ξn
to be equal to zero. Therefore, the inequality

∑
j<m̃0,k

ckj − 2
∑

j<m̃1,k

|bkj|+ σkξ
2
k + 2

∑
j<m̃1,k

|bkj| cos
√

|h(1)kj | ξk −
∑

j<m̃0,k

ckj cos h
(0)
kj ξk ≥ Cξ2k

holds for any positive ξk. This implies the following inequality:

Cξ2k ≤ σkξ
2
k − 2
∑

j<m̃1,k

|bkj|
(
1− cos

√
|h(1)kj | ξk

)
+
∑

j<m̃0,k

ckj

(
1− cosh

(0)
kj ξk

)
.

Its right-hand part is equal to

σkξ
2
k − 4

∑
j<m̃1,k

|bkj| sin2
√

|h(1)kj | ξk
2

+ 2
∑

j<m̃0,k

ckj sin
2
h
(0)
kj ξk

2

= σkξ
2
k − ξ2k

∑
j<m̃1,k

|bkj||h(1)kj |

⎛
⎜⎝sin

√
|h(1)

kj | ξk
2√

|h(1)
kj | ξk
2

⎞
⎟⎠

2

+
ξ2k
2

∑
j<m̃0,k

ckj

[
h
(0)
kj

]2
⎛
⎝sin

h
(0)
kj ξk
2

h
(0)
kj ξk
2

⎞
⎠

2

;

hence,

σk −
∑

j<m̃1,k

|bkj ||h(1)kj |

⎛
⎜⎝sin

√
|h(1)

kj | ξk
2√

|h(1)
kj | ξk
2

⎞
⎟⎠
2

+
1

2

∑
j<m̃0,k

ckj

[
h
(0)
kj

]2
⎛
⎝sin

h
(0)
kj ξk
2

h
(0)
kj ξk
2

⎞
⎠
2

≥ C

for any positive ξk.
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This yields the inequality

σk −
∑

j<m̃1,k

|bkj||h(1)kj |+
1

2

∑
j<m̃0,k

ckj

[
h
(0)
kj

]2
> 0.

Indeed, assume the converse:

σk −
∑

j<m̃1,k

|bkj||h(1)kj |+
1

2

∑
j<m̃0,k

ckj

[
h
(0)
kj

]2 ≤ 0.

Then for any positive ξk, the constant C does not exceed

σk +
∑

j<m̃1,k

|bkj ||h(1)kj | −
∑

j<m̃1,k

|bkj||h(1)kj |+
1

2

∑
j<m̃0,k

ckj

[
h
(0)
kj

]2 − 1

2

∑
j<m̃0,k

ckj

[
h
(0)
kj

]2

−
∑

j<m̃1,k

|bkj||h(1)kj |

⎛
⎜⎝sin

√
|h(1)

kj | ξk
2√

|h(1)
kj | ξk
2

⎞
⎟⎠

2

+
1

2

∑
j<m̃0,k

ckj

[
h
(0)
kj

]2
⎛
⎝sin

h
(0)
kj ξk
2

h
(0)
kj ξk
2

⎞
⎠

2

= σk −
∑

j<m̃1,k

|bkj||h(1)kj |+
1

2

∑
j<m̃0,k

ckj

[
h
(0)
kj

]2

−
∑

j<m̃1,k

|bkj||h(1)kj |

⎡
⎢⎣
⎛
⎜⎝sin

√
|h(1)

kj | ξk
2√

|h(1)
kj | ξk
2

⎞
⎟⎠

2

− 1

⎤
⎥⎦+ 1

2

∑
j<m̃0,k

ckj

[
h
(0)
kj

]2
⎡
⎢⎣
⎛
⎝sin

h
(0)
kj ξk
2

h
(0)
kj ξk
2

⎞
⎠

2

− 1

⎤
⎥⎦ ,

which does not exceed

1

2

∑
j<m̃0,k

ckj

[
h
(0)
kj

]2
⎡
⎢⎣
⎛
⎝sin

h
(0)
kj ξk
2

h
(0)
kj ξk
2

⎞
⎠

2

− 1

⎤
⎥⎦ − ∑

j<m̃1,k

|bkj||h(1)kj |

⎡
⎢⎣
⎛
⎜⎝sin

√
|h(1)

kj | ξk
2√

|h(1)
kj | ξk
2

⎞
⎟⎠

2

− 1

⎤
⎥⎦ .

Since all the sums are finite, one can select a small positive ξk such that the last expression does not

exceed
C

2
. The obtained contradiction proves the positivity of

σk −
∑

j<m̃1,k

|bkj||h(1)kj |+
1

2

∑
j<m̃0,k

ckj

[
h
(0)
kj

]2

= 1 +

m2,k∑
j=1

akj +
∑

j≥m̃1,k

bkjh
(1)
kj −
∑

j<m̃1,k

|bkj ||h(1)kj |+
1

2

∑
j<m̃0,k

ckj

[
h
(0)
kj

]2

= 1 +

m2,k∑
j=1

akj +

m1,k∑
j=1

bkjh
(1)
kj +

1

2

∑
j<m̃0,k

ckj

[
h
(0)
kj

]2
.

Hence, pk is positive a fortiori.
Now, fix an arbitrary x0 from R

n. Then

w

(
x01 + q1t√

p1
, . . . ,

x0n + qnt√
pn

, t

)
=

1

(2
√
πt)n

∫

Rn

u0(
√
p1 ξ1, . . . ,

√
pn ξn)e

− 1
4t

n∑

i=1

(
x0i +qit√

pi
−ξi

)2

dξ.
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The last expression is equal to

1

(2
√
πt)n

n∏
i=1

√
pi

∫

Rn

u0(η)e
− 1

t

n∑

i=1

(x0i+qit−ηi)
2

4pi dη =
1

π
n
2

n∏
i=1

√
pi

∫

Rn

u0(x0 − 2
√
tξ)e

−
n∑

i=1

(2ξi+qi
√

t)2

4pi dξ

=
1

2nπ
n
2

n∏
i=1

√
pi

∫

Rn

u0(x0 + tq −√
ty)e

−
n∑

i=1

y2i
4pi dy,

where q denotes the vector (q1, . . . , qn). Further, by virtue of (2.11) and (2.15), we have

u(x0, t) =

(
2
√
t

π

)n ∫

Rn

u0(x0 − 2
√
tη)

n∏
i=1

∞∫

0

e−t[τ2+G1,i(τ)] cos
[
2
√
tηiτ − tG2,i(τ)

]
dτdη

=

(√
t

π

)n ∫

Rn

u0(x0 + tq −√
ty)

n∏
i=1

∞∫

0

e−t[τ2+G1,i(τ)] cos
[
yiτ

√
t− qiτt− tG2,i(τ)

]
dτdy.

Hence,

e
−t

n∑

k=1

m0,k∑

j=1
ckj

u(x0, t) =

(√
t

π

)n ∫

Rn

u0(x0 + tq −
√
ty)

×
n∏

i=1

∞∫

0

e
−t

[

τ2+G1,i(τ)+
m0,i∑

j=1
cij

]

cos
[
yiτ

√
t− qiτt− tG2,i(τ)

]
dτdy,

which is equal to

(
1

π

)n ∫

Rn

u0(x0 + tq −√
ty)

n∏
i=1

∞∫

0

e
−z2−tG1,i

(
z√
t

)
−t

m0,i∑

j=1
cij

cos

[
yiz − qiz

√
t− tG2,i

(
z√
t

)]
dzdy.

Thus,

e
−t

n∑

k=1

m0,k∑

j=1
ckj

u(x0, t)− w

(
x01 + q1t√

p1
, . . . ,

x0n + qnt√
pn

, t

)

=

(
1

π

)n ∫

Rn

u0(x0 + tq −√
ty)

⎛
⎝ n∏

i=1

∞∫

0

e
−z2−tG1,i

(
z√
t

)
−t

m0,i∑

j=1
cij

× cos

[
yiz − qiz

√
t− tG2,i

(
z√
t

)]
dz −

n∏
i=1

√
π

2
√
pi
e
− y2i

4pi

)
dy. (2.18)

The following assertions are valid:

Lemma 2.6.1. Suppose that the conditions of Theorem 2.6.2 are satisfied and i ∈ 1, n. Then

∞∫

0

e
−z2−tG1,i

(
z√
t

)
−t

m0,i∑

j=1
cij

cos

[
yz − qiz

√
t− tG2,i

(
z√
t

)]
dz −

√
π

2
√
pi
e
− y2

4pi

t→∞−→ 0

uniformly with respect to y ∈ (−∞,+∞).
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Lemma 2.6.2. Suppose that the conditions of Theorem 2.6.2 are satisfied. Then for any i = 1, n
there exists Mi depending only on the coefficients of Eq. (2.13) such that

∣∣∣∣∣
∞∫

0

e
−z2−tG1,i

(
z√
t

)
−t

m0,i∑

j=1
cij

cos

[
yz − qiz

√
t− tG2,i

(
z√
t

)]
dz

∣∣∣∣∣ <
M

y2

for any y ∈ R
1\{0} and any t ∈ [1,∞).

To prove Lemma 2.6.2, we use the same scheme as in the proof of Lemma 2.3.2 (see also [57,
Lemma 5]).

To prove Lemma 2.6.1, we represent the power of the exponential function contained in the integral
as follows:

−z2 − z2
m2,i∑
j=1

aij cos
h
(2)
ij z√
t

− z
√
t

m1,i∑
j=1

bij sin
h
(1)
ij z√
t

+ t

m0,i∑
j=1

cij

(
cos

h
(0)
ij z√
t

− 1

)

= −z2

⎛
⎝1 +

m2,i∑
j=1

aij cos
h
(2)
ij z√
t

⎞
⎠− z

√
t

m1,i∑
j=1

bij
sin

h
(1)
ij z√
t

h
(1)
ij z√
t

h
(1)
ij z√
t

− 2t

m0,i∑
j=1

cij sin
2
h
(0)
ij z

2
√
t

= −z2

⎡
⎢⎢⎣1 +

m2,i∑
j=1

aij cos
h
(2)
ij z√
t

+

m1,i∑
j=1

bijh
(1)
ij

sin
h
(1)
ij z√
t

h
(1)
ij z√
t

+
1

2

m0,i∑
j=1

cij

[
h
(0)
ij

]2
⎛
⎜⎝sin

h
(0)
ij z

2
√
t

h
(0)
ij z

2
√
t

⎞
⎟⎠

2
⎤
⎥⎥⎦ .

The independent variable of the cosine contained in the integral is represented as

z

⎛
⎝y − qi

√
t+

√
t

m1,i∑
j=1

bij cos
h
(1)
ij z√
t

⎞
⎠− z2

m2,i∑
j=1

aij sin
h
(2)
ij z√
t

+ t

m0,i∑
j=1

cij

sinh
(0)
ij z√
t

h
(0)
ij z√
t

h
(0)
ij z√
t
,

which is equal to

z

⎛
⎜⎝y − qi

√
t+

√
t

m1,i∑
j=1

bij cos
h
(1)
ij z√
t

+
√
t

m0,i∑
j=1

cijh
(0)
ij

sinh
(0)
ij z√
t

h
(0)
ij z√
t

⎞
⎟⎠− z2

m2,i∑
j=1

aij sin
h
(2)
ij z√
t
.

The remaining part of Lemma 2.6.1 is the same as the proof of Lemma 2.3.1 (see also [57, Lemma 4]).
Now, we can decompose (2.18) into sum (2.12) and estimate it in the same way as in the proof of
Theorem 2.5.1 (using Lemmas 2.6.1 and 2.6.2 instead of Lemmas 2.3.1 and 2.3.2 respectively). This
completes the proof of Theorem 2.6.2.

Note that Remark 1.6.1 remains valid for Theorem 2.6.2 (i.e., for the case where principal terms of
the equation are nonlocal) as well.

Remark 2.6.1. It is easy to see that the function

ω(x, t) def
= w

(
x1 + q1t√

p1
, . . . ,

xn + qnt√
pn

, t

)

is a classical bounded solution of the equation

∂u

∂t
=

n∑
i=1

pi
∂2u

∂x2i
+

n∑
i=1

qi
∂u

∂xi
, (2.19)
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satisfying condition (1.4); therefore, in the theorem on the (weighted) closeness of solutions, one
can use problem (2.19), (1.4) instead of problem (2.16)-(2.17). Note that Theorem 2.6.2 establishes
a qualitatively new behavior of the solution compared with the prototype case of the homogeneous
elliptic operator at the right-hand part of the equation (see Theorem 2.5.1), and this qualitative novelty
is preserved even if there are no nonlocal high-order terms (cf. [57, Th. 2]). Thus, adding low-order
terms to a parabolic differential-difference equation, we can encounter qualitatively new effects (as in
the classical parabolic theory, see [29]).

2.7. The General Case of Nonfactorable Fundamental Solutions

Let akj, hkj ∈ R
1, k,j = 1, n. In R

n×(0,+∞), consider the equation

∂u

∂t
= Lu def

=

n∑
k,j=1

akj
∂2u

∂x2k
(x+ hkjej , t), (2.20)

where ej denotes the unit vector of the jth coordinate direction.
As in Sec. 2.1, consider the real part of the symbol of the operator L (cf. Sec. 1.6 and [102, §8]):

ReL(ξ) = −
n∑

k,j=1

akjξ
2
k cos hkjξj.

We say that −L(ξ) is positive definite if there exists a positive C such that −ReL(ξ) ≥ C|ξ|2 for
ξ ∈ R

n. Any operator −L possessing the specified property is called a second-order operator strongly
elliptic in the whole space.

In the sequel, we assume that the operator −L is strongly elliptic in the whole space.
Consider problem (2.20), (1.4), assuming that u0(x) is continuous and bounded in R

n.
On R

n×(0,+∞), define the following function:

E(x, t) def
= Ea,h(x, t) def

=

∫

Rn

e−tG1(ξ) cos[x · ξ − tG2(ξ)]dξ, (2.21)

where G1(ξ) =
n∑

k,j=1

akjξ
2
k cos hkjξj and G2(ξ) =

n∑
k,j=1

akjξ
2
k sinhkjξj .

The strong ellipticity for the operator −L implies the inequality |E(x, t)| ≤
∫

Rn

e−Ct|ξ|2dξ, i.e., for

any t0, T from (0,+∞), integral (2.21) converges absolutely and uniformly with respect to (x, t) ∈
R
n× [t0, T ]. Therefore, E(x, t) is well defined on R

n× (0,+∞).
Formally differentiate E with respect to t under the integral sign:

∂E
∂t

= −
∫

Rn

e−tG1(ξ)G1(ξ) cos[x · ξ − tG2(ξ)]dξ +

∫

Rn

e−tG1(ξ)G2(ξ) sin[x · ξ − tG2(ξ)]dξ.

Taking into account that

sinhkjξj sin[x · ξ − tG2(ξ)]− coshkjξj cos[x · ξ − tG2(ξ)] = − cos[(x+ hkjej) · ξ − tG2(ξ)],

we obtain the relation

∂E
∂t

= −
∫

Rn

e−tG1(ξ)
n∑

k,j=1

akjξ
2
k cos[(x+ hkjej) · ξ − tG2(ξ)]dξ

= −
n∑

k,j=1

akj

∫

Rn

e−tG1(ξ)ξ2k cos[(x+ hkjej) · ξ − tG2(ξ)]dξ. (2.22)
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Further, formally differentiating E with respect to spatial variables under the integral sign, we obtain
the relation

∂2E
∂x2k

= −
∫

Rn

ξ2ke
−tG1(ξ) cos[x · ξ − tG2(ξ)]dξ;

hence,

∂2E
∂x2k

(x+ hkjej , t) = −
∫

Rn

ξ2ke
−tG1(ξ) cos[(x+ hkjej) · ξ − tG2(ξ)]dξ. (2.23)

The absolute value of each of those improper integrals is bounded from above by

const

∫

Rn

|ξ|2e−Ct|ξ|2dξ,

i.e., it converges absolutely and uniformly with respect to (x, t) ∈ R
n× [t0, T ] for any t0, T ∈ (0,+∞).

Therefore, differentiating under the integral sign is valid, and E(x, t) satisfies (in the classical sense)
Eq. (2.20) in R

n×(0,+∞).
Fixing a positive t, estimate the behavior of the function E(x, t) and its derivatives as x → ∞. To

do this, decompose the specified functions into the terms E1(x, t) as E2(x, t):

E1(x, t) def
=

∫

Rn

e−tG1(ξ) cos tG2(ξ) cos x·ξ dξ and E2(x, t) def
=

∫

Rn

e−tG1(ξ) sin tG2(ξ) sin x·ξ dξ.

Let us prove the following assertion:

Lemma 2.7.1. If l ∈ N and t > 0, then |x|lE(x, t) is bounded in R
n.

Proof. Let t > 0 and i ∈ 1, n; then

xiE1(x, t) = lim
R→∞

∫

|ξ|<R

e−tG1(ξ) cos tG2(ξ)
∂

∂ξi
sinx·ξ dξ

= lim
R→∞

⎛
⎜⎝
∫

|ξ|=R

e−tG1(ξ) cos tG2(ξ) sinx·ξ cos(ξ, ei) dSξ −
∫

|ξ|<R

∂

∂ξi

[
e−tG1(ξ) cos tG2(ξ)

]
sinx·ξ dξ

⎞
⎟⎠.

The absolute value of the surface integral of the last expression is bounded by∫

|ξ|=R

e−tG1(ξ)dSξ ≤
∫

|ξ|=R

e−Ct|ξ|2dSξ = constRn−1e−CtR2 R→∞−→ 0;

therefore,

xiE1(x, t) = −
∫

Rn

∂

∂ξi

[
e−tG1(ξ) cos tG2(ξ)

]
sinx·ξ dξ.

It is easy to see that the absolute value of the integrand does not exceed |P (ξ)|e−tG1(ξ), where P is a
polynomial such that its coefficients depend only on t (which is fixed) and the coefficients of Eq. (2.20);
therefore, the function xiE1(x, t) is bounded in R

n.
Further,

x2i E1(x, t) = −xi

∫

Rn

∂

∂ξi

[
e−tG1(ξ) cos tG2(ξ)

]
sinx·ξ dξ =

∫

Rn

∂

∂ξi

[
e−tG1(ξ) cos tG2(ξ)

] ∂

∂ξi
cos x·ξ dξ.
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Represent the last expression as follows:

lim
R→∞

∫

|ξ|<R

∂

∂ξi

[
e−tG1(ξ) cos tG2(ξ)

] ∂

∂ξi
cosx·ξ dξ

= lim
R→∞

⎛
⎜⎝
∫

|ξ|=R

∂

∂ξi

[
e−tG1(ξ) cos tG2(ξ)

]
cos x·ξ cos(ξ, ei) dSξ

−
∫

Rn

∂2

∂ξ2i

[
e−tG1(ξ) cos tG2(ξ)

]
cosx·ξ dξ

⎞
⎠.

As we see above, the absolute value of the integrand of the last surface integral does not exceed

|P (ξ)|e−tG1(ξ); hence, the absolute value of the specified integral does not exceed

e−CtR2
∫

|ξ|=R

|P (ξ)|dSξ
R→∞−→ 0.

This implies that

x2i E1(x, t) = −
∫

|ξ|<R

∂2

∂ξ2i

[
e−tG1(ξ) cos tG2(ξ)

]
cos x·ξ dξ.

Differentiating the integrand, we see that its absolute value does not exceed |P (ξ)|e−tG1(ξ) (in general,
the polynomial P might change), i.e., the function x2i E1(x, t) is bounded in R

n.
Continuing to integrate by parts and taking into account that∣∣∣∣ ∂

l

∂ξli

[
e−tG1(ξ) cos tG2(ξ)

]∣∣∣∣ ≤ |P (ξ)|e−tG1(ξ) (2.24)

for any l ∈ N, while the coefficients of the polynomial P depend only on l, t, and the coefficients of
Eq. (2.20), we obtain the boundedness of the function xliE1(x, t) for any i ∈ 1, n; hence, the function
|x|lE1(x, t) is bounded as well.

The boundedness of the function |x|lE2(x, t) is proved in the same way.
This completes the proof of Lemma 2.7.1.

Thus, the following function is defined in R
n × (0,+∞):

u(x, t) def
=

1

(2π)n

∫

Rn

E(x− ξ, t)u0(ξ)dξ. (2.25)

Apply to representations (2.22) and (2.23) the procedure applied to integral (2.21) in Lemma 2.7.1.

Taking into account that estimate (2.24) remains valid for the functions
∂ l

∂ξli

[
ξ2ke

−tG1(ξ) cos tG2(ξ)
]
,

k = 1, n, we see that the assertion of Lemma 2.7.1 holds for the functions
∂E
∂t

and
∂2E
∂x2k

as well. This

means that function (2.25) can be differentiated under the integral sign. Since the function E(x, t)
satisfies Eq. (2.20), this implies the following assertion.

Theorem 2.7.1. Let the operator −L be strongly elliptic in R
n. Then function (2.25) satisfies (in

the classical sense) Eq. (2.20) in R
n×(0,+∞).

Remark 2.7.1. The fact that function (2.25) satisfies problem (2.20), (1.4) in the sense of generalized
functions is known (see, e.g., [16]). The only novelty of Theorem 2.7.1 is the fact that this solution is
classical in R

n ×(0,+∞).
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To establish the uniqueness of this solution, investigate (according to [16]) the real part of the symbol

of the elliptic operator L contained in Eq. (2.20). The specified symbol P(z1, . . . , zn)
def
= P(z) def= P(σ+

iτ) def
= P(σ1 + iτ1, . . . , σn + iτn) is equal to

−
n∑

k=1

z2k

n∑
j=1

akje
−ihkjzj =

n∑
k=1

(τ2k − σ2
k − 2iσkτk)

n∑
j=1

akje
−ihkjzj

=
n∑

k=1

(τ2k − σ2
k − 2iσkτk)

n∑
j=1

akje
hkjτj−ihkjσj

=

n∑
k=1

(τ2k − σ2
k − 2iσkτk)

⎛
⎝ n∑

j=1

akje
hkjτj cos hkjσj − i

n∑
j=1

akje
hkjτj sinhkjσj

⎞
⎠ .

Thus,

ReP(z) =

n∑
k=1

⎡
⎣(τ2k − σ2

k)

n∑
j=1

akje
hkjτj coshkjσj − 2σkτk

n∑
j=1

akje
hkjτj sinhkjσj

⎤
⎦ .

Therefore, the function Q(z, t0, t)
def
= e(t−t0)P(z) satisfies the estimate

|Q(z, t0, t)| ≤ e(t−t0)[C1(1+|σ|4)+C2eC3|τ |],

which implies (see [16, Ch. 2, Appendix 1]) that problem (2.20), (1.4) has at most one solution in the
sense of generalized functions.

Remark 2.7.2. In general, the uniqueness theorem for problem (2.20), (1.4) (in corresponding spaces
of generalized functions) holds for much more wide classes of initial-value functions than the class of
continuous bounded functions. In particular, it holds for Tikhonov classes and their generalizations
(see [2] and [40]). However, we consider only the case of continuous bounded initial-value functions
because we investigate the closeness of solutions of the specified problem and classical parabolic prob-
lems.

Now, investigate the behavior of u(x, t) as t → ∞. First, we prove the following assertion.

Lemma 2.7.2. If the conditions of Theorem 2.7.1 are satisfied, then the constant pk
def
=

n∑
j=1

akj is

positive for any k ∈ 1, n.

Proof. Let k ∈ 1, n. Assume the converse:
n∑

j=1
akj ≤ 0. Take the strong ellipticity condition for the

operator −L and assign ξ1 = · · · = ξk−1 = ξk+1 = · · · = ξn = 0 in that inequality. We obtain the
inequality

ξ2k

⎛
⎜⎜⎝

n∑
j=1
j 
=k

akj + akk cos hkkξk

⎞
⎟⎟⎠ ≥ Cξ2k.

Hence,

C ≤
n∑

j=1
j 
=k

akj + akk coshkkξk + akk − akk =

n∑
k,j=1

akj + akk(cos hkkξk − 1) ≤ akk(cos hkkξk − 1)

provided that ξk is different from zero. Now, we can select ξk such that it is different from zero, but
its absolute value is sufficiently small to obtain a contradiction with the positivity of the constant C.

This completes the proof of Lemma 2.7.2.
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Together with the differential-difference parabolic equation (2.20), consider the differential parabolic
equation

∂u

∂t
=

n∑
k=1

pk
∂2u

∂x2k
. (2.26)

By v(x, t) denote the classical bounded solution of problem (2.26), (1.4) (it exists and is unique due
to the continuity and boundedness of the function u0).

The following assertion is valid:

Theorem 2.7.2. If the conditions of Theorem 2.7.1 are satisfied, then

lim
t→∞[u(x, t)− v(x, t)] = 0

for any x ∈ R
n.

Proof. Let x ∈ R
n. In (2.25), change the variables:

x− ξk

2
√
t

= ηk, k = 1, n. This yields the representa-

tion

u(x, t) =

(√
t

π

)n ∫

Rn

E(2√tη, t)u0(x− 2
√
tη)dη.

Taking into account that

t
n
2 E(2√tη, t) = t

n
2

∫

Rn

e−tG1(ξ) cos[2
√
tξ ·η − tG2(ξ)]dξ

=

∫

Rn

e
−tG1

(
z1√
t
,..., zn√

t

)

cos

[
2z ·η − tG2

(
z1√
t
, . . . ,

zn√
t

)]
dz

and

v(x, t) =
1

(2
√
πt)n

n∏
k=1

√
pk

∫

Rn

u0(ξ)e
−

n∑

k=1

(xk−ξk)2

4pkt
dξ

(since it is a solution of the Cauchy problem for a differential parabolic equation with constant coef-
ficients), we obtain the following representation of the estimated difference:

u(x, t)− v(x, t)

=

(
1

π

)n ∫

Rn

u0(x− 2
√
tη)

∫

Rn

e
−tG1

(
z1√
t
,..., zn√

t

)

cos

[
2z · η − tG2

(
z1√
t
, . . . ,

zn√
t

)]
dzdη

− 1

(2
√
πt)n

n∏
k=1

√
pk

∫

Rn

u0(ξ)e
−

n∑

k=1

(xk−ξk)2

4pkt
dξ

=

(
1

π

)n ∫

Rn

u0(x− 2
√
tη)

⎛
⎜⎜⎝
∫

Rn

e
−tG1

(
z1√
t
,..., zn√

t

)

cos

[
2z · η − tG2

(
z1√
t
, . . . ,

zn√
t

)]
dz

− π
n
2

n∏
k=1

√
pk

e
−

n∑

k=1

η2k
pk

⎞
⎟⎟⎠ dη. (2.27)

Let us prove the following two lemmas.
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Lemma 2.7.3. The relation
∫

Rn

e
−tG1

(
z1√
t
,..., zn√

t

)

cos

[
2z ·η − tG2

(
z1√
t
, . . . ,

zn√
t

)]
dz − π

n
2

n∏
k=1

√
pk

e
−

n∑

k=1

η2k
pk

t→∞−→ 0

holds uniformly with respect to η ∈ R
n.

Proof. Consider the integral

∫

Rn

e
−

n∑

k=1
pkz

2
k
cos 2z ·ηdz =

∫

Rn

n∏
k=1

e−pkz
2
k cos

(
2

n∑
k=1

zkηk

)
dz.

The function cos

(
2

n∑
k=1

zkηk

)
is a finite sum of terms of the form

n∏
k=1

fk(2zkηk), where each function fk

is either the sine or the cosine, and only one of those terms contains no sines; this term is
n∏

k=1

cos 2zkηk.

Therefore, the last integral is a finite sum of terms of the form

+∞∫

−∞. . .

+∞∫

−∞︸ ︷︷ ︸
n times

n∏
k=1

e−pkz
2
kfk(2zkηk)dz1 . . . dzn =

n∏
k=1

+∞∫

−∞
e−pkτ

2
fk(2ηkτ)dτ.

Only one of those terms is different from zero; this is

n∏
k=1

+∞∫

−∞
e−pkτ

2
cos 2ηkτ dτ.

All other terms vanish because each of them contains at least one factor of the form

n∏
k=1

+∞∫

−∞
e−pkτ

2
sin 2ηkτ dτ = 0.

Thus,

∫

Rn

e
−

n∑

k=1
pkz

2
k
cos 2z ·ηdz = 2n

n∏
k=1

+∞∫

0

e−pkτ
2
cos 2ηkτ dτ = π

n
2

n∏
k=1

e
− η2k

pk√
pk

.

Hence, the following relation is valid for the second factor of the integrand of the external integral
in (2.27):

∫

Rn

e
−tG1

(
z1√
t
,..., zn√

t

)

cos

[
2z ·η − tG2

(
z1√
t
, . . . ,

zn√
t

)]
dz − π

n
2

n∏
k=1

√
pk

e
−

n∑

k=1

η2k
pk

=

∫

Rn

(
e
−tG1

(
z1√
t
,..., zn√

t

)

cos

[
2z ·η − tG2

(
z1√
t
, . . . ,

zn√
t

)]
− e

−
n∑

k=1
pkz

2
k
cos 2z ·η

)
dz. (2.28)

The absolute value of integral (2.28) is estimated from above by the sum

∫

Rn

e
−tG1

(
z1√
t
,..., zn√

t

)

dz +

∫

Rn

e
−

n∑

k=1
pkz

2
k
dz ≤
∫

Rn

e−C|z|2dz +
∫

Rn

e
− min

k=1,n
pk|z|2

dz < ∞.
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Therefore, integral (2.28) converges absolutely and uniformly with respect to (t, η) ∈ R
1
+ × R

n.

Fix an arbitrary positive ε and represent (2.28) as the sum

∫

|z|<δ

+

∫

|z|≥δ

def
= I1,δ + I2,δ. By virtue of

the proved uniform convergence, there exists a value of the parameter δ such that |I2,δ| < ε

2
for any

t ∈ R
1
+ and any η ∈ R

n. Fix that δ and consider the integral I1,δ.
Its integrand is equal to

e
−

n∑

k=1
pkz

2
k

⎛
⎝e−t

n∑

k,j=1
akj

z2k
t

cos
hkjzj√

t
+

n∑

k=1
pkz

2
k

cos

[
2z · η − tG2

(
z1√
t
, . . . ,

zn√
t

)]
− cos 2z · η

⎞
⎠

= e
−

n∑

k=1
pkz

2
k

⎛
⎜⎝e

n∑

k=1
z2k

(

pk−
n∑

j=1
akj cos

hkjzj√
t

)

cos

[
2z · η − tG2

(
z1√
t
, . . . ,

zn√
t

)]
− cos 2z · η

⎞
⎟⎠

= e
−

n∑

k=1

pkz
2
k

⎛
⎝e

n∑

k=1

z2k

n∑

j=1
akj

(
1−cos

hkjzj√
t

)

cos

[
2z · η − tG2

(
z1√
t
, . . . ,

zn√
t

)]
− cos 2z · η

⎞
⎠

= e
−

n∑

k=1
pkz

2
k

⎛
⎝e 2

n∑

k=1
z2k

n∑

j=1
akj sin

2 hkjzj

2
√

t
cos

[
2z · η − tG2

(
z1√
t
, . . . ,

zn√
t

)]
− cos 2z · η

⎞
⎠

= e
−

n∑

k=1
pkz

2
k

⎛
⎝e 2

n∑

k=1
z2k

n∑

j=1
akj sin

2
hkjzj

2
√

t
cos 2z · η cos

[
tG2

(
z1√
t
, . . . ,

zn√
t

)]
− cos 2z · η

⎞
⎠

+ e
−

n∑

k=1
pkz

2
k
e
2

n∑

k=1
z2k

n∑

j=1
akj sin

2 hkjzj

2
√

t
sin 2z · η sin

[
tG2

(
z1√
t
, . . . ,

zn√
t

)]
= A1(η, t; z) +A2(η, t; z),

where

A1(η, t; z) = e
−

n∑

k=1
pkz

2
k
cos 2z · η

⎛
⎝e 2

n∑

k=1
z2k

n∑

j=1
akj sin

2 hkjzj

2
√

t
cos

[
tG2

(
z1√
t
, . . . ,

zn√
t

)]
− 1

⎞
⎠

and

A2(η, t; z) = e
−

n∑

k=1
pkz

2
k
e
2

n∑

k,j=1
z2kakj sin

2 hkjzj

2
√

t
sin 2z ·η sin

[
tG2

(
z1√
t
, . . . ,

zn√
t

)]
.

First, estimate the latter term:
∣∣∣∣∣∣∣
∫

|z|<δ

A2(η, t; z)dz

∣∣∣∣∣∣∣
≤
∫

|z|<δ

e
2

n∑

k,j=1
|akj |z2k

∣∣∣∣sin
[
tG2

(
z1√
t
, . . . ,

zn√
t

)]∣∣∣∣ dz

≤ e
2δ2

n∑

k,j=1
|akj | ∫

|z|<δ

∣∣∣∣∣∣sin
⎛
⎝ n∑

k,j=1

|akj|z2k sin
hkjzj√

t

⎞
⎠
∣∣∣∣∣∣ dz

≤ e
2δ2

n∑

k,j=1
|akj | ∫

|z|<δ

n∑
k,j=1

|akj|z2k
∣∣∣∣sin hkjzj√

t

∣∣∣∣ dz
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≤ δ2
n∑

k,j=1

|akj|e
2δ2

n∑

k,j=1
|akj | ∫

|z|<δ

∣∣∣∣sin hkjzj√
t

∣∣∣∣ dz

≤ δ3√
t

n∑
k,j=1

|akj||hkj |e
2δ2

n∑

k,j=1
|akj | ∫

|z|<δ

dz def
=

C0δ
n+3eC1δ2

√
t

,

where the constants C0 and C1 depend only on the coefficients of Eq. (2.20).

Denoting
16C2

0δ
2n+6e2C1δ2

ε2
by T0, we obtain that the following inequality holds for any t > T0 and

any η ∈ R
n: ∣∣∣∣∣∣∣

∫

|z|<δ

A2(η, t; z)dz

∣∣∣∣∣∣∣
≤ ε

4
.

It remains to estimate the former term:∣∣∣∣∣∣∣
∫

|z|<δ

A1(η, t; z)dz

∣∣∣∣∣∣∣
≤
∫

|z|<δ

∣∣∣∣∣∣e
2

n∑

k,j=1
akjz

2
k sin2

hkjzj

2
√

t
cos

⎛
⎝ n∑

k,j=1

akjz
2
k sin

hkjzj√
t

⎞
⎠− 1

∣∣∣∣∣∣ dz. (2.29)

Without loss of generality, we assume that δ is sufficiently large to satisfy the inequality

γ def
=

nΓ
(
n
2

)
24π

n
2 δn

ε < 1.

The inequality

∣∣∣∣∣∣2
n∑

k,j=1

akjz
2
k sin

2 hkjzj

2
√
t

∣∣∣∣∣∣ ≤ 2δ2
n∑

k,j=1

|akj|
h2kjz

2
j

4t
≤

δ4
n∑

k,j=1

|akj|h2kj
2t

is valid in the domain of integration of integral (2.29). Therefore, there exists a positive T1 such that
for t > T1, the value of the exponential function in (2.29) belongs to (1− γ, 1 + γ).

The inequality

∣∣∣∣∣∣
n∑

k,j=1

akjz
2
k sin

hkjzj√
t

∣∣∣∣∣∣ ≤ δ2
n∑

k,j=1

|akj| |hkjzj |√
t

≤
δ3

n∑
k,j=1

|akjhkj|
√
t

is valid in the domain of integration of integral (2.29). Therefore, there exists a positive T2 such that
for t > T2, the value of the cosine in (2.29) belongs to (1 − γ, 1 + γ). Thus, for t > max{T1, T2}, we
have

1− 3γ ≤ (1− γ)2 < e
2

n∑

k,j=1
akjz

2
k sin2

hkjzj

2
√

t
cos

⎛
⎝ n∑

k,j=1

akjz
2
k sin

hkjzj√
t

⎞
⎠<(1 + γ)2 ≤ 1 + 3γ.

Hence, the integrand in (2.29) does not exceed 3γ and integral (2.29) does not exceed 3γ
2π

n
2 δn

nΓ
(
n
2

) = ε

4
.

Therefore, |I1,δ| ≤ ε

2
for any t > max{T0, T1, T2} and any η ∈ R

n.

This completes the proof of Lemma 2.7.3 because the positive ε is selected arbitrarily.
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Lemma 2.7.4. There exists a positive M such that∣∣∣∣∣∣
∫

Rn

e
−tG1

(
z1√
t
,..., zn√

t

)

cos

[
2z ·η − tG2

(
z1√
t
, . . . ,

zn√
t

)]
dz

∣∣∣∣∣∣ <
M

|η|n+1

for any t > 1 and any η ∈ R
n.

Proof. Let t > 1, i ∈ 1, n. Represent the estimated integral as∫

Rn

e
−tG1

(
z1√
t
,..., zn√

t

)

cos

[
tG2

(
z1√
t
, . . . ,

zn√
t

)]
cos 2z ·η dz

+

∫

Rn

e
−tG1

(
z1√
t
,..., zn√

t

)

sin

[
tG2

(
z1√
t
, . . . ,

zn√
t

)]
sin 2z ·η dz def

= f1(t, η) + f2(t, η)

and estimate

ηif1(t, η) = ηi

∫

Rn

e
−tG1

(
z1√
t
,..., zn√

t

)

cos

[
tG2

(
z1√
t
, . . . ,

zn√
t

)]
cos 2z · η dz.

The last expression is equal to

1

2
lim

R→∞

∫

|z|<R

e
−tG1

(
z1√
t
,..., zn√

t

)

cos

[
tG2

(
z1√
t
, . . . ,

zn√
t

)]
∂

∂zi
sin 2z · η dz

=
1

2
lim

R→∞

⎡
⎢⎣
∫

|z|=R

e
−tG1

(
z1√
t
,..., zn√

t

)

cos

[
tG2

(
z1√
t
, . . . ,

zn√
t

)]
sin 2z · η cos(z, ei) dSz

−
∫

|z|<R

∂

∂zi

(
e
−tG1

(
z1√
t
,..., zn√

t

)

cos

[
tG2

(
z1√
t
, . . . ,

zn√
t

)])
sin 2z · η dz

⎤
⎥⎦ . (2.30)

The absolute value of the surface integral in (2.30) does not exceed∫

|z|=R

e
−tG1

(
z1√
t
,..., zn√

t

)

dSz ≤
∫

|z|=R

e−C|z|2dSz = const Rn−1e−CR2 R→∞−→ 0;

hence, (2.30) is equal to

−1

2

∫

Rn

∂

∂zi

(
e
−tG1

(
z1√
t
,..., zn√

t

)

cos

[
tG2

(
z1√
t
, . . . ,

zn√
t

)])
sin 2z · η dz

def
= − 1

2

∫

Rn

g(z; t) sin 2z · η dz. (2.31)

Let us compute

g(z; t) =
∂

∂zi

⎛
⎝e−

n∑

k,j=1

akjz
2
k cos

hkjzj√
t

cos

n∑
k,j=1

akjz
2
k sin

hkjzj√
t

⎞
⎠ .

We obtain⎛
⎝−2zi

n∑
j=1

aij cos
hijzj√

t
+

n∑
k=1

z2k
akihki√

t
sin

hkizi√
t

⎞
⎠ e

−
n∑

k,j=1
akjz

2
k cos

hkjzj√
t

cos

n∑
k,j=1

akjz
2
k sin

hkjzj√
t
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− e
−

n∑

k,j=1

akjz
2
k cos

hkjzj√
t

⎛
⎝2zi

n∑
j=1

aij sin
hijzj√

t
+

n∑
k=1

z2k
akihki√

t
cos

hkizi√
t

⎞
⎠ sin

n∑
k,j=1

akjz
2
k sin

hkjzj√
t

.

Its absolute value does not exceed⎛
⎝4|zi|

n∑
j=1

|aij |+ 2
n∑

k=1

|akihki|z2k

⎞
⎠ e−C|z|2

(because t > 1). Hence, integral (2.31) converges absolutely and uniformly with respect to (t, η) ∈
(1,+∞) ×R

n; therefore, ηif1(t, η) is a function bounded on the set {η ∈ R
n, t > 1}.

Further,

η2i f1(t, η) = −ηi
2

∫

Rn

g(z; t) sin 2z ·η dz

=
1

4
lim

R→∞

⎛
⎜⎝
∫

|z|=R

g(z; t) cos 2z ·η cos(z, ei)dSz −
∫

|z|<R

∂

∂zi
g(z; t) cos 2z ·η dz

⎞
⎟⎠. (2.32)

The absolute value of the integrand of the last surface integral does not exceed |g(z; t)|; it follows
from the estimate obtained above that the absolute value of the specified integral does not exceed

const (1 +R)Rne−CR2
. Therefore, (2.32) is equal to −1

4

∫

Rn

∂

∂zi
g(z; t) cos 2z ·η dz.

Differentiating g(z; t) and taking into account that t > 1, we see that the absolute value of the last

integrand does not exceed P (|z|)e−C|z|2 , where P is a polynomial with positive coefficients. Therefore,
the function η2i f1(t, η) is bounded on the set {η ∈ R

n, t > 1}.
Continuing to integrate by parts, we obtain that the function ηmi f1(t, η) is bounded on the set

{η ∈ R
n, t > 1} for any i = 1, n and any m ∈ N; we take into account that t > 1 and the function g is

such that the absolute value of the integrand is estimated from above by the function P (|z|)e−C|z|2 ,
where P is a polynomial (in general, it depends on m and i) with positive coefficients.

In the same way, we prove the boundedness of the function ηmi f2(t, η) on the set {η ∈ R
n, t > 1} for

any i = 1, n and any m ∈ N.

Since |η|n+1 ≤ const

n∑
i=1

|ηi|n+1, Lemma 2.7.4 is proved.

Now, we can get back to the proof of Theorem 2.7.2. To do this, we take an arbitrary positive ε
and represent (2.27) as

(
1

π

)n
⎛
⎜⎝
∫

|η|<R

+

∫

|η|≥R

⎞
⎟⎠ def

= I3,R(t) + I4,R(t),

where R is a positive parameter. The integrand of (2.27) does not exceed

sup
Rn

|u0|

⎛
⎜⎜⎝
∣∣∣∣∣∣
∫

Rn

e
−tG1

(
z1√
t
,..., zn√

t

)

cos

[
2z ·η − tG2

(
z1√
t
, . . . ,

zn√
t

)]
dz

∣∣∣∣∣∣+
π

n
2

n∏
k=1

√
pk

e
−

n∑

k=1

η2k
pk

⎞
⎟⎟⎠.

Hence, by virtue of Lemma 2.7.4 (without loss of generality, we assume that t > 1), the absolute value

of the integrand of I4,R(t) is bounded from above by the function const

⎛
⎝ 1

|η|n+1
+ e

−
n∑

k=1

η2k
pk

⎞
⎠. Since
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all of the functions
1

|η|n+1
and e

−
n∑

k=1

η2k
pk are integrable over the set {|η| > 1} , it follows that there

exists R > 1 such that |I4,R(t)| < πn ε

2
for any t > 1. Fix that R and consider I3,R(t). By virtue of

Lemma 2.7.3, there exists T ∗ > 1 such that the inequality∣∣∣∣∣∣∣∣

∫

Rn

e
−tG1

(
z1√
t
,..., zn√

t

)

cos

[
2z ·η − tG2

(
z1√
t
, . . . ,

zn√
t

)]
dz − π

n
2

n∏
k=1

√
pk

e
−

n∑

k=1

η2k
pk

∣∣∣∣∣∣∣∣
<

nπ
n
2 Γ
(
n
2

)
ε

4Rn sup
Rn

|u0| .

holds for any t > T ∗ and any η ∈ R
n. Then

|I3,R(t)| ≤
nπ

n
2 Γ
(
n
2

)
ε

4Rn sup
Rn

|u0|
∫

|η|<R

u0(x− 2
√
tη) dη ≤ πn ε

2

for any t > T ∗.
Thus, we found a positive T ∗ such that the absolute value of (2.27) does not exceed ε once t > T ∗.

Since the positive ε is selected arbitrarily, it follows that lim
t→∞[u(x, t)− v(x, t)] = 0. This completes the

proof of Theorem 2.7.2 because x is arbitrarily selected from R
n.

This implies the following assertion:

Corollary 2.7.1. Let x ∈ R
n and l ∈ (−∞,+∞). Then

lim
t→∞u(x, t) = l ⇐⇒ lim

R→∞
1

Rn

∫

BR(p1,...,pn)

u0(x) dx =

2π
n
2

n∏
i=1

√
pi

nΓ(n2 )
l,

where BR(p1, . . . , pn) =

{
x ∈ R

n

∣∣∣∣∣
x21
p1

+ · · · + x2n
pn

< R

}
.

The proof consists of the direct application of Theorem 2.7.2 and the classical stabilization theorem
for the classical bounded solution of problem (2.26), (1.4) (see, e.g., [9]).

For the case where the spatial variable is unique (the unique positive constant p1 is redenoted by p
then), the following assertion is valid as well:

Corollary 2.7.2. If w(x, t) is the classical bounded solution of the Cauchy problem for the equation
∂u

∂t
= Δu with the initial-value condition (1.4), then lim

t→∞ [u(x, t)− w(x, pt)] = 0 for any real x.

To prove this, it suffices to consider the integral representation of the function w(x, pt); we see that
it coincides with the integral representation of the function v(x, t).

Remark 2.7.3. Note that Theorem 2.7.2 and Corollary 2.7.1 are valid under same conditions, but
the theorem treating the closeness of solutions is a stronger assertion: unlike the corollary treating
the stabilization of solutions, it provides information on the behavior of the solution even in the case
where the (necessary and sufficient) stabilization condition is not satisfied. In the same way, for n = 1,
Corollary 2.7.2 is a stronger assertion (in the same sense) than Corollary 2.7.1.

Now, we extend the investigation to a more general case of homogeneous elliptic differential-
difference operators containing mixed second-order derivatives as well. In detail, we consider only the
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aspects substantially different from the prototype case considered above. Thus, instead of Eq. (2.20),
we consider the equation

∂u

∂t
= Lhu

def
=

n∑
k,j,m=1

akjm
∂2u

∂xk∂xj
(x+ hkjmem, t). (2.33)

As above, the coefficients akjm and hkjm are assumed to be real and the operator −Lh is assumed to

be strongly elliptic, i.e., there exists a positive Ch such that G1(ξ) ≥ Ch|ξ|2 for any ξ from R
n, where

G{1
2}(ξ) =

n∑
k,j,m=1

akjmξkξj

{
cos

sin

}
hkjmξm. (2.34)

Then the fundamental solution (2.21) is well defined on R
n×(0,+∞).

The following assertion is valid:

Theorem 2.7.3. Let the operator −Lh be strongly elliptic in the space R
n and the functions G1 and

G2 be defined by relations (2.34). Then function (2.25) satisfies (in the classical sense) Eq. (2.33)
in the subspace R

n× (0,+∞) and is the unique solution (in the sense of generalized functions) of
problem (2.33), (1.4).

To prove this, we take the fundamental solution (2.21) with the functions G1(ξ) and G2(ξ) defined
by relations (2.34) and substitute (2.21) in Eq. (2.33). Taking into account that

sinhkjmξm sin[x · ξ − tG2(ξ)] − cos hkjmξm cos[x · ξ − tG2(ξ)]

= − cos[(x+ hkjmem) · ξ − tG2(ξ)],

we obtain the relation

∂E
∂t

= −
∫

Rn

e−tG1(ξ)
n∑

k,j,m=1

akjmξkξj cos[(x+ hkjmem) · ξtG2(ξ)]dξ

= −
n∑

k,j,m=1

akjm

∫

Rn

e−tG1(ξ)ξkξj cos[(x+ hkjmem) · ξ − tG2(ξ)]dξ.

Further, we have

∂2E
∂xkxj

= −
∫

Rn

e−tG1(ξ)ξkξj cos[x · ξ − tG2(ξ)]dξ.

Therefore, the function E(x, t) satisfies Eq. (2.33) in R
n × (0,+∞) (formal differentiation under the

integral sign is valid because, by virtue of the strong ellipticity of the operator −Lh, all the integrals
obtained by means of the specified formal differentiating converge absolutely and uniformly with
respect to (x, t) ∈ R

n× [t0, T ] provided that 0 < t0 < T < ∞).
For the considered function E(x, t), Lemma 2.7.1 is proved in the same way as in the prototype

case of pure second-order derivatives. Only the coefficients of the polynomials P (ξ) are changed in
the general case, but those coefficients still depend only on l, t, and the coefficients of Eq. (2.33).

The proof of the uniqueness is entirely the same as in the prototype case.
To investigate the long-time behavior of the solution, we introduce the differential operator

L0
def
=

n∑
k,j,m=1

akjm
∂2

∂xk∂xj
def
=

n∑
k,j=1

bkj
∂2

∂xk∂xj

and prove the following analog of Lemma 2.7.2:

Lemma 2.7.5. If the operator −Lh is strongly elliptic in R
n, then the operator −L0 is elliptic.
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Proof. Assume the converse, i.e., for any (sufficiently small) positive C there exists ξ from R
n such

that L0(ξ)
def
=

n∑
k,j=1

bkjξkξj < C|ξ|2. Then, since the polynomial L0(ξ) is homogeneous, it follows that

a stronger assertion is valid as well: for any (sufficiently small) positive C and r there exists ξ from
R
n such that |ξ| = r and L0(ξ) < C|ξ|2.
Indeed, fix arbitrary positive C and r and take η from R

n such that L0(η) < C|η|2. If η = 0, then
the continuous function L0(ξ) is strictly negative at the origin. Hence, there exists a ball centered
at the origin such that it is strictly negative in that ball, i.e., there exists η �= 0 such that the last
inequality is still valid. Therefore, taking η from R

n such that L0(η) < C|η|2, we can assume (without

loss of generality) that η �= 0. Then we can define ξj
def
= r

ηj
|η| , j = 1, n. This yields the relation

L0(ξ) =
r2

|η|2
n∑

k,j=1

bkjηkηj < C
r2

|η|2 |η|
2 = C

[(
r
η1
|η|
)2

+ · · ·+
(
r
ηn
|η|
)2]

= C|ξ|2,

where |ξ| = r. On the other hand, G1(ξ) can be represented as

n∑
k,j,m=1

akjmξkξj

(
1− 2 sin2

hkjmξm
2

)
=

n∑
k,j,m=1

akjmξkξj − 2

n∑
k,j,m=1

akjmξkξj sin
2 hkjmξm

2

=

n∑
k,j=1

ξkξj

n∑
m=1

akjm − 2

n∑
k,j,m=1

akjmξkξj sin
2 hkjmξm

2

=

n∑
k,j=1

bkjξkξj − 2

n∑
k,j,m=1

akjmξkξj sin
2 hkjmξm

2
def
= L0(ξ) +R0,h(ξ),

where |R0,h(ξ)| ≤ 1

2

n∑
k,j,m=1

|akjm||ξk||ξj |ξ2mh2kjm. Thus, for all (sufficiently small) positive C and r

there exists ξ from R
n such that |ξ| = r and

G1(ξ) < C|ξ|2 + 1

2

n∑
k,j,m=1

|akjm|h2kjm|ξk||ξj |ξ2m;

hence, for all (sufficiently small) positive C and r there exists ξ from R
n such that |ξ| = r and

G1(ξ) < Cr2 + C0,hr
4,

where C0,h depends only on the coefficients akjm and hkjm of Eq. (2.33).

However, the inequality G1(ξ) ≥ Ch|ξ|2 = Chr
2 holds for the found ξ (as well as for any ξ from R

n)
by virtue of the strong ellipticity of the operator Lh.

Thus, for all (sufficiently small) positive C and r there exists ξ from R
n such that

Chr
2 ≤ G1(ξ) < Cr2 + C0,hr

4, i.e., Ch < C + C0,hr
2.

Then, selecting sufficiently small positive C and r, we obtain a contradiction.
This completes the proof of Lemma 2.7.5.

Thus,
∂u

∂t
= L0u (2.35)

is a parabolic differential equation with constant coefficients. Hence, problem (2.35), (1.4) has a unique
classical bounded solution; denote it by v(x, t).

The following assertion is valid:
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Theorem 2.7.4. If the conditions of Theorem 2.7.3 are satisfied, then

lim
t→∞[u(x, t)− v(x, t)] = 0

for any x ∈ R
n.

The scheme of the proof is the same as for the proof of Theorem 2.7.2. For the case where the
functions G1(ξ) and G2(ξ) are defined by relations (2.34), it suffices to prove the following analogs of
Lemmas 2.7.3 and 2.7.4 respectively:

Lemma 2.7.6. The limit relation

∫

Rn

⎛
⎝e−tG1

(
z1√
t
,..., zn√

t

)

cos

[
2z ·η − tG2

(
z1√
t
, . . . ,

zn√
t

)]
− e

−
n∑

k,j=1
bkjzkzj

cos 2z ·η
⎞
⎠ dz

t→∞−→ 0

holds uniformly with respect to η ∈ R
n.

Lemma 2.7.7. There exists a positive M such that∣∣∣∣∣∣
∫

Rn

e
−tG1

(
z1√
t
,..., zn√

t

)

cos

[
2z ·η − tG2

(
z1√
t
, . . . ,

zn√
t

)]
dz

∣∣∣∣∣∣ ≤
M

|η|n+1

for any t > 1 and any η ∈ R
n.

Proof of Lemma 2.7.6. The absolute value of the considered integral is estimated from above by the
sum ∫

Rn

e
−tG1

(
z1√
t
,..., zn√

t

)

dz +

∫

Rn

e
−

n∑

k,j=1
bkjzkzj

dz =

∫

Rn

e−Ch|z|2dz +
∫

Rn

e−C0|z|2dz < ∞,

where C0 denotes the ellipticity constant of the operator L0; hence, the specified integral converges
absolutely and uniformly with respect to (t, η) ∈ R

1
+ ∈ R

n. Fix an arbitrary positive ε and represent

the specified integral as

∫

|z|<δ

+

∫

|z|≥δ

def
= I1,δ + I2,δ, where δ is a positive parameter. By virtue of the

uniform convergence of the integral, there exists δ such that |I2,δ| < ε

2
for any positive t and any η

from R
n. Fix that δ and consider the integral I1,δ. Its integrand is equal to

e
−

n∑

k,j,m=1
akjmzkzj cos

hkjmzm√
t

cos

[
2z ·η − tG2

(
z1√
t
, . . . ,

zn√
t

)]
− e

−
n∑

k,j=1
bkjzkzj

cos 2z ·η

= e
−

n∑

k,j=1

zkzj
n∑

m=1
akjm cos

hkjmzm√
t

cos

[
2z ·η − tG2

(
z1√
t
, . . . ,

zn√
t

)]
− e

−
n∑

k,j=1

bkjzkzj
cos 2z ·η

= e−L0(z)

⎛
⎝e−

n∑

k,j=1

zkzj

(
n∑

m=1
akjm cos

hkjmzm√
t

−bkj

)

cos

[
2z ·η − tG2

(
z1√
t
, . . . ,

zn√
t

)]
− cos 2z ·η

⎞
⎠ ,

which can be reduced to the form

e−L0(z)

⎛
⎝e−

n∑

k,j=1

zkzj
n∑

m=1
akjm

(
cos

hkjmzm√
t

−1
)

cos

[
2z ·η − tG2

(
z1√
t
, . . . ,

zn√
t

)]
− cos 2z ·η

⎞
⎠

= e−L0(z)

⎛
⎝e2

n∑

k,j=1
zkzj

n∑

m=1
akjm sin2

hkjmzm

2
√

t
cos 2z ·η cos

[
tG2

(
z1√
t
, . . . ,

zn√
t

)]
− cos 2z ·η

⎞
⎠
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+ e−L0(z)e
2

n∑

k,j=1
zkzj

n∑

m=1
akjm sin2

hkjmzm

2
√

t
sin 2z ·η sin

[
tG2

(
z1√
t
, . . . ,

zn√
t

)]
def
=A1(η, t; z)+A2(η, t; z).

The further proof is entirely similar to the remaining part of the proof of Lemma 2.7.3.

Proof of Lemma 2.7.7. Let t > 1, i ∈ 1, n. Repeat the arguments in the proof of Lemma 2.7.4 until
relation (2.31). In the specified relation, assign

g(z; t) =
∂

∂zi

⎛
⎝e−

n∑

k,j,m=1
akjmzkzj cos

hkjmzm√
t

cos

n∑
k,j,m=1

akjmzkzj sin
hkjmzm√

t

⎞
⎠ .

Differentiating and taking into account that t > 1, we obtain (as in the proof of Lemma 2.7.4) the
inequality

|g(z; t)| ≤ |P (z)|e−Ch |z|2 ,
where P is a polynomial with coefficients depending only on the coefficients akjm and hkjm of Eq. (2.33).
The further proof is entirely similar to the remaining part of the proof of Lemma 2.7.4.

Remark 2.7.4. For the general case of Eq. (2.33), a stabilization theorem is valid as well. It is an
analog of Corollary 2.7.1 valid for Eq. (2.20). The domains of integration of the initial-value function,
included in the (necessary and sufficient) condition of the stabilization of the solution, are determined
by the coefficients bkj of Eq. (2.35), which is a parabolic differential equation with constant coefficients
(see [9]).

Chapter 3

SINGULAR INTEGRODIFFERENTIAL EQUATIONS

In this chapter, nonlocal terms of studied equations are special generalized translation operators intro-
duced in [41]; they play a role of translation operators in the theory of equations containing the Bessel
operator. The specified generalized translation operators are integral ones. Therefore, the studied
equations are not differential-difference anymore: they are integrodifferential. Thus, the development
of this research direction is motivated both by the interest to extend models of [91, 103, 120–123] to
the singular case and by the interest in purely theoretical aspects of passage from differential-difference
equations to integrodifferential ones.

3.1. Basic Definitions and Notation

In this chapter, we use the following notation:

By
def
=

1

y2ν+1

∂

∂y

(
y2ν+1 ∂

∂y

)
=

∂2

∂y2
+

2ν + 1

y

∂

∂y

is the Bessel operator with respect to y;

T h
y f(y)

def
=

Γ(ν + 1)√
π Γ(ν + 1

2 )

π∫

0

f
(√

y2 + h2 − 2yh cos θ
)
sin2ν θdθ

is the corresponding generalized translation operator;

jν(y)
def
=

2νΓ(ν + 1)

yν
Jν(y)

is the corresponding (uniformly) normalized Bessel function of the first type.
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We investigate the case of Bessel operators with positive parameters at the singularity; therefore,

we assume that ν > −1

2
.

The following problem is considered:

∂u

∂t
= Bxu+

s∑
k=1

akT
hk
x u, x > 0, t > 0, (3.1)

∂u

∂x

∣∣∣
x=0

= 0, t > 0, (3.2)

u
∣∣
t=0

= u0(x), x > 0. (3.3)

Here u0 is a continuous and bounded function and a, h ∈ R
s.

Note that, in general, any solution of problem (3.1)–(3.3) is defined only in the quarter (0,+∞) ×
(0,+∞) of the plane, while, to apply the generalized translation operator, we need it to be defined
for negative values of the variable x as well. To provide this, we use the even (with respect to x)
extension of the solution; the specified extension exists by virtue of the evenness condition (3.2).
In other words, we can consider problem (3.1)–(3.3) in the whole half-plane (−∞,+∞) × (0,+∞),
replacing condition (3.2) by the evenness (with respect to the variable x) requirement imposed on
the solution. For differential parabolic equations containing Bessel operators, such problems are well
defined (see, e.g., [36–38, 42–45, 47] and references therein).

3.2. Fundamental Solutions of Singular Integrodifferential Equations

On (0,+∞)×(0,+∞), define the following function:

E(x, t) def
= Ea,h(x, t) def

=

∞∫

0

ξ2ν+1e
−t

[

ξ2−
s∑

k=1
akjν(hkξ)

]

jν(xξ)dξ. (3.4)

Since |jν(z)| ≤ 1, it follows that

|E(x, t)| ≤ e

s∑

k=1
|ak|t

∞∫

0

ξ2ν+1e−tξ2dξ =
e

s∑

k=1

|ak|t

2tν+1

∞∫

0

zνe−zdz =
Γ(ν + 1)e

s∑

k=1

|ak |t

2tν+1
.

Thus, for all t0, T ∈ (0,+∞), integral (3.4) converges absolutely and uniformly with respect to (x, t) ∈
[0,+∞)×[t0, T ]; hence, E(x, t) is well defined on [0,+∞)×(0,+∞). Formally differentiate E under the
integral sign:

∂E
∂t

=

∞∫

0

ξ2ν+1

[
s∑

k=1

akjν(hkξ)− ξ2

]
jν(xξ)e

−t

[

ξ2−
s∑

k=1
akjν(hkξ)

]

dξ.

Since T y
x jν(ax) = jν(ax)jν(ay) (see, e.g., [34, p. 19]), it follows that

∂E
∂t

=

∞∫

0

ξ2ν+1
s∑

k=1

akT
hk
x jν(xξ)e

−t

[

ξ2−
s∑

k=1
akjν(hkξ)

]

dξ −
∞∫

0

ξ2ν+3jν(xξ)e
−t

[

ξ2−
s∑

k=1
akjν(hkξ)

]

dξ

=

s∑
k=1

akT
hk
x E −

∞∫

0

ξ2ν+3jν(xξ)e
−t

[

ξ2−
s∑

k=1
akjν(hkξ)

]

dξ.

Further, Bxjν(xξ) = −ξ2jν(xξ) (see, e.g., [34, p. 18]); hence,

BxE = −
∞∫

0

ξ2ν+3jν(xξ)e
−t

[

ξ2−
s∑

k=1
akjν(hkξ)

]

dξ.
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Thus, E(x, t) formally satisfies Eq. (3.1).
Moreover, we have

∣∣BxE
∣∣ ≤ Γ(ν + 2)e

s∑

k=1
|ak|t

2tν+2

and

∣∣∣T hk
x E
∣∣∣ ≤

∞∫

0

ξ2ν+1
∣∣∣T hk

x jν(xξ)
∣∣∣e−t

[

ξ2−
s∑

k=1

akjν(hkξ)

]

dξ

≤
∞∫

0

ξ2ν+1e
−t

[

ξ2−
s∑

k=1
akjν(hkξ)

]

dξ ≤ Γ(ν + 1)e

s∑

k=1

|ak|t

2tν+1
.

Therefore,

∣∣∣∣∂E∂t
∣∣∣∣ ≤ e

s∑

k=1
|ak|t

2

[
Γ(ν + 1)

tν+1
+

Γ(ν + 2)

tν+2

]
,

i.e., the formal differentiation and formal generalized translation under the integral sign are valid for all
terms of Eq. (3.1). Hence, function (3.4) satisfies (in the classical sense) Eq. (3.1) on (0,+∞)×(0,+∞).

We call E(x, t) the fundamental solution of Eq. (3.1). To show the reasonability of this term, we
prove below that the generalized convolution (see [34, §1.8]) of Ea,h with any bounded initial-value
function coincides with that initial-value function on the initial semiaxis.

3.3. Generalized Convolutions of Fundamental Solutions and Bounded Functions

Let us estimate the behavior of the function E(x, t) as x → ∞ (assuming that a positive t is fixed).

To do this, introduce the function gν(z)
def
= zνJν(z). Then

1

z
g′ν(z) = gν−1(z) (see, e.g., [80, p. 333]),

i.e., g′ν+1(z) = zgν(z); therefore, g
′
ν+1(az) = a2zgν(az). Hence,

1

2νΓ(ν + 1)
E(x, t) =

∞∫

0

z2ν+1e
−t

[

z2−
s∑

k=1
akjν(hkz)

]

Jν(xz)

(xz)ν
dz

=
1

x2ν

∞∫

0

(xz)νze
−t

[

z2−
s∑

k=1
akjν(hkz)

]

Jν(xz)dz =
1

x2ν+2

∞∫

0

e
−t

[

z2−
s∑

k=1
akjν(hkz)

]

x2zgν(xz)dz

=
1

x2ν+2

∞∫

0

e
−t

[

z2−
s∑

k=1
akjν(hkz)

]

g′ν+1(xz)dz =
1

x2ν+2

⎡
⎣gν+1(xz)e

−t

[

z2−
s∑

k=1
akjν(hkz)

]∣∣∣∣∣
z=+∞

z=0

+ t

∞∫

0

e
−t

[

z2−
s∑

k=1
akjν(hkz)

] [
2z +

s∑
k=1

akh
2
kzjν+1(hkz)

]
gν+1(xz)dz

⎤
⎦

=
t

x2ν+4

∞∫

0

e
−t

[

z2−
s∑

k=1
akjν(hkz)

] [
2 +

s∑
k=1

akh
2
kjν+1(hkz)

]
x2zgν+1(xz)dz

=
t

x2ν+4

∞∫

0

e
−t

[

z2−
s∑

k=1
akjν(hkz)

] [
2 +

s∑
k=1

akh
2
kjν+1(hkz)

]
g′ν+2(xz)dz.
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The last expression is reduced to the form

t

x2ν+4

⎡
⎣gν+2(xz)

[
2 +

s∑
k=1

akh
2
kjν+1(hkz)

]
e
−t

[

z2−
s∑

k=1
akjν(hkz)

]∣∣∣∣∣
z=+∞

z=0

−
∞∫

0

⎛
⎝e−t

[

z2−
s∑

k=1

akjν(hkz)

] [
2 +

s∑
k=1

akh
2
kjν+1(hkz)

]⎞
⎠

′

gν+2(xz)dz

⎤
⎦

=
t

x2ν+4

∞∫

0

e
−t

[

z2−
s∑

k=1

akjν(hkz)

]⎛
⎝t
[
2 +

s∑
k=1

akh
2
kjν+1(hkz)

]2
z

+

s∑
k=1

akh
4
kzjν+2(hkz)

⎞
⎠ gν+2(xz)dz

=
t

x2ν+6

∞∫

0

e
−t

[

z2−
s∑

k=1
akjν(hkz)

]⎛
⎝t
[
2 +

s∑
k=1

akh
2
kjν+1(hkz)

]2

+
s∑

k=1

akh
4
kjν+2(hkz)

⎞
⎠x2zgν+2(xz)dz

=
t

x2ν+6

∞∫

0

e
−t

[

z2−
s∑

k=1

akjν(hkz)

]⎛
⎝t
[
2 +

s∑
k=1

akh
2
kjν+1(hkz)

]2

+

s∑
k=1

akh
4
kjν+2(hkz)

⎞
⎠ g′ν+3(xz)dz.

Continuing to integrate by parts, we obtain (assuming that the positive t is fixed) that for any positive
integer m there exists a bounded function fm such that

x2ν+2mE(x, t) =
∞∫

0

e
−t

[

z2−
s∑

k=1

akjν(hkz)

]

fm(z)zgν+m(xz)dz.

This implies that

x2ν+2mE(x, t) =
∞∫

0

e
−t

[

z2−
s∑

k=1
akjν(hkz)

]

fm(z)zxν+mzν+mJν+m(xz)dz,

i.e.,

xν+mE(x, t) =
∞∫

0

e
−t

[

z2−
s∑

k=1
akjν(hkz)

]

fm(z)zν+m+1Jν+m(xz)dz

=

∞∫

0

e
−t

[

z2−
s∑

k=1
akjν(hkz)

]

fm(z)
√
xzJν+m(xz)zm+ν+ 1

2dz
1√
x
;
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therefore,

xν+m+ 1
2 E(x, t) =

∞∫

0

zm+ν+ 1
2 e

−t

[

z2−
s∑

k=1

akjν(hkz)

]

fm(z)f(xz)dz,

where f(τ) =
√
τJν+m(τ) ∈ L∞(0,+∞) for any m ≥ 1.

Thus, by virtue of the boundedness of the functions f, fm, and jν and the fact that m is selected
arbitrarily, the following assertion is proved:

Lemma 3.3.1. Let α > 0, t > 0, and a, h ∈ R
m. Then

lim
x→∞xαE(x, t) = 0.

Due to the evenness of the normalized Bessel function and the continuity of the generalized trans-
lation operator (see, e.g., [34, p. 18-19]), this implies that the function

∞∫

0

ξ2ν+1E(ξ, t)T x
ξ u0(ξ)dξ (3.5)

is well defined on (0,+∞)×(0,+∞).

Now, let us estimate the behavior of the functions BxE , T hk
x E , and ∂E

∂t
at infinity:

1

2νΓ(ν + 1)
BxE(x, t) = −

∞∫

0

z2ν+3e
−t

[

z2−
s∑

k=1
akjν(hkz)

]

Jν(xz)

(xz)ν
dz

= − 1

xν

∞∫

0

zν+3e
−t

[

z2−
s∑

k=1

akjν(hkz)

]

Jν(xz)dz = − 1

x2ν+2

∞∫

0

e
−t

[

z2−
s∑

k=1

akjν(hkz)

]

z2x2zgν(xz)dz

= − 1

x2ν+2

∞∫

0

z2e
−t

[

z2−
s∑

k=1
akjν(hkz)

]

g′ν+1(xz)dz =
1

x2ν+2

∞∫

0

⎛
⎝z2e−t

[

z2−
s∑

k=1
akjν(hkz)

]⎞
⎠

′

gν+1(xz)dz.

As above, continuing to integrate by parts, we obtain (assuming that a positive t is fixed) that for any
positive integer m, the function x2ν+2mBxE(x, t) is a finite sum of terms of the form

∞∫

0

e
−t

[

z2−
s∑

k=1
akjν(hkz)

]

fβ(z)z
βgν+m(xz)dz,

where β ≥ 1 and fβ is a bounded function. Then xν+mBxE(x, t) is a finite sum of terms of the form

∞∫

0

e
−t

[

z2−
s∑

k=1
akjν(hkz)

]

fβ(z)z
m+ν+βJν+m(xz)dz

=
1√
x

∞∫

0

e
−t

[

z2−
s∑

k=1

akjν(hkz)

]

fβ(z)z
m+ν+β− 1

2
√
xzJν+m(xz)dz;

therefore, xν+m+ 1
2BxE(x, t) is a finite sum of terms of the form

∞∫

0

ψ(z)f(xz)dz, where

ψ(τ) = τm+ν+β− 1
2 fβ(τ)e

−t

[

τ2−
s∑

k=1

akjν(hkτ)

]

,
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i.e., ψ ∈ L1(0,+∞) and f(τ) =
√
τJm+ν(τ) (as above); hence, f ∈ L∞(0,+∞).

This implies the following assertion.

Lemma 3.3.2. Let α > 0, t > 0, and a, h ∈ R
m. Then lim

x→∞xαBxE(x, t) = 0.

Further,

T hk
x E(x, t) =

∞∫

0

z2ν+1e
−t

[

z2−
s∑

k=1
akjν(hkz)

]

jν(hkz)jν(xz)dz

=
1

x2ν

∞∫

0

jν(hkz)e
−t

[

z2−
s∑

k=1
akjν(hkz)

]

zgν(xz)dz

=
1

x2ν+2

∞∫

0

jν(hkz)e
−t

[

z2−
s∑

k=1

akjν(hkz)

]

g′ν+1(xz)dz

=
1

x2ν+2

⎛
⎝gν+1(xz)jν(hkz)e

−t

[

z2−
s∑

k=1

akjν(hkz)

]∣∣∣∣∣
z=+∞

z=0

+

∞∫

0

gν+1(xz)e
−t

[

z2−
s∑

k=1
akjν(hkz)

] [
h2kzjν+1(hkz)

+ tzjν(hkz)
s∑

k=1

h2kakjν(hkz) + 2tzjν(hkz)

]
dz

⎞
⎠ .

The last expression is equal to

1

x2ν+2

∞∫

0

e
−t

[

z2−
s∑

k=1

akjν(hkz)

] [
h2kjν+1(hkz)

+ tjν(hkz)
s∑

k=1

h2kakjν(hkz) + 2tjν(hkz)

]
zgν+1(xz)dz

=
1

x2ν+4

∞∫

0

e
−t

[

z2−
s∑

k=1

akjν(hkz)

] [
h2kjν+1(hkz)

+ tjν(hkz)
s∑

k=1

h2kakjν(hkz) + 2tjν(hkz)

]
g′ν+2(xz)dz

=
1

x2ν+4

⎛
⎝gν+2(xz)e

−t

[

z2−
s∑

k=1
akjν(hkz)

] [
h2kjν+1(hkz)

+ tjν(hkz)
s∑

k=1

h2kakjν(hkz) + 2tjν(hkz)

] ∣∣∣∣∣
z=+∞

z=0

−
∞∫

0

gν+2(xz)

⎛
⎝e−t

[

z2−
s∑

k=1
akjν(hkz)

] [
h2kjν+1(hkz)

426



+ tjν(hkz)

s∑
k=1

h2kakjν(hkz) + 2tjν(hkz)

]⎞
⎠

′

dz

⎞
⎠

= − 1

x2ν+4

∞∫

0

gν+2(xz)

⎛
⎝e−t

[

z2−
s∑

k=1

akjν(hkz)

] [
h2kjν+1(hkz)

+ tjν(hkz)
s∑

k=1

h2kakjν(hkz) + 2tjν(hkz)

]⎞
⎠

′

dz.

Continuing to integrate by parts and taking into account the boundedness of the function jν(x),
we obtain (assuming that a positive t is fixed) that for any positive integers m and k there exist
nonnegative M and β such that

x2ν+2mT hk
x E(x, t) =

∞∫

0

e
−t

[

z2−
s∑

k=1
akjν(hkz)

]

f0(z)gν+m(xz)dz,

where |f0(z)| ≤ M(1 + zβ).
Then

x2ν+2m+ 1
2

s∑
k=1

akT
hk
x E(x, t) =

∞∫

0

ψ(z)f(xz)dz,

where ψ ∈ L1(0,+∞) and f(τ) ∈ L∞(0,+∞). Taking into account that E(x, t) satisfies Eq. (3.1) in
(0,+∞)×(0,+∞), we obtain the following assertion.

Lemma 3.3.3. Let α > 0, t > 0, and a, h ∈ R
m. Then

lim
x→∞xα

∂E
∂t

= 0.

Further, we note that the Bessel operator and the generalized translation operator commute each
other (see, e.g., [34, p. 35]), which implies the following assertion:

Theorem 3.3.1. Function (3.5) satisfies (in the classical sense) Eq. (3.1).

3.4. Solutions of Nonclassical Cauchy Problems

Introduce the following notation:

u(x, t) def
=

1

4νΓ2(ν + 1)

∞∫

0

ξ2ν+1E(ξ, t)T x
ξ u0(ξ)dξ. (3.6)

Since the generalized translation operator is self-adjoint (see, e.g., [34, p. 19]), we have the relation

u(x, t) =
1

4νΓ2(ν + 1)

∞∫

0

ξ2ν+1u0(ξ)T
x
ξ E(ξ, t)dξ.

Since the function T x
ξ E(ξ, t) is even with respect to the variable x (see, e.g., [34, p. 35]), it follows

that the function u(x, t) satisfies condition (3.2).
Let us show that it satisfies condition (3.3) as well.
The function u(x, t) is defined on (0,+∞)×(0,+∞). Take an arbitrary nonnegative x0 and inves-

tigate the behavior of u(x0, t) as t −→ +0.
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The change of variables η =
ξ

2
√
t
yields the relation

u(x0, t) =
22ν+2tν+1

4νΓ2(ν + 1)

∞∫

0

η2ν+1E(2η√t, t)T x0

2η
√
t
u0(2η

√
t)dη.

Further,

E(2√tη, t) =

∞∫

0

ξ2ν+1e
−t

[

ξ2−
s∑

k=1
akjν(hkξ)

]

jν(2ξη
√
t)dξ

= t−ν−1

∞∫

0

z2ν+1e
−z2+t

s∑

k=1

akjν
(

hkz√
t

)

jν(2ηz)dz. (3.7)

Thus,

u(x0, t) =
4

Γ2(ν + 1)

∞∫

0

η2ν+1T 2η
√
t

x0
u0(x0)

∞∫

0

z2ν+1e
−z2+t

s∑

k=1
akjν

(
hkz√

t

)

jν(2ηz)dzdη. (3.8)

Now, let us prove the following auxiliary assertions.

Lemma 3.4.1. There exist C > 0 and α > 1 such that∣∣∣∣∣η2ν+1

∞∫

0

z2ν+1e
−z2+t

s∑

k=1
akjν

(
hkz√

t

)

jν(2ηz)dz

∣∣∣∣ ≤ C

ηα

for any t from (0, 1) and any positive η.

Proof. We have

1

2νΓ(ν + 1)

∞∫

0

z2ν+1e
−z2+t

s∑

k=1
akjν

(
hkz√

t

)

jν(2ηz)dz

=
1

(2η)ν

∞∫

0

zν+1e
−z2+t

s∑

k=1

akjν
(

hkz√
t

)

Jν(2ηz)dz

=
1

(2η)2ν

∞∫

0

(2ηz)ν+1Jν(2ηz)ze
−z2+t

s∑

k=1

akjν
(

hkz√
t

)

dz

=
1

(2η)2ν+2

∞∫

0

e
−z2+t

s∑

k=1
akjν

(
hkz√

t

)

(2η)2zgν(2ηz)dz

=
1

(2η)2ν+2

∞∫

0

e
−z2+t

s∑

k=1
akjν

(
hkz√

t

)

g′ν+1(2ηz)dz

=
1

(2η)2ν+2

⎡
⎣gν+1(2ηz)e

−z2+t
s∑

k=1
akjν

(
hkz√

t

)∣∣∣∣∣
z=∞

z=0

−
∞∫

0

[
e
−z2+t

s∑

k=1
akjν

(
hkz√

t

)]′
gν+1(2ηz)dz

⎤
⎦

=
1

(2η)2ν+2

∞∫

0

gν+1(2ηz)

[
2z + z

s∑
k=1

h2kakjν+1

(
hkz√

t

)]
e
−z2+t

s∑

k=1
akjν

(
hkz√

t

)

dz
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=
1

(2η)2ν+4

∞∫

0

(2η)2zgν+1(2ηz)

[
2 +

s∑
k=1

h2kakjν+1

(
hkz√

t

)]
e
−z2+t

s∑

k=1

akjν
(

hkz√
t

)

dz.

The last expression is equal to

1

(2η)2ν+4

∞∫

0

g′ν+2(2ηz)

[
2 +

s∑
k=1

h2kakjν+1

(
hkz√

t

)]
e
−z2+t

s∑

k=1
akjν

(
hkz√

t

)

dz.

Integrating it by parts, we obtain the expression

− 1

(2η)2ν+4

∞∫

0

gν+2(2ηz)

([
2 +

s∑
k=1

h2kakjν+1

(
hkz√

t

)]
e
−z2+t

s∑

k=1

akjν
(

hkz√
t

))′

dz

=
1

(2η)2ν+4

∞∫

0

gν+2(2ηz)e
−z2+t

s∑

k=1
akjν

(
hkz√

t

)

×
⎛
⎝
[
2 +

s∑
k=1

h2kakjν+1

(
hkz√

t

)]2
z +

z

t

s∑
k=1

h4kakjν+2

(
hkz√

t

)⎞
⎠ dz

=
1

(2η)2ν+6

∞∫

0

(2η)2zgν+2(2ηz)e
−z2+t

s∑

k=1

akjν
(

hkz√
t

)

×
⎛
⎝
[
2 +

s∑
k=1

h2kakjν+1

(
hkz√

t

)]2
+

1

t

s∑
k=1

h4kakjν+2

(
hkz√

t

)⎞
⎠ dz

=
1

(2η)2ν+6

∞∫

0

g′ν+3(2ηz)e
−z2+t

s∑

k=1
akjν

(
hkz√

t

)

×
⎛
⎝
[
2 +

s∑
k=1

h2kakjν+1

(
hkz√

t

)]2
+

1

t

s∑
k=1

h4kakjν+2

(
hkz√

t

)⎞
⎠ dz.

Hence, the estimated integral can be represented as follows:

− 1

(2η)2ν+6

∞∫

0

gν+3(2ηz)

[
e
−z2+t

s∑

k=1
akjν

(
hkz√

t

)

×
⎛
⎝
[
2 +

s∑
k=1

h2kakjν+1

(
hkz√

t

)]2
+

1

t

s∑
k=1

h4kakjν+2

(
hkz√

t

)⎞
⎠
⎤
⎦
′

dz

=
1

(2η)2ν+6

∞∫

0

gν+3(2ηz)e
−z2+t

s∑

k=1

akjν
(

hkz√
t

)⎛
⎝
[
2 +

s∑
k=1

h2kakjν+1

(
hkz√

t

)]3
z

+

[
2 +

s∑
k=1

h2kakjν+1

(
hkz√

t

)]2
z

t

s∑
k=1

h4kakjν+2

(
hkz√

t

)

+
2z

t

[
2 +

s∑
k=1

h2kakjν+1

(
hkz√

t

)] s∑
k=1

h4kakjν+2

(
hkz√

t

)
+

z

t2

s∑
k=1

h6kakjν+3

(
hkz√

t

)⎞
⎠ dz.
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Continuing to integrate by parts, we obtain that for any positive integer m, the integral
∞∫

0

z2ν+1e
−z2+t

s∑

k=1
akjν

(
hkz√

t

)

jν(2ηz)dz

is a finite sum of terms of the form

1

η2ν+2mtl

∞∫

0

zgν+m(2ηz)e
−z2+t

s∑

k=1

akjν
(

hkz√
t

)

jν+l+1

(
hkz√

t

)
fl(z, t)dz, (3.9)

where l is a positive integer not exceeding m− 1, while fl is a bounded function.
Estimate (3.9), assuming (without loss of generality) that t ≤ 1:

jν+l+1

(
hkz√

t

)

tl
=

2νΓ(ν + 1)Jν+l+1

(
hkz√

t

)
hν+l+1
k zν+l+1

t
ν+l+1

2

tl
=

2νΓ(ν + 1)
√

hkz√
t
Jν+l+1

(
hkz√

t

)

hν+l+1
k zν+l+1t

l−ν−1
2

√
hkz√

t

.

The absolute value of the last expression does not exceed z−ν−l− 3
2 t

1
4
+ ν−l+1

2 because the function√
τJν+l+1(τ) is bounded.

Further,
1

4
+

ν − l + 1

2
≥ 0 provided that l ≤ ν +

3

2
, i.e., to satisfy the last inequality, it suffices to

assume that m ≤ ν +
5

2
; then the absolute value of (3.9) does not exceed

const

η2ν+2m

∞∫

0

|gν+m(2ηz)|
zν+l+ 1

2

e
−z2+t

s∑

k=1
akjν

(
hkz√

t

)

dz

=
const

η2ν+2m

∞∫

0

(2ηz)m+ν |Jν+m(2ηz)|
zν+l+ 1

2

e
−z2+t

s∑

k=1

akjν
(

hkz√
t

)

dz

=
const

ην+m

∞∫

0

zm−l− 1
2 |Jν+m(2ηz)|e

−z2+t
s∑

k=1
akjν

(
hkz√

t

)

dz

=
const

ην+m+ 1
2

∞∫

0

zm−l−1
√

2ηz|Jν+m(2ηz)|e
−z2+t

s∑

k=1
akjν

(
hkz√

t

)

dz ≤ const

ην+m+ 1
2

.

Note that 2ν + 1−m− ν − 1

2
= ν +

1

2
−m < −1 provided that m > ν +

3

2
.

Thus, to satisfy the assertion of the lemma, it suffices to select a positive integer m ∈ (ν + 3
2 , ν + 5

2

]
.

Such m exists for any ν > −1

2
, which completes the proof of Lemma 3.4.1.

Lemma 3.4.2. The limit relation
∞∫

0

z2ν+1e
−z2+t

s∑

k=1

akjν
(

hkz√
t

)

jν(2ηz)dz
t→+0−→ Γ(ν + 1)

2
e−η2

holds uniformly with respect to η ≥ 0.

Proof. We have
∞∫

0

z2ν+1e−z2jν(2ηz)dz =
Γ(ν + 1)

ην

∞∫

0

zν+1e−z2Jν(2ηz)dz =
Γ(ν + 1)

2
e−η2
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(see, e.g., [88, p. 186]).
Therefore,∣∣∣∣∣

∞∫

0

z2ν+1e
−z2+t

s∑

k=1
akjν

(
hkz√

t

)

jν(2ηz)dz − Γ(ν + 1)

2
e−η2

∣∣∣∣∣

=

∣∣∣∣∣
∞∫

0

z2ν+1e−z2jν(2ηz)

[
e
t

s∑

k=1
akjν

(
hkz√

t

)

− 1

]
dz

∣∣∣∣∣ ≤
∞∫

0

z2ν+1e−z2
∣∣∣∣ e

t
s∑

k=1
akjν

(
hkz√

t

)

− 1

∣∣∣∣ dz.

Let ε > 0. Select a small t0 such that

e
−t0

s∑

k=1
|ak|

, e
t0

s∑

k=1
|ak| ∈
(
1− 2ε

Γ(ν + 1)
, 1 +

2ε

Γ(ν + 1)

)
.

Then

t

s∑
k=1

akjν

(
hkz√

t

)
∈
(
−t

s∑
k=1

|ak|, t
s∑

k=1

|ak|
)

for any t from (0, t0); hence, due to the monotonicity of the exponential function, we have

∞∫

0

z2ν+1e−z2
∣∣∣∣ e

t
s∑

k=1
akjν

(
hkz√

t

)

− 1

∣∣∣∣ dz ≤ 2ε

Γ(ν + 1)

∞∫

0

z2ν+1e−z2dz = ε.

Since ε is selected arbitrarily, the proof of Lemma 3.4.2 is completed.

Take an arbitrary nonnegative x0 and consider the difference

u(x0, t)− u0(x0) =
4

Γ2(ν + 1)

∞∫

0

η2ν+1T 2η
√
t

x0
u0(x0)

∞∫

0

z2ν+1e
−z2+t

s∑

k=1
akjν

(
hkz√

t

)

jν(2ηz)dzdη

− 4

Γ2(ν + 1)

∞∫

0

η2ν+1u0(x0)
Γ(ν + 1)

2
e−η2dη

=
4

Γ2(ν + 1)

∞∫

0

η2ν+1

⎡
⎣T 2η

√
t

x0
u0(x0)

∞∫

0

z2ν+1e
−z2+t

s∑

k=1
akjν

(
hkz√

t

)

× jν(2ηz)dz − u0(x0)
Γ(ν + 1)

2
e−η2

⎤
⎦ dη =

4

Γ2(ν + 1)

⎛
⎝

A∫

0

+

∞∫

A

⎞
⎠ def

=
4

Γ2(ν + 1)
(I1 + I2).

Take an arbitrary positive ε. The following inequality is valid:

|I2| ≤ sup |u0|
∞∫

A

∣∣∣∣∣ η2ν+1

∞∫

0

z2ν+1e
−z2+t

s∑

k=1
akjν

(
hkz√

t

)

jν(2ηz)dz

∣∣∣∣dη + sup |u0|Γ(ν + 1)

2

∞∫

A

η2ν+1e−η2dη.

By virtue of Lemma 3.4.1 (without loss of generality, we assume that t ≤ 1), we obtain that the former

integral at the right-hand part does not exceed C

∞∫

A

dη

ηα
=

C

A1−α
, where α > 1. This and the conver-

gence of the integral

∞∫

0

η2ν+1e−η2dη imply that there exists a positive A such that |I2| ≤ Γ2(ν + 1)

8
ε
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for any t from (0, 1). Select such A and fix it. It remains to estimate I1. To do this, we note that

T 2η
√
t

x0
u0(x0)− u0(x0)

=
Γ(ν + 1)√
π Γ(ν + 1

2)

π∫

0

u0

(√
x20 + 4η2t− 4x0η

√
t cos θ

)
sin2ν θdθ − Γ(ν + 1)√

π Γ(ν + 1
2)

π∫

0

u0(x0) sin
2ν θdθ

=
Γ(ν + 1)√
π Γ(ν + 1

2)

π∫

0

[
u0

(√
x20 + 4η2t− 4x0η

√
t cos θ

)
− u0(x0)

]
sin2ν θdθ.

Let δ > 0. By virtue of the continuity of the function u0 at the point x0, one can select a small t0 such
that for any t from (0, t0), any η from [0, A], and any θ from [0, π], the following inequality holds:

∣∣∣ u0
(√

x20 + 4η2t− 4x0η
√
t cos θ

)
− u0(x0)

∣∣∣ < δ.

Since δ is selected arbitrarily, it follows that T 2η
√
t

x0
u0(x0)

t→+0−→ u0(x0) uniformly with respect to η ∈
[0, A]. This and Lemma 3.4.2 imply that there exists a positive t0 such that for any t from (0, t0) and
any η from [0, A], we have

∣∣∣∣T 2η
√
t

x0
u0(x0)

∞∫

0

z2ν+1e
−z2+t

s∑

k=1
akjν

(
hkz√

t

)

jν(2ηz)dz − u0(x0)
Γ(ν + 1)

2
e−η2
∣∣∣∣ < (ν + 1)Γ2(ν + 1)

4A2ν+2
ε,

i.e.,

|I1| ≤ 4

Γ2(ν + 1)

(ν + 1)Γ2(ν + 1)

4A2ν+2
ε

A∫

0

η2ν+1dη = ε
ν + 1

A2ν+2

A2ν+2

2ν + 2
=

ε

2
.

Since ε is selected arbitrarily, it follows that

u(x0, t)− u0(x0)
t→+0−→ 0.

Thus, the function u(x, t) satisfies condition (3.3) because x0 is selected arbitrarily.
Thus, the following assertion is proved.

Theorem 3.4.1. Let a function u0(x) be continuous and bounded for nonnegative x. Then the func-
tion u(x, t) defined by relation (3.6) is a classical solution of problem (3.1)–(3.3).

In particular, using the proved theorem, one can compute the weight integral of the fundamental
solution over the whole positive semiaxis:

Lemma 3.4.3. The following relation is valid:

∞∫

0

x2ν+1E(x, t)dx = 4νΓ2(ν + 1)e
t

s∑

k=1

ak
.

Proof. Consider the function u0(x) ≡ 1. It is continuous and bounded. Therefore, by virtue of
Theorem 3.4.1, the function

y(x, t) def
=

1

4νΓ2(ν + 1)

+∞∫

0

ξ2ν+1E(ξ, t)dξ
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satisfies problem (3.1)–(3.3) with the initial-value condition y
∣∣
t=0

≡ 1. However, y(x, t) does not

depend on x; hence, y(t) satisfies the ordinary differential equation y′ − y
s∑

k=1

ak = 0 and the initial-

value condition y(0) = 1. Therefore, y(t) = e
t

s∑

k=1
ak
, which completes the proof of Lemma 3.4.3.

3.5. Inhomogeneous Equations

Consider the equation

∂u

∂t
−Bxu+

s∑
k=1

akT
hk
x u = f(x, t), x > 0, t > 0, (3.10)

assuming that f continuous and bounded.
Let us show that, using the fundamental solution defined by relation (3.4), one can obtain an integral

representation for the (classical) solution of problem (3.10), (3.2), (3.3) as well.
To do this, we fix an arbitrary positive x0 and introduce the function

G(t, τ) def
=

1

4ν+1

∞∫

0

ξ2ν+1f(ξ, t− τ)T ξ
x0
E(x0, τ)dξ

defined for t > τ > 0.
The following assertion is valid:

Lemma 3.5.1. There exists a positive t0 > 0 such that G(t, τ) is bounded in the domain (0, t0)×(0, t).

Proof. Take into account the self-adjointness of the generalized translation operator and change the

variable: η =
ξ

2
√
t
. This yields the relation

G(t, τ) = τν+1

∞∫

0

η2ν+1E(2η√τ , τ)T 2η
√
τ

x0
f(x0, t− τ)dη

=

∞∫

0

η2ν+1

∞∫

0

z2ν+1e
−z2+τ

s∑

k=1
akjν

(
hkz√

τ

)

jν(2ηz)dzT
2η

√
τ

x0
f(x0, t− τ)dη =

1∫

0

+

∞∫

1

def
= I3 + I4.

To estimate |I4|, we apply Lemma 3.4.1 (without loss of generality, we assume that t ≤ 1) and obtain
that there exists α > 1 such that

|I4| ≤ C sup |f |
∞∫

1

dη

ηα
=

C sup |f |
α− 1

.

Under the same assumptions, we have

|I3| ≤ sup |f |
∞∫

0

η2ν+1e
τ

s∑

k=1
|ak|

∞∫

0

z2ν+1e−z2dzdη

≤ sup |f |e
s∑

k=1
|ak|

∞∫

0

η2ν+1dη

∞∫

0

z2ν+1e−z2dz =
sup |f |Γ(ν + 1)

4(ν + 1)
e

s∑

k=1
|ak|

,

which completes the proof of Lemma 3.5.1.
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Therefore, the following function is defined on [0,+∞) × (0,+∞):

v(x, t) def
=

1

4νΓ2(ν + 1)

t∫

0

∞∫

0

ξ2ν+1E(ξ, t)T ξ
xf(x, t− τ)dξdτ. (3.11)

Let us show that the specified function satisfies Eq. (3.10) and the homogeneous initial-value condition.
To prove the former assertion, we note that it is proved in Secs. 3.2-3.3 that the function E(x, t)

satisfies Eq. (3.1) in [0,+∞) × (0,+∞) and tends to zero (as well as the functions
∂E
∂t

and BxE) as

x → +∞ faster than any negative power of |x|.
Therefore, it remains to prove the following lemma:

Lemma 3.5.2. If x0 ≥ 0 and t0 > 0, then

lim
τ→+0

1

4νΓ2(ν + 1)

∞∫

0

ξ2ν+1f(ξ, t0 − τ)T ξ
x0
E(x0, τ)dξ = f(x0, t0).

Proof. We have
∞∫

0

ξ2ν+1f(ξ, t0 − τ)T ξ
x0
E(x0, τ)dξ = 4ν+1G(t0, τ)

= 4ν+1

∞∫

0

η2ν+1T 2η
√
τ

x0
f(x0, t− τ)

∞∫

0

z2ν+1e
−z2+τ

s∑

k=1
akjν

(
hkz√

τ

)

jν(2ηz)dzdη

(see the proof of Lemma 3.5.1).
Therefore,

1

4νΓ2(ν + 1)

∞∫

0

ξ2ν+1f(ξ, t0 − τ)T ξ
x0
E(x0, τ)dξ − f(x0, t0)

=
4

Γ2(ν + 1)

∞∫

0

η2ν+1

⎡
⎣T 2η

√
τ

x0
f(x0, t0 − τ)

∞∫

0

z2ν+1

× e
−z2+τ

s∑

k=1
akjν

(
hkz√

τ

)

jν(2ηz)dz − Γ(ν + 1)

2
e−η2f(x0, t0)

⎤
⎦ dη

=
4

Γ2(ν + 1)

⎛
⎝

A∫

0

+

∞∫

0

⎞
⎠ def

=
4

Γ2(ν + 1)
(I5 + I6),

where A is a positive parameter.
Let ε > 0. We have

|I6| ≤ sup |f |
∞∫

A

η2ν+1

∣∣∣∣
∞∫

0

z2ν+1e
−z2+τ

s∑

k=1
akjν

(
hkz√

τ

)

jν(2ηz)dz

∣∣∣∣dη + sup |f |Γ(ν + 1)

2

∞∫

A

e−η2dη.

By virtue of Lemma 3.4.1 (without loss of generality, we assume that τ < 1), there exists α > 1 such
that the first term of the right-hand part of the last inequality is less than or equal to

C sup |f |
∞∫

1

dη

ηα
=

C sup |f |
α− 1

.

434



This and the convergence of the integral

∞∫

0

e−η2dη imply that there exists a positive A such that

|I6| < ε

2
for any τ ∈ (0, 1). Fix such A and estimate I5.

Consider

T 2η
√
τ

x0
f(x0, t0 − τ) =

Γ(ν + 1)√
π Γ(ν + 1

2)

π∫

0

f

(√
x20 + 4η2(t0 − τ)− 4x0η

√
t0 − τ cos θ

)
sin2ν θdθ.

By virtue of the continuity and boundedness of the function f, the last expression tends to f(x0, t0) as
τ → +0 uniformly with respect to η ∈ [0, A]. This and Lemma 3.4.2 imply that there exists a positive
τ0 such that for any τ < τ0 and any η ∈ [0, A], we have

∣∣∣∣T 2η
√
t

x0
f(x0, t0−τ)

∞∫

0

z2ν+1e
−z2+t

s∑

k=1

akjν
(

hkz√
t

)

jν(2ηz)dz−Γ(ν + 1)

2
f(x0, t0)e

−η2
∣∣∣∣ < ε

4

ν + 1

A2ν+2Γ2(ν + 1)
,

i.e., |I5| ≤ ε

2
. This completes the proof of Lemma 3.5.2.

It remains to prove that v(x0, t)
t→+0−→ 0 for any nonnegative x0.

To do this, we represent v(x0, t) as
4

Γ2(ν + 1)

t∫

0

G(t, τ)dτ and use Lemma 3.5.1. This yields that

there exists a positive t0 such that

|v(x0, t)| ≤ 4

Γ2(ν + 1)
sup

t∈[0,t0]
|G|t

for any t from (0, t0).
Taking into account that the nonnegative x0 is selected arbitrarily and the function T x

ξ E(ξ, t) is
even with respect to the variable x, we prove the following assertion.

Theorem 3.5.1. Let u0 be continuous and bounded in [0,+∞) and f be continuous and bounded in
[0,+∞)× (0,+∞). Then the function

1

4νΓ2(ν + 1)

⎡
⎣

∞∫

0

ξ2ν+1E(ξ, t)T ξ
xu0(x)dξ +

t∫

0

∞∫

0

ξ2ν+1E(ξ, t)T ξ
xf(x, t− τ)dξdτ

⎤
⎦

is a classical solution of problem (3.10), (3.2), (3.3).

Chapter 4

SINGULAR FUNCTIONAL DIFFERENTIAL EQUATIONS

In this chapter, we study the nonclassical Cauchy problem for singular parabolic equations of the
most general type: they are not only integrodifferential, but differential-difference as well. Apart from
the specified theoretical aspect, this problem is interesting from the point of view of applications:
the motivation is to extend models of [91, 103, 120–123] for the case of media with characteristics
degenerated along selected directions.

We find fundamental solutions of the specified equations, investigate their properties, and obtain
integral representations of solutions of the investigated problem (the initial-value function and the
right-hand part are assumed to be continuous and bounded). Thus, we prove the solvability theorem.
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To prove the uniqueness of the solution, the method of Fourier transforms is applied. The function-
theory technique necessary to apply the specified method (the Fourier–Bessel transformation and

the scale of generalized functions, corresponding to the degenerated measure
∏
l

ykll dxdy) is deeply

and comprehensively developed in [34] (see also references therein); therefore, following the general
scheme of [16], one could apply the specified method to investigate the solvability as well. However,
the specified method yields only solutions in the sense of generalized function. Moreover, it is not
guaranteed that such a solution belongs to any Sobolev class or Schwartz class of generalized function.
Unlike this case, we obtain a classical solution, i.e., a function differentiable (up to the order of the
equation) and satisfying the equation and the boundary-value conditions at each point.

4.1. Statement of the Problem

We use the following notation.
kl = 2νl + 1 is a positive parameter (l ∈ 1, n);

Bkl,yl
def
=

1

ykll

∂

∂yl

(
ykll

∂

∂yl

)
=

∂2

∂y2l
+

kl
yl

∂

∂yl

is the Bessel operator with respect to the variable yl;

T h
y f(y)

def
=

Γ(ν + 1)√
π Γ(ν + 1

2 )

π∫

0

f
(√

y2 + h2 − 2yh cos θ
)
sin2ν θdθ

is the corresponding generalized translation operator (with scalar variable y).
In the case where y and h are vectors, the generalized translation operator is defined as the super-

position of the one-dimensional operators: T h
y = T h1

y1 · · ·T hn
yn .

Let Rm+n
+ denote the set {

(x, y)
∣∣∣ x ∈ R

m, y1 > 0, . . . , yn > 0
}
.

In R
m+n
+ × (0,∞), consider the equation

∂u

∂t
−

m∑
i=1

[
∂2u

∂x2i
+

mi∑
s=1

aisu(x+ his, y, t)

]
−

n∑
l=1

(
Bkl,ylu+

nl∑
r=1

blrT
glr
yl

u

)
= f(x, y, t) (4.1)

with the boundary-value conditions

∂u

∂yl

∣∣∣
yl=0

= 0 (l = 1, n), t > 0, (4.2)

and

u
∣∣
t=0

= u0(x, y), (x, y) ∈ R
m+n
+ . (4.3)

Here u0, f,
∂f

∂x1
, . . . ,

∂f

∂xm
, and

∂f

∂y1
, . . . ,

∂f

∂yn
are continuous and bounded functions, f satisfies condi-

tion (4.2), his are vectors parallel to the ith coordinate axis of the space R
m, i ∈ 1,m, for any s, and

the coefficients ais, blr, and glr are assumed to be real for all values of their indices.
Similarly to Chap 3, problem (4.1)–(4.3) can be considered in the whole subspace Rm+n × (0,+∞)

if condition (4.2) is replaced by the requirement that the function u is even with respect to each
variable yl; for differential parabolic equations with Bessel operator, such problems are well defined
(see, e.g., [37, 38, 42–45, 47]).
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4.2. Fundamental Solutions of Singular Functional Differential Equations

Let f(x, y, t) ≡ 0.
Assigning

E1(x, t) def
=

∫

Rm

e
−t

(

|ξ|2−
m∑

i=1

mi∑

s=1
ais coshis·ξ

)

cos

(
x · ξ + t

m∑
i=1

mi∑
s=1

ais sinhis · ξ
)
dξ (4.4)

and

E2(y, t) def
=

n∏
l=1

∞∫

0

ηkll e
−t

[

η2l −
nl∑

r=1
blrjνl(glrηl)

]

jνl (ylηl) dηl, (4.5)

define the function

E(x, y, t) def
= E1(x, y, t)E2(x, y, t)

on R
m+n
+ × (0,∞).

For all t0, T ∈ (0,+∞), integrals (4.4) and (4.5) converge absolutely and uniformly with respect

to (x, y, t) ∈ R
m+n
+ × [t0, T ] (note that |jν(z)| ≤ 1); therefore, the function E(x, y, t) is well defined.

Substitute (formally) E in Eq. (4.1):

∂E
∂t

=
∂E1
∂t

E2 + E1 ∂E2
∂t

,
∂2E
∂x2i

=
∂2E1
∂x2i

E2 (i = 1,m),

Bkl,ylE = E1 ∂
2E2
∂y2l

+
kl
yl
E1 ∂E2

∂yl
= E1Bkl,ylE2 (l = 1, n),

E(x+ h, y, t) = E1(x+ h, y, t)E2 for any h ∈ R
m,

and

T g
y E = E1T g

y E2(x, y, t) for any g ∈ R
n.

Thus,

∂E
∂t

−
m∑
i=1

[
∂2E
∂x2i

+

mi∑
s=1

aisE(x+ his, y, t)

]
−

n∑
l=1

(
Bkl,ylE +

nl∑
r=1

blrT
glr
yl

E
)

= E2
[
∂E1
∂t

−ΔxE1 −
m∑
i=1

mi∑
s=1

aisE1(x+ his, y, t)

]

+ E1
[
∂E2
∂t

−
n∑

l=1

(
Bkl,ylE2 +

nl∑
r=1

blrT
glr
yl

E2
)]

. (4.6)

It is known from [67] that the former term of sum (4.6) vanishes; consider the latter one:

∂E2
∂t

=

∞∫

0
. . .

∞∫

0︸ ︷︷ ︸
n times

[
n∑

l=1

nl∑
r=1

blrjνl (glrηl)− |η|2
]
e

[
n∑

l=1

nl∑

r=1
blrjνl(glrηl)−|η|2

]

t
n∏

l=1

ηkll jνl (ylηl) dηl

=

∞∫

0
. . .

∞∫

0︸ ︷︷ ︸
n times

n∑
l=1

nl∑
r=1

blrT
glr
yl

jνl (ylηl)

n∏
κ=1
κ 
=l

jνκ (yκηκ) e

[
n∑

l=1

nl∑

r=1
blrjνl(glrηl)−|η|2

]

t
n∏

l=1

ηkll dηl
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−
∞∫

0
. . .

∞∫

0︸ ︷︷ ︸
n times

n∑
l=1

ηkl+2
l

n∏
κ=1
κ 
=l

ηkκκ e

[
n∑

l=1

nl∑

r=1
blrjνl(glrηl)−|η|2

]

t
n∏

l=1

jνl (ylηl) dηl

because T y
x jν(ax) = jν(ax)jν(ay) (see, e.g., [34, p. 19]).

Further, Bkl,yljνl(ylηl) = −η2l jνl(ylηl) for any l (see, e.g., [34, p. 18]); hence,

Bkl,ylE2 = −
∞∫

0
. . .

∞∫

0︸ ︷︷ ︸
n times

e

[
n∑

l=1

nl∑

r=1
blrjνl(glrηl)−|η|2

]

t
η2l

n∏
κ=1

ηkκκ jνκ (yκηκ) dηκ.

Thus, the latter term of sum (4.6) vanishes in R
m+n
+ ×(0,+∞) as well. This means that the function

E(x, t) formally satisfies Eq. (4.1).
Note that the inequalities

∣∣Bkl,ylE2
∣∣ ≤ const

n∏
κ=1
κ 
=l

∞∫

0

ηkκκ e−η2κtdηκ

∞∫

0

ηkl+2
l e−η2l tdηl

and

∣∣T glr
yl

E2
∣∣ ≤ const

n∏
l=1

∞∫

0

ηkll e−η2l tdηl

are valid for all l and r. Therefore,
∣∣∣∣∂E2∂t

∣∣∣∣ ≤ const t
−1−n

2
− 1

2

n∑

l=1
kl
.

In the same way, ∣∣∣∣∂E1∂t

∣∣∣∣ ≤ const t−1−m
2 ;

hence, the formal differentiation and the formal generalized translation under the integral sign are

valid for all terms of Eq. (4.1). Therefore, the function E satisfies Eq. (4.1) in R
m+n
+ ×(0,+∞).

We call E(x, t) the fundamental solution of Eq. (4.1). To show the reasonability of this term,
we prove below that the generalized convolution (see [34, §1.8]) of E with any bounded initial-value
function coincides with that initial-value function at the initial half-plane.

4.3. Generalized Convolutions of Fundamental Solutions and Bounded Functions

On R
m+n
+ ×(0,+∞), consider the function

∫

R
m+n
+

n∏
l=1

ηkll E(ξ, η, t)T η
y u0(x− ξ, y)dξdη. (4.7)

The following assertion is valid:

Theorem 4.3.1. Function (4.7) satisfies (in the classical sense) Eq. (4.1).

Proof. First, we prove that function (4.7) is well defined. To do this, we apply the following estimates
established for functions (4.4) and (4.5) in Secs. 1.4 and 3.3 respectively:

|x|m+2|E1(x, t)| ≤ C (4.8)
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and

yαl

∣∣∣∣
∞∫

0

ηkll e
−t

[

η2l −
nl∑

r=1
blrjνl(glrηl)

]

jνl (ylηl) dηl

∣∣∣∣ ≤ C (4.9)

(those estimates are valid for any positive t and α and any l ∈ 1, n ).
For all positive t0 and T, the constants of inequalities (4.8) and (4.9) depend only on t0 and T but

do not depend on t ∈ [t0, T ]. This and the boundedness of the function u0 imply that integral (4.7)
converges absolutely and uniformly with respect to t ∈ [t0, T ] for any fixed T . Indeed,∫

R
m+n
+

n∏
l=1

ηkll |E(ξ, η, t)T η
y u0(x− ξ, y)|dξdη ≤ 1

2
sup |u0|

∫

Rm+n

n∏
l=1

|ηl|kl |E(ξ, η, t)|dξdη. (4.10)

The integrand function at the right-hand part of the last inequality is extended to the whole space
R
m+n as a function even with respect to each variable yl. The inequality itself is understood in the

following sense: if its right-hand side converges, then its left-hand side converges as well, and the
inequality is valid; note that the normalized Bessel function is even and the generalized translation
operator is continuous (see, e.g., [34, p. 18-19]).

By virtue of the smoothness of the factors of the function E(ξ, η, t) and estimates (4.8)-(4.9), the

integrand function of the last integral can be represented as
∣∣∣f0,t(ξ)

n∏
l=1

fl,t(ηl)
∣∣∣ such that its factors

satisfy the following inequalities for t ∈ [t0, T ]:

|f0,t(ξ)| ≤ M0

1 + |ξ|m+1

and

|fl,t(ξ)| ≤ Ml

1 + η2l
,

where M0, . . . ,Mn are positive constants.
Let Ω be an arbitrary large bounded domain in R

m+n. Without loss of generality, we assume that

it contains the domain Q(1) def
= {|ξ| < 1, |ηl| ≤ 1, l = 1, n}. There exists A0 from the interval (1,+∞)

such that
Ω ⊂ Q(A0)

def
= {|ξ| < A0, |ηl| ≤ A0, l = 1, n}.

The function
∣∣∣f0,t(ξ)

n∏
l=1

fl,t(ηl)
∣∣∣ is integrable over Q(A0) by virtue of the boundedness of that domain;

hence, the Fubini theorem is applicable:

∫

Q(A0)

∣∣∣f0,t(ξ)
n∏

l=1

fl,t(ηl)
∣∣∣dξdη =

∫

|ξ|<A0

|f0(ξ)|dξ
n∏

l=1

A0∫

−A0

|fl,t(ηl)|dηl

≤ M0

(
max
l=1,n

Ml

)n
⎡
⎢⎣ 2πm

mΓ
(
m
2

) +
∫

|ξ|>1

dξ

|ξ|m+1

⎤
⎥⎦
⎛
⎝2 + 2

A0∫

1

dz

z2

⎞
⎠

n

≤ M0

(
4max
l=1,n

Ml

)n ⎡⎣ 2πm

mΓ
(
m
2

) + 2πm

Γ
(
m
2

)
∞∫

1

dr

r2

⎤
⎦ =

2πmM0

mΓ
(
m
2

)
(
4max
l=1,n

Ml

)n
(1 +m).

Therefore, the integral at the right-hand part of inequality (4.10) converges and satisfies the same

estimate. This implies that function (4.7) is well defined on R
m+n
+ ×(0,+∞). Further, by virtue of
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the self-adjointness of the generalized translation operator in the corresponding weight space (see,
e.g., [34, p. 19]), function (4.7) is equal to

∫

R
m+n
+

n∏
l=1

ηkll u0(ξ, η)T
η
y E(x− ξ, y, t)dξdη.

To complete the proof, it remains to justify the validity of differentiating and applying the generalized
translation operator under the integral sign in (4.7). To do this, we must estimate the behavior of
the functions ΔxE , Bkl,ylE , and T glr

yl
E at infinity. The inequality

∣∣T glr
yl

E∣∣ = ∣∣jνl(glryl)E
∣∣ ≤ ∣∣E∣∣ is valid.

Further, it is proved in Sec. 1.4 that |x|m+1ΔxE1(x, t)
|x|→∞
−→ 0 for any positive t and it is proved in

Sec. 3.3 that

yαl Bkl,yl

∞∫

0

ηkll e
−t

[

η2l −
nl∑

r=1
blrjνl(glrηl)

]

jνl (ylηl) dηl
y→∞
−→ 0

for any positive t, any positive α, and any l ∈ 1, n. This and inequalities (4.8)-(4.9) imply (as above)
that the differentiation and generalized translation under the integral sign are valid in (4.7), which
completes the proof.

4.4. Solutions of the Nonclassical Cauchy Problem for Singular Functional Differential
Equations

Introduce the following notation:

u(x, y, t) def
=

2n−m

πm

n∏
l=1

2klΓ2

(
kl + 1

2

)
∫

R
m+n
+

n∏
l=1

ηkll u0(x− ξ, η)T η
y E(ξ, y, t)dξdη. (4.11)

The following assertion is valid:

Theorem 4.4.1. The function defined by relation (4.11) is a solution of problem (4.1)–(4.3).

Proof. It follows from Theorem 4.3.1 that the function u(x, y, t) satisfies Eq. (4.1). By virtue of the
evenness of the function T η

y E(ξ, y, t) with respect to the variables y1, . . . , yn (see, e.g., [34, p. 35]), it
follows that u(x, y, t) satisfies condition (4.2). It remains to show that it satisfies condition (4.3) as
well.

Take an arbitrary (x0, y0)
def
= (x01, . . . , x

0
m, y01 , . . . , y

0
n) from R

m+n
+ and investigate the behavior of the

function u(x0, y0, t) as t → +0.

Noting that T η
y f(y) = T y

η f(η) (see, e.g., [34, p. 19]) and denoting
2n−m

πm

n∏
l=1

2klΓ2

(
kl + 1

2

) by C, we

obtain that

u(x0, y0, t) = C

∫

R
m+n
+

n∏
l=1

ηkll u0(x0 − ξ, η)T y0
η E(ξ, η, t)dξdη.

Change the variables as follows: ζi =
ξi

2
√
t
(i = 1,m) and ρl =

ηl

2
√
t
(l = 1, n); this reduces the last

relation to the form

u(x0, y0, t) = 2m+n+|k|Ct
m+n+|k|

2

∫

R
m+n
+

n∏
l=1

ρkll u0(x0 − 2ζ
√
t, 2ρ

√
t)T y0

2ρ
√
t
E(2ζ√t, 2ρ

√
t, t)dζdρ,
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where |k| def= k1 + · · · + kn is the length of the multi-index.
Without loss of generality, we assume that

m1 = · · · = mm = n1 = · · · = nn = 1.

Redenote bl1 by bl. Redenote gl1 by gl (l = 1, n). Redenote ai1 by ai. Let hi denote |hi1| if the vector
hi1, i = 1,m, coincides with the positive direction of the ith coordinate axis of the space R

m and
denote −|hi1| otherwise. Then E1(x, t) can be represented as

2m
m∏
i=1

+∞∫

0

e−t(τ2−ai coshiτ) cos(xiτ + ait sinhiτ)dτ

(see Sec. 1.4 and [67]); therefore,

E(2ζ√t, 2ρ
√
t, t) = 2m

m∏
i=1

+∞∫

0

e−t(τ2−ai coshiτ) cos(2
√
tζiτ + ait sinhiτ)dτ

×
n∏

l=1

∞∫

0

ηkll e−t[η2l −bljνl(glηl)]jνl

(
2
√
tρlηl

)
dηl.

Change the variables as follows: τ
√
t = z and ηl

√
t = ξ, l = 1, n. This reduces the last expression to

the following form:

2m

t
m+n+|k|

2

m∏
i=1

+∞∫

0

e
−z2+ait cos

hiz√
t cos

(
2zζi + ait sin

hiz√
t

)
dz

×
n∏

l=1

∞∫

0

ξkle
−ξ2+bltjνl

(
glξ√

t

)

jνl (2ξρl) dξ. (4.12)

Thus, taking into account the self-adjointness of the generalized translation operator, we see that

u(x0, y0, t) = 22m+n+|k|C
∫

R
m+n
+

T 2ρ
√
t

y0 u0(x0 − 2ζ
√
t, y0)

×
m∏
i=1

+∞∫

0

e
−z2+ait cos

hiz√
t cos

(
2zζi + ait sin

hiz√
t

)
dz

×
n∏

l=1

ρkll

∞∫

0

ξkle
−ξ2+bltjνl

(
glξ√

t

)

jνl (2ξρl) dξdζdρ. (4.13)

Further, we use the following assertions:

Lemma 4.4.1. The limit relation

m∏
i=1

∞∫

0

e
−z2+ait cos

hiz√
t cos

(
2zζi + ait sin

hiz√
t

)
dz

t→+0−→
(√

π

2

)m
e−|ζ|2

holds uniformly with respect to ζ ∈ R
m.
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Lemma 4.4.2. For any i ∈ 1,m and any positive A there exists Mi depending only on ai and hi such
that for any t from (0, 1) and any ζi from (A,+∞) the inequality

∣∣∣∣∣
∞∫

0

e
−z2+ait cos

hiz√
t cos

(
2zζi + ait sin

hiz√
t

)
dz

∣∣∣∣∣ ≤
Mi

ζ2i

is valid.

Lemma 4.4.3. For any l ∈ 1, n, the limit relation

∞∫

0

ξkle
−ξ2+bltjνl

(
glξ√

t

)

jνl (2ξρl) dξ
t→+0−→ Γ(νl + 1)

2
e−ρ2l

holds uniformly with respect to ρl from [0,+∞).

Lemma 4.4.4. For any l ∈ 1, n there exist a positive Cl and α from (1,+∞) such that the inequality

∣∣∣∣∣ ρ
kl
l

∞∫

0

ξkle
−ξ2+bltjνl

(
glξ√

t

)

jνl (2ξρl) dξ

∣∣∣∣ ≤ Cl

ραl

is valid for any t from (0, 1) and any positive ρl.

Lemmas 4.4.1 and 4.4.2 are proved in Sec. 1.3 and [67] respectively. Lemmas 4.4.3 and 4.4.4 are
proved in Sec. 3.4.

We have
∞∫

0

ξkle−ξ2jνl(2ξρl)dξ =
Γ(νl + 1)

2
e−ρ2l

(see, e.g., [88, p. 186]); hence,

u0(x0, y0) =
2m+2n

πm

n∏
l=1

Γ2(νl + 1)

∫

R
m+n
+

u0(x0, y0)
m∏
i=1

+∞∫

0

e−z2 cos 2zζi dz
n∏

l=1

ρkll

∞∫

0

ξkle−ξ2jνl (2ξρl) dξdζdρ.

Now, consider the difference u(x0, y0, t)− u0(x0, y0); it is equal to

22m+n+|k|C
∫

R
m+n
+

n∏
l=1

ρkll

⎡
⎣T 2ρ

√
t

y0 u0(x0 − 2ζ
√
t, y0)

×
m∏
i=1

+∞∫

0

e
−z2+ait cos

hiz√
t cos

(
2zζi + ait sin

hiz√
t

)
dz

×
n∏

l=1

∞∫

0

ξkle
−ξ2+bltjνl

(
glξ√

t

)

jνl (2ξρl) dξdζdρ

− u0(x0, y0)
m∏
i=1

+∞∫

0

e−z2 cos 2zζi dz
n∏

l=1

∞∫

0

ξkle−ξ2jνl (2ξρl) dξ

⎤
⎦ dζdρ
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= 22m+n+|k|C

⎛
⎜⎜⎝
∫

Q(A)

+

∫

R
m+n
+ \Q(A)

⎞
⎟⎟⎠ def

= 22m+n+|k|C(I1 + I2), (4.14)

where A is a positive parameter and Q(A) denotes the domain
{
(ζ, ρ) ∈ R

m+n
+

∣∣∣|ζ| < 1, ρl < A; l = 1, n
}
.

Take an arbitrary positive ε.
Integral (4.14) converges absolutely and uniformly with respect to t ∈ (0, 1). Indeed, by virtue of

Lemmas 4.4.2 and 4.4.4 and the boundedness of the function u0, for any A from (0,+∞) and any t
from (0, 1), the absolute value of its integrand function is estimated from above by

sup |u0|
[

m∏
i=1

f1,i(ζi)

n∏
l=1

f2,l(ρl) +
π

m
2

2m+n

n∏
l=1

Γ(νl + 1)e−|ζ|2−|ρ|2
]
,

where 0 ≤ f1,i(ζi) ≤ Mi

1 + ζ2i
, i = 1,m, and 0 ≤ f2,l(ρl) ≤ Cl

1 + ραl
, l = 1, n. Therefore, one can select

a positive A such that the inequality |I2| < ε

2m+n+|k|+1C
is satisfied for any t from (0, 1). Fix the

selected A and consider I1:

T 2ρ
√
t

y0 u0(x0 − 2ζ
√
t, y0)− u0(x0, y0) = π−n

2

n∏
l=1

Γ(νl + 1)

Γ(νl +
1
2)

×
π∫

0
. . .

π∫

0︸ ︷︷ ︸
n times

u0

[
x01 − 2ζ1

√
t, . . . , x0m − 2ζm

√
t,

√
(y01)

2 + 4ρ21t− 4y01ρ1
√
t cos θ1, . . . ,√

(y0n)
2 + 4ρ2nt− 4y0nρn

√
t cos θn

] n∏
l=1

sin2νl θldθl

−π−n
2

n∏
l=1

Γ(νl + 1)

Γ(νl +
1
2)

π∫

0
. . .

π∫

0︸ ︷︷ ︸
n times

u0(x0, y0)
n∏

l=1

sin2νl θldθl

= π−n
2

n∏
l=1

Γ(νl + 1)

Γ(νl +
1
2 )

π∫

0
. . .

π∫

0︸ ︷︷ ︸
n times

(
u0

[
x01 − 2ζ1

√
t, . . . , x0m − 2ζm

√
t,

√
(y01)

2 + 4ρ21t− 4y01ρ1
√
t cos θ1, . . . ,√

(y0n)
2 + 4ρ2nt− 4y0nρn

√
t cos θn

]
u0(x0, y0)

) n∏
l=1

sin2νl θldθl.

Let δ > 0. By virtue of the continuity of the function u0 at the point (x0, y0), one can select sufficiently
small t0 such that for any t from (0, t0), any (ζ, ρ) from Q(A), and any θl from [0, π], l = 1, n, the
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following inequality is valid:∣∣∣∣∣u0
[
x01 − 2ζ1

√
t, . . . , x0m − 2ζm

√
t,

√
(y01)

2 + 4ρ21t− 4y01ρ1
√
t cos θ1, . . . ,

√
(y0n)

2 + 4ρ2nt− 4y0nρn
√
t cos θn

]
− u0(x0, y0)

∣∣∣∣∣ < δ.

This means (take into account that the positive δ is selected arbitrarily) that

T 2ρ
√
t

y0 u0(x0 − 2ζ
√
t, y0)

t→+0−→ u0(x0, y0)

uniformly with respect to (ζ, ρ) from Q(A). This and Lemmas 4.4.1 and 4.4.3 imply that there exists
a positive t0 such that for any t from (0, t0) and any (ζ, ρ) from Q(A), we have the inequality∣∣∣∣∣∣

⎡
⎣T 2ρ

√
t

y0 u0(x0 − 2ζ
√
t, y0)

m∏
i=1

+∞∫

0

e
−z2+ait cos

hiz√
t cos

(
2zζi + ait sin

hiz√
t

)
dz

×
n∏

l=1

∞∫

0

ξkle
−ξ2+bltjνl

(
glξ√

t

)

jνl (2ξρl) dξdζdρ− u0(x0, y0)

m∏
i=1

+∞∫

0

e−z2 cos 2zζi dz

×
n∏

l=1

∞∫

0

ξkle−ξ2jνl (2ξρl) dξ

⎤
⎦ dζdρ

∣∣∣∣∣∣ <
mΓ
(
m
2

) n∏
l=1

(kl + 1)

π
m
2 Am+n+|k|22m+n+|k|+1C

ε,

i.e.,

|I1| ≤ π
m
2 Am+n+|k|ε

22m+n+|k|+1CmΓ
(
m
2

) n∏
l=1

(kl + 1)

∫

Q(A)

n∏
l=1

ρkll dζdρ =
ε

22m+n+|k|+1C
.

Since the positive ε is selected arbitrarily, it follows that

u(x0, y0, t)− u0(x0, y0)
t→+0−→ 0.

Since the point (x0, y0) is selected arbitrarily, it follows that the function u(x, y, t) satisfies condi-
tion (4.3), which completes the proof of Theorem 4.4.1.

In particular, using the proved theorem, one can compute the weight integral of the fundamental
solution over Rm+n

+ : the following assertion holds.

Lemma 4.4.5. The relation

∫

R
m+n
+

n∏
l=1

yklE(x, y, t)dxdy =

πm
n∏

l=1

Γ2

(
kl + 1

2

)

2n−m−|k| e
t

(
m∑

i=1

mi∑

s=1
ais+

n∑

l=1

nl∑

r=1
blr

)

is valid.

Proof. Consider u0(x, y) ≡ 1. It is continuous and bounded; hence, by virtue of Theorem 4.4.1, the
function

y(x, y, t) def
=

2n−m

πm

n∏
l=1

2klΓ2

(
kl + 1

2

)
∫

R
m+n
+

n∏
l=1

ηkll E(ξ, η, t)dξdη
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satisfies problem (4.1)–(4.3) with the initial-value condition

y(x, y, 0) ≡ 1.

However, y(x, y, t) does not depend on x and y. Hence, the function y(t) satisfies the ordinary
differential equation

y′ − y

(
m∑
i=1

mi∑
s=1

ais +
n∑

l=1

nl∑
r=1

blr

)
= 0

and the initial-value condition
y(0) = 1.

Hence, the relation y(t) = e
t

(
m∑

i=1

mi∑

s=1
ais+

n∑

l=1

nl∑

r=1
blr

)

holds. This completes the proof of Lemma 4.4.5.

4.5. Inhomogeneous Singular Equations

In this section, we assume that the right-hand part of Eq. (4.1) is different from the identical zero.
Let us show that, under the specified assumption, the fundamental solution E(x, y, t) can still be used
to obtain integral representations of solutions of problem (4.1)–(4.3).

Take an arbitrary (x0, y0) from R
m+n
+ and define the following function for t > τ > 0:

G(t, τ) def
= 2−2m−n−|k|

∫

R
m+n
+

n∏
l=1

ηkll f(ξ, η, t− τ)T η
y0E(x0 − ξ, y0, τ)dξdη.

The following assertion is valid.

Lemma 4.5.1. There exists a positive t0 such that the function G(t, τ) is bounded in the domain
(0, t0)× (0, t).

Proof. Change the variables as follows: ζi =
ξi

2
√
τ
, i = 1,m, and ρl =

ηl
2
√
τ
, l = 1, n. Then, taking into

account the self-adjointness of the generalized translation operator, we obtain the relation

G(t, τ) = 2−mτ
m+n+|k|

2

∫

R
m+n
+

n∏
l=1

ρkll T
2ρ

√
τ

y0 f(x0 − 2ζ
√
τ , y0, t− τ)E(2ζ√τ , 2ρ

√
τ , τ)dζdρ.

Now, similarly to the proof of Theorem 4.4.1, we assume (without loss of generality) that

m1 = · · · = mm = n1 = · · · = nn = 1;

redenote bl1 by bl, redenote gl1 by gl, l = 1, n, and redenote ai1 by ai. Also, by hi we denote |hi1| if the
vector hi1 coincides with the positive direction of the ith coordinate axis of the space Rm, i = 1,m; if it
coincides with its negative direction, then hi denotes −|hi1|. Then E(2ζ√t, 2ρ

√
t, t) is equal to (4.12).

Therefore,

G(t, τ) =

∫

R
m+n
+

m∏
i=1

+∞∫

0

e
−z2+aiτ cos

hiz√
τ cos

(
2zζi + aiτ sin

hiz√
τ

)
dz

×
n∏

l=1

ρkll

∞∫

0

ξkle
−ξ2+blτjνl

(
glξ√

τ

)

jνl (2ξρl) dξ T
2ρ

√
τ

y0 f(x0 − 2ζ
√
τ , y0, t− τ)dζdρ.

Since the function f is bounded, it follows that the last integral converges absolutely and uniformly
in the triangle {0 < τ < t < 1} (the proof is totally identical to the proof of the absolute and uniform
convergence of the first term of integral (4.14)).
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Thus, we have the following estimate of the function G:

|G(t, τ)| ≤ 2−n sup |f |
m∏
i=1

+∞∫

−∞

∞∫

0

e
−z2+aiτ cos

hiz√
τ cos

(
2zζi + aiτ sin

hiz√
τ

)
dzdζi

×
n∏

l=1

+∞∫

−∞

∣∣ρl∣∣kl
∞∫

0

ξkle
−ξ2+blτjνl

(
glξ√

τ

)

jνl (2ξρl) dξ dρl.

In the last expression, each external (one-dimensional) integral (i.e., each integral over the real axis)

can be represented as

−1∫

−∞
+

1∫

−1

+

+∞∫

1

. Taking into account the boundedness of the internal integrals,

we assign A = 1, assume (without loss of generality) that t < 1, and apply Lemmas 4.4.2 and 4.4.4.
We obtain that there exists α from (1,+∞) such that

|G(t, τ)| ≤ const

⎛
⎝2 + 2

+∞∫

1

dr

r2

⎞
⎠
m⎛
⎝2 + 2

+∞∫

1

dr

rα

⎞
⎠
n

.

This completes the proof of Lemma 4.5.1.

Therefore, the following function is defined on R
m+n
+ × (0,+∞):

v(x, y, t) def
=

2n−m−|k|

πm

n∏
l=1

Γ2

(
kl + 1

2

)
t∫

0

∫

R
m+n
+

n∏
l=1

ηkll E(ξ, η, τ)T η
y f(x− ξ, y, t− τ)dξdηdτ. (4.15)

Since the function T η
y E(ξ, y, t) is even with respect to the variables y1, . . . , yn, it follows that func-

tion (4.15) satisfies condition (4.2). Let us show that the specified function satisfies Eq. (4.1) and the
homogeneous initial-value function.

To prove the former assertion, we note that it is proved in Sec. 4.2 that the function E(x, y, t) satisfies
Eq. (4.1) in R

m+n
+ × (0,+∞). Taking into account the decay estimates (established in Sec. 4.3) for

its factors and their derivatives of the corresponding order as |x| → ∞ and |y| → ∞, we see that it
remains to prove the following lemma:

Lemma 4.5.2. Let (x0, y0) ∈ R
m+n
+ and t0 > 0. Then

lim
τ→+0

2n−m−|k|

πm

n∏
l=1

Γ2

(
kl + 1

2

)
∫

R
m+n
+

n∏
l=1

ηkll f(ξ, η, t0 − τ)T η
y0E(x0 − ξ, y0, τ)dξdη = f(x0, y0, t0).

Proof. We have

∫

R
m+n
+

n∏
l=1

ηkll f(ξ, η, t0 − τ)T η
y0E(x0 − ξ, y0, τ)dξdη = 22m+n+|k|G(t0, τ)

= 22m+n+|k|
∫

R
m+n
+

m∏
i=1

+∞∫

0

e
−z2+aiτ cos

hiz√
τ cos

(
2zζi + aiτ sin

hiz√
τ

)
dz
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×
n∏

l=1

ρkll

∞∫

0

ξkle
−ξ2+blτjνl

(
glξ√

τ

)

jνl (2ξρl) dξT
2ρ

√
τ

y0 f(x0 − 2ζ
√
τ , y0, t0 − τ)dζdρ

(see the proof of Lemma 4.5.1).
Therefore, the difference

2n−m−|k|

πm

n∏
l=1

Γ2

(
kl + 1

2

)
∫

R
m+n
+

n∏
l=1

ηkll f(ξ, η, t0 − τ)T η
y0E(x0 − ξ, y0, τ)dξdη − f(x0, y0, t0)

can be represented as follows:

2m+2n

πm

n∏
l=1

Γ2

(
kl + 1

2

)

⎡
⎢⎢⎢⎢⎣
∫

R
m+n
+

n∏
l=1

ρkll

[
T 2ρ

√
τ

y0 f(x0 − 2ζ
√
τ , y0, t0 − τ)

×
m∏
i=1

+∞∫

0

e
−z2+aiτ cos

hiz√
τ cos

(
2zζi + aiτ sin

hiz√
τ

)
dz

×
n∏

l=1

∞∫

0

ξkle
−ξ2+blτjνl

(
glξ√

τ

)

jνl (2ξρl) dξ −
π

m
2

n∏
l=1

Γ

(
kl + 1

2

)

2m+n
e−|ζ|2−|ρ|2f(x0, y0, t0)

⎤
⎥⎥⎥⎥⎦ dζdρ

=
2m+2n

πm

n∏
l=1

Γ2

(
kl + 1

2

)
⎛
⎜⎜⎝
∫

Q(A)

+

∫

R
m+n
+ \Q(A)

⎞
⎟⎟⎠ def

= C̃(I3 + I4), (4.16)

where A is a positive parameter.
Let ε > 0.
By virtue of the boundedness of the function f, integral (4.16) converges absolutely and uniformly

with respect to τ ∈ (0, 1); the proof is totally identical to the proof of the absolute and uniform

convergence of integral (4.14). Therefore, one can select a positive A such that |I4| < ε

2C̃
for any τ

from (0, 1). Fix the selected A and consider I3.
The generalized translation

T 2ρ
√
τ

y0 f(x0 − 2ζ
√
τ , y0, t0 − τ)

can be represented as follows:

π−n
2

n∏
l=1

Γ(νl + 1)

Γ(νl +
1
2)

π∫

0
. . .

π∫

0︸ ︷︷ ︸
n times

f

[
x01 − 2ζ1

√
τ , . . . , x0m − 2ζm

√
τ ,

√
(y01)

2 + 4ρ21τ − 4y01ρ1
√
τ cos θ1,

. . . ,

√
(y0n)

2 + 4ρ2nτ − 4y0nρn
√
τ cos θn, t0 − τ

] n∏
l=1

sin2νl θldθl.
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By virtue of the continuity and boundedness of the function f, the last expression tends to f(x0, y0, t0)
as τ → +0 uniformly with respect to (ζ, ρ) ∈ Q(A). This and Lemmas 4.4.1 and 4.4.3 imply that
there exists a positive τ0 such that for any τ < τ0 and any η from Q(A), we have

∣∣∣∣T 2ρ
√
τ

y0 f(x0 − 2ζ
√
τ , y0, t0 − τ)

m∏
i=1

+∞∫

0

e
−z2+aiτ cos

hiz√
τ cos

(
2zζi + aiτ sin

hiz√
τ

)
dz

×
n∏

l=1

∞∫

0

ξkle
−ξ2+blτjνl

(
glξ√
τ

)

jνl (2ξρl) dξ −
π

m
2

n∏
l=1

Γ

(
kl + 1

2

)

2m+n
e−|ζ|2−|ρ|2f(x0, y0, t0)

∣∣∣∣

<

mΓ
(
m
2

) n∏
l=1

(kl + 1)

4C̃π
m
2 Am+n+|k| ε, i.e., |I3| ≤ ε

2
.

This completes the proof of Lemma 4.5.2.

It remains to proof that v(x0, y0, t)
t→+0−→ 0 for any (x0, y0) from R

m+n
+ .

To do that, we represent v(x0, y0, t) as

2m+2n

πm

n∏
l=1

Γ2

(
kl + 1

2

)
t∫

0

G(t, τ)dτ

and use Lemma 4.5.1: there exists a positive t0 such that

|v(x0, t)| ≤
2m+2n sup

t∈[0,t0]
|G|

πm

n∏
l=1

Γ2

(
kl + 1

2

) t

for any t from (0, t0). Since the point (x0, y0) is selected arbitrarily, this implies the following assertion:

Theorem 4.5.1. Let u0 be a continuous and bounded in R
m+n
+ function. Let f be a function con-

tinuous and bounded in R
m+n
+ × (0,+∞) such that it satisfies condition (4.2) and the functions

∂f

∂x1
, . . . ,

∂f

∂xm
and

∂f

∂y1
, . . . ,

∂f

∂yn
are continuous and bounded in R

m+n
+ × (0,+∞). Then the func-

tion

u(x, y, t) =
2n−m−|k|

πm

n∏
l=1

Γ2

(
kl + 1

2

)
⎡
⎢⎢⎣
∫

R
m+n
+

n∏
l=1

ηkll E(ξ, η, t)T η
y u0(x− ξ, y)dξdη

+

t∫

0

∫

R
m+n
+

n∏
l=1

ηkll E(ξ, η, τ)T η
y f(x− ξ, y, t− τ)dξdηdτ

⎤
⎥⎥⎦ (4.17)

is a solution of problem (4.1)–(4.3).
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4.6. The Uniqueness of the Solution of the Singular Problem

First, we prove the following assertion:

Lemma 4.6.1. For any positive T, function (4.17) is bounded in R
m+n
+ × [0, T ].

Proof. Using (4.13), we represent the solution of problem (4.1)–(4.3) as follows:

u(x, y, t) = C1

⎡
⎢⎢⎣
∫

R
m+n
+

T 2ρ
√
t

y u0(x− 2ζ
√
t, y)

m∏
i=1

+∞∫

0

e
−z2+ait cos

hiz√
t cos

(
2zζi + ait sin

hiz√
t

)
dz

×
n∏

l=1

ρkll

∞∫

0

ξkle
−ξ2+bltjνl

(
glξ√

t

)

jνl (2ξρl) dξdζdρ+

t∫

0

∫

R
m+n
+

T 2ρ
√
τ

y f(x− 2ζ
√
τ , y, t− τ)

×
m∏
i=1

+∞∫

0

e
−z2+aiτ cos

hiz√
τ cos

(
2zζi + aiτ sin

hiz√
τ

)
dz

×
n∏

l=1

ρkll

∞∫

0

ξkle
−ξ2+blτjνl

(
glξ√

τ

)

jνl (2ξρl) dξdζdρdτ

⎤
⎥⎥⎦ def

= C1 [I5(x, y, t) + I6(x, y, t)] .

Here we impose (without loss of generality) the same assumptions regarding the coefficients of the
equations as in the proof of Theorem 4.4.1, but we take into account that, in general, the right-hand
part of the equation is different from the identical zero.

Integrate
+∞∫

0

e
−z2+ait cos

hiz√
t cos

(
2zζi + ait sin

hiz√
t

)
dz, i = 1,m,

by parts twice. We obtain (see [67]) that if 0 ≤ t ≤ T and ζi �= 0, then the absolute value of the last

integral does not exceed
Mi(1 + T )e|ai|T

ζ2i
, where the constant Mi depends only on the coefficients of

Eq. (4.1).

Denote by n0 the only positive integer lying in

(
νl +

3

2
, νl +

5

2

]
and integrate

∞∫

0

ξkle
−ξ2+bltjνl

(
glξ√

t

)

jνl (2ξρl) dξ, l = 1, n,

by parts n0 times. We obtain (see [59]) that if 0 ≤ t ≤ T and ρl > 0, then the absolute value of the last

integral does not exceed
M̃l(T )e

|bl|T

ρk+α
l

, where the function M̃l is a linear combination of power functions

with nonnegative powers such that its coefficients depend only on the coefficients of Eq. (4.1).
Use the obtained estimates for |ζi| > 1, i = 1,m, and ρl > 1, l = 1, n. If |ζi| ≤ 1 and ρl ≤ 1,

then the absolute values of the specified integrals are obviously estimated from above by

√
πe|ai|T

2
and

Γ(νl + 1)e|bl|T

2
respectively.

Using the obtained estimates and the boundedness of the functions u0 and f, we complete the proof
of the lemma.
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Now, we can investigate the uniqueness of the found solution of problem (4.1)–(4.3) by means of
the Fourier transforms (see [16, Ch. 2, §4, and Appendix]), using the Fourier–Bessel transformation
(see, e.g., [34, Ch. 1]). To do this, following [16, Ch. 1], we introduce special spaces of test functions
(cf. [34, §1.1]) below, assuming that condition (4.2) is replaced by the equivalent condition of evenness
of the function u with respect to each variable yl, l = 1, n, and, correspondingly, considering the
problem in the subspace R

m+n × (0,+∞) (see Sec. 4.1).
Let μi and ωi be continuous increasing on [0,+∞) functions such that

μi(0) = ωi(0) = 0 and lim
r→∞μi(r) = lim

r→∞ωi(r) = ∞, i = 1,m+ n.

Define the following concave functions on [0,+∞):

Mi(r)
def
=

r∫

0

μi(ρ)dρ and Ωi(r)
def
=

r∫

0

ωi(ρ)dρ.

Define the space of test functions WΩ
M

def
=W

Ω1,...,Ωm+n

M1,...,Mm+n
as the set of entire functions of complex variables

x1, . . . , xm and y1, . . . , yn even with respect to each variable yl, l = 1, n, and satisfying the estimate

|ϕ(x1, . . . , xm, y1, . . . , yn)|

≤ Ce
−

m∑

i=1
Mi(αiRexi)−

n∑

l=1
Mm+l(αlReyl)+

m∑

i=1
Ωi(βiImxi)+

n∑

l=1
Ωm+l(βlImyl)

, (4.18)

where the constants C, α1, . . . , αm+n, and β1, . . . , βm+n may depend on the test function ϕ.
Introduce the classical topology of test functions: we say that a sequence {ϕν}∞ν=1 converges to

zero in WΩ
M if it uniformly converges to zero in any bounded domain of Cm+n and the constants C,

α1, . . . , αm+n, and β1, . . . , βm+n (from the definition of test functions) do not depend on the index ν.
Correspondingly, a set Q ⊂ WΩ

M is called bounded if there exist absolute constants C, α1, . . . , αm+n,
and β1, . . . , βm+n such that all elements of Q satisfy estimate (4.18).

The Fourier–Bessel transformation is defined on WΩ
M as follows:

f̂(ξ, η) def
= Fbf

def
=

∫

R
m+n
+

n∏
l=1

ykll jνl(ηlyl)e
−ix·ξf(x, y)dxdy.

Denote by WΩ,β
M,α the subset of WΩ

M such that each its element satisfies inequality (4.18) with α and β

replaced by α̃ and β̃ respectively for all

α̃1 < α1, . . . , α̃m+n < αm+n and β̃1 > β1, . . . , β̃m+n > βm+n.

The following assertion is valid:

Lemma 4.6.2. Suppose that functions M̃i and Ω̃i are dual in the Young sense to the functions Ωi and
Mi respectively, i = 1,m+ n. Then the Fourier–Bessel transformation is a bounded operator mapping

WΩ,β
M,α into W

Ω̃, 1
α

M̃, 1
β

, where

1

α
=

(
1

α1
, . . . ,

1

αm+n

)
and

1

β
=

(
1

β1
, . . . ,

1

βm+n

)
.

Proof. For any ν > −1

2
, we have

jν(x+ iy) =
Γ(ν + 1)√
π Γ(ν + 1

2)

1∫

−1

e(ix−y)t(1− t2)ν−
1
2 dt
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(see, e.g., [34, (1.5.8)]). Therefore, the following estimate holds:

|jν(x+ iy)| ≤ const e|y|.

The remaining part of the proof is totally identical to the proof of Theorem 4 from [16, Ch. 1, §3].
This completes the proof of Lemma 4.6.2.

Consider the elliptic operator A contained in Eq. 4.4.1:

Au def
=

m∑
i=1

[
∂2u

∂x2i
+

mi∑
s=1

aisu(x+ his, y, t)

]
+

n∑
l=1

(
Bkl,ylu+

nl∑
r=1

blrT
glr
yl

u

)
. (4.19)

Let us find its symbol

P(z) def
= P(z1, . . . , zm+n)

def
= P(σ1 + iτ1, . . . , σm+n + iτm+n).

It suffices to consider the case where m1 = n1 = 1 (i.e., the case where there are one special and one
nonspecial spatial variables). Then

P(z1, z2) = −z21 +

m1∑
s=1

a1se
−ih1sz1 − z22 +

n1∑
r=1

b1rjν1(g1rz2)

(see [34, (1.3.5) and (1.3.8)]) and

ReP(z) = |σ|2 − |τ |2 +
m1∑
s=1

a1se
h1sτ1 cosh1sσ1 +

n1∑
r=1

b1rRejν1(g1rz2).

Using [34, (1.5.8)] again, we see that

Rejν1(z2) = const

1∫

−1

(1− t2)ν1−
1
2 e−τ2t cosσ2tdt.

Therefore,

Rejν1(g1rz2) = const

1∫

−1

(1− t2)ν1−
1
2 e−g1rτ2t cos(g1rσ2t)dt.

Now, estimate the function Q(z, t0, t)
def
= e(t−t0)P(z) :

|Q(z, t0, t)| ≤ e
(t−t0)

(

|σ|2+
m1∑

s=1
|a1s|eh1sτ1+const

n1∑

r=1
|b1r |e|g1r |τ2

)

e(t−t0)[(1+|σ|)2+C2eC3τ ].

The last estimate and Lemma 4.6.2 imply (see [16, Ch. 2, Appendix 1]) that problem (4.1)–(4.3) from

Sec. 4.1 has at most one solution bounded in any layer Rm+n
+ × [0, T ]. Then, taking into account that

Eq. (4.1) is linear, we deduce the following assertion from Lemma 4.6.1.

Theorem 4.6.1. Function (4.17) is the unique solution of problem (4.1)–(4.3) such that it is bounded

in R
m+n
+ × [0, T ] for any positive T .

Remark 4.6.1. The requirement of the boundedness of the function f and its derivatives can be

weakened: it can be replaced by the requirement of their boundedness in any layer Rm+n
+ × [0, T ].
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4.7. Long-Time Behavior of Solutions of Singular Problems

In this section, we investigate the long-time behavior of the solution of problem (4.1)–(4.3). To do
this, we consider the operator A introduced by relation (4.19) and introduce the operator L acting as
follows:

Lu def
=

m∑
i=1

∂2u

∂x2i
+

n∑
l=1

Bkl,ylu+
∑
ais<0

aisu(x+ his, y, t) +
∑
blr<0

blrT
glr
yl

u.

Further, without loss of generality, we redenote the vector his by (0, . . . , 0︸ ︷︷ ︸
i−1 times

, his, 0, . . . , 0) (note that

here his is a scalar parameter).

Now, denote the operator

⎛
⎝∑

ais<0

ais +
∑
blr<0

blr

⎞
⎠ I − L by R and consider the real part of its

symbol:

ReR(ξ, η) =
∑
ais<0

ais +
∑
blr<0

blr + |ξ|2 + |η|2 −
∑
ais<0

ais cos hisξi −
∑
blr<0

blrjνl (glrηl)

(cf. [102, §8]). We say that R(ξ, η) is positive definite if there exists a positive C such that

ReR(ξ, η) ≥ C
(|ξ|2 + |η|2)

for any (ξ, η) from R
m+n
+ .

Together with Eq. (4.1), consider the equation

∂w

∂t
=

m∑
i=1

∂2w

∂x2i
+

n∑
l=1

Bkl,ylw, (x, y) ∈ R
m+n
+ , t > 0, (4.20)

and the initial-value condition

w
∣∣
t=0

= w0(x, y), (x, y) ∈ R
m+n
+ , (4.21)

where w0 is continuous and bounded.
It is known from [36] (see also [37] and [47]) that problem (4.20), (4.2), (4.21) has a unique classical

bounded solution w(x, y, t).
The following assertion is valid:

Theorem 4.7.1. Let f(x, y) ≡ 0 and R(ξ, η) be positive definite. Then the following limit relation is

valid for any (x, y) from R
m+n
+ :

e
−t

(
m∑

i=1

mi∑

s=1
ais+

n∑

l=1

nl∑

r=1
blr

)

u(x, y, t)− w

(
x1 + q1t

p1
, . . . ,

xm + qmt

pm
,

y1
pm+1

, . . . ,
yn

pm+n
, t

)
t→∞−→ 0, (4.22)

where

pi =

√√√√1 +
1

2

mi∑
s=1

aish2is, qi =

mi∑
s=1

aishis, i = 1,m,

pm+l =

√√√√1 +
1

2(kl + 1)

nl∑
r=1

blrg
2
lr, l = 1, n,

and

w0(x, y) = u0(p1x1, . . . , pmxm, pm+1y1, . . . pm+nyn).
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Proof. First, we prove that p1, . . . , pm+n are well defined and different from zero under the assumptions
of the theorem. Assuming, without loss of generality, that the (finite) sequences {ais}mi

s=1, i = 1,m,
and {blr}nl

r=1, l = 1, n, do not decrease, we denote min
ais>0

s by m0
i and denote min

blr>0
r by n0

l ; if i or l is

such that all the coefficients are negative, then we assign m0
i = mi + 1 (n0

l = nl + 1 respectively).
Let i ∈ 1,m. From the condition of the theorem, we deduce that∑

s<m0
i

ais + ξ2i −
∑
s<m0

i

ais cos hisξi ≥ Cξ2i

for any positive ξi (indeed, we take the inequality of the positive definiteness condition and assign
ξ1 = · · · = ξi−1 = ξi+1 = ξm = η1 = · · · = ηn = 0 in that inequality). This implies the inequality
1

2

∑
s<m0

i

aish
2
is > −1 (see proof of Theorem 1 in [72]), i.e., p1, . . . , pm are well defined and positive.

Now, let l ∈ 1, n. Then ∑
r<n0

l

blr + η2l −
∑
r<n0

l

blrjνl(glrηl) ≥ Cη2l

for any positive ηl; hence,

Cη2l ≤ η2l +
∑
r<n0

l

blr [1− jνl(glrηl)] .

We have the following representation of the normalized Bessel function:

jν(z) = 1− z2

4(ν + 1)
+O(z4) =⇒ 1− jν(z) =

z2

4(ν + 1)
+O(z4).

Therefore, there exists a neighborhood of the origin such that the following inequality holds in that
neighborhood:

Cη2l ≤ η2l +
η2l

4(νl + 1)

∑
r<n0

l

blrg
2
lr +O(η4l ).

This implies the inequality

C ≤ 1 +
1

4(νl + 1)

∑
r<n0

l

blrg
2
lr +O(η2l ).

Therefore,
C

2
≤ 1 +

1

4(νl + 1)

∑
r<n0

l

blrg
2
lr +O(η2l )−

C

2
,

i.e., there exists a (small) neighborhood of the origin such that

0 <
C

2
≤ 1 +

1

4(νl + 1)

∑
r<n0

l

blrg
2
lr =⇒

1

4(νl + 1)

∑
r<n0

l

blrg
2
lr > −1.

Thus, pm+1, . . . , pm+n are well defined and positive.
Now, we prove the following auxiliary lemma.

Lemma 4.7.1. Let the conditions of Theorem 4.7.1 be satisfied. Then for any l ∈ m+ 1,m+ n, the
limit relation

∞∫

0

η2νl+1
l e

−η2l +t
nl∑

r=1

[
jνl

(
glrηl√

t

)
−1

]

jνl(2ρηl)dηl
t→∞−→ Γ(νl + 1)

2pkl+1
l

e
− ρ2

p2
l

holds uniformly with respect to ρ ≥ 0.
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Proof. First, we note that the sum symbol and the index r can be omitted because it is obvious that
it suffices to prove the lemma for the case where the summand is single. We omit the index l as well
because it is selected arbitrarily and redenote p2 by p. Further,

∞∫

0

η2ν+1e−pη2jν(2ρη)dη =
1

pν+1

Γ(ν + 1)

2
e
− ρ2

p .

Therefore, it suffices to prove that
∞∫

0

η2ν+1jν(2ρη)

(
e
−η2+bt

[
jν

(
gη√
t

)
−1

]

− e−pη2
)
dη

t→∞−→ 0

uniformly with respect to ρ ≥ 0.
First, we prove that the last integral converges absolutely and uniformly with respect to (t, ρ). To

do this, we take into account that the parameter p is positive and the function jν is bounded and see
that it suffices to estimate the power of the first integrated exponential function. We assume that
b < 0 because the claimed convergence is obvious otherwise.

Let the parameter a be negative. Estimate the function f(z) def
= z2 − a[jν(z)− 1]:

f ′(z) = 2z + a
z

2ν + 2
jν+1(z) = 2z

[
1 + a

1

4ν + 4
jν+1(z)

]
≥ 0

for
∣∣∣ a

4ν + 4

∣∣∣ ≤ 1, which is equivalent to the inequality a ≥ −4ν − 4.

Thus, for a ≥ −4ν − 4, the function f does not decrease on [0,+∞). Since f(0) = 0, it follows that
if a ≥ −4ν − 4, then the function f is nonnegative on the real axis (by virtue of its evenness).

Now, let a > −4ν − 4. Then there exists α from (0, 1) such that
a

1− α
≥ −4ν − 4. Therefore,

f(z)− αz2 = (1− α)z2 − a[jν(z)− 1] = (1− α)

(
z2 − a

1− α
[jν(z)− 1]

)
≥ 0.

Thus, for a > −4ν − 4, there exists a positive α such that f(z) ≥ αz2 on R
1.

Now, redenote
gη√
t
by z. The power to be estimated takes the form

−z2t

g2
+ bt[jν(z)− 1] = − t

g2
(
z2 − bg2[jν(z)− 1]

)
.

Since bg2 > −4ν − 4, it follows that there exists a positive α such that the last expression does not

exceed − tα

g2
z2 = −αη2. Therefore, the last integral converges absolutely and uniformly.

Then decompose it into the sum

δ∫

0

+

∞∫

δ

def
= I1 + I2, where δ is a positive parameter. Take an

arbitrary positive ε and, using the proved absolute and uniform convergence of the last integral, select

a positive δ such that |I2| ≤ ε

2
for any t from (1,+∞). Fix the selected δ and estimate I1. Its absolute

value does not exceed
δ∫

0

η2ν+1e−pη2
∣∣∣∣e(p−1)η2+bt

[
jν

(
gη√
t

)
−1

]

− 1

∣∣∣∣dη.
To estimate the last expression, represent the function jν(z) as

jν(0) + j′ν(0)z +
j′′ν (0)
2

z2 +
j′′′ν (θ)

6
z3,
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where θ ∈ [0, z].
Take into account that

jν(0) = 1,

j′ν(0) = 0,

j′′ν (0) = − 1

2ν + 2
,

and

j′′′ν (θ) =
3θjν+2(θ)

4(ν + 1)(ν + 2)
− θ3jν+3(θ)

8(ν + 1)(ν + 2)(ν + 3)
.

Thus,

jν

(
gη√
t

)
− 1 = − 1

4(ν + 1)

g2η2

t
+

ψ(η, t)g3η3

t
3
2

,

where

|ψ(η, t)| ≤ 3gδ

8(ν + 1)(ν + 2)
+

(gδ)3

48(ν + 1)(ν + 2)(ν + 3)

for any t ≥ 1 and η ≤ δ.
Therefore, the power of the second exponential function in the last integral is equal to[

p− 1− bg2

4(ν + 1)

]
η2 +

bψ(η, t)g3η3√
t

=
bψ(η, t)g3η3√

t
def
=

ψ̃(η, t)√
t

and there exists a positive M such that |ψ̃(η, t)| ≤ M for any η ∈ [0, δ] and t ≥ 1.
Thus,

|I1| ≤
δ∫

0

η2ν+1e−pη2
∣∣∣e

˜ψ(η,t)√
t − 1

∣∣∣dη.

Select t0 from [1,+∞) such that e
M√
t0 , e

− M√
t0 ∈ [1− δ0, 1 + δ0], where

δ0 =
ε

2

⎛
⎝

δ∫

0

η2ν+1e−pη2dη

⎞
⎠

−1

.

Then |I1| ≤ ε

2
for any t ≥ t0 by virtue of the monotonicity of the exponential function. This completes

the proof of Lemma 4.7.1.

Now, we pass directly to the proof of the limit relation (4.22). Obviously, it suffices to do this for
the case where

m1 = · · · = mm = n1 = · · · = nn = 1;

therefore, we omit the second indices of the coefficients a, b, h, and g.

Let (x0, y0) = (x01, . . . , x
0
m, y01 , . . . , y

0
n) be an arbitrary element of Rm+n

+ . Applying relation (4.13),
we represent

e
−t

(
m∑

i=1
ai+

n∑

l=1
bl

)

u(x0, y0, t)

as follows:

2m+2n

πm
m∏
i=1

Γ2(νl + 1)

∫

R
m+n
+

T 2ρ
√
t

y0 u0(x0 − 2ζ
√
t, y0)
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×
m∏
i=1

+∞∫

0

e
−z2+ait

(
cos

hiz√
t
−1

)

cos

(
2zζi + ait sin

hiz√
t

)
dz

×
n∏

l=1

ρkll

∞∫

0

ξkle
−ξ2+blt

[
jνl

(
glξ√

t

)
−1

]

jνl (2ξρl) dξdζdρ.

In the sequel, we assume, without loss of generality, that m = n = 1. Then the last expression is equal
to

8

πΓ2
(
k+1
2

)
∞∫

0

∞∫

−∞
ρkT 2ρ

√
t

y0 u0(x0 − 2ζ
√
t, y0)

×
+∞∫

0

e
−z2+at

(
cos hz√

t
−1

)

cos

(
2zζ + at sin

hz√
t

)
dz

×
∞∫

0

ξke
−ξ2+bt

[
jν

(
gξ√
t

)
−1

]

jν (2ξρ) dξdζdρ.

Together with this expression, consider

8

πΓ2
(
k+1
2

)
∞∫

0

∞∫

−∞
ρkT 2ρ

√
t

y0 u0(x0 − 2ζ
√
t, y0)

+∞∫

0

e−(1+ ah2

2
)z2 cos(2ζ + ah

√
t)z dz

×
∞∫

0

ξke
−
[

1+ bg2

2(k+1)

]

ξ2

jν (2ξρ) dξdζdρ =
8

πΓ2
(
k+1
2

)
∞∫

0

∞∫

−∞
ρkT 2ρ

√
t

y0 u0(x0 − 2ζ
√
t, y0)

×
+∞∫

0

e−p21z
2
cos(2ζ + ah

√
t)z dz

∞∫

0

ξke−p22ξ
2
jν (2ξρ) dξdζdρ

=
2√

πΓ
(
k+1
2

)
p1p

k+1
2

∞∫

0

∞∫

−∞
ρkT 2ρ

√
t

y0 u0(x0 − 2ζ
√
t, y0)e

− (2ζ+q1
√

t)2

4p21
− ρ2

p22 dζdρ. (4.23)

On the other hand, it is known from [37, 38, 42–45, 47] that

w(x0, y0, t) =
2√

πΓ
(
k+1
2

)
∞∫

0

∞∫

−∞
ρke−ζ2−ρ2T 2ρ

√
t

y0 w0(x0 − 2ζ
√
t, y0)dζdρ.

Therefore,

w

(
x0 + q1t

p1
,
y0
p2

, t

)
=

2√
πΓ
(
k+1
2

)
p1

∞∫

0

∞∫

−∞
ρke

− (2ζ+q1
√

t)2

4p2
1

−ρ2

T 2p2ρ
√
t

y0 u0(x0 − 2ζ
√
t, y0)dζdρ

=
2√

πΓ
(
k+1
2

)
p1p

k+1
2

∞∫

0

∞∫

−∞
ρkT 2ρ

√
t

y0 u0(x0 − 2ζ
√
t, y0)e

− (2ζ+q1
√

t)2

4p21
− ρ2

p22 dζdρ.
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Thus, expression (4.23) is equal to w

(
x0 + q1t

p1
,
y0
p2

, t

)
, i.e., to deduce relation (4.22), we must inves-

tigate the long-time behavior of

∞∫

0

∞∫

−∞
ρkT 2ρ

√
t

y0 u0(x0 − 2ζ
√
t, y0)

⎡
⎣

+∞∫

0

e
−z2+at

(
cos hz√

t
−1

)

cos

(
2zζ + at sin

hz√
t

)
dz

×
∞∫

0

ξke
−ξ2+bt

[
jν

(
gξ√
t

)
−1

]

jν (2ξρ) dξ −
√
π

2p1
e
− (2ζ+q1

√
t)2

4p2
1

Γ(ν + 1)

2pk+1
2

e
− ρ2

p2
2

⎤
⎦ dζdρ. (4.24)

First, we prove that the last integral converges absolutely and uniformly with respect to t ∈ [1,+∞).
By virtue of the boundedness of the function u0, the absolute value of the second term of the speci-

fied integral is estimated from above by const

∞∫

−∞
e
− ζ2

p2
1 dζ

∞∫

0

ρke
− ρ2

p2
2 dρ; hence, it suffices to prove the

absolute and uniform convergence of its first term. Change the variable: y = 2ζ + q
√
t; this reduces

the specified term to the form

1

2

∞∫

0

∞∫

−∞
ρkT 2ρ

√
t

y0 u0(x0 − y
√
t− qt, y0)

+∞∫

0

e
−z2+at

(
cos hz√

t
−1

)

cos

(
yz − q

√
tz + at sin

hz√
t

)
dz

×
∞∫

0

ξke
−ξ2+bt

[
jν

(
gξ√
t

)
−1

]

jν (2ξρ) dξdydρ.

It is proved in Sec. 2.3 that if the conditions of Theorem 4.7.1 are satisfied, then there exists a positive
M such that ∣∣∣∣

+∞∫

0

e
−z2+at

(
cos hz√

t
−1

)

cos

(
yz − q

√
tz + at sin

hz√
t

)
dz

∣∣∣∣ ≤ M

1 + y2

provided that t ≥ 1 and y > 0.
Further, it is known from 3.3 that

∞∫

0

ξke
−ξ2+bt

[
jν

(
gξ√
t

)
−1

]

jν (2ξρ) dξ

is a finite sum of terms of the form

1

ρ2ν+2mtl

∞∫

0

ξjν+m(2ρξ)e
−ξ2+bt

[
jν

(
gξ√
t

)
−1

]

jν+l+1

(
gξ√
t

)
fl(ξ, t)dξ, (4.25)

where jν(z) = zνJν(z), fl is a bounded function, and l is a positive integer not exceeding m− 1.
For t ≥ 1, the absolute value of (4.25) does not exceed

const

ρ2ν+2m

∞∫

0

ξjν+m(2ρξ)e
−ξ2+bt

[
jν

(
gξ√
t

)
−1

]

dξ. (4.26)

Further, we have

ξjν+m(2ρξ) =
1

2ρ
(2ρξ)ν+m+1Jν+m(2ρξ) =

(2ρξ)ν+m+ 1
2

2ρ

√
2ρξJν+m(2ρξ).
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However, under the assumptions of Theorem 4.7.1, i.e., for 1 +
bg2

4ν + 4
> 0, there exists a positive

α such that the power of the exponential function in (4.26) does not exceed −αξ2 (see the proof of
Lemma 4.7.1). Taking into account the boundedness of the function

√
τJν(τ), we see that this implies

that the absolute value of expression (4.26) does not exceed

const

ρ2ν+2m+1−ν−m− 1
2

∞∫

0

ξm+ν+ 3
2 e−αξ2dξ =

const

ρm+ν+ 1
2

.

Thus, selecting an integer m from the interval

(
ν +

3

2
,∞
)
, we obtain that the there exists β from

(1,+∞) such that
∞∫

0

ξke
−ξ2+bt

[
jν

(
gξ√
t

)
−1

]

jν (2ξρ) dξ ≤ const

ρβ
.

Use this estimate for ρ ≥ 1; if ρ ∈ (0, 1), then we use the boundedness of the last integral (as a
function of variables t ∈ [1,∞) and ρ ∈ (0, 1)) implied from the boundedness of the function jν(·)
and the above-mentioned estimate of the power of the integrated exponential function, obtained in
Lemma 4.4.1. By virtue of the boundedness of the function u0, this completes the proof of the absolute
and uniform convergence of the first term of the integral (4.24).

Now, decompose integral (4.24) into the sum∫

{|ζ|<δ,0<ρ<δ}
+

∫

R
2
+\{|ζ|<δ,0<ρ<δ}

def
= I3 + I4.

Take an arbitrary positive ε. By virtue of the proved absolute and uniform convergence of the specified

integral, there exists a positive δ such that |I4| ≤ ε

2
for any t from [1,∞). Fix the selected δ and

consider I3.
By virtue of the boundedness of the function u0, we have the estimate

|I3| ≤ const

δ∫

0

δ∫

−δ

ρk

∣∣∣∣∣
+∞∫

0

e
−z2+at

(
cos hz√

t
−1

)

cos

(
2zζ + at sin

hz√
t

)
dz

×
∞∫

0

ξke
−ξ2+bt

[
jν

(
gξ√
t

)
−1

]

jν (2ξρ) dξ −
√
π

2p1
e
− (2ζ+q1

√
t)2

4p2
1

Γ(ν + 1)

2pk+1
2

e
− ρ2

p2
2

∣∣∣∣∣dζdρ. (4.27)

By virtue of [72, Lemma 1], the limit relation

+∞∫

0

e
−z2+at

(
cos hz√

t
−1

)

cos

(
2zζ + at sin

hz√
t

)
dz −

√
π

2p1
e
− (2ζ+q1

√
t)2

4p2
1

t→∞−→ 0

holds uniformly with respect to ζ ∈ R
1.

This and Lemma 4.7.1 imply that there exists a positive t0 such that for any t from (t0,+∞), the

expression under the modulus sign in (4.27) does not exceed
ε

2

⎛
⎝

δ∫

0

δ∫

−δ

ρkdζdρ

⎞
⎠

−1

.

This completes the proof of Theorem 4.7.1.

Similarly to the regular case of [72], imposing the additional condition of the symmetry of the
elliptic operator contained in the considered equation, we obtain a weight stabilization of the solution
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u(x, y, t) (apart from the weight closeness of solutions, proved in Theorem 4.7.1). More exactly, the
following assertion is valid.

Corollary 4.7.1. Let the conditions of Theorem 4.7.1 be satisfied and the operator A be symmetric.
Then for any real l, the assertion

lim
t→∞ e

−t

(
m∑

i=1

mi∑

s=1
ais+

n∑

l=1

nl∑

r=1
blr

)

u(x, y, t) = l for any (x, y) ∈ R
m+n
+

is valid if and only if

lim
t→∞

Cm,n,k

tm+n+|k|

∫

B+(p,t)

n∏
l=1

ykll u0(x, y)dxdy = l,

where

Cm,n,k =
Γ
(
kn+1

2

)
Γ
(
kn+kn−1+1

2

)
· · ·Γ
( |k|+1

2

)

Γ
(
kn+kn−1

2 + 1
)
Γ
(
kn+kn−1+kn−2

2 + 1
)
· · ·Γ
( |k|

2 + 1
)

π
m
2

n∏
l=1

Γ
(
kl+1
2

)

2n−1(m+ n+ |k|)
m∏
i=1

pi
n∏

l=1

pkl+1
m+l

and

B+(p, t) =

{
(x, y) ∈ R

m+n
+

∣∣∣∣
m∑
i=1

x2i
p2i

+

n∑
l=1

y2l
p2m+l

< t2

}
.

To prove this, it suffices to note that q1 = · · · = qm = 0 under the conditions of Corollary 4.7.1
and apply theorems on the stabilization of solutions of singular differential parabolic equations. For
details, see the Appendix.

Remark 4.7.1. Since T h
y f(y) = T−h

y f(y), it follows that the singular part of the operator A is always
symmetric. Therefore, the symmetry assumption for the operator A can be replaced by the symmetry
assumption for the following differential-difference operator:

Aregu
def
=

m∑
i=1

[
∂2u

∂x2i
+

mi∑
s=1

aisu(x+ his, y, t)

]
.

Remark 4.7.2. If the conditions of Corollary 4.7.1 are satisfied, then the symmetry requirement
for the operator Areg can be weakened: it can be replaced by the requirement that ai⊥hi, where
ai = (ai1, . . . , aimi) and hi = (hi1, . . . , himi), i = 1,m.

Remark 4.7.3. It follows from Corollary 4.7.1 that in the differential-difference case, surfaces bound-
ing averaging domains of the initial-value function in the stabilization condition are not guaranteed to
be segments of spheres anymore: in general, they are segments of ellipsoids. Note that in the classical
case of differential equations, such an effect arises if the operator

ΔB def
= Δx +

n∑
l=1

Bkl,yl

is replaced by an operator with different coefficients at different second derivatives:
n∑

i=1

p2i
∂2

∂x2i
+

n∑
l=1

p2m+lBkl,yl .

Remark 4.7.4. Remark 1.6.1 is completely correct in the singular case as well.
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APPENDIX. SINGULAR DIFFERENTIAL PARABOLIC EQUATIONS

5.1. Stabilization of Solutions of the Cauchy Problem: Prototype Case

In this section, we study the long-time behavior of Cauchy problem solutions for equations of the
form

∂u

∂t
= Δu+

1

yk
∂

∂y

(
yk

∂u

∂y

)
and

∂u

∂t
= a(t)

[
Δu+

1

yk
∂

∂y

(
yk

∂u

∂y

)]
.

The solvability and uniqueness of solutions of such questions are investigated in [36, 46, 47] and a
number of other papers. In the regular case (i.e., for k = 0), the long-time behavior of solutions is
investigated in [95, 96].

5.1.1. The Cauchy problem for the singular heat equation. The following notation are used:

• R
n is the real Euclid n-dimensional space;

• R
n+1
+ is the half-space {(x, y)|x ∈ R

n, y > 0};
• Δ =

∂2

∂x21
+ · · ·+ ∂2

∂x2n
and Bk,y =

∂2u

∂y2
+

k

y

∂u

∂y
, where k is a positive parameter.

Consider the following problem:

∂u

∂t
= (Δ +Bk,y)u, x ∈ R

n, y > 0, t > 0, (5.1)

u
∣∣
t=0

= ϕ(x, y),
∂u

∂y

∣∣
y=0

= 0. (5.2)

Here the function ϕ(x, y) is assumed to be continuous and bounded in R
n+1
+ .

It is proved in [36] that problem (5.1)-(5.2) has a unique bounded solution and it is a classical
solution, i.e., all its derivatives included in the equation exist in the classical sense and are continuous
(for y = 0, the right-hand derivative with respect to y is treated as the derivative with respect to y)
and relations (5.1) and (5.2) are satisfied pointwise (on the hyperplanes {t = 0} and {y = 0}, they
are satisfied in the sense of limit values as t → 0+ and y → 0+). Note that, investigating the Cauchy
problem in this chapter, we always mean classical solutions.

Theorem 5.1.1. Let u(x, y, t) be a bounded solution of problem (5.1)-(5.2), l be real, x belong to R
n,

and y be nonnegative. Then the relation

lim
t→∞u(x, y, t) = l (5.3)

is valid if and only if the following relation is valid:

lim
t→∞

n+ k + 1

π
n
2 tn+k+1

∫

B+(t)

ykϕ(x, y)dxdy =
Γ
(
k+1
2

)
Γ
(
n+k+1

2

) l, (5.4)

where B+(A) denotes the semiball {|x|2 + y2 < A2| y > 0}.
Proof. Without loss of generality, we assume that n = 1.

We decompose the proof into three stages. In the first stage, we prove the theorem for the case
where x = y = l = 0. In the second stage, we prove that the assertions “ lim

t→∞ u(0, 0, t) = 0” and

“ lim
t→∞u(x, y, t) = 0” are equivalent to each other provided that (x, y) ∈ R

n+1
+ . In the third, we extend

the proof to the case of arbitrary real values of l.
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Stage 1. Sufficiency.
Let

lim
t→∞

1

tk+2

∫

B+(t)

ykϕ(x, y)dxdy = 0.

It is known (see, e.g., [46]) that

u(0, 0, t) =
2−k−1t−

k
2
−1

√
πΓ
(
k+1
2

)
∞∫

0

+∞∫

−∞
ykϕ(x, y)e−

x2+y2

4t dxdy.

Introduce a function v0(x, y) as follows: v0(x, y) =
1

2
[ϕ(x, y) + ϕ(−x, y)]. Then

1

tk+2

∫

B+(t)

ykϕ(x, y)dxdy =
1

tk+2

t∫

0

π
2∫

0

rk+1v0(r cosα, r sinα) sin
kα dαdr

and

1

t
k
2
+1

∞∫

0

+∞∫

−∞
ykϕ(x, y)e−

x2+y2

4t dxdy =
2k+3

τk+2

∞∫

0

∞∫

0

ykv0(x, y)e
−x2+y2

τ dxdy,

where τ = 2
√
t.

Denote

∞∫

0

∞∫

0

ykv0(tx, ty)e
−x2−y2dxdy by v(t). Let us show that v(t)

t→∞−−−→ 0.

Apply the polar change of variables; this yields the following relations:

v(t) =

∞∫

0

π
2∫

0

rk+1v0(tr cosα, tr sinα) sin
kα e−r2dαdr

= 2

∞∫

0

rk+3 e−r2

(rt)k+2

rt∫

0

π
2∫

0

ηk+1v0(η cosα, η sinα) sin
kα dαdηdr

= 2

δ∫

0

rk+3 e−r2

(rt)k+2

rt∫

0

π
2∫

0

ηk+1v0(η cosα, η sinα) sin
kα dαdηdr

+ 2

∞∫

δ

rk+3 e−r2

(rt)k+2

rt∫

0

π
2∫

0

ηk+1v0(η cosα, η sinα) sin
kα dαdηdr def

= J1(t; δ) + J2(t; δ),

where δ is a positive parameter.

Since v0(x, y) is bounded, it follows that
1

tk+2

t∫

0

π
2∫

0

ηk+1v0(η cosα, η sinα) sin
kα dαdη is bounded as

well. Therefore, there exists M such that the following inequality is valid for all positive r and t:

∣∣∣∣∣
1

tk+2

t∫

0

π
2∫

0

ηk+1v0(η cosα, η sinα) sin
kα dαdη

∣∣∣∣∣ ≤ M.
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Hence, |J1(t; δ)| ≤ 2M

δ∫

0

rk+3e−r2dr for all positive δ and t. Select δ such that |J1(t; δ)| < ε

2
and fix

the selected δ.
By the condition, for any positive ε there exists a positive R such that the following inequality is

valid for any t from [R,+∞):

∣∣∣∣∣
1

tk+2

t∫

0

π
2∫

0

yk+1v0(y cosα, y sinα) sin
kα dαdy

∣∣∣∣∣ <
ε

2

⎛
⎝2

∞∫

δ

rk+3e−r2dr

⎞
⎠

−1

.

Therefore,

|J1(t; δ)| < ε

2

⎛
⎝2

∞∫

δ

rk+3e−r2dr

⎞
⎠
−1

2

∞∫

δ

rk+3e−r2dr =
ε

2

for any t from [R,+∞).
Thus, for any positive ε there exists a positive R such that |v(t)| < ε for any t from [R,+∞). Since

τ and t either both tend to infinity or do not, it follows that the sufficiency is proved.
Necessity.

Introduce the function f0(r) =

∫

S+(r)

ykϕ(x, y)dS, where S+(A) denotes the semicircle {x2 + y2 =

A2| y > 0} and dS denotes the circle measure. Obviously, f0(r) is continuous and it satisfies the
estimate |f0(r)| ≤ Crk+1, where C = π sup

R2
+

|ϕ(x, y)|. Then

1

t
k
2
+1

∞∫

0

+∞∫

−∞
ykϕ(x, y)e−

x2+y2

4t dxdy =
2k+2

τk+1

∞∫

0

e−r2f0(rτ)dr.

Since τ and t either both tend to infinity or do not, it follows that it suffices to prove the following
assertion:

Lemma 5.1.1. Let a continuous function f(t) satisfy the estimate |f(t)| ≤ Ctk+1 for t ≥ 0. Let the
following relation be valid:

lim
t→∞

1

tk+1

∞∫

0

e−r2f(rt)dr = 0.

Then

lim
t→∞

1

tk+2

t∫

0

f(r)dr = 0.

Proof. We use the following corollary from the Wiener Tauberian theorem (see [13, p. 163]):

“if ϕ ∈ L1(0,∞), g ∈ L∞(0,∞), and

∞∫

0

ϕ(t)tixdt �= 0 for any real x and

lim
r→∞

1

r

∞∫

0

ϕ

(
t

r

)
g(t)dt = 0,
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then the relation

lim
r→∞

1

r

∞∫

0

ψ

(
t

r

)
g(t)dt = 0

holds for any function ψ from L1(0,∞).”

Denote
f(r)

rk+1
by g(r). This function belongs to L∞(0,∞). Change the variables: rt = ρ; this yields

1

tk+1

∞∫

0

e−r2f(rt)dr =
1

t

∞∫

0

ϕ
(r
t

)
g(r)dr, where ϕ(x) = xk+1e−x2 ∈ L1(0,∞).

On the other hand,

1

tk+2

t∫

0

f(r)dr =
1

t

∞∫

0

ψ
(r
t

)
f(r)dr, where ψ(x) =

{
x1+k if x ≤ 1

0, if x > 1,
i.e., ψ ∈ L1(0,∞).

Finally,
∞∫

0

ϕ(t)tixdt =

∞∫

0

e−t2tk+1+ixdt =
1

2

∞∫

0

e−ττ
k+ix

2 dτ =
1

2
Γ

(
k + 2 + ix

2

)
e−2πmx,

where m = 0,±1,±2, . . .
The last expression is well defined on the real axis. It does not vanish provided that x is real. Thus,

the specified corollary from the Wiener Tauberian theorem is applicable. Hence,

1

tk+2

t∫

0

f(r)dr
t→∞−−−→ 0.

This completes the proof of Lemma 5.1.1.

Since the function f0(t) satisfies the assumption of Lemma 5.1.1, it follows that the necessity is
proved.

Let us pass to the second stage of the proof of Theorem 5.1.1.
Following [41], introduce the generalized translation operator with respect to the variable y:

T η
y f(y)

def
=

Γ
(
k+1
2

)
√
π Γ
(
k
2

)
π∫

0

f
(√

y2 + η2 − 2yη cos θ
)
sink−1 θdθ.

This operator commutes with the Bessel operator Bk,y (see, e.g., [34, p. 35]).
Introduce the function ũ as follows: ũ(x, ξ, y, η, t) = T η

y u(x+ ξ, y, t). Then

∂ũ

∂t
− ∂2ũ

∂ξ2
−Bk,ηũ = T η

y

[
∂

∂t
u(x+ ξ, y, t)− ∂2

∂x2
u(x+ ξ, y, t)−Bk,yu(x+ ξ, y, t)

]
= 0

because u(x, y, t) satisfies problem (5.1)-(5.2).
Denote T η

y ϕ(x+ ξ, y) by ϕ̃(x, ξ, y, η). Obviously, ϕ̃ is continuous and bounded and

ũ
∣∣
t=0

= ϕ̃(x, ξ, y, η).

Moreover, it is known from [41] that
∂ũ

∂η

∣∣
η=0

= 0.

Thus, the function ũ(x, ξ, y, η, t) is the classical bounded solution of the problem

∂ũ

∂t
=

∂2ũ

∂ξ2
+Bk,ηũ, ξ ∈ R

1, η > 0, t > 0, (5.5)
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ũ
∣∣
t=0

= ϕ̃(x, ξ, y, η),
∂ũ

∂η

∣∣
η=0

= 0, (5.6)

where x is a real parameter and y is a positive parameter.
It is proved in the first stage that lim

t→∞ ũ(x, 0, y, 0, t) = 0 if and only if

lim
t→∞

1

tk+2

t∫

0

π∫

0

ρk+1 sinkα ϕ̃(x, ρ cosα, y, ρ sinα) dαdρ = 0.

Now, let us prove the equivalence of the condition of stabilization of the solution at an arbitrary point
to the condition of its stabilization at the origin. To do this, assume that a is real and b is nonnegative
and consider the integral ∫

Da,0,0

ξk−1ϕ
[
x,
√

ξ2 + (η − b)2
]
dxdηdξ,

where Da,b,c denotes the semiball {(x− a)2 + (η − b)2 + (ξ − c)2 < t2| y > 0}.
Change the variables as follows: ξ = y sinα and η = y cosα. We obtain that the last integral is

equal to √
π Γ
(
k
2

)
Γ
(
k+1
2

)
∫

B+(t)

ykT b
yϕ(x+ a, y)dxdy.

Thus, ∫

B+(t)

ykT b
yϕ(x+ a, y)dxdy =

Γ
(
k+1
2

)
√
π Γ
(
k
2

)
∫

Da,−b,0

ξk−1ϕ
(
x,
√

ξ2 + η2
)
dxdηdξ.

Let us prove that for any real a, any nonnegative b, and any function ϕ(x, y) continuous and bounded

in R
2
+, the relation

lim
t→∞

1

tk+2

∫

Da,−b,0

ξk−1ϕ
(
x,
√

ξ2 + η2
)
dxdηdξ = lim

t→∞
1

tk+2

∫

D0,0,0

ξk−1ϕ
(
x,
√

ξ2 + η2
)
dxdηdξ (5.7)

is valid in the following sense: if there exists one of the limits, then the other exists as well, and they
are equal to each other.

Define the sets

Ω′
t;a,b

def
=

{
(x, η, ξ) ∈ R

3
∣∣∣(x− a)2 + ξ2 + (η + b)2 ≤ t2;x2 + ξ2 + η2 ≥ t2

}

and

Ω′′
t;a,b

def
=

{
(x, η, ξ) ∈ R

3
∣∣∣x2 + ξ2 + η2 ≤ t2; (x− a)2 + ξ2 + (η + b)2 ≥ t2

}
.

We have the inequality∣∣∣∣∣∣∣
1

tk+2

∫

Da,−b,0

ξk−1ϕ
(
x,
√

ξ2 + η2
)
dxdηdξ − 1

tk+2

∫

D0,0,0

ξk−1ϕ
(
x,
√

ξ2 + η2
)
dxdηdξ

∣∣∣∣∣∣∣

=
1

tk+2

∣∣∣∣∣∣∣
∫

Ω′
t;a,b

ξk−1ϕ
(
x,
√

ξ2 + η2
)
dxdηdξ −

∫

Ω′′
t;a,b

ξk−1ϕ
(
x,
√

ξ2 + η2
)
dxdηdξ

∣∣∣∣∣∣∣
≤ 2M

t3
S,

where M = sup
R
2
+

|ϕ(x, y)| and S is the volume of Ω′
t;a,b.
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Estimating S as a function of variable t, we obtain the inequality

S ≤ 4π

3

[(
t+

a

2

)3 − (t− a

2

)3]
=

12πat2 + πa3

3
.

This implies (5.7), which completes the proof of Theorem 5.1.1 for l = 0.
Let us pass to the third stage of the proof of Theorem 5.1.1. To do this, we consider (apart from

problem (5.1)-(5.2)) the problem

∂w

∂t
=

∂2w

∂x2
+Bk,yw, x ∈ R

1, y > 0, t > 0, (5.8)

w
∣∣
t=0

= w0(x, y),
∂w

∂y

∣∣
y=0

= 0, (5.9)

where w0(x, y) = ϕ(x, y) + l.
Obviously, if u(x, y, t) and w(x, y, t) are solutions of problems (5.1)-(5.2) and (5.8)-(5.9) respectively,

then w(x, y, t) = u(x, y, t) + l.
Note that ∫

B+(t)

ykldxdy =
ltk+2

k + 2
·
√
π Γ
(
k+1
2

)
Γ
(
k
2 + 1
) .

Hence, the validity of the relation

lim
t→∞

1

tk+2

∫

B+(t)

ykw0(x, y)dxdy =
l
√
π Γ
(
k+1
2

)
(k + 2)Γ

(
k
2 + 1
)

implies the validity of the relation

lim
t→∞

1

tk+2

∫

B+(t)

ykϕ(x, y)dxdy = 0;

this implies (as is proved in the second stage of the proof) the validity of the limit relation

lim
t→∞u(x, y, t) = 0,

which means that lim
t→∞w(x, y, t) = l.

Thus, condition (5.4) imposed on the function w0(x, y) is sufficient for the function w(x, y, t) to
satisfy (5.3). The necessity of the specified condition is proved in the same way.

This completes the proof of Theorem 5.1.1.

Theorem 5.1.1 implies the following fact: if the stabilization of the classical bounded solution of

problem (5.1)-(5.2) takes place at at least at one point (x0, y0) of the half-space R
n+1
+ , then it takes

place at any other point (x, y) of R
n+1
+ and the limit of the solution is the same as at the point

(x0, y0). This means that no stabilization of the classical bounded solution of problem (5.1)-(5.2) to
a function V (x, y) different from a constant is possible. Thus, the following alternative takes place
for the classical bounded solution of problem (5.1)-(5.2): either this solution stabilizes to a constant

in the half-space R
n+1
+ or it stabilizes at no point of the specified half-space, i.e., there is no point

(x, y) ∈ R
n+1
+ such that a limit of the function u(x, y, t) as t → ∞ exists. For the regular case, the

long-time behavior of the solution is investigated in [95, 96].
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5.1.2. The Cauchy problem for singular parabolic equations with time-dependent coef-
ficients. Consider the equation

∂u

∂t
= a(t) (Δ +Bk,y) u, x ∈ R

n, y > 0, t > 0, (5.10)

where a(t) is continuous and positive for t ≥ 0.
Let ϕ(x, y) be continuous and bounded for x ∈ R

n and y ≥ 0. Consider problem (5.10), (5.2). The
existence and uniqueness of the classical bounded solution of that problem are established in [36].
Investigate the long-time behavior of the solution.

Theorem 5.1.2. Suppose that

∞∫

0

a(t)dt diverges and u(x, y, t) is the classical bounded solution of

problem (5.10), (5.2). Then for any x from R
n, any nonnegative y, and any real l, relation (5.3) is

equivalent to relation (5.4).

Proof. It is known, e.g., from [110], that

u(x, y, t) =
Cn,k

[A(t)]
n+k+1

2

∞∫

0

∫

Rn

ηkϕ(ξ, η)T y
η e

− |ξ−x|2+η2

4A(t) dξdη,

where A(t) =

t∫

0

a(τ)dτ and Cn,k depends only on n and k.

The function A(t) tends to infinity if and only if t tends to infinity. Therefore, for any real l, the
limit relation

lim
t→∞

1

[A(t)]
n+k+1

2

∞∫

0

∫

Rn

ηkϕ(ξ, η)T y
η e

− |ξ−x|2+η2

4A(t) dξdη = l

holds if and only if the limit relation

lim
r→∞

1

r
n+k+1

2

∞∫

0

∫

Rn

ηkϕ(ξ, η)T y
η e

− |ξ−x|2+η2

4r dξdη = l

holds.
Taking into account Theorem 5.1.1, we see that this implies the assertion of Theorem 5.1.2.

Theorem 5.1.3. Suppose that

∞∫

0

a(t)dt = a0 < ∞. Then lim
t→∞u(x, y, t) = v(x, y, a0), where the func-

tions u(x, y, t) and v(x, y, t) are the classical bounded solutions of problem (5.10), (5.2) and prob-
lem (5.1)-(5.2) respectively.

Proof. For any positive t0, the integral
∞∫

0

∫

Rn

ηkϕ(ξ, η)

[A(t)]
n+k+1

2

T y
η e

− |ξ−x|2+η2

4r dξdη

converges uniformly with respect to (x, y, t) from R
n × [0,+∞) × [t0,+∞). Hence, one can pass to

the limit as t → ∞. This yields the relation

lim
t→∞u(x, y, t) =

Cn,k

a
n+k+1

2
0

∞∫

0

∫

Rn

ηkϕ(ξ, η)T y
η e

− |ξ−x|2+η2

4a0 dξdη.
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Obviously, its right-hand part is equal to v(x, y, a0).
This completes the proof of Theorem 5.1.3.

Note that if the integral

∞∫

0

a(t)dt converges, then the stabilization of the solution takes place

regardless of the behavior of the initial-value function; however, the limit of the solution is, in general,
not a constant anymore: it is a bounded function of x and y.

5.1.3. Properties of weight integral means. Let ϕ(x, y) be a continuous and bounded in R
n+1
+

function and α be a positive constant. Define the function Sα
nϕ(r) as follows:

Sα
nϕ(r) =

1

rn+α+1

∫

B+(r)

yαϕ(x, y)dxdy.

Theorem 5.1.4. Let n ≥ 1, α ≥ 0, β ≥ 0, and α �= β. Then there exists a bounded function ϕ from

C∞(Rn+1
+ ) such that Sα

nϕ(r) has a limit as r → ∞, while Sβ
nϕ(r) has no limit as r → ∞.

Proof. First, we note that the considered limits can be only finite because the function ϕ is bounded.
The following two lemmas precede the proof.

Lemma 5.1.2. Let G = {θ = (θ1, . . . , θn)|0 ≤ θ1 ≤ π, . . . , 0 ≤ θn ≤ π}. Then there exists a function

g(θ) from C∞(G) such that Jα = 0 and Jβ �= 0, where Jγ denotes

∫

G

g(θ)

n∏
j=1

sinn+γ−j θj dθ (γ is a

nonnegative parameter).

Proof. The functions
n∏

j=1
sinn+α−j θj and

n∏
j=1

sinn+β−j θj are linearly independent elements of the

Hilbert space L2(G). Therefore, there exists an element g(θ) of the space L2(G) such that g(θ) is

orthogonal to
n∏

j=1
sinn+α−j θj but is not orthogonal to

n∏
j=1

sinn+β−j θj, i.e., Jα = 0 and Jβ = A > 0 (for

definiteness).
Since C∞(G) is dense in L2(G), it follows that one can select a sequence {gm(θ)}∞m=1 ⊂ C∞(G)

such that gm
m→∞−−−−→ g(θ) in L2(G). Assuming that γ is nonnegative, denote

∫

G

gm(θ)
n∏

j=1

sinn+γ−j θj dθ

by Jγ,m. Then lim
m→∞ Jα,m = 0 and lim

m→∞Jβ,m = A by virtue of the continuity of the scalar product.

By Cγ denote ∫

G

n∏
j=1

sinn+γ−j θj dθ = π
n
2

n∏
j=1

Γ

(
n+ γ + 1− j

2

)

(see [87, p. 386]). Obviously, Cγ is positive provided that γ is nonnegative. Introduce the following

new function: g̃m(θ) def= gm(θ)− Jα,m
Cα

; this function is infinitely differentiable in G. Now, compute the

scalar products ⎛
⎝g̃m(θ),

n∏
j=1

sinn+α−j θj

⎞
⎠ and

⎛
⎝g̃m(θ),

n∏
j=1

sinn+β−j θj

⎞
⎠ :

∫

G

g̃m(θ)

n∏
j=1

sinn+α−j θj dθ = Jα,m − Jα,m = 0
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and ∫

G

g̃m(θ)

n∏
j=1

sinn+β−j θj dθ = Jβ,m − Jα,m
Cβ

Cα
.

Now, take ε from the interval

(
0,

A

2

)
. There exists a positive integer m such that |Jα,m′ | < ε

2
· Cα

Cβ

and |Jβ,m′ | > A

2
+

ε

2
. Then

∫

G

g̃m′(θ)

n∏
j=1

sinn+β−j θj dθ = Jβ,m′ − Jα,m′
Cβ

Cα
>

A

2
+

ε

2
− ε

2
=

A

2
> 0.

Thus, the function gm′ belongs to C∞(G), is orthogonal to
n∏

j=1
sinn+α−j θj, and is not orthogonal to

n∏
j=1

sinn+β−j θj.

This completes the proof of Lemma 5.1.2.

The following assertion is provided (without a proof) in [96] for the case where α and β are positive
integers.

Lemma 5.1.3. Let f(r) be continuous and bounded for nonnegative r. Let α ≥ 0 and β ≥ 0. Then

Sα
0 f(r) has a limit as r → ∞ if and only if Sβ

0 f(r) has a limit as r → ∞.

Proof. We have

Sα
0 f(r) =

1

r1+α

r∫

0

ταf(τ)dτ =
1

r

∞∫

0

ψα

(τ
r

)
f(τ)dτ,

where

ψk(τ) =

{
τk if τ ≤ 1

0 if τ > 1

provided that k ≥ 0.
Obviously, ψα belongs to L1(0,+∞) and f belongs to L∞(0,+∞). Further,

∞∫

0

ψk(τ)τ
ixdτ =

1∫

0

τkeix(log τ+2πim)dτ = e−2πmx

⎡
⎣

1∫

0

τk cos(x log τ)dτ + i

1∫

0

τk sin(x log τ)dτ

⎤
⎦

= e−2πmx

⎡
⎣

0∫

−∞
e(k+1)t cos xtdt+ i

0∫

−∞
e(k+1)t sinxtdt

⎤
⎦ =

e−2πmx

x2 + (k + 1)2
(k + 1− ix).

The real part of the obtained expression is positive for any integer m, any real x, and any nonnegative k.

Therefore, the function

∞∫

0

ψk(τ)τ
ixdτ has no real zeros provided that k is nonnegative.

Suppose that lim
r→∞Sα

0 f(r) exists; denote it by Cα. The function ψβ belongs to the space L1(0,+∞);

therefore, by virtue of the corollary from the Wiener Tauberian theorem (see [13, p. 163]), there exists
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lim
r→∞

1

r

∞∫

0

ψβ

(ρ
r

)
f(ρ)dτ, i.e., lim

r→∞Sβ
0 f(r), and this limit is equal to

Cα

β + 1

⎛
⎝

1∫

0

ταdτ

⎞
⎠
−1

=
α+ 1

β + 1
lim
r→∞Sα

0 f(r).

This completes the proof of Lemma 5.1.3 because α and β are selected arbitrarily.

Let us pass directly to the proof of Theorem 5.1.4.

In

∫

B+(r)

ykϕ(x, y)dxdy, change the variables as follows:

x1 = ρ cos θ1,

x2 = ρ sin θ1 cos θ2,

. . .

xn = ρ sin θ1 sin θ2 . . . sin θn−1 cos θn,

y = ρ sin θ1 sin θ2 . . . sin θn−1 sin θn.

We obtain the relation

Sk
nϕ(r) =

1

rn+k+1

r∫

0

∫

G

v(ρ, θ)ρn+k
n∏

j=1

sinn+k−j θj dθdρ,

where

v(ρ, θ) = ϕ(ρ cos θ1, ρ sin θ1 cos θ2, . . . , ρ sin θ1 sin θ2 . . . sin θn−1 cos θn, ρ sin θ1 sin θ2 . . . sin θn−1 sin θn).

Take a function f(r) such that it is bounded and infinitely differentiable on the positive semiaxis,

f(r) = 0 for r ≤ 1

2
, and lim

r→∞
1

r

r∫

0

f(ρ)dρ does not exist; for example, one can take the Kzhizhanskii

function (see [14, p. 337]) and smooth it out. Then, by virtue of Lemma 5.1.3, for any nonnegative k,

no limit of
1

rk+1

r∫

0

rkf(ρ)dρ as r → ∞ exists. Assign v(ρ, θ) = f(ρ)g(θ), where g(θ) is the function,

the existence of which is proved in Lemma 5.1.2.
The constructed function v(ρ, θ) uniquely defines a function ϕ(x, y) bounded and infinitely differ-

entiable for x from R
n and y from [0,+∞). On the other hand, the following relation is valid:

Sk
nϕ(r) =

1

rn+k+1

r∫

0

ρn+kf(ρ)dρ

∫

G

g(θ)

n∏
j=1

sinn+k−j θj dθ.

This implies that Sα
nϕ(r) has a limit as r → ∞ (moreover, it is equal to the identical zero), while

Sβ
nϕ(r) has no limit as r → ∞.
This completes the proof of Theorem 5.1.4.

Remark. For n = 0, the assertion opposite to the assertion of Theorem 5.1.4 is valid: if α and β are
nonnegative and the function ϕ(y) is continuous and bounded on [0,+∞), then the limit lim

r→∞Sα
0 ϕ(r)

exists if and only if lim
r→∞Sβ

0ϕ(r) exists. If the limit exists, then lim
r→∞Sk

0ϕ(r) =
1

k + 1
lim
r→∞S0

0ϕ(r).
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This follows directly from Lemma 5.1.3.
To get back to the stabilization of solutions of singular parabolic equations, we assume that the

integral

∞∫

0

a(t)dt diverges and denote the classical solution of problem (5.10), (5.2) by uk(x, y, t).

Theorems 5.1.2–5.1.4 and the remark to the last theorem imply the following two assertions.

Theorem 5.1.5. Let n ≥ 1, α ≥ 0, β ≥ 0, and α �= β. Then there exists a bounded function ϕ from

C∞(Rn+1
+ ) such that for any (x, y) from R

n+1
+ , lim

t→∞uα(x, y, t) exists, but lim
t→∞uβ(x, y, t) does not exist.

Theorem 5.1.6. Let n = 0, ϕ(y) be a bounded function, and α and β be nonnegative. Then the
existence of lim

t→∞uα(y, t) is equivalent to the existence of lim
t→∞uβ(y, t). If those limits exist, then

lim
t→∞uα(y, t) =

β + 1

α+ 1
lim
t→∞uβ(y, t).

5.1.4. Cauchy problems with unbounded initial-value functions. Let us prove that if the
initial-value function of the Cauchy problem is not bounded, then (similarly to the regular case) the
stabilization condition is not necessary anymore. It suffices to consider problem (5.10), (5.2) for the
case where n = 0.

Define the initial-value function ϕ(y) as follows:

ϕ(y) = 2(k + 1) cos y2 − 4y2 sin y2.

Obviously, ϕ(y) = Bk,yΦ(y), where Φ(y) = sin y2.
Now, consider

1

rk+1

r∫

0

ykϕ(y)dy =
2(k + 1)

rk+1

r∫

0

yk cos y2dy − 2

rk+1

r∫

0

yk+1 · 2y sin y2dy

=
2(k + 1)

rk+1

r∫

0

yk cos y2dy − 2

rk+1

⎡
⎣−yk+1 cos y2

∣∣∣∣∣
r

0

+ (k + 1)

r∫

0

yk cos y2dy

⎤
⎦ = 2cos r2.

The last expression has no limit as r → ∞.

Thus, even a pointwise stabilization of
1

rk+1

r∫

0

ykT y
xϕ(x)dy as r → ∞ does not take place.

On the other hand,

1

t
k+1
2

∞∫

0

ηkT y
η e

− η2

4t ϕ(η)dη =

∞∫

0

αkT
y√
t

α e−
α2

4 ϕ(α
√
t)dα.

Further, ϕ(y) = Bk,yΦ(y); hence, ϕ(α
√
t) = Bk,α

√
tΦ(α

√
t). We have

Bk,α
√
tΦ(α

√
t) =

1

αk

∂

∂α

[
αk ∂Φ

∂α
(α

√
t)

]
=

√
t

αk

∂

∂α

[
αkΦ′(α

√
t)
]

= tΦ′′(α
√
t) +

√
t
k

α
Φ′(α

√
t) = tBk,α

√
tΦ(α

√
t) = tϕ(α

√
t).

Therefore, ϕ(α
√
t) =

1

t
Bk,αΦ(α

√
t).
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This implies that

1

t
k+1
2

∞∫

0

ηkT y
η e

− η2

4t ϕ(η)dη =
1

t

∞∫

0

αkT
y√
t

α e−
α2

4 Bk,αΦ(α
√
t)dα =

1

t

∞∫

0

αke−
α2

4 T
y√
t

α Bk,αΦ(α
√
t)dα

by virtue of the self-adjointness of the generalized translation operator in the space L2,k(0,+∞)
(see [33, 34, 41]). Since the generalized translation operator commutes with the Bessel operator, it
follows that the last expression is equal to

1

t

∞∫

0

αke−
α2

4 Bk,αT
y√
t

α Φ(α
√
t)dα =

1

t

∞∫

0

αkBk,αe
−α2

4 T
y√
t

α Φ(α
√
t)dα

+
αk

t

[
e−

α2

4
∂

∂α
T

y√
t

α Φ(α
√
t) +

α

2
e−

α2

4 T
y√
t

α Φ(α
√
t)

] ∣∣∣∣∣
∞

0

(we use integration by parts twice).
Let us show that the integrated term is equal to zero for any nonnegative y and any positive t.

Obviously, its second term is equal to zero (because the function Φ(y) is bounded). Further, we have

∣∣∣∣ ∂∂αT
y√
t

α Φ(α
√
t)

∣∣∣∣ =
∣∣∣∣∣∣
∂

∂α

∞∫

0

Φ

(√
y2 + α2t− 2αy

√
t cos θ

)
sink−1 θdθ

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∞∫

0

(2tα − 2y
√
t cos θ) cos(y2 + α2t− 2αy

√
t cos θ) sink−1 θdθ

∣∣∣∣∣∣ ≤ 2(tα + y
√
t)π;

hence, the first term is equal to zero as well.
Hence, for any nonnegative y and any positive t, the following relation is valid:

1

t

∞∫

0

αkBk,αe
−α2

4 T
y√
t

α Φ(α
√
t)dα =

∞∫

0

αke−
α2

4

(
α2

4
− k + 1

2

)
T

y√
t

α Φ(α
√
t)

t
dα.

For any positive t0, the last integral converges uniformly with respect to (y, t) ∈ [0,+∞) × [t0,+∞).

Since the inequality

∣∣∣∣T
y√
t

α Φ(α
√
t)

∣∣∣∣ ≤ 1 holds for any nonnegative y, any nonnegative α, and any posi-

tive t, it follows that
∞∫

0

αke−
α2

4

(
α2

4
− k + 1

2

)
T

y√
t

α Φ(α
√
t)

t
dα

t→∞−−−→ 0

uniformly with respect to y ∈ [0,+∞).
Thus, the solution stabilizes to zero uniformly on the semiaxis, while even a pointwise stabilization

of the weight mean of the initial-value function does not take place.

5.1.5. Stabilization of solutions for equations with dissipation. Consider the equation

∂u

∂t
= (Δ +Bk,y) u− a(t)u, x ∈ R

n, y > 0, t > 0, (5.11)

where a(t) is continuous and positive for t ≥ 0.
The classical bounded solution of problem (5.11), (5.2) is equal to

u(x, y, t) = e−A(t)v(x, y, t),
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where v(x, y, t) is the classical bounded solution of problem (5.1)-(5.2) and A(t) =

t∫

0

a(τ)dτ .

Then, by virtue of the boundedness of the function v(x, y, t), the following assertion is valid:

Theorem 5.1.7. If

∞∫

0

a(τ)dτ diverges, then the classical bounded solution of problem (5.11), (5.2)

uniformly stabilizes to zero as t → ∞ provided that the initial-value function ϕ(x, y) is continuous
and bounded. If the specified integral converges, then for any x from R

n, any nonnegative y, and any

real l, the limit relation u(x, y, t)
t→∞−−−→ l is valid if and only if the limit relation

lim
t→∞

n+ k + 1

π
n
2 tn+k+1

∫

B+(t)

ykϕ(x, y)dxdy =
Γ
(
k+1
2

)
Γ
(
n+k+1

2

) ea0 l

is valid, where u(x, y, t) is the classical bounded solution of problem (5.11), (5.2) and a0 denotes
∞∫

0

a(τ)dτ .

5.2. The Case of Coefficients Depending on Spatial Variables

In this section, we investigate the long-time behavior of solutions of the Cauchy problem for equa-
tions of the form

p(x, y)
∂u

∂t
= Δu+

1

yk
∂

∂y

(
yk

∂u

∂y

)
.

The solvability of such problems and uniqueness of their solutions are investigated in [36, 46, 47] and
a number of other papers. For the regular case (i.e., for k = 0), the long-time behavior of solutions is
investigated in [124] (see also [9] and references therein).

The main result of this section (Theorem 5.2.1) is proved by a method proposed in [26]. The
principal idea of the specified method is to reduce the question on the stabilization of the solution of
the original problem to the question on the stabilization of the solution of the Cauchy problem for
Eq. (5.1) investigated in the previous section.

Note that in this section (similarly to the previous one), we deal only with the pointwise stabilization
of the Cauchy problem with a bounded initial-value function; therefore, the above-mentioned method
is applicable.

5.2.1. Main theorem: claim.

Definition. Let Ω be a closed domain of a Euclidean space, m be a positive integer, and α belong to
(0, 1). The space Hα

m(Ω) is the set of functions defined on Ω such that each such function and all its
derivatives until order m (inclusively) are continuous and bounded and satisfy the Hölder condition
of order α on Ω.

In the sequel, we omit indices of the operator Bk,y (if no misunderstanding can arise).
The following notation are used:

ΔB = Δ+B, Dm
xj

=
∂m

∂xmj
, j = 1, n, D̃m

y =

⎧⎨
⎩
B

m
2 if m is even

∂

∂y
B

m−1
2 , if m is odd,

and D̃β = Dβ1
x1 . . . D

βn
xnD

βn+1
y , where β = (β1, . . . , βn, βn+1) is a multi-index and |β| is its length:

|β| = β1 + β2 + · · ·+ βn + βn+1.
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Together with the space Hα
m(Ω), introduce the space H̃α

m(Ω). It is the set of functions f defined on

Ω and such that for any β such that |β| ≤ m, the function D̃βf is continuous and bounded on Ω and
satisfies the Hölder condition of order α on Ω. If α = 0, then the requirement to satisfy the Hölder

condition is taken off the definition of the spaces Hα
m and H̃α

m. By Hα
0 (Ω) = Hα(Ω) = H̃α

0 (Ω) = H̃α(Ω)
we denote the set of functions that are continuous and bounded on Ω and satisfy the Hölder condition

of order α on Ω. By H0(Ω) = H(Ω) = H̃0(Ω) = H̃(Ω) we denote the set of functions continuous and
bounded on Ω.

Remark. Defining spaces H̃α
m(Ω), we assume that Ω is contained in the subspace {y ≥ 0}.

Consider the equation

p(x, y)
∂u

∂t
= ΔBu, x ∈ R

n, y > 0, t > 0, (5.12)

where p(x, y) ≥ p0 > 0 and p(x, y) ∈ H(Rn+1
+ ).

The existence and uniqueness of a classical bounded solution of problem (5.12), (5.2) (under the
assumption that k is positive and ϕ is continuous and bounded) is established in [36]. Investigate the
long-time behavior of that solution.

Theorem 5.2.1. Let u(x, y, t) be the classical bounded solution of problem (5.12), (5.2), k > 0,

p(x, y) ≥ p0 > 0, and ϕ ∈ H(Rn+1
+ ). Let p(x, y) satisfy the following conditions:

p(x, y) ∈ Hα
[n+k+1

2
]
(Rn+1

+ ), where α ∈ (0, 1), (5.13)

∂mp

∂ym

∣∣
y=0

= 0 for m = 1, . . . ,

[
n+ k + 1

2

]
if n+ k ≥ 1, (5.14)

and there exists a constant b such that

lim
r→∞

1

tn+k+1

∫

B+(t)

ykT η
y |p(x+ ξ, y)− b|dxdy = 0 (5.15)

uniformly with respect to (ξ, η) ∈ R
n+1
+ .

Then for any x from R
n, any nonnegative y ≥ 0, and any real l, the limit relation u(x, y, t)

t→∞−−−→ l
is valid if and only if the limit relation

lim
t→∞

n+ k + 1

tn+k+1

∫

B+(t)

ykϕ(x, y)dxdy =
π

n
2 Γ
(
k+1
2

)
Γ
(
n+k+1

2

) l

is valid.

Note that in the regular case (i.e., in the case where k = 0), the Gushchin–Mikhailov condition
(see [26, 124]) corresponds to condition (5.15). Therefore, it is reasonable to call condition (5.15) the
weight Gushchin–Mikhailov condition.

In the sequel, without loss of generality, we assume that b = 1.

Introduce the following function: q(x, y) def
= p(x, y) − 1. Then the weight Gushchin–Mikhailov

condition takes the following form:

lim
r→∞

1

tn+k+1

∫

B+(t)

ykT η
y |q(x+ ξ, y)|dxdy = 0 (5.16)

uniformly with respect to (ξ, η) ∈ R
n+1
+ .
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Let v(x, y, t) be the classical bounded solution of Eq. (5.1), satisfying the following boundary-value
conditions:

v
∣∣
t=0

= p(x, y)ϕ(x, y),
∂v

∂y

∣∣∣∣
y=0

= 0. (5.17)

We must prove that lim
t→∞[u(x, y, t)− v(x, y, t)] = 0 for any (x, y) from R

n+1
+ .

Introduce the following function f(t) depending on parameters x and y:

f(t) def
=

t∫

0

[u(x, y, τ) − v(x, y, τ)]dτ.

Let us prove the following two auxiliary assertions, assuming that the conditions of Theorem 5.2.1 are
satisfied.

Theorem 5.2.2. If (x, y) ∈ R
n+1
+ , then

f(t) = o(t) as t → ∞.

Theorem 5.2.3. If (x, y) ∈ R
n+1
+ , then

f ′′(t) = O

(
1

t

)
as t → ∞.

5.2.2. Proof of Theorem 5.2.2. In this section (as well as in the next one), we assume that all
conditions of Theorem 5.2.1 are satisfied.

Apply the Laplace transformation with respect to t to the functions u(x, y, t) and v(x, y, t). The
obtained functions (denoted by ũ(x, y, λ) and ũ(x, y, λ) respectively) are solutions of the following
problems:

−ΔBũ+ λp(x, y)ũ = p(x, y)ϕ(x, y), x ∈ R
n, y > 0, (5.18)

∂ũ

∂y

∣∣∣∣
y=0

= 0 (5.19)

and

−ΔB ṽ + λṽ = p(x, y)ϕ(x, y), x ∈ R
n, y > 0, (5.20)

∂ṽ

∂y

∣∣∣∣
y=0

= 0. (5.21)

Indeed, for any function g(x, y) from C∞
0 (Rn+1), the function u(x, y, t) satisfies the following integral

identity: ∫

R
n+1
+

yk
∂u

∂t
p(x, y)g(x, y)dxdy −

∫

R
n+1
+

yku(x, y, t)ΔBg(x, y)dxdy = 0.

Take a positive ε, N from (ε,+∞), and a complex λ such that Reλ > 0. Multiply the last identity by

e−λt and integrate it with respect to t from ε to N . Then, changing the order of the integration and
integrating by parts, we obtain the relation∫

R
n+1
+

ykp(x, y)g(x, y)
[
u(x, y,N)e−λN − u(ε, y,N)e−εN

]
dxdy

+

∫

R
n+1
+

yk [λp(x, y)g(x, y) −ΔBg(x, y)]

N∫

ε

e−λtu(x, y, t)dtdxdy = 0.
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The limit relations

e−λNu(x, y,N)
N→∞−−−−→ 0, u(x, y, ε)

ε→0−−−→ ϕ(x, y), and

N∫

ε

e−λtu(x, y, t)dt
ε→0−−−−→
N→∞

ũ(x, y, λ)

hold uniformly with respect to (x, y) ∈ K, where K is any compact set of Rn+1. Hence, ũ(x, y, λ)
satisfies the integral identity∫

R
n+1
+

yk [λp(x, y)g(x, y) −ΔBg(x, y)] ũ(x, y, λ)dxdy =

∫

R
n+1
+

ykp(x, y)g(x, y)ϕ(x, y)dxdy

for any function g(x, y) from C∞
0 (Rn+1).

Therefore, for any compact set K ⊂ Rn+1 and any (fixed) complex λ, the function ũ(x, y, λ) belongs
to the Kipriyanov space W 2

2,k(K) (see [33]) and satisfies Eq. (5.18) almost everywhere.

This proof is valid for ṽ(x, y, λ) as well: it suffices to assign p(x, y) ≡ 1.
Since the functions u(x, y, t) and v(x, y, t) are bounded, it follows that the functions ũ(x, y, λ) and

ṽ(x, y, λ) are bounded with respect to (x, y) ∈ R
n+1
+ and are analytic with respect to λ provided that

Reλ > 0. The solution of problem (5.20)-(5.21) (as well as the solution of problem (5.18)-(5.19))

bounded with respect to (x, y) ∈ R
n+1
+ and analytic with respect to λ for Reλ > 0 is unique. On

the other hand, one can obtain this solution by directly applying the Laplace transformation to the
function

v(x, y, t) =
Cn,k

t
n+k+1

2

∫

R
n+1
+

ηke−
|ξ−x|2

4t T y
η

(
e−

η2

4t

)
p(ξ, η)ϕ(ξ, η)dξdη

(the constant Cn,k depends only on n and k).
Further, we have

ṽ(x, y, λ) = Cn,k

∞∫

0

∫

R
n+1
+

ηk
p(ξ, η)ϕ(ξ, η)

t
n+k+1

2

e−λt− |ξ−x|2
4t T y

η e
− η2

4t dξdηdt

= Cn,k

∫

R
n+1
+

∞∫

0

ηk
p(ξ, η)ϕ(ξ, η)

t
n+k+1

2

T y
η

(
e−λt− |ξ−x|2+η2

4t

)
dtdξdη.

The change of the order of integration is valid because for Reλ > 0, the integral converges absolutely

(moreover, this convergence is uniform with respect to (x, y) from R
n+1
+ ). Arguing in the same way, we

can change the order of the following two operations: integrating with respect to t and the generalized
translation. Finally, this yields the relation

ṽ(x, y, λ) = 2
n+k+1

2 Cn,kλ
n+k−1

4

∫

R
n+1
+

ηkp(ξ, η)ϕ(ξ, η)T y
η

Kn+k−1
2

(√
λ(|ξ − x|2 + η2)

)

(|ξ − x|2 + η2)
n+k−1

4

dξdη. (5.22)

For Reλ > 0, define the operator Mλ on H(Rn+1
+ ) as follows:

Mλf(x, y) = 2
n+k+1

2 Cn,kλ
n+k−1

4

∫

R
n+1
+

ηkf(ξ, η)T y
η

Kn+k−1
2

(√
λ(|ξ − x|2 + η2)

)

(|ξ − x|2 + η2)
n+k−1

4

dξdη.
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This is the resolving operator of problem (5.20)-(5.21) with the right-hand part f(x, y). Therefore, if

Reλ > 0, g ∈ W 2
2,k,loc(R

n+1
+ ), and (−ΔB + λ)g ∈ H(Rn+1

+ ), then Mλ(−ΔB + λ)g = g. For Reλ > 0,

define the operator Lλ on H(Rn+1
+ ) as follows:

Lλf(x, y) = λMλ[q(x, y)f(x, y)]

= 2
n+k+1

2 Cn,kλ
n+k+3

2

∫

R
n+1
+

ηkq(ξ, η)f(ξ, η)T y
η

Kn+k−1
2

(√
λ(|ξ − x|2 + η2)

)

(|ξ − x|2 + η2)
n+k−1

4

dξdη.

The function ũ(x, y, λ) is a solution bounded with respect to (x, y) ∈ R
n+1
+ and analytic with respect

to λ, Reλ > 0, of the equation

(−ΔB + λ)ũ = p(x, y)ϕ(x, y) − λq(x, y)ũ.

Here the right-hand part is analytic with respect to λ, Reλ > 0, and is bounded with respect to

(x, y) ∈ R
n+1
+ for any fixed λ, Reλ > 0. Therefore, the operator Mλ can be applied both to the

right-hand part and left-hand part of the last relation.

Since ũ belongs to W 2
2,k,loc(R

n+1
+ ), it follows that Mλ(−ΔB + λ)ũ = ũ.

Since Mλ is the resolving operator of problem (5.20)-(5.21) and p(x, y)ϕ(x, y) belongs to H(Rn+1
+ ),

it follows that Mλ[p(x, y)ϕ(x, y)] = ṽ.

Since ũ belongs to H(Rn+1
+ ) for any λ, Reλ > 0, it follows that Mλ[λq(x, y)ũ] = λMλ[q(x, y)ũ] =

Lλũ.
Thus, ũ(x, y, λ) satisfies the integral equation

ũ(x, y, λ) + Lλũ(x, y, λ) = v(x, y, λ). (5.23)

In the sequel, we assume (in this section) that all the constants depend only on n and k unless
otherwise stated.

Lemma 5.2.1. Let Dσ =
{
λ ∈ C

∣∣|argλ| < π − σ
}
, where 0 < σ < π. Then, if λ ∈ Dσ , then Lλ is a

bounded operator acting in H(Rn+1
+ ) and lim

|λ|→0
λ∈Dσ

‖Lλ‖ = 0.

Proof. It is known (see, e.g., [26]) that for ν > 0, the function Kν(z) satisfies the estimate Kν(z) ≤
Cαν(|z|) in the domain

{
|argz| ≤ π − σ

2

}
, where

αν(r) =

⎧⎨
⎩
r−ν for 0 < r ≤ 1

e−γ0(r−1)

√
r

for r > 1

and C and γ0 are positive constants depending only on σ.
Assuming that λ ∈ Dσ, consider the expression

Jn,k(x, y;λ) =

∫

R
n+1
+

ηkT y
η |q(ξ + x, η)|

∣∣∣Kn+k−1
2

(√
λ(|ξ|2 + η2)

)∣∣∣
(|ξ|2 + η2)

n+k−1
4

dξdη

≤ C

∞∫

0

αn+k−1
2

(
√|λ|ρ)

ρ
n+k−1

2

∂

∂ρ

⎡
⎢⎣
∫

B+(ρ)

ηkT y
η |q(ξ + x, η)|dξdη

⎤
⎥⎦ dρ.
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Since αν(r) is a piecewise-smooth function, it follows that it is possible to integrate by parts; this
yields the inequality

Jn,k(x, y;λ) ≤ −C

∞∫

0

∂

∂ρ

⎡
⎣αn+k−1

2

(√|λ|ρ
)

ρ
n+k−1

2

⎤
⎦
∫

B+(ρ)

ηkT y
η |q(ξ + x, η)|dξdηdρ

+ C lim
ρ→∞

αn+k−1
2

(√|λ|ρ
)

ρ
n+k−1

2

∫

B+(ρ)

ηkT y
η |q(ξ + x, η)|dξdη

− C lim
ρ→0

αn+k−1
2

(√|λ|ρ
)

ρ
n+k−1

2

∫

B+(ρ)

ηkT y
η |q(ξ + x, η)|dξdη.

Obviously, the former limit is equal to zero. Taking into account that∫

B+(ρ)

ηkT y
η |q(ξ + x, η)|dξdη ≤ const ρn+k+1

and αn+k−1
2

(√
|λ|ρ
)
=

1

|λ|n+k−1
4 ρ

n+k−1
2

provided that ρ is sufficiently small, we see that the latter

limit is equal to zero as well.
Thus, Jn,k(x, y;λ) ≤ Jn,k,1(x, y;λ) + Jn,k,1(x, y;λ), where

Jn,k,1(x, y;λ) =
C(n+ k − 1)

λ
n+k−1

4

1√
|λ|∫

0

1

ρ
n+k−1

2

∫

B+(ρ)

ηkT y
η |q(ξ + x, η)|dξdηρdρ

and

Jn,k,2(x, y;λ) ≤ const

|λ| 14

∞∫
1√
|λ|

e−γ0
√

|λ|ρ

ρ
n+k
2

(√
|λ|+ 1

ρ

) ∫

B+(ρ)

ηkT y
η |q(ξ + x, η)|dξdηρdρ;

note that the constants in this lemma depend on σ as well.
Thus,

Jn,k(x, y;λ) ≤ const

⎡
⎢⎢⎣ 1

λ
n+k−1

4

1√
|λ|∫

0

1

ρ
n+k−1

2

∫

B+(ρ)

ηkT y
η |q(ξ + x, η)|dξdηρdρ

+ |λ| 14
∞∫
1√
|λ|

1

ρ
n+k−1

2

∫

B+(ρ)

ηkT y
η |q(ξ + x, η)|dξdηρn+k

2
+1

(
1 +

1√|λ|ρ

)
e−γ0

√
|λ|ρdρ

⎤
⎥⎥⎥⎦ ≤ const

|λ|n+k+3
4

by virtue of the boundedness of the function

1

ρ
n+k−1

2

∫

B+(ρ)

ηkT y
η |q(ξ + x, η)|dξdη.

This implies the boundedness of the operator Lλ.
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Indeed,

|Lλf(x, y)| = const |λ|n+k+3
4

∣∣∣∣∣∣∣∣

∫

R
n+1
+

ηkT y
η [q(ξ + x, η)f(ξ + x, η)]

Kn+k−1
2

(√
λ(|ξ|2 + η2)

)

(|ξ|2 + η2)
n+k−1

4

dξdη

∣∣∣∣∣∣∣∣
≤ const |λ|n+k+3

4 ‖f‖
H(Rn+1

+ )
Jn,k(x, y;λ) ≤ const ‖f‖

H(Rn+1
+ )

,

i.e., for any fixed σ, the operator Lλ is bounded uniformly with respect to λ ∈ Dσ.
Let us pass to the proof of the second assertion of Lemma 5.2.1. From the estimate obtained for

|Lλf(x, y)|, it follows that
‖Lλ‖ ≤ const |λ|n+k+3

4 sup
(x,y)∈Rn+1

+

Jn,k(x, y;λ).

It follows from (5.16) that for any positive ε there exists N(ε) such that

1

ρn+k+1

∫

B+(ρ)

ηkT y
η |q(ξ + x, η)|dξdη < ε

for any ρ from [N(ε),+∞) and any (x, y) from R
n+1
+ . Therefore, the inequality

|λ|n+k+3
4 Jn,k(x, y;λ) ≤ const

⎡
⎣|λ|N2(ε)

2
+

ε

2
+ ε

∞∫

1

r
n+k
2

+1

(
1 +

1

r

)
e−γ0rdr

⎤
⎦

is valid for |λ| < 1

N2(ε)
.

Take an arbitrary positive δ and select a positive ε to satisfy the inequality

const

⎡
⎣ε
2
+ ε

∞∫

1

r
n+k
2

+1

(
1 +

1

r

)
e−γ0rdr

⎤
⎦ <

δ

2

(where the constant is the same as in the previous inequality). Obviously, one can select a positive β

such that for any λ from Dσ, the inequality |λ| < β implies the inequality const |λ|N
2(ε)

2
<

δ

2
, i.e.,

for any positive δ there exist N and β such that |λ|n+k+3
2 Jn,k(x, y;λ) < δ. This proves Lemma 5.2.1

for the case where n is positive.
If n = 0, then the proof is similar, but one has to consider three cases separately: k = 1, k < 1, and

k > 1. If k = 1, then we use the estimate of |K0(z)| via α0(|z|) (see, e.g., [26]). If k < 1, then we use
the evenness of |Kν(z)| with respect to ν.

This completes the proof of Lemma 5.2.1.

The functions ũ(x, y;λ) and ṽ(x, y;λ), being the Laplace transforms of analytic functions, are defined
only for positive Reλ. However, the right-hand part of relation (5.22) is analytic in the domain
{|argλ| < π}. Therefore, using relation (5.22), we analytically extend the function ṽ(x, y;λ) to the

domain {|argλ| < π} such that the extended function belongs to the space H(Rn+1
+ ) with respect to

the variables x and y. By virtue of Lemma 5.2.1, for any positive σ, there exists a positive δ such
that ‖Lλ‖ < 1 for any λ from {|λ| < δ} ∩Dσ. Then the function ũ(x, y;λ) is analytically extended to

the domain λ ∈ {|λ| < δ} ∩Dσ such that the extended function belongs to the space H(Rn+1
+ ) with

respect to the variables x and y (because it is a solution of the integral equation (5.23)).
Thus, for any positive σ there exists a positive δ such that the functions ũ(x, y;λ) and ṽ(x, y;λ) are

analytic with respect to λ ∈ {|λ| < δ} ∩ {|argλ| < π − σ} and continuous and bounded with respect
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to (x, y) ∈ R
n+1
+ . From the boundedness of the functions p(x, y) and ϕ(x, y) and from the estimate of

Kν(z) via αν(|z|) (see Lemma 5.2.1), it follows that the inequality
∣∣∣∣∣∣∣∣

∫

R
n+1
+

ηkp(ξ, η)ϕ(ξ, η)
Kn+k−1

2

(√
λ(|ξ − x|2 + η2)

)

(|ξ − x|2 + η2)
n+k−1

4

dξdη

∣∣∣∣∣∣∣∣

≤ const

∞∫

0

ρ
n+k+1

2 αn+k+1
2

(
√

|λ|ρ)dρ =
const

|λ|n+k+3
4

is valid for n+ k > 1. This and relation (5.22) imply that ‖ṽ(x, y;λ)‖
H(Rn+1

+ )
≤ const

|λ| for any λ ∈ Dσ

provided that σ > 0.
The last estimate is valid for n+ k ≤ 1 as well. Indeed, if n = 0 and k = 1, then

|ṽ(x, y;λ)| ≤ const

|λ|

∞∫

0

rα0(r)dr =
const

|λ| ;

if n = 0 and k < 1, then

|ṽ(x, y;λ)| ≤ const

|λ|

∞∫

0

α 1−k
2
(r)r

k+1
2 dr =

const

|λ|

(the constants depend only on n, k, and σ).
Then relation (5.23) implies the inequality

‖ũ(x, y;λ)‖
H(Rn+1

+ )
≤ ‖Lλ‖‖ũ(x, y;λ)‖H(Rn+1

+ )
+

const

|λ| .

By virtue of Lemma 5.2.1, this implies that the inequality ‖ũ(x, y;λ)‖
H(Rn+1

+ )
≤ const

|λ| is valid for any

λ from Dσ ∩ {|λ| < δ}. Further, from relation (5.23), we obtain that

‖ũ(x, y;λ) − ṽ(x, y;λ)‖
H(Rn+1

+ )
= ‖Lλũ(x, y;λ)‖H(Rn+1

+ )

≤ ‖Lλ‖‖ũ(x, y;λ)‖H(Rn+1
+ )

≤ ‖Lλ‖ const
|λ| = o

(
1

|λ|
)

as |λ| → 0

for λ ∈ Dσ ∩ {|λ| < δ} because lim
|λ|→0
λ∈Dσ

‖Lλ‖ = 0 due to Lemma 5.2.1.

Thus, the following assertions are valid:

(1) The functions u(x, y, t) and v(x, y, t) are continuous and bounded.
(2) The functions ũ(x, y;λ) and ṽ(x, y;λ) are their Laplace transforms analytically extended (for

positive values of the parameter σ) to the domain {|λ| < δ(σ)}∩{|argλ| < π−σ} such that the

extended functions are continuous and bounded with respect to (x, y) ∈ R
n+1
+ .

(3) For any positive σ there exists a positive δ = δ(σ) such that the relation

‖ũ(x, y;λ) − ṽ(x, y;λ)‖
H(Rn+1

+ )
= o

(
1

|λ|
)

as |λ| → 0

is valid in the domain {|λ| < δ(σ)} ∩ {|argλ| < π − σ}.
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Then, as is known from [26], the limit relation

1

t

t∫

0

[u(x, y, τ) − v(x, y, τ)]dτ
t→∞−−−→ 0

holds for any (x, y) from R
n+1
+ .

This completes the proof of Theorem 5.2.2.

5.2.3. Proof of Theorem 5.2.3. First, we note that, since condition (5.14) is satisfied, it follows

that the space Hα
[n+k+1

2
]
(Rn+1

+ ) in condition (5.13) can be replaced by the space H̃α
[n+k+1

2
]
(Rn+1

+ ); this

is proved in [31]. Further, following [34] (see also [33]), we introduce the following functional spaces.
Let C∞

E (Ω) denote the space of functions even with respect to y and infinitely differentiable on Ω

(as above, we assume that Ω ⊂ R
n+1
+ ). Define the set Lp,k(Ω), p ≥ 1, as the set of functions such that

the following their norm is finite:

‖f‖Lp,k(Ω) =

⎛
⎝
∫

Ω

yk|f(x, y)|dxdy
⎞
⎠

1
p

.

The space Wm
2,k(Ω) is the completion of the set C∞

E (Ω) with respect to the following norm:

‖f‖Wm
2,k(Ω) =

⎛
⎝ ∑

|β|≤m

‖D̃βf‖2Lp,k(Ω)

⎞
⎠

1
2

.

In the sequel, if no misunderstanding regarding the domain can arise, the norm in Wm
2,k is denoted by

‖ · ‖m, the norm in L2,k is denoted by ‖ · ‖0, and the norm in H is denoted by ‖ · ‖. The variable y is
denoted by xn+1 whenever it is convenient.

Let us pass to the proof of Theorem 5.2.3.

Take an arbitrary δ0 and fix it. Denote
∂u

∂t
by w(x, y, t) and denote

∂u

∂t

∣∣
t=δ0

by ψ(x, y). It follows

from [47] that ψ ∈ H̃[n+k+1
2

]+2(R
n+1
+ ) and w(x, y, t) is the classical bounded solution of the following

problem:

p(x, y)
∂w

∂t
= ΔBw, x ∈ R

n, y > 0, t > δ0, (5.24)

w
∣∣
t=δ0

= ψ(x, y),
∂w

∂y

∣∣
y=0

= 0. (5.25)

Together with problem (5.24)-(5.25), consider the problem

p(x, y)
∂ 2Z

∂t2
= ΔBZ, x ∈ R

n, y > 0, t > δ0, (5.26)

Z
∣∣
t=δ0

= 0,
∂Z

∂t

∣∣
t=δ0

= ψ(x, y),
∂Z

∂y

∣∣
y=0

= 0. (5.27)

Lemma 5.2.2. There exists a positive C such that for any t from [δ0,+∞), for any x from R
n, and

for any nonnegative y, the inequality

|Z(x, y, t)| ≤ Ct
n+1
2 (t+ y)

k
2
+1−{n+k+1

2
},

where {x} denotes the fractional part of x, is valid.
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Proof. By the condition, the function ψ belongs to the space H̃[n+k+1
2

]+2(R
n+1
+ ). Therefore, it belongs

to the space W
[n+k+1

2
]+2

2,k,loc (Rn+1
+ ) as well. Using the Duhamel integral, we deduce from [3] that Z ∈

W
[n+k+1

2
]+2

2,k,loc (Rn+2
++ ), where R

n+2
++ =

{
(x, y, t)

∣∣t > δ0, x ∈ R
n, y > 0

}
.

Take an arbitrary point (x0, y0) from R
n+1
+ and an arbitrary number t0 from (δ0,+∞). Without

loss of generality, one can assume that p0 = 1, i.e., p(x, y) ≥ 1. Then (see, e.g., [108, p. 93]) the value
of the function Z(x, y, t) at the point (x0, y0, t0) depends only on the values of the function ψ(x, y) for
|x− x0|2 + (y − y0)

2 ≤ (t0 − δ0)
2 and y ≥ 0. Take a function ψ0(x, y) such that

(a) The support of the function ψ0 is a subset of {|x− x0|2 + (y − y0)
2 ≤ t20, y ≥ 0}.

(b) If |x− x0|2 + (y − y0)
2 ≤ (t0 − δ0)

2 and y ≥ 0, then ψ0(x, y) = ψ(x, y).

(c) We have
∂ψ0

∂y

∣∣
y=0

= 0.

(d) The function ψ0 has the same smoothness as the function ψ.

To find a function ψ0(x, y) possessing the properties (a) and (b), it suffices to multiply ψ(x, y) by an
appropriate cut-off function.

Let u0(x, y, t) be a solution of the following problem:

p(x, y)
∂ 2u0
∂t2

= ΔBu0, x ∈ R
n, y > 0, t > δ0, (5.28)

u0
∣∣
t=δ0

= 0,
∂u0
∂t

∣∣
t=δ0

= ψ0(x, y),
∂u0
∂y

∣∣
y=0

= 0. (5.29)

Taking into account that the function u0 belongs to W 2
2,k,loc(R

n+2
++ ) and the support of the function

u0(x, y, t) is compact for any fixed t, we obtain the following relation between energy integrals:

∫

R
n+1
+

yk

⎡
⎣p(x, y)

(
∂u0
∂t

)2
+

n∑
j=1

(
∂u0
∂xj

)2
+

(
∂u0
∂y

)2⎤⎦
∣∣∣∣∣
t=t0

dxdy

=

∫

R
n+1
+

yk

⎡
⎣p(x, y)

(
∂u0
∂t

)2
+

n∑
j=1

(
∂u0
∂xj

)2
+

(
∂u0
∂y

)2⎤⎦
∣∣∣∣∣
t=δ0

dxdy.

Taking into account that

suppψ ⊂ {|x− x0|2 + (y − y0)
2 ≤ t20, y ≥ 0}

and

suppu0(x, y, t0) ⊂ {|x− x0|2 + (y − y0)
2 ≤ 4t20, y ≥ 0},

change the integration domains in the last relation:

∫

Ω0
2

yk

⎡
⎣p(x, y)

(
∂u0
∂t

)2
+

n∑
j=1

(
∂u0
∂xj

)2
+

(
∂u0
∂y

)2⎤⎦
∣∣∣∣∣
t=t0

dxdy

=

∫

Ω0
1

yk

⎡
⎣p(x, y)

(
∂u0
∂t

)2
+

n∑
j=1

(
∂u0
∂xj

)2
+

(
∂u0
∂y

)2⎤⎦
∣∣∣∣∣
t=δ0

dxdy,

where Ω0
j = {|x− x0|2 + (y − y0)

2 ≤ (jt)2, y ≥ 0}, j = 1, 2.
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Assuming that n+ k ≥ 1, introduce the following functions for m = 1, . . . ,

[
n+ k + 1

2

]
:

um(x, y, t) =
∂mu0
∂tm

(x, y, t).

Then the function um, m = 1,

[
n+ k + 1

2

]
, satisfies Eq. (5.26) and the following initial-value condi-

tions:

um
∣∣
t=δ0

= 0 and
∂um
∂t

∣∣
t=δ0

=

(
1

p(x, y)
ΔB

)m
2

ψ0(x, y) if m is even

um
∣∣
t=δ0

=

(
1

p(x, y)
ΔB

)m−1
2

ψ0(x, y) and
∂um
∂t

∣∣
t=δ0

= 0 if m is odd .

Obviously,
∂um
∂y

∣∣
y=0

= 0, m = 1,

[
n+ k + 1

2

]
.

Thus, the following energy integral identity holds for the functions um(x, y, t):

∫

Ω0
2

yk

⎡
⎣p(x, y)

(
∂um
∂t

)2
+

n∑
j=1

(∇um)2

⎤
⎦
∣∣∣∣∣
t=t0

dxdy

=

∫

Ω0
1

yk

⎡
⎣p(x, y)

(
∂um
∂t

)2
+

n∑
j=1

(∇um)2

⎤
⎦
∣∣∣∣∣
t=δ0

dxdy

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

Ω0
1

ykp(x, y)

[(
1

p(x, y)
ΔB

)m
2

ψ0(x, y)

]2
dxdy

if m is even (including the case where m = 0)∫

Ω0
1

ykp(x, y)

(
∇
[(

1

p(x, y)
ΔB

)m−1
2

ψ0(x, y)

])2

dxdy

if m is odd (including the case where m = 0).

(5.30)

Here ∇ =

(
∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂y

)
and ∇2(·) = (∇·,∇·).

Let R(x, y) =
1

p(x, y)
. Then

∂mR

∂ym

∣∣
y=0

= 0, m = 1, . . . ,

[
n+ k + 1

2

]
. Then the following Leibnitz

formula holds (see [3]):

Bm(Ru) = RBmu+
∑

i1+i2+2j1+2j2+s=2m
i1+i2+j1≥1

i1=0,1; i2=0,1

Ci2,j2
i1,j1

1

ys
∂ i1R

∂yi1
Bj1R

∂i2u

∂yi2
Bj2u,

where Ci2,j2
i1,j1

depends only on m, i1, j1, i2, and j2.

Use this formula and consider the operators acting on ψ0(x, y) and p(x, y) at the right-hand part of

inequality (5.30): the order of the operator D̃ acting on ψ0(x, y) does not exceed m, while the order of

the operator D̃ acting on R(x, y) (i.e., on p(x, y))does not exceed m−2. This yields that the following
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inequality is valid provided that m ≤
[
n+ k + 1

2

]
:

∫

Ω0
2

yk

[
p(x, y)

(
∂um
∂t

)2
+ (∇um)2

] ∣∣∣∣∣
t=t0

dxdy ≤ Cmtn+1
0 (t0 + y0)

k, (5.31)

where Cm does not depend on x0, y0, and t0.
Further,

∂um
∂t

∣∣∣
t=t0

=

(
1

p(x, y)
ΔB

)m+1
2

u0
∣∣
t=t0

if m is odd, while

∂um
∂xj

∣∣∣
t=t0

=
∂

∂xj

(
1

p(x, y)
ΔB

)m
2

u0
∣∣
t=t0

and
∂um
∂y

∣∣∣
t=t0

=
∂

∂y

(
1

p(x, y)
ΔB

)m
2

u0
∣∣
t=t0

if m is even.

Further, if m is even, then we use the nonnegativity of

(
∂um
∂t

)2
; if m is odd, then we use the

nonnegativity of (∇um)2. Then inequality (5.31) yields the estimate⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

Ω0
2

yk

[
∇
(

1

p(x, y)
ΔB

)m
2

u0(x, y, t0)

]2
dxdy

if m is even (including the case where m = 0)∫

Ω0
2

yk

[(
1

p(x, y)
ΔB

)m+1
2

u0(x, y, t0)

]2
dxdy

if m is odd (including the case where m = 1)

≤ C∗
mtn+1

0 (t0 + y0)
k, (5.32)

where C∗
m does not depend on x0, y0, and t0.

Introduce the denotation∑
|β|=l

[D̃βf(x, y)]2 def
= [D̃lf(x, y)]2 and

∑
|β|=l

[Dβ
xf(x, y)]

2 def
= [Dl

xf(x, y)]
2.

Let m = 0. Then inequality (5.32) implies that∫

Ω0
2

yk [∇u0(x, y, t0)]
2 dxdy ≤ C∗

0 t
n+1
0 (t0 + y0)

k.

Therefore, ∫

Ω0
2

yk
[
D̃1u0(x, y, t0)

]2
dxdy ≤ C∗

0t
n+1
0 (t0 + y0)

k.

This means that

‖u0(x, y, t0)‖21 ≤ C̃0t
n+1
0 (t0 + y0)

k,

where C̃0 = C∗
0 .

Let m = 1. Then inequality (5.32) implies that∫

Ω0
2

yk [ΔBu0(x, y, t0)]
2 dxdy ≤ C∗

1‖p‖2tn+1
0 (t0 + y0)

k.
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Since the support of the function u0(x, y, t0) is compact, it follows that there exists an absolute constant
C such that the inequality

‖u0(x, y, t0)‖22 ≤ C

∫

Ω0
1

yk [ΔBu0(x, y, t0)]
2 dxdy

holds. Then

‖u0(x, y, t0)‖22 ≤ C̃1t
n+1
0 (t0 + y0)

k.

Let m = 2. Then inequality (5.32) implies that∫

Ω0
2

yk
[
∇
(

1

p(x, y)
ΔBu0(x, y, t0)

)]2
dxdy ≤ C∗

2 t
n+1
0 (t0 + y0)

k.

We must estimate ‖u0(x, y, t0)‖23, i.e.,∫

Ω0
2

yk

([
∂

∂y
Bu0(x, y, t0)

]2
+

[
D3

xu0(x, y, t0)

]2)
dxdy.

For j = 1, n, consider the following integral:∫

Ω0
2

yk
[
ΔB

(
∂u0
∂xj

(x, y, t0)

)]2
dxdy =

∫

Ω0
2

yk
[

∂

∂xj
ΔBu0(x, y, t0)

]2
dxdy

=

∫

Ω0
2

yk
[

∂

∂xj

(
p(x, y)

1

p(x, y)
ΔBu0(x, y, t0)

)]2
dxdy ≤ 2

∫

Ω0
2

yk
[
∂p

∂xj

1

p(x, y)
ΔBu0(x, y, t0)

]2
dxdy

+ 2

∫

Ω0
2

yk
[
p(x, y)

∂

∂xj

(
1

p(x, y)
ΔBu0(x, y, t0)

)]2
dxdy ≤ C̃∗

2 t
n+1
0 (t0 + y0)

k,

where C̃∗
2 = 2

(∥∥∥∥ ∂p∂xj

∥∥∥∥
2

C∗
1 + ‖p‖2C∗

2

)
.

Let m = 3. Then inequality (5.32) implies that∫

Ω0
2

yk
[
ΔB

(
1

p(x, y)
ΔBu0(x, y, t0)

)]2
dxdy ≤ C∗

3‖p‖2tn+1
0 (t0 + y0)

k.

We must estimate ‖u0(x, y, t0)‖24. Consider the integral
∫

Ω0
2

yk
[
Δ2

Bu0(x, y, t0)
]2

dxdy =

∫

Ω0
2

yk
[
ΔB

(
p(x, y)

1

p(x, y)
ΔBu0(x, y, t0)

)]2
dxdy.

Applying the Leibnitz formula to the integrand, we see that the last integral is equal to∫

Ω0
2

yk
[
p(x, y)ΔB

(
1

p(x, y)
ΔBu0(x, y, t0)

)
+2

(
2∇p(x, y),∇

(
1

p(x, y)
ΔBu0(x, y, t0)

))

+
1

p(x, y)
ΔBp(x, y)ΔBu0(x, y, t0)

]2
dxdy ≤ C̃∗

3 t
n+1
0 (t0 + y0)

k,

where C̃∗
3 = 4(C∗

3‖p‖4 + 2‖D̃1p‖C∗
2 + C∗

1‖p‖2‖ΔBp‖2).
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Since

‖u0(x, y, t0)‖24 ≤ const

∫

Ω0
2

yk
[
Δ2

Bu0(x, y, t0)
]2

dxdy

(because the support of u0(x, y, t0) is compact), we have the estimate

‖u0(x, y, t0)‖24 ≤ C̃3t
n+1
0 (t0 + y0)

k.

Note that at the mth step, the finiteness of the norms ‖D̃jp‖, j ≤ m− 1, is used. By the condition,

those norms are finite provided that j ≤
[
n+ k + 1

2

]
. Therefore, the procedure described above can

be continued until the

[
n+ k + 1

2

]
th step (inclusively). At the specified step, we apply the Leibnitz

formula and take into account that
∂jp

∂yj
∣∣
y=0

= 0 for j = 1, . . . ,

[
n+ k + 1

2

]
. This yields the estimate

‖u0(x, y, t0)‖2[n+k+1
2 ]+1

≤ C̃[n+k+1
2 ]t

n+1
0 (t0 + y0)

k, (5.33)

where the constant C[n+k+1
2 ] does not depend on x0, y0, and t0.

Since the function u0(x, y, t) belongs to W
[n+k+1

2 ]+2

2,k,loc (Rn+2
++ ), it follows that the function u0(x, y, T )

belongs to W
[n+k+1

2 ]+ 3
2

2,k,loc (Rn+1
+ ) for any fixed T from (δ0,+∞) (see [33]). Therefore, the function

u0(x, y, t0) belongs to W
[n+k+1

2 ]+1

2,k,loc (Rn+1
+ ).

Now, we apply the following embedding theorem (see [32]): if f(x, y) ∈ W
[n+k+1

2 ]+1

2,k (Rn+1
+ ) and

suppf ⊂ {|x|2 + y2 ≤ 1, y ≥ 0
}
, then f(x, y) ∈ C(Rn+1

+ ) and

|f(0)| ≤ const ‖f‖[n+k+1
2 ]+1 = const

⎛
⎜⎜⎝
∫

R
n+1
+

ηk
[
D̃
[n+k+1

2 ]+1

ξ,η f(ξ, η)

]2
dξdη

⎞
⎟⎟⎠

1
2

.

Now, let g ∈ W
[n+k+1

2 ]+1

2,k (Rn+1
+ ) and supp g ⊂ {|x|2 + y2 ≤ 4(t0 + y0)

2, y ≥ 0
}
.

Introduce the function f(x, y) def
= g[2(t0 + y0)x, 2(t0 + y0)y]. The specified embedding theorem is

applicable to this function; it yields

|g(0)| = |f(0)| ≤ const

( ∫

R
n+1
+

ηk

[
(2(t0 + y0))

[n+k+1
2 ]+1

× D̃
[n+k+1

2 ]+1

2(t0+y0)ξ,2(t0+y0)η
g
(
2(t0 + y0)ξ, 2(t0 + y0)η

)]2
dξdη

) 1
2

.

Change the variables in the last integral: xj = 2(t0 + y0)ξj, j = 1, n, and y = 2(t0 + y0)η. We obtain

that |g(0)| ≤ C̃(t0 + y0)
[n+k+1

2 ]+1−n+k+1
2 ‖g‖[n+k+1

2 ]+1, where C̃ depends only on n and k.

Taking into account that suppu0(x, y, t0) ⊂
{|x− x0|2 + y2 ≤ (2t0 + 2y0)

2, y ≥ 0
}
, treat the point

(x0, 0) = (x01, . . . , x
0
n, 0) as the origin in R

n+1 and assign g(x, y) = u0(x, y, t0). This yields the relation

|Z(x0, y0, t0)| = |u0(x0, y0, t0)| ≤ C̃(t0 + y0)
[n+k+1

2 ]+1−n+k+1
2 ‖u0(x, y, t0)‖[n+k+1

2 ]+1.
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It follows from (5.13) that

|Z(x0, y0, t0)| ≤ const t
n+1
2

0 C(t0 + y0)
k
2
+1−{n+k+1

2
},

which completes the proof of Lemma 5.2.2 because x0, y0, and t0 are selected arbitrarily and the
constant does not depend on x0, y0, and t0.

Remark. If n+ k < 1, then it suffices to apply inequality (5.32) for m = 0 (note that it is valid only
for m = 0 then) and the embedding theorem.

Lemma 5.2.2 is proved.

Let us show that

Z̃(x, y, λ) def
=

∞∫

δ0

e−(t−δ0)λZ(x, y, t)dt

has at most a power growth as y → ∞, i.e., there exists κ0 such that Z̃(x, y, λ) = O(yκ0) as y → ∞.
To do that, we note that

|Z̃(x, y, λ)| ≤ C|eδ0λ|
∞∫

0

|e−tλ|tn+1
2 C(t+ y)

k
2
+1−{n+k+1

2
}dt

= CΓ

(
n+ 3

2

)
eλReδ0y[

n+k+1
2 ]+2G

(
n+ 3

2
,

[
n+ k + 1

2

]
+ 3, yReλ

)
,

where G(α1, α2, z) is the confluent hypergeometric function of the second type (see [79, p. 246]). From

the asymptotic representation of this function as z → ∞ (see [79, p. 283]), it follows that Z̃(x, y, λ)
has at most a power growth with respect to y at infinity.

Further, for positive Reλ, the function Z̃(x, y, λ) satisfies the equation

−ΔBZ̃ + λ2p(x, y)Z̃ = p(x, y)ψ(x, y).

Indeed, let g(x, y) belong to C∞
0 (Rn+1). Then∫

R
n+1
+

ykΔBZ(x, y, t)g(x, y)dxdy =

∫

R
n+1
+

ykZ(x, y, t)ΔBg(x, y)dxdy

and

0 =

T∫

δ0

∫

R
n+1
+

ykg(x, y)(T − t)

[
p(x, y)

∂2Z

∂t2
−ΔBZ

]
dxdydt

=

∫

R
n+1
+

yk

(
g(x, y)p(x, y)

[
− (T − δ0)ψ(x, y) + Z(x, y, T )

]
−ΔBg(x, y)

T∫

δ0

(T − t)Z(x, y, t)dt

)
dxdy.

Multiply the last identity by e−(T−δ0)λ, where Reλ > 0, and integrate with respect to T from δ0 to ∞.
We obtain that

0 =

∫

R
n+1
+

yk
[
g(x, y)p(x, y)

∞∫

0

e−τλZ(x, y, τ + δ0)dτ − g(x, y)p(x, y)ψ(x, y)

∞∫

0

τe−τλdτ
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−ΔBg(x, y)

∞∫

0

e−τλ

τ∫

0

(τ − θ)Z(x, y, θ + δ0)dθdτ
]
dxdy

=

∫

R
n+1
+

yk

[
g(x, y)p(x, y)Z̃(x, y, λ)− g(x, y)p(x, y)ψ(x, y)

λ2
−ΔBg(x, y)

Z̃(x, y, λ)

λ2

]
dxdy.

Since g(x, y) is selected arbitrarily, it follows that the function Z̃(x, y, λ) belongs to W 2
2,k,loc(R

n+1
+ )

and satisfies the equation

−ΔBZ̃ + λ2p(x, y)Z̃ = p(x, y)ψ(x, y).

Let λ be real and positive. Consider the following problem:

−ΔBZ̃ + λ2p(x, y)Z̃ = p(x, y)ψ(x, y), x ∈ R
n, y > 0, (5.34)

∂Z̃

∂y

∣∣
y=0

= 0. (5.35)

The function Z̃(x, y, λ) satisfies problem (5.34), (5.35), it is analytic with respect to λ from (0,+∞)
and bounded with respect to x from R

n, and it has at most a power growth with respect to y at
infinity. Such a solution of problem (5.34), (5.35) is unique. On the other hand, it is proved in the
previous section that the function w̃(x, y, λ) is a solution analytic with respect to λ from (0,+∞) and

bounded with respect to x from x ∈ R
n+1
+ of the problem

−ΔBw̃ + λp(x, y)w̃ = p(x, y)ψ(x, y), x ∈ R
n, y > 0; (5.36)

∂w̃

∂y

∣∣
y=0

= 0. (5.37)

Such a solution of problem (5.36), (5.37) is unique as well. Hence,

w̃(x, y, λ) = Z̃(x, y,
√
λ) (5.38)

for positive λ. The function Z̃(x, y, λ) is analytic for | arg λ| < π

2
. Therefore, the function Z̃(x, y,

√
λ)

is analytic with respect to λ for | arg λ| < π. Hence, using (5.38), one can extend the function w̃(x, y, λ)
to the domain | arg λ| < π such that the extended function is analytic with respect to λ in the specified
domain and bounded with respect to x from R

n and it has at most a power growth with respect to y
at infinity.

Lemma 5.2.3. For any x from R
n, any nonnegative y, and any positive σ, the limit relation

|Z̃(x, y, λ)| |λ|→∞−−−−→ 0

holds uniformly with respect to | arg λ| ≤ π

2
.

Proof. We have

|Z̃(x, y, λ)| =
∣∣∣∣∣∣
∞∫

δ0

e−(t−δ0)λZ(x, y, t)dt

∣∣∣∣∣∣ ≤ C

∞∫

0

e−τReλ(τ + δ0)
[n+k+1

2
]+1(τ + δ0 + y)kdτ

≤ C

|λ| sin σ
2

∞∫

0

e−ρ

(
ρ

|λ| sin σ
2

+ δ0

)[n+k+1
2

]+1( ρ

|λ| sin σ
2

+ δ0 + y

)k
dρ.

If |λ| is sufficiently large, then |λ| sin σ

2
> 1; therefore, |Z̃(x, y, λ)| ≤ const

|λ| , where the constant does

not depend on λ.
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This completes the proof of Lemma 5.2.3.

Lemma 5.2.4. For any positive σ there exists a positive δ such that the function ‖w̃(x, y, λ)‖ is

bounded for λ ∈
{
|λ| < δ

∣∣∣| arg λ| ≤ π − σ
}
.

Proof. We have

w̃(x, y, λ) =

∞∫

δ0

e−(t−δ0)λw(x, y, t)dt =

∞∫

δ0

e−(t−δ0)λ ∂u

∂t
(x, y, t)dt

= λ

∞∫

0

e−λtu(x, y, t+ δ0)dt+ e−λtu(x, y, t+ δ0)
∣∣∣∞
0

= λeλδ0 ũ(x, y, λ)− u(x, y, δ0)− λ

δ0∫

0

e−(t−δ0)λu(x, y, t)dt.

It is proved in the previous section that for any positive σ there exists a positive δ such that ũ(x, y, λ) is
analytic for | arg λ| ≤ π− σ and |λ| < δ. Hence, the last relation is valid (at least) for | arg λ| ≤ π− σ

and |λ| < δ. Now, fix σ from
(
0,

π

4

)
. It is proved in the previous section that the inequality

‖ũ(x, y, λ)‖≤ const

|λ| is valid provided that | arg λ| ≤ π − σ and |λ| < δ(σ). Therefore, the inequality

‖λeλδ0 ũ(x, y, λ)‖ ≤ const eδ0Reλ ≤ eδδ0 is valid for | arg λ| ≤ π−σ and |λ| < δ. The function u(x, y, δ0)
does not depend on λ and is bounded with respect to (x, y) ∈ R

n × [0,+∞). It remains to estimate
the third term: ∣∣∣e−(t−δ0)λ

∣∣∣ = e(δ0−t)Reλ ≤ e|λ|δ0 < eδδ0 for |λ| < δ.

This implies that∣∣∣∣∣∣λ
δ0∫

0

e−(t−δ0)λu(x, y, t)dt

∣∣∣∣∣∣ ≤ |λ|δ0eδδ0‖u(x, y, t)‖ < δδ0e
δδ0‖ϕ(x, y)‖ for |λ| < δ.

This completes the proof of Lemma 5.2.4.

It follows from Lemma 5.2.3 that for any x from R
n and any nonnegative y, the function w̃(x, y, λ)

is bounded on Γ =

{
| arg λ| ≤ 3π

4

}
, and the integration contour in the inverse Laplace transformation

w(x, y, t+ δ0) =

∫

Reλ=σ0>0

eλtw̃(x, y, λ)dλ

can be replaced by the contour Γ.
By virtue of Lemma 5.2.4, there exists a positive δ such that the function w̃(x, y, λ) is bounded

in the domain {0 < |λ| < δ} ∩ G, where G = {| arg λ| < π − σ}. Moreover, the function w̃(x, y, λ)
is analytic in the domain G. Thus, either the origin is a regular point of the function w̃(x, y, λ) or
the specified function has a removable singularity at the origin. Thus, the function w̃(x, y, λ) can be
defined for λ = 0 to preserve its continuity; now, the function w̃(x, y, λ) is analytic in the domain G
and continuous in its closure.

By virtue of Lemma 5.2.3, lim
|λ|→∞
λ∈Γ

w̃(x, y, λ) = 0; therefore, the function w̃(x, y, λ) is bounded on Γ

indeed.
Now, on the complex plane λ = λ1 + iλ2, consider the contour bounded by the following five

segments:
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the segment of the line λ2 = R such that −R ≤ λ1 ≤ σ0;
the segment of the line λ2 = −R such that −R ≤ λ1 ≤ σ0;
the segment of the line λ2 = λ1 such that −R ≤ λ1 ≤ 0;
the segment of the line λ2 = −λ1 such that −R ≤ λ1 ≤ 0;
the segment of the line λ1 = σ0 such that −R ≤ λ2 ≤ R.

Denote this contour by ΓR.

The Cauchy theorem is applicable to the integral

∫

ΓR

eλtw̃(x, y, λ)dλ . Passing to the limit as

R → ∞, we obtain the relation
∫

Reλ=σ0>0

eλtw̃(x, y, λ)dλ =

∫

Γ

eλtw̃(x, y, λ)dλ.

Fix an arbitrary x from R
n and an arbitrary nonnegative y. Taking into account the boundedness of

the function w̃(x, y, λ) on Γ, we see that

∣∣∣∣∣∣
∫

Γ

eλtw̃(x, y, λ)dλ

∣∣∣∣∣∣ ≤ C

∫

Γ

etReλdλ = 2C

∞∫

0

e
− ρt√

2 dρ =
const

t
.

Thus,

∣∣∣∣∂u∂t
∣∣∣∣ ≤ const

t
for t ≥ δ0. Since the function v(x, y, t) satisfies problem (5.12), (5.2) for p(x, y) ≡

1, it follows that the inequality

∣∣∣∣∂v∂t
∣∣∣∣ ≤ const

t
is valid provided that t ≥ δ0. Therefore, the relation

f ′′(t) = O

(
1

t

)
as t → ∞

holds for any x from R
n and any nonnegative y.

This completes the proof of Theorem 5.2.3.

5.2.4. Proof of the main theorem. Now, we can pass directly to the proof of Theorem 5.2.1.

Fix a point (x, y) from R
n+1
+ and denote u(x, y, t) − v(x, y, t) by g(t). Obviously, the function g(t) is

bounded. Denote g(t)+ tg′(t) by h(t). It follows from Theorem 5.2.3 that the function h(t) is bounded
at least for t ≥ 1. Since we are investigating the long-time behavior of g(t), it follows that, without
loss of generality, one can assume that g(t) = 0 for 0 ≤ t ≤ 1. Therefore, the function h(t) is bounded
on the positive semiaxis.

Further, it is easy to check that g(t) =
1

t

t∫

0

h(τ)dτ . By virtue of Theorem 5.2.2, the limit relation

1

t

t∫

0

g(τ)dτ
t→∞−−−→ 0 is valid, i.e.,

1

t

t∫

0

1

τ

τ∫

0

h(ρ)dρdτ
t→∞−−−→ 0. Since the function h(t) is bounded, it

follows that the limit relation
1

t

t∫

0

h(τ)dτ
t→∞−−−→ 0 is valid as well (by virtue of [96, Lemma 1]); there-

fore, lim
t→∞ g(t) = 0. This means that for any x from R

n, any nonnegative y, and any real l, the limit

relation u(x, y, t)
t→∞−−−→ l is valid if and only if the limit relation v(x, y, t)

t→∞−−−→ l is valid.
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By virtue of Theorem 5.1.1, the last relation is equivalent to the relation

lim
r→∞

n+ k + 1

rn+k+1

∫

B+(r)

ykp(x, y)ϕ(x, y)dxdy =
π

n
2 Γ
(
k+1
2

)
Γ
(
n+k+1

2

) l.

The following inequality holds:

1

rn+k+1

∣∣∣∣∣∣∣
∫

B+(r)

ykq(x, y)ϕ(x, y)dxdy

∣∣∣∣∣∣∣
≤ ‖ϕ‖

rn+k+1

∫

B+(r)

yk|q(x, y)|dxdy.

The right-hand part tends to zero as r → ∞ (because the function q(x, y) satisfies condition (5.16))
and the function ϕ(x, y) is bounded. This completes the proof of Theorem 5.2.1 because p(x, y) =
q(x, y) + 1.

Theorem 5.2.1 is proved completely.
Theorem 5.2.1, Theorem 5.1.5, and Theorem 5.1.6 imply the following assertions.

Theorem 5.2.4. Let n > 0, α ≥ 0, β ≥ 0, and α �= β. Let uk(x, y, t) be the classical bounded solution
of problem (5.12), (5.2). Let the conditions of Theorem 5.2.1 be satisfied for k = α and k = β. Then

there exists a bounded function ϕ from C∞(Rn+1
+ ) such that for any x from R

n and any nonnegative y,
the limit lim

t→∞uα(x, y, t) exists, while the limit lim
t→∞uβ(x, y, t) does not exist.

Theorem 5.2.5. Let n = 0, α ≥ 0, β ≥ 0, and α �= β. Let uk(y, t) be the classical bounded so-
lution of problem (5.12), (5.2). Let the conditions of Theorem 5.2.1 be satisfied for k = α and
k = β. Then for any continuous and bounded function ϕ and any nonnegative y, the existence
of lim

t→∞uα(y, t) is equivalent to the existence of lim
t→∞uβ(x, y, t). If the specified limits exist, then

lim
t→∞uα(y, t) =

β + 1

α+ 1
lim
t→∞uβ(x, y, t).

Remark. Consider the (n+ 2)-dimensional integral∫

Da,0,0

ξk−1
∣∣∣q
(
x,
√

ξ2 + (η − d)2
)∣∣∣ dxdηdξ

depending on parameters a from R
n and d from [0,+∞); here Da,b,c denotes the (n + 2)-dimensional

semiball {x ∈ R
n, η ≥ 0, ξ ∈ R

1
∣∣|x− a|2 + (η − b)2 + (ξ − c)2 ≤ r2}.

Change the variables: η = y cos θ and ξ = y sin θ. We obtain that this integral is equal to

∫

Da,0

π∫

0

yk sink−1 θ

∣∣∣∣q
(
x,

√
y2 sin2 θ + y2 cos2 θ + 2dy cos θ + d2

)∣∣∣∣ dθdxdy,

where Da,b denotes the (n + 1)-dimensional semiball
{
x ∈ R

n, y ≥ 0
∣∣|x− a|2 + (y − b)2 ≤ r2

}
. The

last integral is equal to

Γ
(
k
2

)
Γ
(
k+1
2

)
∫

Da,0

ykT d
y |q(x, y)|dxdy =

Γ
(
k
2

)
Γ
(
k+1
2

)
∫

B+(r)

ηkT y
η |q(ξ + a, η)|dξdη.

Thus, condition (5.15) is equivalent to the following condition: there exists a constant b such that

lim
r→∞

1

rn+k+1

∫

Dx,−y,0

ρk−1
∣∣∣p
(
ξ,
√

η2 + ρ2
)
− b
∣∣∣ dξdηdρ = 0

uniformly with respect to (x, y) ∈ Rn+1.
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