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We consider the boundary value problem for the radiative transfer equation with diffuse

reflection and refraction conditions in a system of semitransparent bodies with piecewise

smooth boundaries. For the problem with data in the complete scale of Lebesgue spaces

we establish the existence and uniqueness of a solution. We obtain a priori estimates

for the solution and show the continuous dependence of the solution on the data. The

conjugate problem is also studied. Bibliography: 8 titles.

The boundary value problem with diffuse reflection and refraction conditions describing the

monochromatic radiation transfer in a systemG =
m⋃

j=1
Gj of semitransparent bodiesGj separated

by the vacuum was studied by the author in [1, 2] under rather restrictive assumptions. First,

it is assumed that every body Gj has smooth boundary ∂Gj of class C
1+λ, 0 < λ < 1. However,

in practice, it often happens that bodies have only piecewise smooth boundaries. Second, the

majority of the obtained results are valid for data in the Lebesgue spaces with exponents p ∈
(1 + (2λ)−1,∞]. Thereby the obtained results do not cover the important case of data with

finite energy, i.e., data in the Lebesgue space with exponent p = 1.

In this paper, we show that the results of [1, 2] are extended to the case of a system of bodies

with Lipschitz piecewise smooth boundary and remain valid for the problems with data in the

complete scale of Lebesgue spaces with exponents p ∈ [1,∞].

Assume that every body Gj of the system G is a domain in R
3 with Lipschitz piecewise

smooth boundary (in Subsection 1.1, we explain how to understand the piecewise smoothness of

boundary). We also assume that domains Gi and Gj are pairwise disjoint, but their boundaries

can intersect for some i �= j.

Let Ω = {ω ∈ R
3 | |ω| = 1} be the unit sphere in R

3 (the sphere of directions).

The sought function I(ω, x) is defined on the set D = Ω × G and is interpreted as the
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radiation intensity at the point x ∈ G when the radiation propagates in direction ω ∈ Ω.

Assume that each body Gj is occupied by a semitransparent medium with constant absorp-

tion κj > 0, scattering coefficient sj � 0, and refraction exponent kj > 1. We set κ(x) = κj ,

s(x) = sj , and k(x) = kj for x ∈ Gj , 1 � j � m.

To describe the radiation propagation in G, we use the radiative transfer equation

ω · ∇I + βI = sS (I) + κk2F, (ω, x) ∈ D,

where

ω · ∇I =
3∑

i=1

ωi
∂

∂xi
I

denotes the derivative of I along the direction ω. We denote by S the scattering operator

S (I)(ω, x) =
1

4π

∫

Ω

θj(ω
′ · ω)I(ω′, x) dω′, (ω, x) ∈ Dj = Ω×Gj , 1 � j � m,

with the scattering indicatrix possessing the following properties:

θj ∈ L1(−1, 1), θj � 0,
1

2

1∫

−1

θj(μ) dμ = 1, 1 � j � m.

Furthermore, β(x) = κ(x) + s(x) is the extinction coefficient and F (ω, x) characterizes the

density of radiation of volume sources.

The paper is organized as follows. In Section 1, we introduce the notation and prove a

number of auxiliary assertions of geometric character. In Section 2, we introduce the function

spaces and study their properties. In Section 3, we formulate the boundary value problem under

consideration and study its properties.

Basically, the logic of reasoning follows the logic of the papers [1, 2]. Some assertions in this

paper are counterparts of the corresponding assertions in [1]–[3] and can be proved in a similar

way. In such cases, we restrict ourselves to mention the corresponding references without proof

in order to avoid repetitions. However, if the proof should be essentially modified or the assertion

has no analogs, we provide a detailed proof.

1 Auxiliaries

1.1. Notation and assumptions on the boundaries ∂Gj

We consider R
3 as an Euclidean space of elements x = (x1, x2, x3) equipped with the inner

product x · y =
3∑

i=1
xiyi. We denote by ]x, y[ the interval joining the points x, y ∈ R

3, x �= y:

]x, y[= {αx+ (1− α)y | 0 < α < 1}. We denote by Br(x0) an open ball in R
3 with radius r and

center x0 ∈ R
3. Let Vr and V r be an open and closed disks in R

2 with radius r centered at the

origin. Assume that ω0 ∈ Ω and x0 ∈ R
3. In R

3, we introduce the coordinates with center x0
and the orthonormal basis e1(ω0), e2(ω0), e3(ω0) = ω0.

We consider the plane πω0 = {y ∈ R
3 | ω0 · y = 0} passing through the origin and having

the normal vector ω0. We note that the pair e1(ω0), e2(ω0) forms an orthonormal basis in πω0 .
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We denote by Pω0 the operator of orthogonal projection onto the plane πω0 . Denote by meas2E

the plane measure of a measurable set E ⊂ πω0 . We introduce the notation by

	(ω0, x0) = {x = x0 + t ω0 | t ∈ R},
	−(ω0, x0) = {x = x0 − t ω0 | t > 0},
	+(ω0, x0) = {x = x0 + t ω0 | t > 0}

for the line with directed vector ω0 passing through the point x0 and for the corresponding rays

outgoing from the point x0. We set

Vr,ω0 = {y ∈ πω0 | |y| < r},
V r,ω0 = {y ∈ πω0 | |y| � r}.

Let γ be a function defined on V r,ω0 , and let γ̃(y′) = γ(y), where y′ = (y1, y2), y = y1e1(ω0)+

y2e2(ω0). We write γ ∈ Ck(V r,ω0) if γ̃ ∈ Ck(V r), k = 0, 1. Similarly, we write γ ∈ Lip(V r,ω0) if

γ̃ ∈ Lip(V r), i.e., if γ̃ is defined on V r and satisfies the Lipschitz condition with some constant L.

Let α, β, γ ∈ C0(V r,ω0), α < β. We introduce the surface

Πr,γ(ω0, x0) = {x = x0 + y + γ(y)ω0 | y ∈ Vr,ω0}

and the curvilinear cylinder

Cr,α,β(ω0, x0) = {x = x0 + y + t ω0 | y ∈ Vr,ω0 , α(y) < t < β(y)}

with the axis 	(ω0, x0) and two lateral surfaces Πr,α(ω0, x0) and Πr,β(ω0, x0). Assume that the

domains Gj for all 1 � j � m are bounded and Lipschitz. The latter means that for each point

x0 ∈ ∂Gj there exist a direction ω0 ∈ Ω, numbers r0 > 0, h0 > 0 and a function γ ∈ Lip (V r,ω0),

−h0 < γ < h0, such that

Gj ∩ Cr0,−h0,h0(ω0, x0) = Cr0,−h0,γ(ω0, x0), (1.1)

(R3 \Gj) ∩ Cr0,−h0,h0(ω0, x0) = Cr0,γ,h0(ω0, x0), (1.2)

∂Gj ∩ Cr0,−h0,h0(ω0, x0) = Πr0,γ(ω0, x0). (1.3)

We denote by dω and dσ(x) the measures induced by the Lebesgue measure in R
3 on Ω and ∂G

respectively.

Remark 1.1. Since γ̃ satisfies the Lipschitz condition with constant L, it is differentiable

almost everywhere on Vr0 ; moreover, the gradient of this function

∇′γ̃(y′) =
(

∂γ̃

∂y1
(y′),

∂γ̃

∂y2
(y′)

)

satisfies the inequality |∇γ̃| � L. Consequently, the outward normal nj(x) to the surface ∂Gj

exists for almost all x ∈ Πr0,γ(ω0, x0), which can be written in the form

nj(x) =
1

√
1 + |∇′γ̃(y′)|2

(

− ∂γ̃

∂y1
(y′) e1(ω0)− ∂γ̃

∂y2
(y′)e2(ω0) + ω0

)

. (1.4)
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In addition, we assume that for every 1 � j � m the boundary ∂Gj is piecewise smooth in

the following sense. There exists a closed set Gj ⊂ ∂Gj such that meas (Gj ; dσ) = 0; moreover,

the outward normal exists for each point x0 ∈ ∂′Gj = ∂Gj \ Gj and there are numbers r0 > 0,

h0 > 0 and a function γ ∈ C1(V r0,ω0), −h0 < γ < h0 such that for ω0 = nj(x0) the properties

(1.1)–(1.3) hold; moreover, γ̃(0) = 0 and |∇′γ̃(0)| = 0. It is clear that Πr0,γ(nj(x0), x0) ⊂ ∂′Gj

and the outward normal is continuous on ∂′Gj .

Thus, by assumption, ∂Gj consists of two parts: the “smooth” part ∂′Gj , where the outward

normal exists and is continuous, and the set Gj , where the boundary smoothness fails. We recall

that the set Gj is closed and has measure zero. Hence the set ∂′Gj is open (in the topology

of ∂Gj) and meas (∂′Gj ; dσ) = meas (∂Gj ; dσ). Naturally, the case ∂Gj ∈ C1 is not excluded.

Then Gj = ∅ and ∂′Gj = ∂Gj .

Remark 1.2. In this paper we do not require the condition of generalized convexity of the

set G, which is often used in the mathematical theory of the radiative transfer equation [4, 5].

1.2. The sets Γ±
j , Γ

±, Γ0
j , Γ

0 and their properties

We set

∂G =

m⋃

j=1

∂Gj , Γ = Ω× ∂G =

m⋃

j=1

Γj , Γj = Ω× ∂Gj , 1 � j � m,

Γ− =
m⋃

j=1

Γ−
j , Γ−

j = {(ω, x) ∈ Ω× ∂′Gj | ω · nj(x) < 0}, 1 � j � m,

Γ+ =
m⋃

j=1

Γ+
j , Γ+

j = {(ω, x) ∈ Ω× ∂′Gj | ω · nj(x) > 0}, 1 � j � m,

Γ0 =

m⋃

j=1

Γ0
j , Γ0

j = {(ω, x) ∈ Ω× ∂′Gj | ω · nj(x) = 0}, 1 � j � m.

We note that Γ±
j and Γ± are open sets (in the topology of set Γ). It is easy to see that (ω, x) ∈ Γ−

j

if and only if (−ω, x) ∈ Γ+
j . On Γ, we introduce the measure dΓ(ω, x) = dω dσ(x). On Γ− and

Γ+, we introduce the measures

d̂Γ−(ω, x) = |ω · nj(x)| dωdσ(x), (ω, x) ∈ Γ−
j , 1 � j � m,

d̂Γ+(ω, x) = ω · nj(x) dωdσ(x), (ω, x) ∈ Γ+
j , 1 � j � m.

We emphasize that a set E± ⊂ Γ± is measurable with respect to the measure d̂Γ± if and only if

it is measurable with respect to the measure dΓ. We also note that meas(E±; d̂Γ±) = 0 if and

only if meas(E±; dΓ) = 0.

Assume that E ⊂ Γ and ω ∈ Ω. We set E(ω) = {x ∈ ∂G | (ω, x) ∈ E}. Thus, for example,

Γ−
j (ω) = {x ∈ ∂′Gj | ω · nj(x) < 0},

Γ+
j (ω) = {x ∈ ∂′Gj | ω · nj(x) > 0}.
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Lemma 1.1. Assume that x0 ∈ ∂′Gj and ε ∈ (0, 1). Then there exists r1 = r1(x0, ε) > 0

such that for all ω ∈ Ω, ω · nj(x0) � ε, and all r ∈ (0, r1], h = 4r/ε,

Gj ∩ Cr,−h,h(ω, x0) = Cr,−h,γω(ω, x0),

(R3 \Gj) ∩ Cr,−h,h(ω, x0) = Cr,γω,h(ω, x0),

∂Gj ∩ Cr,−h,h(ω, x0) = Πr,γω(ω, x0) ⊂ Γ+
j (ω),

Πr,−h(ω, x0) ⊂ Gj , Πr,h(ω, x0) ⊂ R
3 \Gj ,

where γω ∈ C1(V r1,ω); moreover, |γω(y)| � 2|y|/ε for all y ∈ V r1,ω.

The proof of this lemma repeats the proof of Lemma 1.1 in [3] with the only difference that

x0 ∈ ∂Gj in [3].

Remark 1.3. By Lemma 1.1, for (ω, x0) ∈ Γ+
j the following property holds: the line 	(ω, x0)

comes out from Gj to the vacuum. (i.e., to the set R3 \Gj), intersecting ∂Gj at the point x0. In

other words, there exists δ = δ(ω, x0) > 0 such that ]x0, x0−δω[⊂ Gj and ]x0, x0+δω[⊂ R
3\Gj .

Similarly, for (ω, x0) ∈ Γ−
j the following property holds: the line 	(ω, x0) comes in Gj from

the vacuum, intersecting ∂Gj at the point x0. In other words, there exists δ = δ(ω, x0) > 0 such

that ]x0, x0 + δω[⊂ Gj and ]x0, x0 − δω[⊂ R
3 \Gj .

We note that the sets Γ+
j and Γ−

j can be represented as countable unions

Γ+
j =

∞⋃

�=1

K+
j,�, Γ−

j =

∞⋃

�=1

K−
j,� (1.5)

of sequences of expanding compact sets. If Gj = ∅, then

K+
j,� = {(ω, x) ∈ Γ+

j | ω · nj(x) � 1/	}, (1.6)

K−
j,� = {(ω, x) ∈ Γ−

j | ω · nj(x) � −1/	}, (1.7)

and if Gj �= ∅, then

K+
j,� = {(ω, x) ∈ Γ+

j | ω · nj(x) � 1/	, dist (x,Gj) � 1/	}, (1.8)

K−
j,� = {(ω, x) ∈ Γ−

j | ω · nj(x) � −1/	, dist (x,Gj) � 1/	}. (1.9)

Lemma 1.2. Let E be a measurable subset of Γ±
j . If meas2(PωE(ω)) = 0 for almost all

ω ∈ Ω, then meas (E; dΓ) = 0.

The proof of this lemma repeats that of Lemma 1.2 in [3] and is based on the representations

(1.5). The only difference is that K±
j,� are not necessarily of the form (1.6), (1.7), but can have

the form (1.8), (1.9).

Lemma 1.3. meas2(PωΓ
0
j (ω)) = 0 for all ω ∈ Ω and 1 � j � m.

Proof. In the case Gj = ∅, this assertion is established in [3, Lemma 1.3].

Let Gj �= ∅. We represent Γ0
j as the countable union of expanding compact sets K0

j,� =

{(ω, x) ∈ Γ0
j | dist (x,Gj) � 1/	}. Then the set Γ0

j (ω) is represented as the countable union
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Γ0
j (ω) =

∞⋃

�=1

K0
j,�(ω) of sequences of expanding compact sets K0

j,�(ω) = {x ∈ ∂′Gj | ω · nj(x) =

0, dist (x,Gj) � 1/	}. Therefore, from the open (in the topology of the set ∂Gj) covering

{Πr0,γ(nj(x0), x0)}x0∈Γ0
j (ω)

of the set Γ0
j (ω) by surfaces Πr0,γ(nj(x0), x0) ⊂ ∂′Gj one can extract

a countable subcovering {Πrk,γk(nj(xk), xk)}∞k=1. Arguing as in [3, Lemma 1.3], we verify that

meas2 Pω(Γ
0
j (ω) ∩Πrk,γk(nj(xk), xk)) = 0 for all k � 1. Hence meas2(PωΓ

0
j (ω)) = 0.

Lemma 1.4. meas2 (PωGj) = 0 for all ω ∈ Ω and 1 � j � m.

Proof. Since the boundary ∂Gj is closed and Lipschitz, there exists a covering of ∂Gj

consisting of Lipschitz surfaces Πri,γi(ωi, xi) ⊂ ∂Gj such that each surface is uniquely projected

onto the corresponding plane πωi . To prove the lemma, it suffices to show that meas2 (PωGji) = 0

for all ω ∈ Ω provided that the set Gji = Gj∩Πri,γi(ωi, xi) is not empty. Since meas (Gj ; dσ) = 0,

we have meas2 (PωiGji) � meas (Gji; dσ) = 0. Therefore, for any ε > 0 there exists an open set

Oε ⊂ Vri,ωi such that PωiGji ⊂ Oε and meas2Oε < ε. We cover each point x ∈ Gji by a ball

Br(x)(x) of a sufficiently small radius so that PωiBr(x)(x) ⊂ Oε. By the 5r-covering theorem [6],

from the obtained covering of the set Gji one can extract at most countable system of pairwise

disjoint balls {Brk(xk)} with rk = r(xk) such that Gji ⊂
⋃

k

B5rk(xk). It is clear that

∑

k

meas2 (PωiBrk(xk)) =
∑

k

πr2k � meas2Oε < ε.

As a consequence, for every ω �= ωi

meas∗2 (PωGji) �
∑

k

meas2 (PωB5rk(xk)) =
∑

k

25πr2k < 25ε.

Since the obtained inequality holds for all ε > 0, we have meas2 (PωGji) = 0.

1.3. The sets Ŝ±
j , Ŝ

± and their properties

We set

τ̂+(ω, x) = sup{t > 0 | x+ s ω ∈ Gj ∀s ∈ (0, t)},
X̂+(ω, x) = x+ τ̂+(ω, x)ω

for (ω, x) ∈ Dj ∪ Γ−
j and

τ̂−(ω, x) = sup{t > 0 | x− s ω ∈ Gj ∀s ∈ (0, t)},
X̂−(ω, x) = x− τ̂−(ω, x)ω

(1.10)

for (ω, x) ∈ Dj∪Γ+
j . We note that X̂±(ω, x) ∈ ∂Gj ; moreover, (ω, X̂±(ω, x)) ∈ Γ±

j ∪Γ0
j∪(Ω×Gj).

We introduce the sets

Ŝ−
j = {(ω, x) ∈ Γ−

j | (ω, X̂+(ω, x)) ∈ Γ+
j },

Ŝ+
j = {(ω, x) ∈ Γ+

j | (ω, X̂−(ω, x)) ∈ Γ−
j }.

Lemma 1.5. The sets Ŝ−
j and Ŝ+

j are open (in the topology of the set Γj), and the map-

ping (ω, x) → (ω, X̂+(ω, x)) is a homeomorphism from Ŝ−
j onto Ŝ+

j with the inverse (ω, x) →
(ω, X̂−(ω, x)).
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Lemma 1.6. A set Ê− ⊂ Ŝ−
j is measurable with respect to the measure d̂Γ− if and only if

its image Ê+ ⊂ Ŝ+
j under the mapping (ω, x) → (ω, X̂+(ω, x)) is measurable with respect to the

measure d̂Γ+; moreover, meas (Ê+; d̂Γ+) = meas (Ê−; d̂Γ−).

The proof of Lemmas 1.5 and 1.6 repeats that of Lemmas 1.4 and 1.5 in [3].

Lemma 1.7. meas (Γ±
j \ Ŝ±

j , d̂Γ±) = 0.

Proof. Assume that ω ∈ Ω and x ∈ Γ±
j (ω) \ Ŝ±

j (ω). Then X̂±(ω, x) ∈ Γ0
j (ω) ∪ Gj and,

consequently, Pωx ∈ Pω(Γ
0
j (ω) ∪ Gj). By Lemmas 1.3 and 1.4,

meas2 Pω(Γ
±
j (ω) \ Ŝ±

j (ω)) � meas2 Pω(Γ
0(ω) ∪ G ) = 0.

To complete the proof, it remains to apply Lemma 1.2.

1.4. The sets S±
j , S

±,
∗
S±
j ,

∗
S± and their properties

We recall that ∂Gi and ∂Gj can intersect for some i �= j. We set

∂Gij = ∂Gi ∩ ∂Gj , Σ =

m⋃

j=1

Σj , Σj =

m⋃

i=1,i �=j

∂Gij , 1 � j � m.

We introduce the sets

S± =

m⋃

j=1

S±
j , S±

j = {(ω, x) ∈ Γ±
j | x ∈ ∂′Gj \ Σj}, 1 � j � m,

∗
S± =

m⋃

j=1

∗
S±
j ,

∗
S±
j = {(ω, x) ∈ S±

j | 	±(ω, x) ∩G = ∅}, 1 � j � m.

It is clear that the sets S±
j and S± are open (in the topology of the set Γ). We note that the

set
∗
S± consists of (ω, x) ∈ S± such that the ray 	±(ω, x) does not intersect G.

Lemma 1.8. The sets
∗
S±
j are open (in the topology of the set Γ). As a consequence, the

sets
∗
S± are open.

Proof. Let (ω0, x0) ∈
∗
S+
j . From Lemma 1.1 and the fact that S+

j is open it follows that

there exist ε > 0 and h > 0 such that for (ω, x) ∈ Γj the inequalities |ω−ω0| < ε and |x−x0| < ε

imply (ω, x) ∈ S+
j and x+ tω /∈ G for all t ∈ (0, h).

We show that there exists ε1 ∈ (0, ε] such that for (ω, x) ∈ Γ+
j the inequalities |ω − ω0| < ε1

and |x − x0| < ε1 imply (ω, x) ∈
∗
S+
j . Assume the contrary. Then for every k � 1 there exist

(ωk, xk) ∈ S+
j and tk � h such that |ωk − ω0| < ε/k, |xk − x0| < ε/k, and xk + tkωk ∈ G.

The boundedness of the set G implies the boundedness of the sequence {tk}∞k=1. Therefore,

there exists a converging subsequence {tks}∞s=1 such that lim
s→∞ tks = t0 � h. As a consequence,

x0 + t0ω0 ∈ G, which is impossible since (ω0, x0) ∈
∗
S+
j . Thus, the set

∗
S+
j is open. Since

∗
S−
j = {(ω, x) ∈ S−

j | (−ω, x) ∈
∗
S+
j }, the set

∗
S−
j is also open.
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Lemma 1.9. meas (
∗
S+; d̂Γ+) = meas (

∗
S−; d̂Γ−) > 0.

Proof. We fix ω ∈ Ω and consider the orthogonal projection of the set G onto the plane πω.

It is clear that meas2 PωG > 0. At the same time, meas2 (PωΓ
0(ω)) = 0 and meas2 (PωG ) = 0

in view of Lemmas 1.3 and 1.4. Consequently, there exists a point x0 ∈ G such that Pωx0 /∈
Pω(Γ

0(ω) ∪ G ). We set t0 = sup {t > 0 | x0 + tω ∈ G}. It is clear that x = x0 + t0ω ∈ ∂G and

	+(ω, x) ∩ G = ∅. Since Pωx = Pωx0 /∈ Pω(Γ
0(ω) ∪ G ), we have (ω, x) ∈

∗
S+. By Lemma 1.8,

the set
∗
S+ is open. Therefore, meas (

∗
S+; d̂Γ+) > 0. Since

∗
S− = {(ω, x) ∈ Γ− | (−ω, x) ∈

∗
S+},

we have meas (
∗
S−; d̂Γ−) = meas (

∗
S+; d̂Γ+) > 0.

1.5. The sets S̃± and their properties

Let (ω, x) ∈ S+ \
∗
S+. Then the ray 	+(ω, x) intersects G. We set

τ+(ω, x) = inf {t > 0 | x+ tω ∈ G},
X+(ω, x) = x+ τ+(ω, x)ω.

It is clear that τ+(ω, x) > 0, X+(ω, x) ∈ ∂G, and (ω,X+(ω, x)) ∈ Γ− ∪ Γ0 ∩ (Ω× G ). We set

S̃+ = {(ω, x) ∈ S+ \
∗
S+ | (ω,X+(ω, x)) ∈ Γ−}.

Similarly, let (ω, x) ∈ S− \
∗
S−. Then the ray 	−(ω, x) intersects G. We set

τ−(ω, x) = inf {t > 0 | x− tω ∈ G},
X−(ω, x) = x− τ−(ω, x)ω.

It is clear that τ−(ω, x) > 0, X−(ω, x) ∈ ∂G, and (ω,X−(ω, x)) ∈ Γ+ ∪ Γ0 ∪ (Ω× G ). We set

S̃− = {(ω, x) ∈ S− \
∗
S− | (ω,X−(ω, x)) ∈ Γ+}.

Lemma 1.10. The sets S̃+ and S̃− are open (in the topology of the set Γ), and the map-

ping (ω, x) → (ω,X+(ω, x)) is a homeomorphism from S̃+ onto S̃− with the inverse (ω, x) →
(ω,X−(ω, x)).

Lemma 1.11. A set E+ ⊂ S̃+ is measurable with respect to the measure d̂Γ+ if and only if

its image E− ⊂ S̃− under the mapping (ω, x) → (ω,X+(ω, x)) is measurable with respect to the

measure d̂Γ−; moreover, meas (E+; d̂Γ+) = meas (E−; d̂Γ−).

The proof of Lemmas 1.10 and 1.11 repeats the proof of Lemmas 1.7 and 1.8 in [3].

Lemma 1.12. meas (S± \ (S̃± ∪
∗
S±) ; d̂Γ±) = 0.

Proof. Assume that ω ∈ Ω and x ∈ S±(ω) \ (S̃±(ω)∪
∗
S±(ω)). Then X±(ω, x) ∈ Γ0(ω)∪G .

Therefore, Pωx ∈ Pω(Γ
0(ω) ∪ G ). By Lemmas 1.3 and 1.4, we have

meas2 Pω(S
±(ω) \ (S̃±(ω) ∪

∗
S±(ω))) � meas2 Pω(Γ

0(ω) ∪ G )

�
m∑

j=1

meas2 Pω(Γ
0
j (ω)) +

m∑

j=1

meas2 PωGj = 0.

To complete the proof, we apply Lemma 1.2.
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2 Function Spaces and Their Properties

2.1. Spaces of functions defined on Γ+ and Γ−

Let E± be a measurable subset of Γ± with respect to the measure dΓ. We denote by M(E±)
the set of functions defined on E± and measurable with respect to the measure dΓ. We denote

by Lp(E±) and L̂p(E±), 1 � p � ∞, the Banach spaces of functions g ∈ M(E±) equipped with

the norms

‖g‖Lp(E±) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(∫

E±

|g(ω, x)|p dΓ(ω, x)
)1/p

, 1 � p < ∞,

ess sup
(ω,x)∈E±

|g(ω, x)|, p = ∞,

‖g‖
̂Lp(E±)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(∫

E±

|g(ω, x)|p d̂Γ±(ω, x)
)1/p

, 1 � p < ∞,

ess sup
(ω,x)∈E±

|g(ω, x)|, p = ∞,

respectively. It is clear that L̂∞(E±) = L∞(E±).
We introduce the space Lp

loc(Γ
±
j ) as the set of all functions g ∈ M(Γ±

j ) such that g ∈ Lp(K)

for any compact subset K ⊂ Γ±
j . It is clear that L

p(Γ±
j ) ⊂ L̂p(Γ±

j ) ⊂ Lp
loc(Γ

±
j ) for all 1 � p < ∞.

The space Lp
loc(Γ

±) is defined in a similar way.

We will use the spaces L̂1,p(E±) of functions g ∈ M(E±) that, defined by zero on Γ± \ E±,
have the finite norms

‖g‖
̂L1,p(E±)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

( m∑

j=1

∫

∂′Gj

[ ∫

Ω±
j (x)

|g(ω, x)||ω · nj(x)| dω
]p

dσ(x)

)1/p

, 1 � p < ∞,

max
1�j�m

ess sup
x∈∂′Gj

∫

Ω±
j (x)

|g(ω, x)||ω · nj(x)| dω, p = ∞.

Hereinafter,

Ω+
j (x) = {ω ∈ Ω | ω · nj(x) > 0},

Ω−
j (x) = {ω ∈ Ω | ω · nj(x) < 0}.

It is clear that L̂1,1(E±) = L̂1(E±).

Let E± =
m⋃

j=1
E±

j , where E±
j = {(ω, x) ∈ Γ±

j | x ∈ Mj}, and the sets Mj ⊂ ∂′Gj , 1 � j � m

are measurable. We denote by Lp
const(E

±) the space of functions g ∈ Lp(E±) such that g(ω, x)

is independent of ω ∈ Ω±
j (x) (i.e., g(ω, x) = g±(x)) for almost all x ∈ Mj and all 1 � j � m.

We equip the space Lp
const(E

±) with the norm

‖g‖Lp
const(E

±) =

⎧
⎪⎪⎨

⎪⎪⎩

( m∑

j=1

‖g±‖pLp(Mj)

)1/p

, 1 � p < ∞,

max
1�j�m

‖g±‖L∞(Mj), p = ∞.
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2.2. The spaces Lp(Dj), L
p(D) and the change of variables (ω, x) → (ω, x′, t)

We recall that D = Ω×G =
m⋃

j=1
Dj , where Dj = Ω×Gj , 1 � j � m.

Let 1 � p � ∞. We denote by Lp(Dj) and Lp(D) the Banach spaces of functions f on Dj

and D respectively that are measurable with respect to the measure dω dx and have the finite

norms

‖f‖Lp(Dj) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(∫

Dj

|f(ω, x)|p dωdx
)1/p

, 1 � p < ∞,

ess sup
(ω,x)∈Dj

|f(ω, x)|, p = ∞,

‖f‖Lp(D) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(∫

D

|f(ω, x)|p dωdx
)1/p

, 1 � p < ∞,

ess sup
(ω,x)∈D

|f(ω, x)|, p = ∞.

We emphasize that for all ω ∈ Ω an arbitrary point x ∈ Gj is uniquely represented in the

form x = x′+t ω, where (ω, x′) ∈ Γ−
j ∪Γ0

j ∪(Ω×G ), x′ = X̂−(ω, x), t = τ̂−(ω, x) ∈ (0, τ̂+(ω, x′)).
We introduce the sets

Q−
j = {(ω, x′, t) ∈ Ŝ−

j × R | t ∈ (0, τ̂+(ω, x′)) },
D̂j = {(ω, x) ∈ Dj | (ω, X̂−(ω, x)) ∈ Ŝ−

j , (ω, X̂+(ω, x)) ∈ Ŝ+
j }.

Lemma 2.1. The set Q−
j is open in the topology of the set Γj ×R, the set D̂j is open in the

topology of the set Ω× R
3, and the mapping (ω, x′, t) → (ω, x′ + tω) is a homeomorphism from

Q−
j onto D̂j with the inverse (ω, x) → (ω, X̂−(ω, x), τ̂−(ω, x)).

Lemma 2.2. A set Ê ⊂ D̂j is measurable if and only if its image E ⊂ Q−
j is measurable

under the mapping (ω, x) → (ω, X̂−(ω, x), τ̂−(ω, x)); moreover,

meas (Ê; dωdx) = meas (E; dΓ̂−dt)

The proof of Lemmas 2.1 and 2.2 repeats the proof of the corresponding assertions in [3].

Lemma 2.3. meas (Dj \ D̂j ; dωdx) = 0.

Proof. Let (ω, x) ∈ Dj \ D̂j . Then X̂+(ω, x) ∈ Γ0
j (ω) ∪ Gj or X̂−(ω, x) ∈ Γ0

j (ω) ∪ Gj . As a

consequence, Pωx ∈ Pω(Γ
0
j (ω) ∪ Gj).

We denote by χ the characteristic function of the set Dj \ D̂j and by dj the diameter of Gj .

By Lemmas 1.3 and 1.4,

meas (Dj \ D̂j ; dωdx) =

∫

Ω×R3

χ(ω, x) dω dx =

∫

Ω

[∫

πω

(∫

R

χ(ω,y + tω) dt

)

dy

]

dω

�
∫

Ω

[ ∫

Pω(Γ0
j (ω)∪Gj)

(∫

R

χ(ω,y + tω)dt

)

dy

]

dω �
∫

Ω

dj [meas 2 (PωΓ
0
j (ω))+meas 2 (PωGj)] dω = 0.

The lemma is proved.
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Lemma 2.4. Assume that f defined in Dj and f̃ defined in Q−
j are such that

f̃(ω, x′, t) = f(ω, x′ + tω) ∀ (ω, x′, t) ∈ Q−
j .

Then the following assertions hold:

1) f is measurable in Dj if and only if f̃ is measurable in Q−
j ,

2) f ∈ L1(Dj) if and only if f̃ ∈ L1(Q−
j ); moreover,

∫

Dj

f(ω, x) dω dx =

∫

Q−
j

f̃(ω, x′, t) d̂Γ−(ω, x′) dt. (2.1)

The proof follows from Lemmas 2.3 and 2.2.

Theorem 2.1. Let f ∈ L1(Dj). Then

∫

Dj

f(ω, x) dω dx =

∫

Γ−
j

[ τ̂+(ω,x′)∫

0

f(ω, x′ + tω) dt

]

d̂Γ−(ω, x′), (2.2)

∫

Dj

f(ω, x) dω dx =

∫

Γ+
j

[ τ̂−(ω,x′)∫

0

f(ω, x′ − tω) dt

]

d̂Γ+(ω, x′). (2.3)

Proof. Formula (2.2) is obtained from (2.1) since from the Fubini theorem and the equality

meas (Γ−
j \ Ŝ−

j ; d̂Γ−) = 0 valid in view of Lemma 1.7 it follows that

∫

Q−
j

f̃(ω, x′, t) d̂Γ−(ω, x′) dt =
∫

̂S−
j

[ τ̂+(ω,x′)∫

0

f̃(ω, x′, t) dt
]

d̂Γ−(ω, x′)=
∫

Γ−
j

[ τ̂+(ω,x′)∫

0

f(ω, x′ + tω) dt

]

d̂Γ−(ω, x′).

Formula (2.3) is obtained from (2.2) with ω replaced by −ω.

2.3. The spaces W p(Dj) and W p(D)

By the weak directional derivative of a function f ∈ L1(Dj) along a direction ω we understand

a function w ∈ L1(Dj) satisfying the integral identity
∫

Dj

(
f(ω, x)ω · ∇ϕ(ω, x) + w(ω, x)ϕ(ω, x)

)
dω dx = 0

for all functions ϕ ∈ C(Dj) such that ϕ(ω, ·) ∈ C∞
0 (Gj) for almost all ω ∈ Ω. For this function

we use the notation w = ω · ∇f .

We denote by W p(Dj) the linear space of functions f ∈ Lp(Dj) possessing the weak direc-

tional derivatives ω · ∇f ∈ Lp(Dj). The space W p(Dj) equipped with the norm

‖f‖W p(Dj) =

⎧
⎨

⎩

(
‖f‖pLp(Dj)

+ ‖ω · ∇f‖pLp(Dj)

)1/p
, 1 � p < ∞,

max{‖f‖L∞(Dj), ‖ω · ∇f‖L∞(Dj)}, p = ∞,
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becomes a Banach space.

We denote by W p(D) the Banach space of functions f ∈ Lp(D) such that f ∈ W p(Dj) for

all 1 � j � m, equipped with the norm

‖f‖W p(D) =

⎧
⎨

⎩

(
‖f‖pLp(D) + ‖ω · ∇f‖pLp(D)

)1/p
, 1 � p < ∞,

max{‖f‖L∞(D), ‖ω · ∇f‖L∞(D)}, p = ∞.

Let C(0,1)(Dj) be the set of continuous functions ϕ on Dj possessing continuous partial

derivatives
∂ϕ

∂xi
, 1 � i � 3, in Dj . It is known [5] that for Lipschitz domains and 1 � p < ∞ the

set C(0,1)(Dj) is dense in W p(Dj).

We recall how to introduce the traces f |Γ+ and f |Γ− of a function f ∈ W p(D), 1 � p � ∞,

on Γ+ and Γ−. Since Γ+ =
m⋃

j=1
Γ+
j , Γ

− =
m⋃

j=1
Γ−
j , it suffices to define the traces f |Γ+

j
and f |Γ−

j
on

Γ+
j and Γ−

j for every 1 � j � m.

For f ∈ C(0,1)(Dj) the traces f |Γ±
j
are naturally defined as the restrictions of f on Γ±

j . Let

1 � p < ∞, and let K± be arbitrary compact subsets of Γ±
j . Then [7]

‖f |Γ±
j
‖Lp(K+) � cK±‖f‖W p(Dj) ∀f ∈ C(0,1)(Dj), (2.4)

where the constants cK± depend only on K±, Gj , and p. Although these estimates are proved

in [7] only for domains Gj with smooth boundaries, the proof remains true for domains with

piecewise smooth boundaries.

Since the set C(0,1)(Dj) is dense in W p(Dj), the estimate (2.4) allows us to extend the linear

operators f → f |Γ±
j
to linear continuous operators acting from W p(Dj) to L

p(K±) and satisfying

the estimates

‖f |Γ+
j
‖Lp(K+) � cK+‖f‖W p(Dj) ∀f ∈ W p(Dj).

Since the sets Γ±
j can be represented as the countable unions (1.5) of expanding compact sets,

functions f ∈ W p(Dj), 1 � p < ∞. have the traces f |Γ±
j

∈ Lp
loc(Γ

±
j ). As a consequence, all

functions f ∈ W p(D), 1 � p < ∞, have the traces f |Γ± ∈ Lp
loc(Γ

±).

Remark 2.1. It is easy to see that for 1 < p < ∞ the linear trace operators f → f |Γ± ,

regarded as operators from W p(D) to Lp
loc(Γ

±), are restrictions of the same trace operators,

regarded as operators from W 1(D) to L1
loc(Γ

±).

Remark 2.2. Since W ∞(D) ⊂ W p(D) for all 1 � p < ∞, the traces are also defined for

f ∈ W ∞(D); moreover, f |Γ± ∈ L∞(Γ±) in view of Theorem 2.3.

2.4. Additional information on properties of functions in the space W (Dj)

Theorems 2.2 and 2.3 below provide an additional information about the properties of func-

tions in the space W p(Dj). In fact, these theorems contain different from, but equivalent to the

above definitions of the directional derivative ω · ∇f and traces f |Γ+
j
, f |Γ−

j
.

Theorem 2.2. A function w ∈ L1(Dj) is the weak directional derivative of f ∈ L1(Dj)

along a direction ω (i.e., w = ω · ∇f) if and only if the following property holds: for almost all
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(ω, x′) ∈ Γ−
j the function f(ω, x′ + tω), regarded as a function of the variable t, belongs to the

space W 1,1(0, τ̂+(ω, x′)) and

d

dt
f(ω, x′ + tω) = w(ω, x′ + tω) for a.e. t ∈ (

0, τ̂+(ω, x′)
)
.

In the case of domains with smooth boundaries, the proof of this theorem can be found

in [3], where the smoothness assumption was used only to have the possibility to apply formula

(2.2). By Theorem 2.1, formula (2.2) is also valid for domains with Lipschitz piecewise smooth

boundaries. Therefore, the reasoning remains valid in the case under consideration.

Corollary 2.1. A function w ∈ L1(Dj) is the weak directional derivative of a function

f ∈ L1(Dj) in a direction ω if and only if the following property holds: for almost all (ω, x′) ∈
Γ+
j the function f(ω, x′ − tω), regarded as a function of the variable t, belongs to the space

W 1,1(0, τ̂−(ω, x′)) and

d

dt
f(ω, x′ − tω) = −w(ω, x′ − tω) for a.e. t ∈ (

0, τ̂−(ω, x′)
)
.

Corollary 2.2. Assume that f ∈ W p(Dj), 1 � p < ∞, and f [M,N ] = max{min{f,N},M},
where M and N are constant, −∞ � M < N � ∞. Then f [M,N ] ∈ W p(Dj), ω · ∇f [M,N ] = 0

on EM,N = {(ω, x) ∈ Dj | f � M or f � N}, and ω · ∇f [M,N ] = ω · ∇f in Dj \ EM,N .

The proof of this corollary is based on Theorem 2.2 and actually repeats the proof of the

corresponding assertion in [3].

Theorem 2.3. Let f ∈ W p(Dj), 1 � p � ∞. Then for the traces f |Γ−
j

and f |Γ+
j

the

following formulas hold:

f |Γ−
j
(ω, x) = lim ap

t→0+
f(ω, x+ t ω) for a.e. (ω, x) ∈ Γ−

j , (2.5)

f |Γ+
j
(ω, x) = lim ap

t→0+
f(ω, x− t ω) for a.e. (ω, x) ∈ Γ+

j . (2.6)

In the case of domains with smooth boundaries, this theorem was proved in [3]. Repeating

the proof in [3] and taking into account Theorem 2.2, we obtain Theorem 2.3.

Remark 2.3. Formulas (2.5) and (2.6) are convenient by the possibility to compute the

traces of a function f via its values without modifying f on a set of measure zero or constructing

an approximate sequence of smooth functions.

Corollary 2.3. If f ∈ W ∞(Dj), then f |Γ±
j
∈ L∞(Γ±

j ) and ‖f |Γ±
j
‖L∞(Γ+

j ) � ‖f‖L∞(Dj).

Corollary 2.4. If f ∈ W p(Dj), 1 � p � ∞ and f � 0, then f |Γ+
j
� 0, f |Γ−

j
� 0.

The following important theorem asserts that any function f ∈ W 1(Dj) can be modified on

a set of measure zero in such a way that becomes a function that, regarded as a function of the

variable x, for almost all (ω, x′) ∈ Γ−
j is absolutely continuous on the interval ]x′, X̂+(ω, x′)[.

Theorem 2.4. For any function f ∈ W 1(Dj) there exists an equivalent function f̃ ∈ W 1(Dj)

such that for almost all (ω, x′) ∈ Γ−
j the function f̃(ω, x′ + tω), regarded as a function of the

variable t, is absolutely continuous on the interval (0, τ̂+(ω, x′)).
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Proof. We consider the function

f̂(ω, x′, t) =
1

τ̂+(ω, x′)

τ̂+(ω,x′)∫

0

[
f(ω, x′ + s ω)− (τ̂+(ω, x′)− s)ω · ∇I(ω, x′ + s ω)

]
ds

+

t∫

0

ω · ∇I(ω, x′ + s ω) ds. (2.7)

on Q−
j . We note that this function is measurable on Q−

j (recall that τ̂+ is continuous on Ŝ−
j ).

We also note that for almost all (ω, x′) ∈ Ŝ−
j the function (2.7), regarded as a function of the

variable t, is absolutely continuous on the interval (0, τ̂+(ω, x)) and
d

dt
f̂(ω, x′, t) = ω ·∇I(ω, x′+

t ω). It is easy to see that

τ̂+(ω,x′)∫

0

f̂(ω, x′, s) ds =

τ̂+(ω,x′)∫

0

f(ω, x′ + sω) ds.

By Theorem 2.2, for almost all (ω, x′) ∈ Ŝ−
j the functions f̂(ω, x′, t) and f(ω, x′ + tω) are

equivalent on (0, τ̂−(ω, x′)). Since these functions are measurable on Q−
j , we conclude that

f̂(ω, x′, t) and f(ω, x′ + tω) are equivalent on Q−
j . By Lemma 2.2, the function f(ω, x) is

equivalent to the function f̃(ω, x) = f̂(ω, X̂−(ω, x), τ̂−(ω, x)) on D̂j . To complete the proof, it

remains to note that for almost all (ω, x′) ∈ Ŝ−
j the function f̃(ω, x′+ tω) = f̂(ω, x′, t), regarded

as a function of the variable t, is absolutely continuous on the interval (0, τ̂+(ω, x′)).

Remark 2.4. By Theorem 2.4, the function f ∈ W 1(Dj) can be modified on a set of measure

zero in such a way that formulas (2.5) and (2.6) take the following simpler form:

f |Γ−
j
(ω, x) = lim

t→0+
f(ω, x+ t ω) for a.e. (ω, x) ∈ Γ−

j ,

f |Γ+
j
(ω, x) = lim

t→0+
f(ω, x− t ω) for a.e. (ω, x) ∈ Γ+

j .

2.5. The spaces Ŵ p(Dj) and Ŵ p(D)

We introduce the spaces

Ŵ p(Dj) = {f ∈ W p(Dj) | f |Γ−
j
∈ L̂p(Γ−

j )},

Ŵ p(D) = {f ∈ W p(D)| f |Γ− ∈ L̂p(Γ−)},

where 1 � p � ∞. We note that Ŵ ∞(Dj) = W ∞(Dj) and Ŵ ∞(D) = W ∞(D).

Theorem 2.5. Let f ∈ Ŵ p(Dj), 1 � p < ∞. Then f |Γ+
j
∈ L̂p(Γ+

j ) and the Green formula

holds: ∫

Dj

ω · ∇f dωdx =

∫

Γ+
j

f |Γ+
j
d̂Γ+ −

∫

Γ−
j

f |Γ−
j
d̂Γ−.
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Furthermore,

|f |p ∈ Ŵ 1(Dj), ω · ∇|f |p = p|f |p−1 sgn (f)ω · ∇f, |fp|∣∣
Γ±
j
= |f |Γ±

j
|p,

∫

Dj

ω · ∇|f |p dω dx = ‖f |Γ+
j
‖p
̂Lp(Γ+

j )
− ‖f |Γ−

j
‖p
̂Lp(Γ−

j )
.

The proof of this theorem repeats the proof of Corollaries 2.8, 2.9, and 2.10 in [3] and is

based on Lemmas 1.5, 1.6, 1.7, 2.3 and Theorems 2.2, 2.3 of the present paper.

Corollary 2.5. The following estimate holds:

‖f |Γ+
j
‖p
̂Lp(Γ+

j )
� p‖f‖p−1

Lp(Dj)
‖ω · ∇f‖Lp(Dj) + ‖f |Γ−

j
‖p
̂Lp(Γ−

j )
∀ f ∈ Ŵ p(Dj). (2.8)

Corollary 2.6. Let f ∈ Ŵ p(Dj), g ∈ Ŵ p′(Dj), 1 � p � ∞. Then

∫

Dj

(ω · ∇f)g dωdx+

∫

Dj

f(ω · ∇g) dωdx =

∫

Γ+
j

f |Γ+
j
g|Γ+

j
d̂Γ+ −

∫

Γ−
j

f |Γ−
j
g|Γ−

j
d̂Γ−.

Throughout the paper, p′ denotes the Hölder conjugate exponent of p.

Remark 2.5. It is natural that for functions in the space Ŵ p(D) we have analogs of Theorem

2.5 and Corollaries 2.5, 2.6 with replacements of Dj by D and Γ±
j by Γ±.

2.6. The spaces W̃ p
±(Dj) and W̃ p

±(D)

Let 1 � p < ∞. We denote by W̃ p
±(Dj) the space of functions f ∈ W p(Dj) whose traces

f |Γ±
j
are independent of ω ∈ Ω±

j (x) (i.e., f |Γ±
j
(ω, x) = f |Γ±

j
(x)) for almost all x ∈ ∂′Gj .

Theorem 2.6. Let 1 � p � ∞. The traces of a function f ∈ W̃ p
−(Dj) possess the properties

f |Γ−
j
∈ Lp

const(Γ
−
j ), f |Γ+

j
∈ L̂p(Γ+

j ), and the following estimates hold:

‖f |Γ−
j
‖Lp

const(Γ
−
j ) � C1,p‖f‖W p(Dj) ∀ f ∈ W̃ p

−(Dj), (2.9)

‖f |Γ+
j
‖
̂Lp(Γ+

j )
� C2,p‖f‖W p(Dj) ∀ f ∈ W̃ p

−(Dj), (2.10)

where the constants C1,p and C2,p are independent of f .

Proof. In the case p = ∞, the assertions of the theorem are obvious. Let 1 � p < ∞. Since

the domain Gj is Lipschitz, for every points x0 ∈ ∂Gj there exist a direction ω0 ∈ Ω, numbers

r0 > 0, h0 > 0, and a function γ ∈ Lip(V r,ω0), −h0 < γ < h0 such that (1.1)–(1.3) hold.

We set Ωε,ω0 = {ω ∈ Ω | |ω + ω0| < ε}, where ε = 1
2
√
1+L2

and L is the Lipschitz constant of

the function γ. From (1.4) it follows that for almost all x ∈ Πr0,γ(ω0, x0)

ω0 · nj(x) �
1√

1 + L2
= 2ε.

Therefore, ω · nj(x) � −ε for all ω ∈ Ωε,ω0 and almost all x ∈ Πr0,γ(ω0, x0).
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Let (ω, x) ∈ Uε,r(ω0, x0) = Ωε,ω0 × Πr,γ(ω0, x0), where r < 1
2 min{r0, h0/L}. Let t ∈ (0, δ),

where δ = 1
2 min{r0, h0}, and let y = Pω0(x− x0). Then

x+ tω = x0 + y + tPω0ω + (γ(y) + tω · ω0)ω0

and it is clear that |y + tPω0ω| � r + δ < r0 and γ(y) + tω · ω0 > −L|y| − δ > −h0. Since

ε = 1
2
√
1+L2

� 1/2 and |ω + ω0| < ε, we have

L < (2ε)−1, ω · ω0 < ε2/2− 1 � −7/8, |Pω0ω| =
√
1− |ω · ω0|2 < ε.

By the Lipschitz condition,

γ(y) + tω · ω0 − γ(y + tPω0ω) � Lt|Pω0ω|+ tω · ω0 < t(Lε− 7/8) < −3/8t < 0.

Thus, x+ tω ∈ Cr,−h0,γ(ω0, x0) ⊂ Gj for all (ω, x) ⊂ Uε,r(ω0, x0) and t ∈ (0, δ).

From Theorems 2.2 and 2.3 it follows that for almost all (ω, x) ∈ Uε,r(ω0, x0)

f |Γ−
j
(x) = f(ω, x+ tω) +

t∫

0

ω · ∇f(ω, x+ s ω) ds for a.e. t ∈ (0, δ).

Taking into account that δ < τ̂+(ω, x), from the last inequality we find

|f |Γ−
j
(x)|p �

(
1

δ

δ∫

0

|f(ω, x+ tω)| dt+
δ∫

0

|ω · ∇f(ω, x+ tω)| dt
)p

� 2p−1δ−1

τ̂+(ω,x)∫

0

|f(ω, x+ tω)|p dt+ 2p−1δp−1

τ̂+(ω,x)∫

0

|ω · ∇f(ω, x+ tω)|p dt.

Using (2.2), we obtain the estimate

∫

Uε,r(ω0,x0)

|f |Γ−
j
(x)|pd̂Γ−(ω, x) � 2p−1δ−1

∫

Γ−
j

[ τ̂+(ω,x)∫

0

|f(ω, x+ tω)|p dt
]

d̂Γ−(ω, x)

+ 2p−1δp−1

∫

Γ−
j

[ δ∫

0

|ω · ∇f(ω, x+ tω)|pdt
]

d̂Γ−(ω, x)=2p−1δ−1(‖f‖pLp(Dj)
+ δp ‖ω · ∇f‖pLp(Dj)

).

Since |ω · nj(x)| � ε for almost all (ω, x) ∈ Uε,r(ω0, x0), we have the inequality

ε ·meas (Ωε,ω0 ; dω)‖f |Γ−
j
‖pLp(Πr,γ(ω0,x0))

� 2p−1δ−1
(‖f‖pLp(Dj)

+ δp ‖ω · ∇f‖pLp(Dj)

)
.

Thus, the following estimate holds:

‖f |Γ−
j
‖pLp(Πr,γ(ω0,x0))

� Cp(x0)‖f‖pW p(Dj)
. (2.11)
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We cover each point x0 ∈ ∂Gj by surfaces of the form Πr,γ(ω0, x0). From the obtained

covering we extract a finite subcovering {Πrk,γk(ωk, xk)}Nk=1 and arrive at the estimate

‖f |Γ−
j
‖pLp(∂Gj)

�
N∑

k=1

‖f |Γ−
j
‖pLp(Πrk,γk

(ωk,xk))
�

N∑

k=1

Cp(xk)‖f‖pW p(Dj)
= Cp

1,p‖f‖pW p(Dj)
.

The estimate (2.9) is proved. Taking into account (2.8), we obtain the estimate (2.10) from the

estimate (2.9).

Corollary 2.7. Let 1 � p � ∞. The traces of a function f ∈ W̃ p
+(Dj) possess the properties

f |Γ+
j
∈ Lp

const(Γ
+
j ), f |Γ−

j
∈ L̂p(Γ−

j ), and the following estimates hold:

‖f |Γ+
j
‖Lp

const(Γ
+
j ) � C1,p‖f‖W p(Dj) ∀ f ∈ W̃ p

+(Dj),

‖f |Γ−
j
‖
̂Lp(Γ−

j )
� C2,p‖f‖W p(Dj) ∀ f ∈ W̃ p

+(Dj),

where the constants C1,p and C2,p are independence of f .

To prove the corollary, it suffices to note that the mapping f(ω, x) → f(−ω, x) is a mutually

one-to-one isometric mapping from W̃ p
−(Dj) onto W̃ p

+(Dj).

Corollary 2.8. W̃ p
±(Dj) ⊂ Ŵ p(Dj) for all 1 � p � ∞; moreover, W̃ p

±(Dj) is a closed

subspace in W p(Dj).

We denote by W̃ p
±(D) the space of functions f ∈ W p(D) such that f ∈ W̃ p

±(Dj) for all

1 � j � m. It is clear that for W̃ p
±(D) analogs of Theorem 2.6 and Corollaries 2.7, 2.8 are valid

with the only difference that Dj and Γ±
j should be replaced with D and Γ± respectively.

3 Boundary Value Problem for the Radiative Transfer Equa-

tion with Diffuse Reflection and Refraction Conditions in a

System of Bodies with Piecewise Smooth Boundaries and Its

Properties

We proceed with the main objective of the study in this paper: the boundary value problem for

the radiative transfer equation with diffuse reflection and refraction conditions in a system of

bodies with piecewise smooth boundaries.

3.1. Statement of the problem

We briefly describe the statement of the problem under consideration (cf. details in [1]).

The unknowns are a function I(ω, x) defined in D = Ω×G and interpreted as the radiation

intensity at a point x ∈ G, when the radiation propagates in a system of bodies in direction ω

and a function J(ω, x) defined on S− and interpreted as the intensity of the radiation falling

from the vacuum on Σ at a point x in direction ω. This pair of functions is a solution to the
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following problem:

ω · ∇I + βI = sS (I) + κk2F, (ω, x) ∈ D, (3.1)

I|Γ− = R−
d (I|Γ+) +P−

d (J), (ω, x) ∈ S−, (3.2)

I|Γ−
i
= R−

d,ij(I|Γ+
i
) +P−

d,ij(I|Γ+
j
), (ω, x) ∈ Γ−

ij = Γ−
i ∩ Γ+

j , i �= j, (3.3)

J = TR+
d (J) + TP+

d (I|Γ+), (ω, x) ∈ S̃−, (3.4)

J = J∗, (ω, x) ∈
∗
S−. (3.5)

It is assumed that we are given the functions F ∈ Lp(G) and J∗ ∈ L̂1,p(
∗
S−), 1 � p � ∞,

interpreted as the volume radiation source and the intensity of the radiation falling on a system

of bodies from the vacuum and coming from outside. The condition (3.3) is imposed for those

i �= j for which meas (∂Gij ; dσ) > 0.

3.2. The diffuse reflection operator and the diffuse refraction operator

The operators of diffuse reflection R−
d , R

+
d and operators of diffuse refraction P−

d , P+
d are

introduced as follows. Assume that ϕ ∈ L̂1(S+) and ψ ∈ L̂1(S−). We set

R−
d (ϕ)(ω, x) =

ρ−j (x)
π

∫

Ω+
j (x)

ϕ(ω′, x)ω′ · nj(x) dω
′, (ω, x) ∈ S−

j , 1 � j � m,

R+
d (ψ)(ω, x) =

ρ+j (x)

π

∫

Ω−
j (x)

ψ(ω′, x) |ω′ · nj(x)| dω′, (ω, x) ∈ S+
j , 1 � j � m,

P−
d (ψ)(ω, x) =

1− ρ+j (x)

π

∫

Ω−
j (x)

ψ(ω′, x)|ω′ · nj(x)| dω′, (ω, x) ∈ S−
j , 1 � j � m,

P+
d (ϕ)(ω, x) =

1− ρ−j (x)
π

∫

Ω+
j (x)

ϕ(ω′, x)ω′ · nj(x) dω
′, (ω, x) ∈ S+

j , 1 � j � m.

The quantity ρ±j characterizing the reflective ability of the surfaces ∂Gj are connected by the

equality

1− ρ−j =
1

k2j
(1− ρ+j );

moreover, ρ±j ∈ L∞(∂Gj) and 0 < ρ±j < 1. We assume that

ρ+ = max
1�j�m

‖ρ+j ‖L∞(∂Gj) < 1.

Remark 3.1. Applying the operators R±
d and P±

d , we obtain functions defined on S±, but
independent of ω.
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The operators R−
d,ij and P−

d,ij are defined as follows. Let i �= j, and let meas (∂Gij ; dσ) > 0.

We set Γ−
ij = Γ+

ji = Γ−
i ∩ Γ+

j . Assume that ϕ ∈ L̂1(Γ+
ij) and ψ ∈ L̂1(Γ+

ji). Then

R−
d,ij(ϕ)(ω, x) =

ρ−ij(x)
π

∫

Ω+
i (x)

ϕ(ω′, x)ω′ · ni(x) dω
′, (ω, x) ∈ Γ−

ij , (3.6)

P−
d,ij(ψ)(ω, x) =

1− ρ−ji(x)
π

∫

Ω+
j (x)

ψ(ω′, x)ω′ · nj(x) dω
′, (ω, x) ∈ Γ−

ij . (3.7)

The quantities ρ−ij characterizing the reflective ability of the surfaces ∂Gij = ∂Gi ∩ ∂Gj are

connected by the equality

1− ρ−ij = (1− ρ−ji)
k2j
k2i

;

moreover, ρ−ij ∈ L∞(∂Gij) and 0 < ρ−ij < 1. If bodies Gi and Gj are separated by an infinitely

thin vacuum layer, then the following equality holds [1]:

ρ−ij = 1− (1− ρ−i )(1− ρ+j )

1− ρ+i ρ
+
j

.

Remark 3.2. Applying the operators R−
d,ij and P−

d,ij , we obtain functions defined on Γ−
ij ,

but independent of ω ∈ Ω−
i (x).

It is easy to see that the following assertion holds.

Lemma 3.1. 1. For all 1 � p � ∞ the operators R−
d and R+

d are linear bounded operators

acting from L̂1,p(S+) to Lp
const(S

−) and from L̂1,p(S−) i to Lp
const(S

+) respectively.

2. For all 1 � p � ∞ the operators P−
d and P+

d are linear bounded operators acting from

L̂1,p(S−) to Lp
const(S

−) and from L̂1,p(S+) to Lp
const(S

+) respectively.

3. For all 1 � p � ∞ the operators R−
d,ij and P−

d,ij are linear bounded operators acting from

L̂1,p(Γ+
ij) to Lp

const(Γ
−
ij) and from L̂1,p(Γ+

ji) to Lp
const(Γ

−
ij) respectively.

3.3. The translation operator T

The translation operator T is defined by

Tϕ(ω, x) =

{
ϕ(ω,X−(ω, x)), (ω, x) ∈ S̃−,

0, (ω, x) ∈ S− \ S̃−.

From the properties of the sets S̃−, S̃+ and the mapping (ω, x) → (ω,X−(ω, x)) indicated

in Lemmas 1.10 and 1.11 we obtain the following assertion.

Lemma 3.2. For all 1 � p � ∞ the operator T is a linear bounded operator acting from

L̂p(S̃+) to L̂p(S̃−); moreover, ‖T‖
̂Lp(˜S+)→̂Lp(˜S−)

= 1 and

∫

˜S−

Tϕ d̂Γ− =

∫

˜S+

ϕ d̂Γ+ ∀ϕ ∈ L̂1(S̃+).
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3.4. The operators Bd and Cd

We recall that the function J in the statement of the problem (3.1)–(3.5) is such that

J = TR+
d (J) + TP+

d (I|Γ+), (ω, x) ∈ S̃−, (3.8)

J = J∗, (ω, x) ∈
∗
S−. (3.9)

We also recall that

meas (S− \ (S̃− ∪
∗
S−); dΓ) = 0.

Let I|Γ+ ∈ L̂1,p(S+), and let J∗ ∈ L̂1,p(
∗
S−). We set J∗ = 0 on S− \

∗
S− and reduce the

system (3.8), (3.9) to the equivalent equation

J = TR+
d (J) + TP+

d (I|Γ+) + J∗, (ω, x) ∈ S−. (3.10)

From [1, Lemma 4.6] it follows that

‖TR+
d ‖̂L1,p(S−)→̂L1,p(S−)

� ρ+ < 1.

Hence a solution J ∈ L̂1,p(S−) to Equation (3.10) exists, is unique, and is represented as

J = Bd(I|Γ+) + Cd(J∗),

where the linear bounded operators Bd : L̂1,p(S+) → L̂1,p(S−) and Cd : L̂1,p(
∗
S−) → L̂1,p(S−)

are defined by

Bd(I|Γ+) =

∞∑

�=0

(TR+
d )

�TP+
d (I|Γ+),

Cd(J∗) =
∞∑

�=0

(TR+
d )

�J∗.

3.5. Statement of the problem

Excluding the function J = Bd(I|Γ+) + Cd(J∗) from the problem (3.1)–(3.5), we obtain the

boundary value problem

ω · ∇I + βI = sS (I) + κk2F, (ω, x) ∈ D, (3.11)

I|Γ− = Bd(I|Γ+) + Cd(J∗), (ω, x) ∈ Γ−, (3.12)

where F ∈ Lp(D), J∗ ∈ L̂1,p(
∗
S−), 1 � p � ∞, whereas the linear bounded operators Bd :

L̂p(Γ+) → Lp
const(Γ

−) and Cd : L̂1,p(
∗
S−) → Lp

const(Γ
−) are defined by

Bd(I|Γ+)(ω, x) =

⎧
⎨

⎩

R−
d (I|Γ+)(ω, x) +P−

d Bd(I|Γ+)(ω, x), (ω, x) ∈ S−,

R−
d,ij(I|Γ+

i
)(ω, x) +P−

d,ij(I|Γ+
j
)(ω, x), (ω, x) ∈ Γ−

ij , i �= j,

Cd(J∗)(ω, x) =

⎧
⎨

⎩

P−
d Cd(J∗)(ω, x), (ω, x) ∈ S−,

0, (ω, x) ∈ Γ− \ S−.

By a solution to the problem (3.11),(3.12) we mean a function I ∈ W̃ p
−(D) that satisfies

Equation (3.11) almost everywhere in D and the condition (3.12) almost everywhere on Γ−.
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Remark 3.3. The following important fact has not been paid due attention in [1], where

the solution I was understood as a function in the space W p(D). As a result of the action of the

boundary operators B and C on I|Γ+ and J∗, we obtain functions independent of ω. By (3.12),

I|Γ− is independent of ω and, consequently, any solution I ∈ W p(D), automatically belongs to

the space W̃ p
−(D) (cf. Theorem 2.6).

3.6. Auxiliary problem

In the proof of the existence of a solution to the problem (3.11), (3.12), the following auxiliary

problem was essentially used:

ω · ∇I + βjI = f, (ω, x) ∈ Dj , (3.13)

I|Γ−
j
= g, (ω, x) ∈ Γ−

j , (3.14)

where f ∈ Lp(Dj), g ∈ L̂p(Γ−
j ), 1 � p � ∞, βj = const > 0.

By a solution to the problem (3.13), (3.14) we mean a function I ∈ W p(Dj) that satisfies

Equation (3.13) almost everywhere in Dj and the condition (3.14) almost everywhere on Γ−
j . It

is clear that I ∈ Ŵ p(Dj).

The proof of the following theorem in the particular case where the domain Gj has smooth

boundary and p = ∞ can be found, for example, in [7, 8]).

Theorem 3.1. A solution to the problem (3.13), (3.14) exists, is unique, and is represented

in the form

I(ω, x) = e−βj τ̂
−(ω,x)g(ω, X̂−(ω, x)) +

τ̂−(ω,x)∫

0

e−βjsf(ω, x− sω) ds, (ω, x) ∈ Dj , (3.15)

where τ̂−(ω, x) and X̂−(ω, x) are defined by (1.10). For 1 � p < ∞ the solution satisfies the

estimates

‖I‖Lp(Dj) �
(
β−p
j ‖f‖pLp(Dj)

+ β−1
j ‖g‖p

̂Lp(Γ−
j )

)1/p
, (3.16)

‖ω · ∇I‖Lp(Dj) � 2
(‖f‖pLp(Dj)

+ βp−1
j ‖g‖p

̂Lp(Γ−
j )

)1/p
, (3.17)

and for p = ∞

‖I‖L∞(Dj) � max
{
β−1
j ‖f‖L∞(Dj), ‖g‖L∞(Γ−

j )

}
, (3.18)

‖ω · ∇I‖L∞(Dj) � 2max
{‖f‖L∞(Dj), βj‖g‖L∞(Γ−

j )

}
. (3.19)

Proof. We first assume that f ∈ L1(Dj) and g ∈ L̂1(Γ−
j ). We pass from the variables

(ω, x) ∈ D̂j to the variables (ω, x′, t) ∈ Q−
j , where x = x′ + ωt, x′ = X̂−(ω, x), t = τ̂−(ω.x),

(ω, x′) ∈ Ŝ−
j . We recall that meas (Γ−

j \ Ŝ−
j ; d̂Γ

−) = 0 and meas (Dj \ D̂j ; dωdx) = 0.

By Theorem 2.4 and Corollary 2.4, the sought function I ∈ W 1(Dj) can be modified on a

set of measure zero in such a way that the obtained function is a solution to the problem (3.13),
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(3.14) if and only if for almost all (ω, x′) ∈ Ŝ−
j the function I(ω, x′+ tω), regarded as a function

of the variable t, is absolutely continuous on (0, τ̂+(ω, x)); moreover,

d

dt
I(ω, x′ + tω) + βjI(ω, x

′ + tω) = f(ω, x′ + tω) for a.e. t ∈ (0, τ̂+(ω, x)), (3.20)

lim
t→0+

I(ω, x′ + tω) = g(ω, x′). (3.21)

Thus, a function I ∈ W 1(Dj) is a solution to the problem (3.13), (3.14) if and only if for almost

all (ω, x′) ∈ Ŝ−
j and all t ∈ (0, τ̂+(ω, x′))

I(ω, x′ + tω) = e−βjtg(ω, x′) +
t∫

0

e−βj(t−τ)f(ω, x′ + τω) dτ. (3.22)

The existence and uniqueness of a solution I ∈ W 1(Dj) are established. Formula (3.15) is

obtained from (3.22) by passing to the variables (x, t).

Now, f ∈ Lp(Dj) and g ∈ L̂p(Γ−
j ), 1 � p < ∞. Let I [N ] = max{min{I,N},−N}, where

N > 0 is a parameter. We denote by χN the characteristic function of the set {(ω, x) ∈ Dj |
|I(x.ω)| < N}. Multiplying Equation (3.20) by pχN |I [N ]|p−1 sgn (I [N ]), we get

ω · ∇|I [N ]|p + βjpχN |I [N ]|p = pχN |I [N ]|p−1 sgn (I [N ])f � βj(p− 1)χN |I [N ]|p + β1−p
j |f |p

which implies

ω · ∇|I [N ]|p + βjχN |I [N ]|p � β1−p
j |f |p,

Integrating the obtained inequality over Dj , we find

‖I [N ]|Γ+
j
‖p
̂Lp(Γ+

j )
+ βj‖χNI [N ]‖pLp(Dj)

� ‖I [N ]|Γ−
j
‖p
̂Lp(Γ−

j )
+ β1−p

j ‖f‖pLp(Dj)

� ‖g‖p
̂Lp(Γ−

j )
+ β1−p

j ‖f‖pLp(Dj)
.

Removing the first term on the left-hand side of the obtained inequality and passing to the limit

as N → ∞, we arrive at the inequality

βj‖I‖pLp(Dj)
� ‖g‖p

̂Lp(Γ−
j )

+ β1−p
j ‖f‖pLp(Dj)

.

Thus, I ∈ Lp(Dj) and the estimate (3.16) holds. If f ∈ L∞(D) and g ∈ L∞(Γ−
j ), then, passing

to the limit as p → ∞, we obtain the estimate (3.18).

From the above-obtained estimates and Equation (3.20) we conclude that ω · ∇I ∈ Lp(Dj)

and the estimates (3.17), (3.19) hold.

Owing to formula (3.15), the following assertion is obvious.

Corollary 3.1. Let I be a solution to the problem (3.13), (3.14).

1. Let f � 0 and g � 0. Then I � 0.

2. Let f � βjMj in Dj, and let g � Mj in Γ−
j , where Mj = const. Then I � Mj in Dj.
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3.7. Existence, uniqueness, and a priori estimates

We set

F+ = max{F, 0}, J∗+ = max{J∗, 0}, I+ = max{I, 0},
F− = min{F, 0}, J∗− = min{J∗, 0}, I− = min{I, 0}.

Theorem 3.2. Let 1 � p � ∞, and let I ∈ W̃ p
−(D) be a solution to the problem (3.11),

(3.12). Then for 1 � p < ∞

‖κ1/pk−2/qI±‖Lp(D) �
(
‖κ1/pk2/pF±‖pLp(D) +

1

πp−1
‖J∗±‖p

̂L1,p(
∗
S−)

)1/p
, (3.23)

‖κ1/pk−2/qI‖Lp(D) �
(
‖κ1/pk2/pF‖pLp(D) +

1

πp−1
‖J∗‖p

̂L1,p(
∗
S−)

)1/p
, (3.24)

‖κ−1/qk−2/q ω · ∇I‖Lp(D) �
2

1−�max

(
‖κ1/pk2/pF‖Lp(D) +

1

πp−1
‖J∗‖p

̂L1,p(
∗
S−)

)
(3.25)

and for p = ∞

‖k−2I±‖L∞(D) � max
{
‖F±‖L∞(D),

1

π
‖J∗±‖

̂L1,∞(
∗
S−)

}
, (3.26)

‖k−2I‖L∞(D) � max
{
‖F‖L∞(D),

1

π
‖J∗‖

̂L1,∞(
∗
S−)

}
, (3.27)

‖κ−1k−2 ω · ∇I‖L∞(D) �
2

1−�max
max

{
‖F‖L∞(D),

1

π
‖J∗‖

̂L1,∞(
∗
S−)

}
. (3.28)

Here, q = p′ and �max = max
1�j�m

sj
κj + sj

< 1.

The proof of this theorem literally repeats the proof of Theorem 5.2 in [1]. Naturally, one

should take into account that W̃ p
−(D) ⊂ Ŵ p(D) and the required properties of functions in the

space W p(D) are established for domains with Lipschitz piecewise smooth boundaries in Section

2 of the present paper.

Corollary 3.2. Let I be a solution to the problem (3.11), (3.12).

1. If F � 0, J∗ � 0, then I � 0.

2. If F � 0, J∗ � 0, then I � 0.

3. If F = 0, J∗ = 0, then I = 0.

Corollary 3.3. If a solution to the problem (3.11), (3.12) exists, then it is unique.

Theorem 3.3. Let F ∈ L∞(D), J∗ ∈ L1,∞(
∗
S−). Then the problem (3.11), (3.12) has a

unique solution I ∈ W̃ ∞− (D).

The proof of this theorem repeats the proof of Theorem 5.3 in [1]. One also should use

Theorem 3.1 and the properties of functions in the space W ∞(D) which are established for

domains with Lipschitz piecewise smooth boundaries in Section 2 of the present paper.
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Theorem 3.4. Let F ∈ Lp(D), J∗ ∈ L̂1,p(
∗
S−), 1 � p < ∞. Then the problem (3.11), (3.12)

has a unique solution I ∈ W̃ p
−(D).

Proof. We set Fn = max{−n,min{F, n}}, J∗,n = max{−n,min{J∗, n}}, n � 1. Since

Fn ∈ L∞(D), J∗,n ∈ L̂1,∞(
∗
S−), from Theorem 3.3 it follows that for every n � 1 the problem

ω · ∇In + βIn = sS (In) + κk2Fn, (x, ω) ∈ D, (3.29)

In|Γ− = Bd(In|Γ+) + Cd(J∗,n), (ω, x) ∈ Γ− (3.30)

has a unique solution In ∈ W̃ ∞− (D) ⊂ W̃ p
−(D). Since the problem is linear, the estimates of

Theorem 3.2 imply

‖In − I�‖W p(D) � C(‖Fn − F�‖Lp(D) + ‖J∗,n − J∗,�‖
̂L1,p(

∗
S−)

) ∀ n � 1, ∀	 � 1.

Since Fn → F in Lp(D) and J∗,n → J∗ in L̂1,p(
∗
S−) as n → ∞, the sequence {In}∞n=1 is a Cauchy

sequence in W p(D). Since W̃ p
−(D) is closed in W p(D), there exists a function I ∈ W̃ p

−(D) such

that In → I in W̃ p
−(D) as n → ∞.

By Theorem 2.6, the space W̃ p
−(D) is continuously embedded into Lp

const(Γ
−) and into L̂p(Γ+).

Therefore, In|Γ− → I|Γ− in Lp
const(Γ

−) and In|Γ+ → I|Γ+ in L̂p(Γ+) as n → ∞. As a consequence,

B(In|Γ+) → B(I|Γ+) in Lp
const(Γ

−). Furthermore, C(J∗,n) → C(J∗) in Lp
const(Γ

−).
The limit passage in (3.29), (3.30) as n → ∞ leads to the equalities (3.11) and (3.12).

The existence of solutions I ∈ W̃ p
−(D) is proved. The uniqueness follows from Corollary 3.3.

The theorem is proved.

3.8. Continuous dependence of the solution to the problem (3.11), (3.12) on data

We consider the sequence of problems

ω · ∇I(n) + β(n)I(n) = s(n)S (n)(I(n)) + κ
(n)(k(n))2F (n), (ω, x) ∈ D, (3.31)

I(n)|Γ− = B
(n)
d (I(n)|Γ+) + C

(n)
d (J

(n)
∗ ), (ω, x) ∈ Γ−, (3.32)

corresponding to the sequences of data {κ(n)
j }∞n=1, {s(n)j }∞n=1, {k(n)j }∞n=1, {θ(n)j }∞n=1, {ρ±,(n)

j }∞n=1

for 1 � j � m, {ρ−,(n)
ij }∞n=1 for i �= j and {F (n)}∞n=1 ⊂ L1(D), {J (n)

∗ }∞n=1 ⊂ L̂1(
∗
S−), 1 � p � ∞.

In Equation (3.31), κ(n)(x) = κ
(n)
j > 0, s(n)(x) = s

(n)
j � 0, k(n)(x) = k

(n)
j > 1 for x ∈ Gj ,

1 � j � m; moreover, β(n) = κ
(n) + s(n). The operator S (n) is defined by

S (n)(I)(ω, x) =
1

4π

∫

Ω

θ
(n)
j (ω′ · ω)I(ω′, x) dω′, (ω, x) ∈ Dj , 1 � j � m;

moreover, it is assumed that

θ
(n)
j ∈ L1(−1, 1), θ

(n)
j � 0,

1

2

1∫

−1

θ
(n)
j (μ) dμ = 1, 1 � j � m.
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It is also assumed that ρ
±,(n)
j ∈ L∞(∂Gj), 0 < ρ

±,(n)
j < 1, 1 − ρ

−,(n)
j =

1

(k
(n)
j )2

(1 − ρ
+,(n)
j ), 1 �

j � m, ρ+,(n) = max
1�j�m

‖ρ+,(n)
j ‖L∞(∂Gj) < 1. Furthermore, ρ

−,(n)
ij ∈ L∞(∂Gij), 0 < ρ

−,(n)
ij < 1,

1 − ρ
−,(n)
ji = (1 − ρ

−,(n)
ij )

(k
(n)
i )2

(k
(n)
j )2

. The only difference of the operators B
(n)
d and C

(n)
d from the

corresponding operators Bd and Cd is that, in their definitions, the functions ρ+, ρ−ij are replaced

with ρ+,(n) and ρ
−,(n)
ij , whereas the refraction exponents kj are replaced with k

(n)
j .

Theorem 3.5. Assume that {I(n)}∞n=1 is a sequence solutions to the problems (3.31), (3.32)

and I is a solution to the problem (3.11), (3.12). Let the following limit relations hold as

n → ∞ : κ
(n)
j → κj, s

(n)
j → sj, k

(n)
j → kj, θ

(n)
j → θj in L1(−1, 1), ρ

+,(n)
j → ρ+j in L∞(∂Gj) for

all 1 � j � m, ρ
−,(n)
ij → ρ−ij in L∞(∂Gij) for all i �= j such that meas (∂Gij ; dσ) > 0, F (n) → F

in L1(D) and J
(n)
∗ → J∗ in L̂1(

∗
S−). Then I(n) → I in W 1(D) as n → ∞.

Assume, in addition, that F ∈ Lp(D), J∗ ∈ L̂1,p(
∗
S−), {F (n)}∞n=1 ⊂ Lp(D), {J (n)

∗ }∞n=1 ⊂
L̂p(

∗
S−) with some p ∈ (1,∞], sup

n�1
‖F (n)‖Lp(D) < ∞, sup

n�1
‖J (n)

∗ ‖
̂L1,p(

∗
S−)

< ∞. Then I(n) → I in

W q(D) for all q ∈ [1, p) as n → ∞ .

The proof of this theorem is the same as that of Theorem 4.2 in [2].

3.9. The conjugate boundary value problem

The boundary value problem

ω · ∇I + βI = sS (I) + κk2F, (ω, x) ∈ D, (3.33)

I|Γ− = Bd(I|Γ+), (ω, x) ∈ Γ−, (3.34)

i.e., the problem (3.11), (3.12) with the homogeneous boundary condition will be referred to as

the main problem. We denote by Ad the resolving operator for the main problem which with a

function F ∈ Lp(D) associates the solution I = Ad(F ). By Theorems 3.2–3.4, this operator is a

linear bounded operator acting from Lp(D) to W̃ p
−(D) for all 1 � p � ∞.

Following [4], we introduce the operator U by the formula

Uf(ω, x) = f(−ω, x).

For the boundary valued problem (3.33), (3.34) we consider the conjugate problem

− ω · ∇I∗ + βI∗ = sS (I∗) + κk2F ∗, (ω, x) ∈ D, (3.35)

I∗|Γ+ = B∗
d(I

∗|Γ−), (ω, x) ∈ Γ+, (3.36)

where F ∗ ∈ Lq(D), 1 � q � ∞, and B∗
d = UBdU is a linear bounded operator acting from

L̂q(Γ−) to Lq
const(Γ

+), 1 � q � ∞.

By a solution to the conjugate problem we mean a function I∗ ∈ W̃ q
+(D) that satisfies

Equation (3.35) almost everywhere in D and the condition (3.36) almost everywhere on Γ+.

It is easy to see that a function I∗ is a solution to the conjugate problem if and only if I = UI∗

is a solution to the main problem with F = UF ∗. Thus, for any F ∗ ∈ Lq(D), 1 � q � ∞, the
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conjugate problem has a unique solution I∗ ∈ W̃ q
+(D); moreover, the resolving operator A ∗

d

of the conjugate problem associating with F ∗ the solution I∗ is connected with the resolving

operator of the main problem by the equality

A ∗
d = UAdU. (3.37)

Remark 3.4. Formula (3.37) is similar to the formula due to Vladimirov [4] for the problem

with the “shooting” boundary condition.

From formula (3.37) and properties of the operator Ad it follows that the operator A ∗
d is a

linear bounded operator acting from Lq(D) to W̃ q
+(D) for all 1 � q � ∞.

Theorem 3.6. The operator κA ∗
d is the adjoint of the operator κAd in the following sense:

(κAd(F ), F ∗)D = (F,κA ∗
d (F

∗))D ∀F ∈ Lp(D), ∀F ∗ ∈ Lq(D) (3.38)

for all 1 � p � ∞, q = p′.

The proof of this theorem repeats the proof of Theorem 5.1 in [2] with the only difference

that the arguments are now valid for all 1 � p � ∞.

We consider the main problem with an isotropic radiation source F = F (x). We introduce

the operator 〈Ad〉Ω : Lp(G) → Lp(G) by the formula

〈Ad〉Ω(F )(x) =
1

4π

∫

Ω

Ad(F )(ω, x) dω.

As in [2], from Theorem 3.6 we obtain the following assertion.

Theorem 3.7. The operator κ〈Ad〉Ω is selfadjoint in the following sense:

(κ〈Ad〉Ω(F ), F ∗)G = (F,κ〈Ad〉Ω(F ∗))G ∀F ∈ Lp(G), ∀F ∗ ∈ Lq(G) (3.39)

for all 1 � p � ∞, q = p′.

We emphasize that, unlike [2], the identity (3.39) holds for all 1 � p � ∞.
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