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We consider the boundary value problem for the radiative transfer equation with diffuse
reflection and refraction conditions in a system of semitransparent bodies with piecewise
smooth boundaries. For the problem with data in the complete scale of Lebesgue spaces
we establish the existence and uniqueness of a solution. We obtain a priori estimates
for the solution and show the continuous dependence of the solution on the data. The
conjugate problem is also studied. Bibliography: 8 titles.

The boundary value problem with diffuse reflection and refraction conditions describing the
monochromatic radiation transfer in a system G = G G of semitransparent bodies Gj separated
=1

by the vacuum was studied by the author in [1, 2? under rather restrictive assumptions. First,
it is assumed that every body G; has smooth boundary 0G; of class C', 0 < X < 1. However,
in practice, it often happens that bodies have only piecewise smooth boundaries. Second, the
majority of the obtained results are valid for data in the Lebesgue spaces with exponents p €
(1 + (2A\)7!,00]. Thereby the obtained results do not cover the important case of data with
finite energy, i.e., data in the Lebesgue space with exponent p = 1.

In this paper, we show that the results of [1, 2] are extended to the case of a system of bodies
with Lipschitz piecewise smooth boundary and remain valid for the problems with data in the
complete scale of Lebesgue spaces with exponents p € [1, 0o].

Assume that every body G; of the system G is a domain in R3 with Lipschitz piecewise
smooth boundary (in Subsection 1.1, we explain how to understand the piecewise smoothness of
boundary). We also assume that domains G; and G; are pairwise disjoint, but their boundaries
can intersect for some i # j.

Let Q = {w € R3| |w| = 1} be the unit sphere in R? (the sphere of directions).
The sought function I(w,x) is defined on the set D = Q x G and is interpreted as the
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radiation intensity at the point x € G when the radiation propagates in direction w € Q.

Assume that each body G; is occupied by a semitransparent medium with constant absorp-
tion »¢; > 0, scattering coefficient s; > 0, and refraction exponent k; > 1. We set »(z) = s;,
s(x) =s;, and k(x) =kj forz € Gj, 1 < j <m.

To describe the radiation propagation in G, we use the radiative transfer equation
w-VI+BI =s7(I) + »k*F, (w,z)€ D,

where

5 1o}
w-V ;:1 w oz,

denotes the derivative of I along the direction w. We denote by . the scattering operator

1
LI (w,z) = E/Hj(w, cw) (W z)do', (w,z) €D =QxGj, 1<j<m,
Q

with the scattering indicatrix possessing the following properties:

1
1
0; € L'(-1,1), 6; >0, 5/91‘(#)65# =1, 1<j<m.
21

Furthermore, B(x) = »(x) + s(z) is the extinction coefficient and F(w,z) characterizes the
density of radiation of volume sources.

The paper is organized as follows. In Section 1, we introduce the notation and prove a
number of auxiliary assertions of geometric character. In Section 2, we introduce the function
spaces and study their properties. In Section 3, we formulate the boundary value problem under
consideration and study its properties.

Basically, the logic of reasoning follows the logic of the papers [1, 2]. Some assertions in this
paper are counterparts of the corresponding assertions in [1]-[3] and can be proved in a similar
way. In such cases, we restrict ourselves to mention the corresponding references without proof
in order to avoid repetitions. However, if the proof should be essentially modified or the assertion
has no analogs, we provide a detailed proof.

1 Auxiliaries

1.1. Notation and assumptions on the boundaries 0G;
We consider R? as an Euclidean space of elements x = (21, 72, x3) equipped with the inner
3
product = -y = > 2;5,. We denote by ]z, y[ the interval joining the points =,y € R3, x # y:
i=1
Jz,y[= {ax+ (1 —a)y | 0 < a < 1}. We denote by B, (o) an open ball in R? with radius » and
center zo € R3. Let V, and V, be an open and closed disks in R? with radius 7 centered at the
origin. Assume that wy € Q and zg € R?. In R3, we introduce the coordinates with center x
and the orthonormal basis e (wp), €2(wo), €3(wo) = wo.
We consider the plane 7, = {y € R3 | wg -y = 0} passing through the origin and having
the normal vector wy. We note that the pair e;(wp), e2(wp) forms an orthonormal basis in .
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We denote by P, the operator of orthogonal projection onto the plane m,,,. Denote by measy E
the plane measure of a measurable set E C 7,,. We introduce the notation by

U wo,z9) ={x =20 +twy | t € R},
0 (wo,x0) ={x =z —twpy | t > 0},
T (wo,20) = {x =20 +two | t > 0}

for the line with directed vector wg passing through the point zy and for the corresponding rays
outgoing from the point xo. We set

VT,wo = {y € Twy ’ |y| < 7“},

VT,wo = {y € Twy | |Y| < 74}'

Let 7y be a function defined on V., and let 3(y') = y(y), where v/ = (y1,42), y = y1e1(wo)+
yoez(wo). We write v € C¥(V, ) if ¥ € CK(V,.), k = 0, 1. Similarly, we write v € Lip(V,,) if
5 € Lip(V,), i.e., if ¥ is defined on V. and satisfies the Lipschitz condition with some constant L.

Let a, 8,7 € C°(V,4,), @ < 8. We introduce the surface

I, (wo, z0) = {z =20 +y + Y(¥)wo | ¥ € Viwo}

and the curvilinear cylinder

Craplwo,zo) ={r=20+y+twy |y € Vi, aly) <t<p(y)}

with the axis ¢(wg, zg) and two lateral surfaces II, o (wo, o) and II, g(wo, xp). Assume that the
domains G for all 1 < j < m are bounded and Lipschitz. The latter means that for each point

xo € 0G; there exist a direction wy € €2, numbers 79 > 0, hyg > 0 and a function v € Lip (V.. ),
—hg < 7y < hg, such that

Gj n CTOﬁhO,ho (w07 (IZ()) - CTO,*ho,’Y(w()? .’L‘o), (1'1)
(R3 \éj) N Cro,*ho,ho (w‘)v xo) - CTO,’y,ho (wOv .730), (1'2)
an N CTO,*ho,ho (wo, :Bo) = HTO,V(W(M .21?0). (1.3)

We denote by dw and do(x) the measures induced by the Lebesgue measure in R? on Q and G
respectively.

Remark 1.1. Since 7 satisfies the Lipschitz condition with constant L, it is differentiable
almost everywhere on V,; moreover, the gradient of this function

VAly') = <§—Z(y’), g—;(d))

satisfies the inequality |V7| < L. Consequently, the outward normal n;(x) to the surface 9G;
exists for almost all « € Il ~(wo, zo), which can be written in the form

. — 1 _ﬁ /e w, —ﬁ 'e w W
(o) = e (g el) ~ LW ele) +0) (1
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In addition, we assume that for every 1 < j < m the boundary 0G; is piecewise smooth in
the following sense. There exists a closed set ¢; C 0G; such that meas (%;; do) = 0; moreover,
the outward normal exists for each point zy € 9'G; = 9G; \ ¥; and there are numbers ry > 0,
ho > 0 and a function v € CI(VTO,WO), —ho < v < hg such that for wy = n;(zo) the properties
(1.1)-(1.3) hold; moreover, 7(0) = 0 and |V'7(0)| = 0. It is clear that II, ,(n;(zo),z0) C I'G,
and the outward normal is continuous on 0'Gj.

Thus, by assumption, G consists of two parts: the “smooth” part &'G;, where the outward
normal exists and is continuous, and the set ¢;, where the boundary smoothness fails. We recall
that the set ¢ is closed and has measure zero. Hence the set 0'G; is open (in the topology
of dG;) and meas (9'Gj;do) = meas (0G;do). Naturally, the case 0G; € C! is not excluded.
Then ¢; = @ and 0'G; = 0G;.

Remark 1.2. In this paper we do not require the condition of generalized convexity of the
set G, which is often used in the mathematical theory of the radiative transfer equation [4, 5].

1.2. The sets Fji, I+, F?, I'Y and their properties

We set

0G=|]oG;, T=0x0G=|JI;, T;=0x0G;, 1<j<m,

J=1 j=1
m
- =Jry, Ij ={wa2) e2xdG;|wn(z) <0}, 1<j<m,
j=1
m
It = Fj, Fj:{(w,x)EQXQ’Gj\w~nj(ac)>0}, 1<j<m,
j=1
m
j=1

We note that I‘;-t and I'* are open sets (in the topology of set I'). It is easy to see that (w,x) € I‘j_
if and only if (—w,x) € F;r. On I', we introduce the measure dI'(w, ) = dwdo(z). On I'” and
I'", we introduce the measures

cﬁ‘_(w,x) = |w-n;j(z)|dwdo(z), (w,z)el;, 1<j<m,

Al (w,z) = w - nj(z) dwdo(z), (w,z) € Fj', 1<j<m.

We emphasize that a set E+¥ C I'* is measurable with respect to the measure dl'* if and only if
it is measurable with respect to the measure dI'. We also note that meas(E*;dl'*) = 0 if and
only if meas(E*;dTl") = 0.
Assume that F C T and w € Q. We set F(w) = {x € 0G | (w,z) € E}. Thus, for example,
I (w)={z € IGj|w-nj(x) <0},
I’;“(w) ={z € dGj|w-n;(z) >0}
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Lemma 1.1. Assume that xo € 0'G;j and € € (0,1). Then there exists r1 = ri(zg,e) > 0
such that for allw € Q, w-n;(xg) > €, and all r € (0,71], h = 4r/e,
G] N C’r‘,—h,h(wax()) = C’I’,—h,’yw (W,ZEO),
(R?) \a]) N CT,—h,h(w7 17()) = C’I’,’yw,h(w; xO)a
0G; N Cy _pp(w,xo) =1L, 4, (w, z0) C Fj(w),

Hn_h(w,l‘o) C Gj, th(w, xo) C ]Rg \Ej,
where v, € CH(Vyy w); moreover, |v,(y)| < 2|yl/e for ally € Vi, 4.

The proof of this lemma repeats the proof of Lemma 1.1 in [3] with the only difference that
zo € 0G; in [3].

Remark 1.3. By Lemma 1.1, for (w, zg) € Fj the following property holds: the line ¢(w, )
comes out from G; to the vacuum. (i.e., to the set R*\ G;), intersecting dG; at the point zo. In
other words, there exists § = §(w, z¢) > 0 such that |z, 79— dw[ C G; and ]zg, 2o +0w|[ C R*\ G;.

Similarly, for (w,xg) € Iy the following property holds: the line ¢(w, zy) comes in G from

the vacuum, intersecting G at the point x. In other words, there exists 6 = §(w,z9) > 0 such
that ]xo, 2o + dw[ C G; and g, 79 — dw[C R?\ G;.

We note that the sets F;r and I'; can be represented as countable unions

(0.] [o.¢]
+_ + - -
ri=Uxl 17 =UxK; (1.5)
/=1 /=1

of sequences of expanding compact sets. If &; = &, then

K;’rg ={(w,z) € F;r | w-nj(x) > 1/L}, (1.6)
Ky ={(w,z) €Tl |w-nj(z) < -1/4}, (1.7)
and if ¢¥; # &, then
K;’rg ={(w,z) € Fj | w-nj(z) > 1/, dist(x,%;) > 1/¢}, (1.8)
K.y ={(w,z) €T} [w-n;(z) < -1/, dist (z,9;) > 1/} (1.9)

Lemma 1.2. Let E be a measurable subset of Fj:. If measy(P,E(w)) = 0 for almost all
w € Q, then meas (E;dl") = 0.

The proof of this lemma repeats that of Lemma 1.2 in [3] and is based on the representations
(1.5). The only difference is that K;EZ are not necessarily of the form (1.6), (1.7), but can have
the form (1.8), (1.9).

Lemma 1.3. meaSQ(owg(w)) =0 forallweQand 1 <j<m.

Proof. In the case ¥; = @, this assertion is established in [3, Lemma 1.3].
Let ¥; # @. We represent F? as the countable union of expanding compact sets K](-{Z =
{(w,x) € F? | dist (z,%;) > 1/¢}. Then the set F?-(w) is represented as the countable union
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F?(w) = ;jl K]Qj(w) of sequences of expanding compact sets Kﬁé(w) ={z € dGj|w-nj(x) =

0, dist (x:%) > 1/¢}. Therefore, from the open (in the topology of the set 0G;) covering

{11,y ~(n;(z0), xo)}xoepg(w) of the set F?(w) by surfaces Il ~(nj(z0), zo) C &'G; one can extract

a countable subcovering {II,, -, (n;(xx), xx)}7>,. Arguing as in [3, Lemma 1.3], we verify that

meass Pw(Fg(w) NI, . (nj(x), zx)) = 0 for all k > 1. Hence meaSQ(PwF?(w)) =0. O
Lemma 1.4. measy (P,%;) =0 for allw € Q and 1 < j < m.

Proof. Since the boundary 0G; is closed and Lipschitz, there exists a covering of 0G;
consisting of Lipschitz surfaces Il,, ~, (w;, ;) C 0G; such that each surface is uniquely projected
onto the corresponding plane m,,,. To prove the lemma, it suffices to show that meass (P,%¥j;) =0
for all w € € provided that the set ¢;; = ¢4;N1L,, -, (w;, ;) is not empty. Since meas (¥;;do) = 0,
we have measy (P,,%;;) < meas (¥;;;do) = 0. Therefore, for any ¢ > 0 there exists an open set
O: C V;,w,; such that P, ¥;; C O, and measy O, < €. We cover each point x € ¥}; by a ball
B,.(z)(x) of a sufficiently small radius so that P,, By(,)(z) C Oc. By the 5r-covering theorem [6],
from the obtained covering of the set &;; one can extract at most countable system of pairwise
disjoint balls {B,, (x)} with ry = r(z) such that ¢;; C |J Bs,, (z5). It is clear that

k

Zmeasz (P, By, (x1)) Zwrk meass O, < €.
k

As a consequence, for every w # w;

meas; (P,9};) < ZmeaSQ P,Bs,, (x1)) 2257rrk < 25¢.
k

Since the obtained inequality holds for all € > 0, we have meas, (P,%;;) = 0. O

1.3. The sets §]i, S* and their properties
We set

THw,z) =sup{t > 0|z +sw € G Vs € (0,t)},
Xt(w,z) =247 (w,z)w
for (w,z) € D; UT'; and
T (w,z) =sup{t >0 |z —sweG; Vs €(0,1)},
(1.10)

X (waz)=2—-7 (w,z)w

for (w,x) € DjUI‘;r. We note that X=(w,z) € 0Gj; moreover, (w, XE(w,z)) € F;tUI’(;-U(QX%).
We introduce the sets

={(w,x) €T} | (w, X" (w,2)) €T},
= {(w, )€F+!(wX (w,)) € T5}.

Lemma 1.5. The sets §J_ and S;-r are open (in the topology of the set I';), and the map-
ping (w,z) = (w, X (w,z)) is a homeomorphism from §; onto :S’\;r with the inverse (w,x) —

(w, X~ (w, z)).
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Lemma 1.6. A set B~ C gj_ 1s measurable with respect to the measure dr— if and only if
its image B+ C :S’\j"' under the mapping (w,z) — (w,)A(+(w,$)) is measurable with respect to the

measure dI'"; moreover, meas (E;dl'") = meas (E~;dI"™).
The proof of Lemmas 1.5 and 1.6 repeats that of Lemmas 1.4 and 1.5 in [3].

Lemma 1.7. meas (th \ §ji, dr+) = 0.

Proof. Assume that w € Q and z € F;-t(w) \ §;ﬁ(w) Then X*(w,z) € F?(w) U ¥; and,
consequently, P,z € Pw(Fg (w) U¥;). By Lemmas 1.3 and 1.4,

meass Pw(Ff(w) \ §Ji (w)) < measy P, (T°(w) U¥) = 0.
To complete the proof, it remains to apply Lemma 1.2. ]
* *
1.4. The sets Sji, S+, Sji, S* and their properties

We recall that 0G; and 0G; can intersect for some i # j. We set

9Gy; = 0Gi N Gy, ZJZLJEJW Y= U 0Gi;, 1<j<m.

i=1 i=1,i#j
We introduce the sets
m
S* = US]i, S]i:{(w x)EI’jE\xea/Gj\Ej}, 1<j<m,
=1

sE=JS5 SF={war)eS [Fwr)nG=a}, 1<j<m,

It is clear that the sets Sj-E and ST are open (in the topology of the set T'). We note that the

* p—
set ST consists of (w,z) € ST such that the ray ¢*(w, ) does not intersect G.

*
Lemma 1.8. The sets Sf are open (in the topology of the set I'). As a consequence, the

*
sets ST are open.

Proof. Let (wp,z) € Sj. From Lemma 1.1 and the fact that S;-“ is open it follows that
there exist € > 0 and h > 0 such that for (w,z) € I'; the inequalities |w—wp| < € and [z —xzo| < €
imply (w,z) € S;“ and z +tw ¢ G for all t € (0, h).

We show that there exists €1 € (0,¢] such that for (w,z) € F;’ the inequalities |w — wp| < €1

and |x — zo| < €1 imply (w,z) € g’;r Assume the contrary. Then for every k > 1 there exist
(wg, k) € S;f and t;, > h such that |wp — wo| < €/k, |Tx — 20| < €/k, and x), + tpwi € G.
The boundedness of the set G implies the boundedness of the sequence {t;}7°,. Therefore,
there exists a converging subsequence {tj, }3°, such that sllglo tg, = to = h. As a consequence,

_ * *
xo + towo € G, which is impossible since (wp,xg) € Sj'. Thus, the set Sj is open. Since
*

- — *+ *_ .
S; ={(w,z) € 5] | (~w,z) € ST}, the set S is also open. O
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* ~

Lemma 1.9. meas (SF;dl'") = meas (S~;:dI"™) > 0.

Proof. We fix w € Q) and consider the orthogonal projection of the set G onto the plane 7.
It is clear that meass P,G > 0. At the same time, meass (P,I'’(w)) = 0 and measy (P,%4) = 0
in view of Lemmas 1.3 and 1.4. Consequently, there exists a point zy € G such that P,xg ¢
P,(I'(w)U¥). We set tg =sup {t > 0| zg + tw € G}. It is clear that x = zg + tow € G and

0 (w, ac) NG = @. Since P,x = P,xg gé P,(I(w)U%9), we have (w,z) € St By Lemma 1.8,

the set S is open. Therefore, meas(b”r dI't) > 0. Since 5 ={(w,x) €T | (~w,z) € ST},

we have meas (S‘; dl'~) = meas (S+; dr+) > 0. O
1.5. The sets S* and their properties

Let (w,z) € ST\ S+, Then the ray {*(w,z) intersects G. We set
7 (w,z) =inf {t >0 |z +tw € G},
Xt w,z) =2+ 77 (w,2)w.
It is clear that 77 (w,2) > 0, X T (w,7) € G, and (w, X (w,z)) €T~ UTON (2 x ). We set
5 = {(w,2) € ST\ 5T | (w, X (w,z)) € TV,

Similarly, let (w,z) € S\ g_. Then the ray £~ (w,z) intersects G. We set
7 (w,x) =inf {t >0 |z —tw € G},
X (wz)=2—-—7 (w,2)w.
It is clear that 7~ (w,x) > 0, X~ (w, ) € G, and (w, X~ (w,z)) e TTUTOU (2 x ¥). We set
= {w2) ST\ | (w, X (w,2)) €T}

Lemma 1.10. The sets ST and S~ are open (in the topology of the set T'), and the map-
ping (w,z) — (w, X (w,z)) is a homeomorphism from S* onto S~ with the inverse (w,z) —
(w, X~ (w,x)).

Lemma 1.11. A set E* C ST is measurable with respect to the measure dU" if and only if
its image E~ C S~ under the mapping (w,x) — (w, X T (w, x)) is measurable with respect to the
measure dI'~; moreover, meas (E*;dl'") = meas (E~;dI'™).

The proof of Lemmas 1.10 and 1.11 repeats the proof of Lemmas 1.7 and 1.8 in [3].

Lemma 1.12. meas (5% \ (ST U gi) dl*) =0

Proof. Assume that w € Q and z € S (w)\ (5% (w)USE(w)). Then X+ (w,z) € (W) UY.
Therefore, P,z € P,(I'’(w) U¥). By Lemmas 1.3 and 1.4, we have

measy P, (S (w) \ ( Fw)U Si( ))) < measy P, (I'(w) U¥)
Z measy P, (I (w)) + Z measy P,%; = 0.

j=1 j=1

To complete the proof, we apply Lemma 1.2. O
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2 Function Spaces and Their Properties

2.1. Spaces of functions defined on ' and '™

Let ET be a measurable subset of I'* with respect to the measure dI'. We denote by M(ET)
the set of functions defined on E* and measurable with respect to the measure dI'. We denote
by LP(E*) and Lp(Ei) < p < 0o, the Banach spaces of functions g € 9M(ET) equipped with
the norms

1/p
([lseoraewn) " 1<p<,
HQHLP(Ei) = E*
esssup |g(w, )|, p= oo,
\ (w,x)EE*
N 1/p
([sopirsewn) " 1<p<o,
||9||Ep(Ei) = +
esssup |g(w, )|, p = 00,
\ (w,x)EE*

respectively. It is clear that L (E*) = L>®°(E*).

We introduce the space L}, C(Fi) as the set of all functions g € mt(ri) such that g € LP(K)
for any compact subset K C Fi It is clear that LP(Fi) C Lp(I’i) C LfOC(I‘i) forall 1 < p < oo.
The space LV (I'F) is deﬁned in a similar way.

We will use the spaces Ll’p(Ei) of functions g € M(ET) that, defined by zero on I'*t \ E*,
have the finite norms

m

(> /1] \g(w,muw-nj<x>\dw}”da<x>)”p, 1<p<oo,

j=18/G_ Qi
9l 10y = P

i
8

max — esssup l9(w, z)||w - nj(x)| dw, D
1<j<m praer

"o (@)

Hereinafter,
Qj(x) ={w e Q| w-nj(x)> 0},

Q; (z) ={w € Q|w-n;(z) <0}

It is clear that L1 (E¥) = LY(EF).

Let B+ = U1 Ei where Ei {(w,z) € f‘ji | z € M;}, and the sets M; C 0'Gj, 1< j<m
J

are measurable. We denote by L2 . (E¥) the space of functions g € LP(E¥) such that g(w, )
is independent of w € Q (z) (ie., g(w,z) = g+(x)) for almost all z € M; and all 1 < j < m.

We equip the space LP, . (ET) Wlth the norm

1/p
(Zugiuw )" reres

max 19+ Il Lo (a1, p=

const (

lgllzz

conbt ) -
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2.2. The spaces LP(D;), LP(D) and the change of variables (w,z) — (w,2’,t)

m
We recall that D =Q x G = |J Dj, where D; =Q x G, 1 <j < m.
j=1
Let 1 < p < co. We denote by LP(D;) and LP(D) the Banach spaces of functions f on D;
and D respectlvely that are measurable with respect to the measure dw dxr and have the finite

norms
1/p
(/ If(w,w)l”dwdx> Cl<pen
D;

| fllzr(p;) =
esssup | f(w, )], p=oo,
(w,x)eD;
1/p
([1reoraun) ", 1<p<x.
Iflle(py =19 "D
esssup|f(w,z)|, p=
(w,x)ED

We emphasme that for all w € Q an arbitrary pomt x € G is uniquely represented in the
form z = 2’ +tw, where (w,2) € '} UFOU(QX%) =X (w, 3:) t=7"(w,z) € (0,77 (w,2)).
We introduce the sets
Q; ={(w,2',t) €Sy xR[te (0,7 (w,2))},
Dj = {(w,2) € D;| (w, X" (w,2)) € 5}, (,X*(w,2)) € §F}.
Lemma 2.1. The set Q s open in the topology of the set I'; x R, the set ﬁj s open in the

topology of the set Q x R3, and the mapping (w,2',t) = (w, 2’ + tw) is a homeomorphism from
Q; onto D with the inverse (w,z) — (w, X~ (w,z), 7 (w, z)).

Lemma 2.2. A set £ C ﬁj 1s measurable if and only if its image E C Q; 1s measurable
under the mapping (w,z) = (w, X~ (w,x),7 (w, x)); moreover,
meas (E, dwdz) = meas (E; df*dt)
The proof of Lemmas 2.1 and 2.2 repeats the proof of the corresponding assertions in [3].
Lemma 2.3. meas (D; \ ﬁj; dwdz) = 0.

Proof. Let (w,z) € D; \ D;. Then X*(w,2) € T(w) U or X~ (w,2) €TY(w)UY,. Asa
consequence, P,x € P, (T ( )UY;).

We denote by x the characteristic function of the set D; \ﬁj and by d; the diameter of Gj.
By Lemmas 1.3 and 1.4,

meas (D; \ Dj; dwdx) = / Y(w,z) dwdz = /[/(/ (w,y + tw) dt) dy] dw

OxR3
< /[ / (/x( w,y + tw dt)dy] dw /d] meas 5 (P, %(w)) +meas s (P,%;)] dw = 0.
Q P,(Mwuy;) R Q
The lemma is proved. -
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Lemma 2.4. Assume that f defined in D; and ]7 defined in Qj_ are such that

flw,a' 1) = flw, 2 +tw) V(w,2',t) € Q5.

Then the following assertions hold:

1) f is measurable in Dj if and only iff s measurable in Qj_,

2) f € LY(D;) if and only sze Ll(Q;); moreover,
/fwxdwdx—/fthdf‘ (w,z") dt. (2.1)
o
The proof follows from Lemmas 2.3 and 2.2.
Theorem 2.1. Let f € L*(D;). Then

_?*(w,x’) .

flw, z) dw da = flw, 2 + tw) dt|dl' ™ (w, 2"), (2.2)
Jreoee L] |
_?‘(w,x’) )

flw,z)dwdx = flw, 2’ —tw)dt c?I’Jr(w, 2). (2.3)
freomi [ ] e

Proof. Formula (2.2) is obtained from (2.1) since from the Fubini theorem and the equality
meas (I';\ S . dl~ ) = 0 valid in view of Lemma 1.7 it follows that

7 (w,a’) 7H(w,z’)
/fth)df(wx)dt /[ /fthdt]df (w,z") /[ /fwx—i—twdt}df( ).
Q; S; ry 0
Formula (2.3) is obtained from (2.2) with w replaced by —w. O

2.3. The spaces #?(D;) and #?(D)

By the weak directional derivative of a function f € L (D;) along a direction w we understand
a function w € L'(D;) satisfying the integral identity

/(f(w,x)w Vo(w, ) + w(w, 2)p(w, z)) dwde =0
D;

for all functions ¢ € C(D;) such that p(w,-) € C§°(G;) for almost all w € Q. For this function
we use the notation w =w -V f.

We denote by #P(D;) the linear space of functions f € LP(D;) possessing the weak direc-
tional derivatives w -V f € LP(D;). The space #P(D;) equipped with the norm

1/p
y Tllw- \Y% , 1< p<oo,
oo = (11 + 190 VA )
maX{Hf”Loo (Dj)> [w-VfllLe Dj)}a D =0,
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becomes a Banach space.

We denote by #P(D) the Banach space of functions f € LP(D) such that f € #P(D;) for
all 1 < 7 < m, equipped with the norm

P P 1/p
LP(D ’ Lp(D ) X s
[l ()"’HW VI (D) I<p<o

| fllwv (D) =
maX{HfHLOO(D)7 |- VfHLoo(D)}a p = Q.

Let C(Ovl)(ﬁj) be the set of continuous functions ¢ on Ej possessing continuous partial

8;007 1 <i<3,in Dj. It is known [5] that for Lipschitz domains and 1 < p < oo the
set C(ON(D) Zis dense in #P(Djy).

We recall how to introduce the traces f|p+ and f|p— of a function f € #P(D), 1 < p < o0,
onI'" and I'". Since I't = 'lef;r, I~ = CJIFJ-, it suffices to define the traces f|F;r and f|1“j— on
Fj' and I'; for every 1 < j J< m. '

For f € C(ON(D;) the traces f|F?[ are naturally defined as the restrictions of f on I‘;t. Let

1 < p < oo, and let K* be arbitrary compact subsets of I’;-—L. Then [7]

derivatives

Iflex ey < ex=fllwen;) VF € cOV(Dy), (2.4)

where the constants cy+ depend only on K¥, Gj, and p. Although these estimates are proved
in [7] only for domains G; with smooth boundaries, the proof remains true for domains with
piecewise smooth boundaries.

Since the set C(O1) (D) is dense in #?(D;), the estimate (2.4) allows us to extend the linear
operators f — f ‘Ff to linear continuous operators acting from #7(D;) to LP(K +) and satisfying

the estimates
||f\rj+\|Lp(K+) < cxtllfllwrpyy YV EWP(Dy).

Since the sets F;.t can be represented as the countable unions (1.5) of expanding compact sets,
functions f € #?(D;), 1 < p < co. have the traces f|p+ € L (Ff) As a consequence, all
J

loc

functions f € #P(D), 1 < p < oo, have the traces f|p+ € LF (I'F).

loc

Remark 2.1. It is easy to see that for 1 < p < oo the linear trace operators f — f|px+,

regarded as operators from #P(D) to L} (I'F), are restrictions of the same trace operators,
regarded as operators from #1(D) to L{

loc(Fi)'
Remark 2.2. Since #*°(D) C #P(D) for all 1 < p < oo, the traces are also defined for
[ € #°(D); moreover, f|p+ € L>(I'*) in view of Theorem 2.3.

2.4. Additional information on properties of functions in the space % (D)

Theorems 2.2 and 2.3 below provide an additional information about the properties of func-
tions in the space #P(D;). In fact, these theorems contain different from, but equivalent to the
above definitions of the directional derivative w -V f and traces f[.+, f|p-.

J J

Theorem 2.2. A function w € L'(Dj) is the weak directional derivative of f € L'(D;)
along a direction w (i.e., w = w - Vf) if and only if the following property holds: for almost all
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(w,2) € L' the function f(w, 2’ + tw), regarded as a function of the variable t, belongs to the
space WHH(0, 7+ (w, 2")) and

d ~
%f(w,a:’ + tw) = w(w, 2’ +tw) for ae t € (0,7 (w,z")).
In the case of domains with smooth boundaries, the proof of this theorem can be found
in [3], where the smoothness assumption was used only to have the possibility to apply formula
(2.2). By Theorem 2.1, formula (2.2) is also valid for domains with Lipschitz piecewise smooth
boundaries. Therefore, the reasoning remains valid in the case under consideration.

Corollary 2.1. A function w € Ll(Dj) 18 the weak directional derivative of a function
[ € LY(D;) in a direction w if and only if the following property holds: for almost all (w,z') €
I’;r the function f(w,z’ — tw), regarded as a function of the variable t, belongs to the space
WL 0,77 (w, 7)) and

%f(w, v —tw) = —w(w, 2’ — tw) for a.e. t € (0,7 (w,a')).

Corollary 2.2. Assume that f € #P(D;), 1 < p < oo, and fIMNT — max{min{f, N}, M},
where M and N are constant, —oo < M < N < oco. Then f[M’N] € Wp(Dj), w - Vf[M’N] =0
on Eyyn ={(w,2) €Dj | f<Mor f=N}, andw-VfIMN = .Vf in D;\ Eyn.

The proof of this corollary is based on Theorem 2.2 and actually repeats the proof of the
corresponding assertion in [3].

Theorem 2.3. Let f € #P(D;), 1 < p < oo. Then for the traces f|.- and f|.+ the
J J
following formulas hold:

f\rj_ (w,x) = liiloipf(w’x +tw) forae (wzx)el, (2.5)
f‘rj (w,z) = lirilofipf(w,x —tw) fora.e (w,x)€ F;‘. (2.6)

In the case of domains with smooth boundaries, this theorem was proved in [3]. Repeating
the proof in [3] and taking into account Theorem 2.2, we obtain Theorem 2.3.

Remark 2.3. Formulas (2.5) and (2.6) are convenient by the possibility to compute the
traces of a function f via its values without modifying f on a set of measure zero or constructing
an approximate sequence of smooth functions.

Corollary 2.3. If f € #(D;), then fl+ € L=(T}) and ||flp+ |l oy < 1 fll(n,)-

Corollary 2.4. If f € #P(D;), 1 <p<ooand f >0, then fl+ >0, f[- >0.
J J

The following important theorem asserts that any function f € Wl(Dj) can be modified on
a set of measure zero in such a way that becomes a function that, regarded as a function of the
variable z, for almost all (w, ') € T'; is absolutely continuous on the interval Jz', X (w, 2)[.

Theorem 2.4. For any function f € #1(D;) there exists an equivalent function J?E w1 (Dy)
such that for almost all (w,2') € L'y the function f(w, 2’ 4+ tw), regarded as a function of the
variable t, is absolutely continuous on the interval (0,71 (w,2’)).
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Proof. We consider the function

7 (w,a’)
£ / — 1 / ~+ / /
f(w,:c,t)—m / [f(w,2" +sw)— (T H(w,2') — s)w- VI(w,2' + sw)] ds
0
¢
—I—/w-VI(w,x'—i—sw)ds. (2.7)
0

on ;. We note that this function is measurable on @} (recall that 71 is continuous on ,SA”;)

We also note that for almost all (w,z’) € §J_ the function (2.7), regarded as a function of the

. d -
variable ¢, is absolutely continuous on the interval (0,71 (w,x)) and p flw,2',t) =w-VI(w,2'+

tw). It is easy to see that

7 (w,z’) 71 (w,z’)
/ f(w, r',8)ds = / flw, 2" + sw)ds.
0 0

By Theorem 2.2, for almost all (w,2’) € §; the functions f(w,a/,t) and f(w,2’ + tw) are
equivalent on (0,7 (w,z’)). Since these functions are measurable on Q; , we conclude that

~

fw,2’,t) and f(w,a’ + tw) are equivalent on Q. By Lemma 2.2, the function f(w,z) is
equivalent to the function fv(w, x) = J/”\(w, )?*(w, x), 7 (w,x)) on lA)j. To complete the proof, it
remains to note that for almost all (w,2’) € §J_ the function f(w, ' + tw) = f(w,2’,t), regarded
as a function of the variable ¢, is absolutely continuous on the interval (0,71 (w,z’)). O

Remark 2.4. By Theorem 2.4, the function f € #'(D;) can be modified on a set of measure
zero in such a way that formulas (2.5) and (2.6) take the following simpler form:

—(w,x) = 1i , t for a.e. (w,x) e},
f\rj(wx) t_1>r51+f(w3:+ w) for ae. (w,z) €T

— 5 _ +
f|F;f(w,a:) = tg%1+ flw,z —tw) forae. (w,z)€l].

2.5. The spaces %’(Dj) and %(D)
We introduce the spaces
WE(D;) = {f € WP(Dy) | flp- € LP(I7)},
WD) ={f e WP(D)| fle- € IP(T7)},
where 1 < p < oo. We note that VZ\OO(DJ-) =W>(D;) and VZ\OO(D) =W>(D).
Theorem 2.5. Let f € %(Dj), 1 <p<oo. Then flp+ € Ep(Fj) and the Green formula
holds: ’
/w -V f dwdz = /f|r_+cir+ - /f|F_ dr-.
J J
D;j rt ry
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Furthermore,

[P € 7N D;), w - VIfIP =plf P sgn (fw- V/, prHp;c =l 1P,

/ - VIfIP doodo = |l 15, ey = 1T 1

D;
The proof of this theorem repeats the proof of Corollaries 2.8, 2.9, and 2.10 in [3] and is
based on Lemmas 1.5, 1.6, 1.7, 2.3 and Theorems 2.2, 2.3 of the present paper.

Corollary 2.5. The following estimate holds:

74 1 sy DUy - ¥ Flinioy + Ul 12,y ¥F€FHD). (28)

Corollary 2.6. Let f € %’(Dj), g€ %"(Dj), 1 <p<oo. Then

/(w Vf)gdwda:—i—/fw Vg)dwda:-/f]r+g\F+dF /f\F g\r dr—.

D; rr ry

Throughout the paper, p’ denotes the Holder conjugate exponent of p.

Remark 2.5. It is natural that for functions in the space ”///\p(D) we have analogs of Theorem
2.5 and Corollaries 2.5, 2.6 with replacements of D; by D and F;t by I'*.

2.6. The spaces %’(D]’) and %’(D)

Let 1 < p < co. We denote by Wp (Dj) the space of functions f € #P(D;) whose traces
flp+ are independent of w € jS( ) (ie., f’ri (w,x) = flp=(x)) for almost all z € I'G}.
J J J

Theorem 2.6. Let 1 < p < co. The traces of a function [ € #? (D (Dj) possess the properties
f\rf € Lionst(T'), f|r+ € LP(F+), and the following estimates hold:

1l llr, oy < Crpllfllwpy) YV f e D), (2.9)

||f|pj+||zp(rj+) < Copllfllyrp,y Y IfeWP(Dy), (2.10)

where the constants C1 and C, are independent of f.

Proof. In the case p = oo, the assertions of the theorem are obvious. Let 1 < p < oo. Since
the domain G} is Lipschitz, for every points xg € 0G; there exist a direction wp € €2, numbers
10 > 0, hg > 0, and a function v € Lip(V ), —ho < v < hg such that (1.1)—(1.3) hold.

We set Q. o, = {w € Q| |w+wo| < e}, where € = ﬁ
the function 7. From (1.4) it follows that for almost all x € IL,, ~(wo, o)

and L is the Lipschitz constant of

1
wo - nj(T) > ———= = 2¢.

V1+ L?

Therefore, w - n;(x) < —¢ for all w € Q. ,,, and almost all z € II, ,(wo, o).
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Let (w, x) € Ueyr(wo, o) = Qoo X I (wo, 20), where r < $min{rg, ho/L}. Let t € (0,9),
where § = £ min{rg, ho}, and let y = P, (z — ). Then

r+tw=1z04+y+tPyw+ (Y(y) + tw - wo)wo

and it ib clear that |y + tP,w| < 7+ 0 < ro and y(y) + tw - wg > —L|y| — 6 > —hg. Since
2\/1+_L < 1/2 and |w + wp| < €, we have

L<(2), wwy<e?/2-1<-7/8, |Pyw|l=+v1-|w-w|?<e.
By the Lipschitz condition,
Y(y) + tw - wo — Y(y + tPy,w) < Lt|Pyyw| + tw - wo < t(Le —7/8) < —3/8t < 0.

Thus, z + tw € Cp _p,~(wo,x0) C G for all (w,z) C Ue(wo,z0) and ¢ € (0,9).
From Theorems 2.2 and 2.3 it follows that for almost all (w,z) € Ue,(wo, zo)
¢
f\F () = flw,z + tw) —i—/w Vf(w,z+sw)ds forae.te(0,0).
0

Taking into account that § < 7 (w, ), from the last inequality we find

1) § »
fles (@) < (%/f(W,$+tw)|dt+/|w-Vf(w,x+tw)|dt>
0

0
71 (w,z) 71 (w,)
<2r it / |f (w, z + tw)|P dt + 2P~ 1P~ 1 / lw -V f(w,z + tw)|P dt.
0 0

Using (2.2), we obtain the estimate

F(w,)
/ |f|F'(x)|p(/l\F_(w,a:)<2p_15_1/[ / yf(w,x+tw)|fﬂdt]c?r—(w,x)
J
Us ,r(wo,20) r; 0

1)
e [ Jo s+ tw>|pdt] a0 (w0, 2) =26 (11 0 o V )

Ty
Since |w - nj(z)| > € for almost all (w,x) € U, (wo, o), we have the inequality

e 108 (e s )| Flo= 2, oy < 257 1 Wy + 7 0 D ).

Thus, the following estimate holds:
T R X ] 11 (A (2.11)
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We cover each point zy € 0G; by surfaces of the form I, (wp,zo). From the obtained
covering we extract a finite subcovering {Il,, -, (wk, z)}2_, and arrive at the estimate

=z
=

115 W) < D01 Wty oy < D2 ol iy = Clal T

k=1

The estimate (2.9) is proved. Taking into account (2.8), we obtain the estimate (2.10) from the
estimate (2.9). ]

Corollary 2.7. Let 1 < p < oo. The traces of a function [ € #7P (D " (Dj) possess the properties
f‘r* € Lionst (T ), f‘r; € Lp(Fj ), and the following estimates hold:

17l sz, oty < Cuallflwen, ¥ F € FD;),

||f|rj— pr(r;) < O2,p||f||WP(Dj) Vfe Wf(Dj)a
where the constants C1, and Cy,, are independence of f.

To prove the corollary, it suffices to note that the mapping f(w,z) — f(—w, ) is a mutually
one-to-one isometric mapping from %7 (D;) onto ”//p (Dj).

Corollary 2.8. %(Dj) C “/Z\I’(Dj) for all 1 < p < oo0; moreover, %’(Dj) is a closed
subspace in WP (Dj).

We denote by %)(D) the space of functions f € #P(D) such that f € %’(Dj) for all

1 < j < m. It is clear that for # (D) analogs of Theorem 2.6 and Corollaries 2.7, 2.8 are valid
with the only difference that D; and F]i should be replaced with D and T'* respectively.

3 Boundary Value Problem for the Radiative Transfer Equa-
tion with Diffuse Reflection and Refraction Conditions in a
System of Bodies with Piecewise Smooth Boundaries and Its
Properties

We proceed with the main objective of the study in this paper: the boundary value problem for
the radiative transfer equation with diffuse reflection and refraction conditions in a system of
bodies with piecewise smooth boundaries.

3.1. Statement of the problem

We briefly describe the statement of the problem under consideration (cf. details in [1]).

The unknowns are a function I(w,z) defined in D = Q x G and interpreted as the radiation
intensity at a point x € GG, when the radiation propagates in a system of bodies in direction w
and a function J(w,x) defined on S~ and interpreted as the intensity of the radiation falling
from the vacuum on X at a point x in direction w. This pair of functions is a solution to the
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following problem:

w-VI+BI =sS(I)+ »k*F, (w,z)€ D, (3.1)
lp-=Z; (Ilr+) + 25 (J),  (w,2) €57, (3:2)
I|F; = %dfij(llrj) + %}j(ﬂrj)» (wz)eT; =T, N Fj, i# 7, (3.3)
J=TZ(J)+ TP (I|r+), (w,z)e S, (3.4)
J=J., (w,z)€5 . (3.5)

It is assumed that we are given the functions F' € LP(G) and J,. € El’p(g_), 1 <p < oo,
interpreted as the volume radiation source and the intensity of the radiation falling on a system
of bodies from the vacuum and coming from outside. The condition (3.3) is imposed for those
i # j for which meas (0G;j;do) > 0.

3.2. The diffuse reflection operator and the diffuse refraction operator

The operators of diffuse reflection %, %’; and operators of diffuse refraction &2, 9; are
introduced as follows. Assume that ¢ € L'(S1) and ¢ € L(S™). We set

Ry () (w,2) = pjf) / P 1) ny(x)dot, (w,a) €Sy, 1<j<m,
QF (2)
afWwo =22 [ sl m@ld, @oes), 1<i<m,
07 (2)
— 1_pj(‘,r) Vi i Vi — .
‘@d (W(W,m):T ¢(W7x)|w nj(w)’dwa (O.),CU)ES]-, 1<]<m7
2 (@)
+ ]‘_pj_(x) / / 1 + .
Pl (p)(w,x) = — pw, z)w  nj(z)do’, (w,x) €S, 1<j<m.
oF ()

The quantity pj[ characterizing the reflective ability of the surfaces dG; are connected by the
equality

1
- _ ).
L —=p; _ﬁ(]-*pj)a
J
moreover, p;E € L>*(0G;) and 0 < pjc < 1. We assume that

— _ +
p= 121]%!% Iz a6;) < 1.

Remark 3.1. Applying the operators %’ff and L@j, we obtain functions defined on ST, but
independent of w.
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The operators %, and 2, .. are defined as follows. Let i # j, and let meas (0G;; do) >
We set I';; = F;rl = Fl ﬂ Fj. Assume that ¢ € L (F:;) and ¢ € L (F;rl) Then

Ry (o) (w,z) = Pij(7) / P, z) W ni(z)do’,  (w,x) €T, (3.6)
Of (=)
Py () x) = - pﬂ / b o) (@) dof,  (w,2) € TS, (3.7)
Q+ (z)

The quantities p;; characterizing the reflective ability of the surfaces 0G;; = 0G; N 0G; are

connected by the equality
]{72
L—=py = (1- sz)kzv

moreover, p,;; € L>(0G;;) and 0 < pi; < 1. If bodies G; and G are separated by an infinitely
thin vacuum layer, then the following equality holds [1]:

(1—p)A=p))
1—pipf

Py =1—

Remark 3.2. Applying the operators ,@J - and 32 , we obtain functions defined on I';;
but independent of w € Q. (z).

It is easy to see that the following assertion holds.

Lemma 3.1. 1. For all 1 < p < oo the operators #; and '@d are linear bounded operators
acting from LYP(S*) to LF (S_) and from LYP(S™) i to LP

const const

(ST) respectively.
2. For all 1 < p < oo the operators &2 and L@Jr are linear bounded operators acting from
LYP(S7) to LE, . (S7) and from L*P(S*) to LE

const const

(S+) respectively.
3. For all1l < p < oo the operators %" cand P i are linear bounded operators acting from

El’p(l“;;) to L” (I';;) and from Zl’p(l“;;) to Llc’onst(F;j) respectively.

const
3.3. The translation operator T
The translation operator 1" is defined by

olw, X (w,x)), (w,z)e€ §*,

Telw,) = {0, (w,z) € S7\ S-.

From the properties of the sets S—, S* and the mapping (w,z) — (w, X (w,z)) indicated
in Lemmas 1.10 and 1.11 we obtain the following assertion.

Lemma 3.2. For all 1 < p < oo the operator T is a linear bounded operator acting from

LP(S) to LP(S™); moreover, ||T”EP(§+)—>EP(§—) =1 and

/TWTF— = /Wiﬁ Ve LYSH).

S— S+
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3.4. The operators %, and %y
We recall that the function .J in the statement of the problem (3.1)—(3.5) is such that
J=TZ;(J)+ TP (I|r+), (w,x)e S, (3.8)

*

J=J. (w,x)esS. (3.9)
We also recall that

*

meas (S~ \ (S”US7); dI') =

Let I|p+ € LYP(ST), and let J, € El’p(g’_). We set J, = 0 on S™\ 5~ and reduce the

system (3.8), (3.9) to the equivalent equation
J=TRZ(J)+ TP (I|r+)+ J., (w,z) €S, (3.10)
From [1, Lemma 4.6] it follows that
||T%J"E1,p(s—)_>fl,p(s—) <pr<lL
Hence a solution J € L'P(S™) to Equation (3.10) exists, is unique, and is represented as
J = Ballr+) + CalJs),

where the linear bounded operators %, : El’p(Sﬂ — Zl’p(S*) and 6y : Zl’p(S*) — El’p(S*)
are defined by

o
By(Ilr+) =Y (TR TP} (I|r+),
/=0

Ca(J.) = Z(T«%’I) J..
=0

3.5. Statement of the problem

Excluding the function J = %4(I|r+) + €4(J,) from the problem (3.1)—(3.5), we obtain the
boundary value problem

w-VI+ Bl =s7(I)+ »k’F, (w,z)€ D, (3.11)
I|F_ :%d(I|F+)+€d(J*)7 (w,:n) el (312)

where F' € LP(D), J, € El’p(S*) 1 < p < oo, whereas the linear bounded operators B, :
IP(TH) = IP. . (I7) and €4 : LMP(S™) — [P (') are defined by

const const

Ky (Lp+)(w, ) + Py Bal|p+)(w, x), (w,x) €57,

B(Ilr+)(w,z) =
allr+)(w, ) Ryii I\F+)(w )+ Py, (I\F+)(w z), (wx)€ely, i#],

P Cq(Js)(w,x), (w,x)e S,

Ca(Ju)(w,®) = 0, (w,2) €T\ S~

By a solution to the problem (3.11),(3.12) we mean a function I € %)(D) that satisfies
Equation (3.11) almost everywhere in D and the condition (3.12) almost everywhere on I'".
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Remark 3.3. The following important fact has not been paid due attention in [1], where
the solution I was understood as a function in the space #7(D). As a result of the action of the
boundary operators 8 and € on I|p+ and J,, we obtain functions independent of w. By (3.12),
Ilp- is independent of w and, consequently, any solution I € #?(D), automatically belongs to
the space #?(D) (cf. Theorem 2.6).

3.6. Auxiliary problem

In the proof of the existence of a solution to the problem (3.11), (3.12), the following auxiliary
problem was essentially used:

w-VI+ ;I =f (w,z)€ Dy, (3.13)
I|1’Y‘ = 97 (UL),.CL‘) € F;a (314)
J

where f € LP(Dj), g € EP(I‘]-_), 1 <p< oo, ffj =const > 0.

By a solution to the problem (3.13), (3.14) we mean a function I € #P(D;) that satisfies
Equation (3.13) almost everywhere in D; and the condition (3.14) almost everywhere on I';". It
is clear that I € %’(Dj).

The proof of the following theorem in the particular case where the domain G; has smooth
boundary and p = oo can be found, for example, in [7, 8]).

Theorem 3.1. A solution to the problem (3.13), (3.14) exists, is unique, and is represented
in the form

(w,z)

I(w,z) = e P77 @0 g X~ (w,2)) + / e Pisf(w, o — sw)ds, (w,x) € Dj, (3.15)
0

where 7~ (w, ) and X~ (w,z) are defined by (1.10). For 1 < p < oo the solution satisfies the
estimates

12lzncy) < (87717 Wi, + B 912, o) (3.16)

oo+ ¥ Tze(y) < 201 Won,y + 85 912, o) (3.17)
and for p = o

121l oo (py) < ma {85 1 £l 0,5 N9l e ey } (3.18)

lw - V| oo (p,) < 2max { || fll Lo (p,); 5j||9||Loo(r].—)}- (3.19)

Proof. We first assume that f € L'(D;) and g € Zl(FJ_) We pass from the variables
(w,x) € IA)j to the variables (w,2’,t) € Q;, where z = 2’ + wt, 2’ = X (w,z), t =7 (w.z),
(w,2') € S’\; We recall that meas (I'; \ §;, c?F_) = 0 and meas (D; \Bj; dwdz) = 0.

By Theorem 2.4 and Corollary 2.4, the sought function I € #1(D;) can be modified on a
set of measure zero in such a way that the obtained function is a solution to the problem (3.13),
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(3.14) if and only if for almost all (w,2’) € §J_ the function I(w, 2’ + tw), regarded as a function
of the variable ¢, is absolutely continuous on (0,71 (w, z)); moreover,

%I(w,x' +tw) + Bl (w, 2’ + tw) = f(w, 2’ +tw) for ae. t € (0,7 (w,2)), (3.20)
lim I(w,2’ + tw) = g(w,z’). (3.21)
t—0+

Thus, a function I € #1(D;) is a solution to the problem (3.13), (3.14) if and only if for almost
all (w, )ESJ and all t € (0,71 (w,2"))

¢
IHw, 2" +tw) = e Pitg(w, z') —i—/e flw, 2’ + Tw)dr. (3.22)
0

The existence and uniqueness of a solution I € #1(D;) are established. Formula (3.15) is
obtained from (3.22) by passing to the variables (z,t).

Now, f € LP(Dj) and g € Ep(Fj_), 1 <p < oo Let IVl = max{min{I, N}, —N}, where
N > 0 is a parameter. We denote by xn the characteristic function of the set {(w,z) € D; |
|I(z.w)| < N}. Multiplying Equation (3.20) by pxn/|I™VP~1 sgn (11M), we get

w - VNP 4 Bip xw [TV = p [TV P sgn (TN £ < By(p — Dxen [TV + 877 17

which implies
w - VNP 4 Bixn | TVIP < 872 £1P,

Integrating the obtained inequality over D;, we find

1—
IIIN]IF+||LP rh) + Bl I ™M o,y < TN 11 y+ 85 I o

Le(ry)
<w%mw+@ﬂmmD
J

Removing the first term on the left-hand side of the obtained inequality and passing to the limit
as N — oo, we arrive at the inequality

Bl o,y < 191, -+ 85 N 10

Thus, I € LP(D;) and the estimate (3.16) holds. If f € L>(D) and g € L>(I';"), then, passing
to the limit as p — oo, we obtain the estimate (3.18).

From the above-obtained estimates and Equation (3.20) we conclude that w - VI € LP(D;)
and the estimates (3.17), (3.19) hold. O

Owing to formula (3.15), the following assertion is obvious.

Corollary 3.1. Let I be a solution to the problem (3.13), (3.14).
1. Let f >0 and g > 0. Then I > 0.
2. Let f < B;M;j in Dj, and let g < M; in Iy, where M; = const. Then I < M; in D;.
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3.7. Existence, uniqueness, and a priori estimates

We set
Fy =max{F,0}, J.4 = max{J,,0}, I4 = max{I,0},
F_ =min{F,0}, J._ = min{J,,0}, I_ = min{I, 0}.
Theorem 3.2. Let 1 < p < oo, and let I € Wwf’(D) be a solution to the problem (3.11),
(3.12). Then for 1 < p < o
1/p.—2/q 1/pp2/p 1 P l/p
Ik ey < (1ot PR Pelly ) + sl o) (3.23)
1/pp.—2/q 1/pp2/p 1 p e
e P20 ) < (e PR F )+ g I ) (3.24)
P(S7)
2
~1/q},—2 1/p1.2
H% /qk /qw . v[”Lp(D) < T (H% /pk- /pFHLp(D) + 1 HJ*H:%lp(g')) (325)
and for p = oo
-2
I ey < max{ NPl oy, 2, (3.26)
1
I < max{ 1Py 210, s (3.27)
kT w- VI <—2 F Ly 2
e 2w Vo) € g max{ P liwqoy, 00, g o (328)
Here, g = p' and @wpnax = max % <1,

1gsm 25 + 85

The proof of this theorem literally repeats the proof of Theorem 5.2 in [1]. Naturally, one
should take into account that #7(D) C #P(D) and the required properties of functions in the
space #P(D) are established for domains with Lipschitz piecewise smooth boundaries in Section
2 of the present paper.

Corollary 3.2. Let I be a solution to the problem (3.11), (3.12).

1. If F <0, J, <0, then I <0.

2.If F >0, J, 20, then I > 0.

3. If F=0, J, =0, then I =0.

VoA

Corollary 3.3. If a solution to the problem (3.11), (3.12) exists, then it is unique.

Theorem 3.3. Let F € L>(D), J, € L"(S7). Then the problem (3.11), (3.12) has a
unique solution I € W >°(D).

The proof of this theorem repeats the proof of Theorem 5.3 in [1]. One also should use
Theorem 3.1 and the properties of functions in the space #°°(D) which are established for
domains with Lipschitz piecewise smooth boundaries in Section 2 of the present paper.
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Theorem 3.4. Let I' € LP(D), J. € LY?(S7), 1 < p < co. Then the problem (3.11), (3.12)
has a unique solution I € #* (D).

Proof. We set F;,, = max{—n min{F,n}}, Ji, = max{—n,min{J,,n}}, n > 1. Since
F, e L>®(D), Jup € ELOO(S ), from Theorem 3.3 it follows that for every n > 1 the problem

w- VI, + pI, = s.7(I,) + »k’F,, (x,w)€ D, (3.29)
In|r- = Ba(In|r+) + Ca(Jip), (w,z) €T (3.30)

has a unique solution I, € WN_"O(D) C %’(D). Since the problem is linear, the estimates of
Theorem 3.2 imply

11, = Lellyrpy < CU|[Fn — Fellopy + ([ Jen — J*/”zl,p(g—)) Vnz1 V=1

Since F,, = F in LP(D) and J,, — J, in LYP(S7) as n — oo, the sequence {I,}52 is a Cauchy
sequence in #P(D). Since #(D) is closed in #?(D), there exists a function I € #*(D) such
that I,, - I in #?(D) as n — .

') and into LP(I'F).

const (

By Theorem 2.6, the space 7%’( D) is continuously embedded into L,
Therefore, Ipy|p- — I|p- in L () and I,|p+ — I|p+ in LP(I'F) asn — co. As a consequence,
B(L|r+) = B(I|p+) in LE o (T7). Furthermore, €(J, ) — €(J,) in L (T'7).
The limit passage in (3.29), (3.30) as n — oo leads to the equalities (3.11) and (3.12).

The existence of solutions I € “/,/\ZJ(D) is proved. The uniqueness follows from Corollary 3.3.
The theorem is proved. ]

3.8. Continuous dependence of the solution to the problem (3.11), (3.12) on data

We consider the sequence of problems

w - VI 4 g ) — () o)1)y 45 ) ()2 pm) () 2) € D, (3.31)
I =8 (1)) + eV(IY),  (w,2) el (3.32)
corresponding to the sequences of data {%](n ety 185 ")}n 1> {kj(n > 1 {0 > 1 {pj 7010 1

for 1 < j<m, {p;j’(n) % | fori#jand {F™}2 c LY(D), {J*n 1CL1(S ), 1<p< oo

In Equation (3.31), 5™ (z) = %( RIS 0, st (z) = 8( "> 0, k™M (z) = kj(n) > 1 for x € Gy,
1 < j < m; moreover, (M = (") 4 s("). The operator Y( ") is defined by

T J

S (1) 41 /9<" W)W, 2)d, (W)€ D;, 1<j<m;
Q

moreover, it is assumed that

(n) 1 (n)
Gj e L (-1,1), Hj >0

DO =

1
(n) _ ~
/9]- (W)dpu=1, 1<j<m.
21
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n n —,n ]'
It is also assumed that pi( ) e L*>(0Gj), 0 < ,oj:’( )< 1,1 — P, () : ( ))2(1 Pj I ))7 1<
k"
J
. —+,(n) _ "F,(n) —,(TL) o0 .. _7(n)
j<m, ph = 12}%!% Iz (oG,) < 1. Furthermore, p " € L(0G;;), 0 < p;"™ < 1,
(k)2
1— pj_i’(n) =(1- _’(n)) t . The only difference of the operators SBEln) and Cl(in) from the

corresponding operators B4 and €, is that, in their definitions, the functions p™ ; Pj are replaced

+(n) (n)

with p( and pi_j , whereas the refraction exponents k; are replaced with k

Theorem 3.5. Assume that {11} | is a sequence solutions to the problems (3.31), (3.32)

and I is a solution to the problem (3.11), (3.12). Let the following limit relations hold as
(n) 5™

n— 00 =, 8, =S, kj(.n) — kj, Hj(-n) — 0 in L'(—1,1), pj' (), ,oj in L>(0G;) for
all1 <j<m, pU( n pi; in L>(0G;) for alli # j such that meas (0Gij;do) > 0, F) & F
in Ll(D) and J™ = I, in El(g’_) Then 1™ — I in V/I(D) asn — oo.

Assume, in addition, that F' € LP(D), J, € Ll’p( o), {FMY2 ¢ LP(D), {J(n °, C
fp(g—) with some p € (1,00], ililf | F ||Lp )y < 00, sup HJ( ||A . < oo. Then I™ — T in
WD) for all g € [1,p) asn — oo .

The proof of this theorem is the same as that of Theorem 4.2 in [2].

3.9. The conjugate boundary value problem

The boundary value problem

w-VI+ Bl =sS(I)+ »k*F, (w,z)€ D, (3.33)
I|1—\7 = %d([|r‘+), (w,m) el (3.34)
i.e., the problem (3.11), (3.12) with the homogeneous boundary condition will be referred to as
the main problem. We denote by .@7; the resolving operator for the main problem which with a

function F' € LP(D) associates the solution I = 7 (F). By Theorems 3.2-3.4, this operator is a
linear bounded operator acting from LP(D) to #*(D) for all 1 < p < co.

Following [4], we introduce the operator U by the formula

Uf(w,z) = f(-w, ).
For the boundary valued problem (3.33), (3.34) we consider the conjugate problem

—w-VI* 4 BI* = 8.7 (I*) + »k*F*, (w,z) € D, (3.35)

Flpe =B5(Ip-),  (w,z) €T, (3.36)
where F* € LY(D), 1 < ¢ < oo, and B = UB,U is a linear bounded operator acting from
LYT™) to LI (TT), 1< g < oo.

const
By a solution to the conjugate problem we mean a function I* € #/(D) that satisfies
Equation (3.35) almost everywhere in D and the condition (3.36) almost everywhere on T't.

It is easy to see that a function I* is a solution to the conjugate problem if and only if I = UT*
is a solution to the main problem with F' = UF*. Thus, for any F* € LY(D), 1 < g < oo, the
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conjugate problem has a unique solution I* € %I(D); moreover, the resolving operator .27
of the conjugate problem associating with F* the solution I* is connected with the resolving
operator of the main problem by the equality

A =UdyU. (3.37)

Remark 3.4. Formula (3.37) is similar to the formula due to Vladimirov [4] for the problem
with the “shooting” boundary condition.

From formula (3.37) and properties of the operator «7; it follows that the operator <7 is a
linear bounded operator acting from L?(D) to #'4.(D) for all 1 < ¢ < oo.

Theorem 3.6. The operator s </] is the adjoint of the operator s 27y in the following sense:
(2 dy(F),F*)p = (F,»d](F*)p VFe€LP(D), VF* € LYD) (3.38)
/

foralll <p< oo, qg=9p.

The proof of this theorem repeats the proof of Theorem 5.1 in [2] with the only difference
that the arguments are now valid for all 1 < p < co.

We consider the main problem with an isotropic radiation source F' = F(z). We introduce
the operator (<7;)q : LP(G) — LP(G) by the formula

(Hihol(F)(z) = / Ay(F) (w, ) doo.
Q

As in [2], from Theorem 3.6 we obtain the following assertion.

Theorem 3.7. The operator »(y)q is selfadjoint in the following sense:
(e Ag)a(F), F*)a = (F, x(dg)o(F*))g YF € LP(G), VF* € LY(G) (3.39)
/

forall1<p<oo,qg=9p.

We emphasize that, unlike [2], the identity (3.39) holds for all 1 < p < oc.
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