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A HIGHER ORDER ASYMPTOTIC EXPANSION OF
THE KRAWTCHOUK POLYNOMIALS

A. R. Minabutdinov∗ UDC 517.987, 519.214.2

The paper extends a classical result on the convergence of the Krawtchouk polynomials to the Her-
mite polynomials. We provide a uniform asymptotic expansion in terms of Hermite polynomials
and obtain explicit expressions for a few first terms of this expansion. The research is motivated
by the study of ergodic sums of the Pascal adic transformation. Bibliography: 10 titles.

1. Introduction

Let 0 < p < 1, q = 1 − p, and let N be a positive integer. The nonnormalized Krawtchouk
polynomials of a variable x can be defined by the identity

Kn(x, p,N) = 2F1

[−x, −n

−N
;
1
p

]
, (1)

where x and n are in {0, 1, . . . , N} and 2F1 is the Gauss hypergeometric function. The nor-
malized Krawtchouk polynomials are usually defined as follows:

k(p)
n (x,N) = (−p)n

(
N

n

)
Kn(x, p,N). (2)

The second argument N is usually omitted, so we write k
(p)
n (x) instead of k

(p)
n (x,N). The

Krawtchouk polynomials have multiple applications in probability theory, classical coding
theory, cryptography, stochastic processes, and other fields, see, e.g., [2] and references therein.
These polynomials form an orthogonal system on the discrete set {0, 1, 2, . . . , N} with the
weight function

ρ(x) =
N ! pxqN−x

Γ(1 + x)Γ(N + 1 − x)
and the orthogonality relation

N∑
x=0

k
(p)
i (x)k(p)

j (x)ρ(x) =
(

N

j

)
(pq)jδij , i, j = 0, 1, . . . , N.

The Krawtchouk polynomials satisfy the following Rodrigues-type formula (see [5, Sec 2,
(22a)]):

k(p)
n (x) =

(−q)n

n!
Δn

(
ρ(x)xn

)
ρ(x)

, (3)

where Δf(x) = f(x+1)− f(x) and yk = y(y− 1) . . . (y− k +1). Formula (3) is often taken as
a definition of the Krawtchouk polynomials, see, e.g., [7]. It also shows that the Krawtchouk
polynomial k

(p)
n ( · ) can be regarded as an analytic function on [0, N ].

Finally, it was recently found in [4] that the Krawtchouk polynomial (−2p)nKn(k, p,N) has a
natural interpretation as the ergodic sum along the tower τN,k of the Pascal adic transformation
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for the orthogonalized1 Walsh–Paley function wp
t where the sum of the binary digits in the

binary representation of t ∈ N equals n (see [4] for details).
There is a classical result on the convergence of the (properly renormalized) Krawtchouk

polynomials to the Hermite polynomials (see [3]):

lim
N→∞

( 2
Npq

)n/2
n! k(p)

n (�x) = Hn(x), (4)

with �x = Np + (2Npq)1/2x and Hn(x) = (−1)nex2 dn

dxn e−x2
. This result was extended by

Sharapudinov in [7], where he obtained the asymptotic formula

(2Npqπn!)1/2(Npq)−n/2ρ(�x)ex2/2k(p)
n (�x) = e−x2/2(2nn!)−1/2Hn(x) + O(n7/4N−1/2), (5)

with �x = Np + (2Npq)1/2x, n = O(N1/3), x = O(n1/2).
Let A be a positive real number. In this paper, we are interested in a higher order, uniform

in v ∈ [−A
√

N,A
√

N ], asymptotic expansion of the Krawtchouk polynomials of the form

k(p)
n (�x) =

M∑
j=0

cj+1(v)N [n/2]−j + o(N [n/2]−M ), (6)

where �x = Np + v, n = O(1), M ∈ N∪ {0}, and [t] is the integer part of a real number t. Our
main result is a uniform asymptotic expansion of ρ(�x)k(p)

n (�x) in terms of Hermite polynomials
stated in Theorem 2. Our approach is based on a result by V. V. Petrov ([6]) extending the
local limit theorem (LLT).

We are especially interested in an expression for the first nonconstant term cj(v) in the
expansion (6), in connection with the study of ergodic sums of the Pascal adic transformation
in [4]. It turns out that the value of j depends on the parity of the index n. In Corollary 1,
under the additional assumption v = o(N1/3), we obtain elegant explicit expressions for c1(v)
and c2(v) for odd and even values of n, respectively.

Recently, considerable interest has been focused on the asymptotics of the Krawtchouk
polynomials as the parameter N goes to infinity (see, e.g., [1] and references therein). Dai and
Wong [1] considered (among many others) the case where x = O(1) as N → ∞. However,
they excluded the case n ≈ Np. Note that the self-duality relation Kx(n, p,N) = Kn(x, p,N)
implies that the local one-term asymptotic expansion in this case follows already from (4).

2. The main results

Using the identity Δsxn = nsxn−s, we rewrite the Rodrigues formula (3) as follows:

ρ(x)k(p)
n (x) =

(−q)n

n!
Δn

[
ρ(x)xn

]
=

(−q)n

n!

n∑
k=0

(
n

k

)
Δn−kρ(x)Δk(x + n − k)n

=
(−q)n

n!

n∑
k=0

(
n

k

)
nk (x + n − k)

(n−k)

Δn−kρ(x).

(7)

Further, we consider the term Δsρ(x), s ≥ 0, separately. We introduce the h-step forward
difference operator Δhf(x) = f(x+h)− f(x), Δn

hf(x) = Δh(Δn−1
h f(x)), n ≥ 2. Following [7],

we set h equal to 1√
2Npq

, which allows us to write2

Δsρ(�x) = Δs
h ρ(�x(x)), (8)

1With respect to the Bernoulli (p, q)-measure.
2Note that Δ is the forward difference in �x, while Δh is the h-step forward difference in x.
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where �x = Np + (2Npq)1/2x. In fact, the asymptotic relation (4), as well as (5), follows3 from
the LLT applied to ρ(�x) and the mean value theorem Δn

hf(x) = hn dn

dxn f(x + nhθ), θ ∈ (0, 1),
combined with a proper estimate on the residual term (see the details in [7]). In order to obtain
a higher order approximation, we regard the function ρ(x) as the probability of x successes
in a sequence of N independent (p, q)-Bernoulli trials and use Theorem 16 from [6, Sec. 3] for
the Bernoulli distribution.4

Theorem 1. Let M be a nonnegative integer and σ2 = pq. The following asymptotic expansion
holds uniformly in x such that Np + (2Npq)1/2x ∈ Z:

(1 + |x|M+2)
(√

Nρ(�x) − 1√
2πσ

e−x2
M∑

ν=0

�qν(x)
Nν/2

)
= o

( 1
NM/2

)
, (9)

where �t = Np + (2Npq)1/2t and functions �qν are defined as follows:

�qν(x) =
∑ 1

2(ν/2+s)
Hν+2s(x)

ν∏
m=1

1
km!

( γm+2

(m + 2)!σm+2

)km

, (10)

with γi, i ≥ 0, being the cumulants of the Bernoulli (p, q)-distribution, and the summation
in the right-hand side being over all nonnegative solutions (k1, k2, . . . , kν) of the equation
k1 + 2k2 + · · · + νkν = ν such that s = k1 + k2 + · · · + kν .

In order to obtain a higher order approximation for Δs
h, we use the formal representation

Δh = ehD − 1 where D = d
dx is the difference operator, which yields

Δs
h = (ehD − 1)s =

∞∑
i=s

as,i−s(hD)i. (11)

For any nonnegative integer K and any analytic real-valued function f , we can truncate the
series and write simply

Δs
hf(x) =

K∑
i=0

as,i D
s+if(x)hs+i + O(hK+s+1). (12)

The coefficients as,j can be found by the multinomial theorem as follows:

as,j =
∑

s!
j+1∏
r=1

1
kr!

( 1
r!

)kr

, (13)

where s and j are nonnegative integers and the summation in the right-hand side of (13) is
over all nonnegative solutions (k1, k2, . . . , kj) of the equation k1 +2k2 + · · ·+ jkj = j satisfying
k1 + k2 + · · · + kj = s. In particular, we have

as,0 = 1, as,1 =
s

2
, as,2 =

s(3s + 1)
24

, and so on. (14)

3Other approaches are based on the convergence of the difference equation whose polynomial solutions define
the Krawtchouk polynomials to the differential equation defining the Hermite polynomials (see the details, e.g.,
in [5]) or on the convergence of generating functions (see [8]).

4In [6], a slightly different definition of the Hermite polynomials was used: Hen(x) = (−1)nex2/2 dn

dxn e
−x2/2.

These polynomials are related to the polynomials Hn(x) by the equality Hen(x) = 2−n/2Hn

(
x√
2

)
.
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Theorem 1 suggests that in order to obtain an asymptotic expansion for Δs
h ρ(�x), we need

asymptotic expansions for Δs
h

(
e−x2

�qν(x)
)
, ν ≥ 0. Denote by bν,s the coefficients

1
2(ν/2+s)

ν∏
m=1

1
km!

( γm+2

(m + 2)!σm+2

)km

arising in the right-hand side of formula (10). Thus we have �qν(x) =
∑

bν,sHν+2s(x). Denote
�gν,r(x) = ex2 dr

dxr e−x2
�qν(x). For ex2 ds

dxs

(
e−x2

Hn(x)
)
, we have the identity

ex2 ds

dxs

(
e−x2

Hn(x)
)

= (−1)nex2 ds

dxs

( dn

dxn
e−x2)

= (−1)sHn+s(x), (15)

which implies

�gν,r(x) = ex2 dr

dxr
e−x2

�qν(x) =
∑

(−1)rbν,sHν+2s+r(x),

where the summation limits in the right-hand side are the same as in (10). Let A be a
positive real number and r be a nonnegative integer. In the appendix, it is shown that we can
differentiate5 the asymptotic expansion (9) preserving the uniform estimate on the residual
term for any6 x from the set [−A,A]:

dr

dxr

√
Nρ(�x(x)) =

1√
2πσ

e−x2
M∑

ν=0

�gν,r(x)
Nν/2

+ o
( 1

NM/2

)
. (16)

It is instructive to compare the above result with Theorem 7 from [6, Sec. 6].

Remark 1. Since the parameter M in Theorem 1 and formula (16) is an arbitrary positive
integer, we can write the residual term as O

(
1

N(M+1)/2

)
instead of o

(
1

NM/2

)
.

Using the expansions (16) and (12) and taking into account that h ∼ N−1/2, we obtain the
following asymptotic expansion for Δsρ(�x):

√
NΔs

h ρ(�x(x)) =
K∑

i=0

as,i
ds+i

dxs+i

√
Nρ(�x)hs+i + O(N−(K+s+1)/2)

=
e−x2

√
2πσ

( K∑
i=0

as,i

M∑
ν=0

�gν,r(x)
Nν/2

hs+i

)
+ O(N−(K+s+1)/2)

=
e−x2

√
2πσ

( K∑
i=0

as,i

M−i∑
ν=0

�gν,r(x)
Nν/2

hs+i

)
+ O(N−(K+s+1)/2),

(17)

where K = M + 1, x = O(1), and �x(x) = Np + (2Npq)1/2x. This expression is written, in
fact, in terms of Hermite polynomials, but it can also be rewritten using the parabolic cylinder
functions Dn(x), due to their close relation to the Hermite polynomials:

Dn(x) = 2−n/2e−x2/4Hn(
x√
2
), n ∈ N ∪ {0}.

Denote

ψK
s (x) =

K∑
i=0

as,i

K−1−i∑
ν=0

�gν,s+i(x)
Nν/2

hs+i

where the coefficients as,j, with j, s ∈ N ∪ {0}, are defined by (13).

5For s = 0, we use the convention ds

dxs f(x) ≡ f(x).
6Note that Theorem 1 states this only for r = 0 and values of x from a discrete set.
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Using the representation (7) together with (17), we obtain our main result providing an
asymptotic expansion of the Krawtchouk polynomials in terms of Hermite polynomials.

Theorem 2. Let M and n be nonnegative integers and A be a positive real number. Let
�x − Np = (2Npq)1/2x. Then the following asymptotic expansion holds uniformly in |x| ≤ A:

ρ(�x)k(p)
n (�x) =

e−x2

√
2πNσ

(−q)n

n!

M∑
k=0

(
n

k

)
nk (�x + n − k)

(n−k)

ψM
n−k(x) + O(N

n−M−2
2 ). (18)

Proof. Since h = 1√
2pq

N−1/2, we see that e−x2√
2πNσ

ψM
s (x) = O(N−(s+1)/2) and (�x+s)

s
= O(N s),

whence

(�x + s)
s e−x2

√
2πNσ

ψM
s (x) = O(N (s−1)/2).

Formula (18) follows from the Rodrigues formula (7) by replacing the terms Δs
hρ(�x(x)) with

their approximations e−x2√
2πNσ

ψM
s (x) obtained in (17). �

In the special case M = 0, Theorem 2 reduces to the well-known result

k(p)
n (�x) =

(Npq

2

)n/2 Hn(x)
n!

+ o(N
n
2 ),

stated above in (4) (here we have used the expansion ρ(�x) = 1√
2πNσ

e−x2
+ o(1) from Theo-

rem 1).
In the general case, formula (18), in fact, yields the expansion7 (6) (i.e., its right-hand side

comprises only powers of N and v = x
√

2Npq, but not of
√

N ∼ h−1).
In the special case where M = 2 and v = �x−Np = o(N1/3), we are going to obtain a more

natural expression than the (slightly cumbersome) expression (18) suggested by Theorem 2.
First of all, note that for the Hermite polynomials we have the following representations

(see, e.g., [5]):

H2l(x) = (−1)l2l(2l − 1)!!
(
1 +

l∑
j=1

4j(−l)j̄

(2j)!
x2j

)
,

H2l+1(x) = (−1)l2l+1(2l + 1)!!
(
x +

l∑
j=1

4j(−l)j̄

(2j + 1)!
x2j+1

)
,

where l is a nonnegative integer. The additional assumption x → 0 provides the asymptotic
expansions

H2l(x) = (−1)l2l(2l − 1)!!
(
1 − 2lx2

)
+ o(x2), l = 1, 2 . . . ,

H2l+1(x) = (−1)l2l+1(2l + 1)!!x + o(x2), l = 0, 1, . . . .
(19)

For any nonnegative integers l,m, and C, we have the following asymptotic expansion for
the falling factorial (m + C)l as m → ∞:

(m + C)l = ml +
(
lC − l(l − 1)

2

)
ml−1 + O(ml−2). (20)

7Of course, it makes sense to take M ≤ n.
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Corollary 1. For any sequence ε(N) such that lim
N→∞

ε(N) = 0, the following asymptotic

expansions hold uniformly in v satisfying |v| ≤ ε(N)N1/3 :

k
(p)
2l (Np + v) = (−1)l

(2l − 1)!!
(
pqN

)l

(2l)!

(
1 − 9v2 + t1v + t2

9pqN
l

)
+ o(N l−1),

where t1 = 6(p − 1
2)(4l − 1), t2 = (l − 1)

(
1 + 4l + (16l − 5)pq

)
, and l ∈ N;

k
(p)
2l+1(Np + v) = (−1)l

(2l − 1)!!
(
pqN

)l

(2l)!
4l(p − 1

2 ) + 3v
3

+ o(N l),

where l ∈ N ∪ {0}.
Proof. Denote ψ(x) =

√
2πNσ

e−x2
. Let k be a nonnegative integer. Applying Theorem 1 for M = 2

and identity (15), we obtain

ψ(x)
dk

dxk
ρ(�x) = (−1)k

(
Hk(x) +

γ3

23/2σ3

H3+k(x)
3!
√

N
+

γ4
σ4 H4+k(x) + 1

3!

( γ3
σ3

)2
H6+k(x)

4 · 4!N
)

+ o
( 1

N

)
,

where γ3 = pq(1 − 2p) and γ4 = −pq(6pq − 1). Under the additional assumption8 that
v := �x − Np = o(N1/3), we get a simpler expression:

ψ(x)ρ
( v√

2Nσ

)
= 1 − 1 − pq − 6v(p − q)

12pqN
+ o

( 1
N

)
. (21)

In the same manner, for the odd-order derivatives we have

ψ(x)
d2l+1

dx2l+1
ρ(�x) = (2l − 1)!!(−2)l

(
1 +

36lv2 + τ1v + τ2

36pqN

)
+ o

( 1
N

)
,

where τ1 = 6(1 − 2p)(2l + 3)(2l + 1), τ2 = (2l + 1)(2l + 3)(1 + l − (1 + 4l)pq); and for the
even-order derivatives we obtain

ψ(x)
d2l

dx2l
ρ(�x) = (−1)l+1(2l + 1)!!2l

√
2√

Npq
(v +

(1 − 2p)(2l + 3)
6

) + o
( 1

N

)
,

with l ∈ N. With some algebra, using the expansions (19) and (20) and ignoring terms
of order lower than [n−1

2 ], we obtain from (18) the required asymptotic expansion (and it
naturally depends on the parity of n). �

Taking higher order asymptotic expansions in (19) and (20) and an appropriately high value
of M , one can easily obtain other values of cj, j ≥ 1, from the expansion (6).

We conclude this paper with a slight modification of Corollary 1 for the function Kn(x, p,N1)
with N1 = N − i, v = x − Np = o(N1/3), and i = O(1).

Corollary 2. For any sequence ε(N) such that lim
N→∞

ε(N) = 0, the following asymptotic

expansions hold uniformly in v satisfying |v| ≤ ε(N)N1/3:

K2l(x, p,N − i) =
(
− q

p

)l (2l − 1)!!
N l

(
1 − 9(v + ip)2 + �t1(v + ip) + �t2

9pqN
l

)
+ o

(
N−l−1

)
,

where �t1 = 6(p − 1
2)(4l − 1), �t2 = (l − 1)

(
1 + 4l + (16l − 5)pq

) − 9pq(i + 2l − 1), and l ∈ N;

K2l+1(x, p,N − i) =
(
− q

p

)l (2l + 1)(2l − 1)!!
N l+1

· 4l(p − 1
2) + 3(v + ip)

3p
+ o(N−l−1),

8Under the slightly weaker assumption v = O(N1/3), we would already need the additional term 1
6

v3(q−p)

(pq)2N2

in the right-hand side of (21).
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where l ∈ N ∪ {0}.
Proof. We have

Kn(x, p,N1) = Kn(Np + v, p,N1) = Kn(N1p + v1, p,N1) = (−p)n
(

N1

n

)
k(p)

n (N1p + v1, N1),

where v1 = v+ ip. Using (20) with the expression (N − i)−l = (N)−l + il (N)−l−1 +O(N−l−2),
we easily obtain the required asymptotic expansions from Corollary 1. �

The uniform asymptotic expansions from Corollaries 1 and 2 are obtained under the assump-
tion |v| ≤ ε(N)N1/3. We can also use the same expansions for |v| ≤ ε(N)N1/2, ε(N) → 0.
However, if N1/3 = O(v), we must multiply the estimates of the residual terms of these as-
ymptotic expansions by

√
N .

3. Appendix

In this section, we prove formula (16). We denote by SM
N (ξ) a function such that

√
Nρ(�ξ) = eSM

N (ξ)φM (ξ),

where

φM (ξ) =
1√
2πσ

e−ξ2
M∑

ν=0

�qν(ξ)
Nν/2

,

the polynomials �qν are defined in Theorem 1, and, as above, �s = Np +
√

2Npqs. We denote
by φM

s (ξ) the derivative

ds

dξs
φM (ξ) = (−1)s

1√
2πσ

e−ξ2
M∑

ν=0

�qν+s(ξ)
Nν/2

.

Using Cauchy’s integral formula, we obtain

√
N

ds

dxs
ρ(�x(x)) =

√
Ns!
2πi

∫
Cx

ρ(�ξ)dξ

(x − ξ)s+1
=

s!
2πi

[ ∫
Cx

φM (ξ)dξ

(x − ξ)s+1
+

∫
Cx

(√
Nρ(�ξ) − φM (ξ)

)
dξ

(x − ξ)s+1

]

= φM
s (x) +

s!
2πi

∫
Cx

φM (ξ)
(
eSM

N (ξ) − 1
)
dξ

(x − ξ)s+1

where Cx is a closed contour around the point x. Somewhat arbitrarily, we set Cx to be the
unit circle around x:

Cx = {ξ | ξ = x + eiϕ, ϕ ∈ [0, 2π]}.
Lemma 1. Let M be a nonnegative integer and A be a positive real number. Then for all
x ∈ [−A,A] and ξ ∈ Cx, we have the uniform estimate

∣∣eSM
N (ξ) − 1

∣∣ = o(N−M/2).

Proof. The Stirling expansion for the gamma function (see, e.g., [9, p. 34, Example 1.2] or [10,
p. 83]) can be written as follows:

log Γ(z) =
(
z − 1

2
)
log(z) − z +

log(2π)
2

+ Fm(z) + O(|z|−2m−1), (22)
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where |z| → ∞, |arg z| ≤ π − ε < π, Fm(z) =
m∑

k=1

B2k

2k(2k−1)z2k−1 , and Bk, k ≥ 1, are the

Bernoulli numbers. With the help of this expression, it was shown in [7, formula (17)] that

log ρ(z) = − N

2pq

( z

N
− p

)2 − 1
2

log(2πNpq) + S0
N

( z − Np√
2Npq

)
, z → ∞,

where for any integer m ≥ 0 we have9 S0
N (ξ) = Φm(ξ) + O(N−2m−1) and the function Φm(ξ)

is defined by the identity

Φm(ξ) = Fm(N) − Fm(�ξ) − Fm(N − �ξ) − Nr
(
�ξ

N

)
− 1

2
D

(
�ξ

N

)

with

r(τ) = τ log
τ

p
+ (1 − τ) log

1 − τ

q
− 1

2pq
(τ − p)2, D(τ) = log(1 +

(p − τ)(τ − q)
pq

).

The function Φm(ξ) is analytic in the union
⋃

x Bx of the unit balls Bx bounded by the circles
Cx, x ∈ [−A,A]. For the function S0

N (ξ), it was shown in [7, formula (27)] that |S0
N (ξ)| ≤ C√

N
for ξ ∈ Cx and x ∈ [−A,A]. Since we know from Theorem 1 that at any point x such that
�x = Np + (

√
2Npqx) ∈ Z,

∣∣eS0
N (x) −

M∑
ν=0

�qν(x)
Nν/2

∣∣ = o(N−M/2),

it suffices to show that
∣∣eΦm(ξ) −

M∑
ν=0

�pν(ξ)
Nν/2

∣∣ = o(N−M/2)

for some chosen m = m(M), ξ ∈ Cx, and x ∈ [−A,A] and some polynomials {�pν(ξ)}M
ν=0. If

this is already shown, then, making N large enough, we see that �pν(ξ) = �qν(ξ), 0 ≤ ν ≤ M ,
for all ξ, due to the coincidence of these polynomials in at least [

√
N ] points. Analyzing

the functions Fm(�ξ), r(
�ξ
N ),D(

�ξ
N ) as functions of the variable 1√

N
with the parameter x, we

see that for each of these functions we can write the Taylor series10 as 1√
N

→ 0 of the form
∞∑

j=0

cj

(
√

N)j
ξj+h for some integer h. Since x ∈ [−A,A], we can truncate each series and write

m∑
j=0

cj

(
√

N)j
xj+h + f(N), where |f(N)| ≤ C

Nm uniformly for ξ ∈ ⋃
x Bx. It suffices to set m equal

to 2M . In the same manner, truncating the Taylor series for the function eΦm(ξ), we see that

|eΦm(ξ) −
m∑

ν=0

�pν(ξ)

Nν/2 | = o( 1
N−M/2 ) for p0(ξ) ≡ 1 and some polynomials pν(ξ), where ξ ∈ Cx and

x ∈ [−A,A].
Since SM

N (ξ) equals S0
N (ξ) −Φm(ξ) + o(N−m), we see that |SM

N (ξ)| ≤ o(N−M/2) and, using
the Lagrange theorem, obtain that

∣∣eSM
N (ξ) − 1

∣∣ = o(N−M/2) for ξ ∈ Cx and x ∈ [−A,A]. �

Remark 2. One can obtain the estimate |eΦM (ξ) −
M∑

ν=0

�qν(ξ)

Nν/2 | = o(N−M/2) without using

Theorem 1, but directly from the analysis of the function S0
N at least for small values of M .

9This follows, of course, from the estimate on the residual term in (22); see the details, e.g., in [10].
10We present initial terms of these series in Remark 2 below.
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For example, we can obtain the following asymptotic expansions as N → ∞:

r
(
�x

N

)
= −

√
2

3
(2 p − 1)√
(1 − p) p

x3

N3/2
+ O

(
N−2

)
, D

(
�x

N

)
=

√
2 (2p − 1)√
(1 − p) p

x

N1/2
+ O

(
N−1

)
.

For the function Fm with m = 2, we have F2(z) = 1/ (12z). Analogously, we obtain the
expansions

F2(�x) =
1

12Np
+ O

(
N−3/2

)
, F2(N − �x) =

1
12 (1 − p)N

+ O
(
N−3/2

)
,

F2(N) = 1/12N−1 + O(N−3/2).

Therefore, we can write the first term of the asymptotic expansion of the function eΦM (x)

taking only the initial terms of the above expressions:

eΦM (x) =
(1 − 2p)

23/2(pq)1/2

8x3 − 12x
3!
√

N
+ O

( 1
N

)
=

�q1(x)
N1/2

+ O
( 1

N

)
.

This gives an explicit proof of Lemma 1 for M = 1. It is an interesting question whether there
is any short and explicit proof of Lemma 1 for all values of the parameter M that does not
use Theorem 1.

Lemma 2. Let M be a nonnegative integer and A be a positive real number. Then for all
x ∈ [−A,A] and N large enough, we have the uniform estimate

s!
2πi

∫
Cx

∣∣∣ φM (ξ)
(x − ξ)s+1

∣∣∣|dξ| = O(1).

Proof. For a given value of M , all x ∈ [−A,A], and N = N(A,M) large enough, we have

|
M∑

ν=0

�qν(x+eiϕ)

Nν/2 | ≤ 2. Then we can write the estimate

∫
Cx

∣∣∣ φM (ξ)
(x − ξ)s+1

∣∣∣|dξ| ≤ 2

2π∫
0

e−(x+2 cos(ϕ))2/2dϕ < Ce−x2/4,

and the constant C does not depend on x. �

Combining Lemmas 1 and 2, we can estimate the second integral as

∣∣∣ s!
2πi

∫
Cx

φM (ξ)
(
eSM

N (ξ) − 1
)
dξ

(x − ξ)s+1

∣∣∣ = o(N−M/2),

for ξ ∈ Cx, x ∈ [−A,A], which finishes the proof.
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