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COHOMOLOGY OF THE IWASAWA SUBGROUP OF
THE GROUP U(p,p) IN NONUNITARY
REPRESENTATIONS

A. M. Vershik∗ and M. I. Graev† UDC 517.986

We construct a special injective nonunitary bounded irreducible representation for the Iwasawa
subgroup of the semisimple Lie group U(p, p) with p > 1. Bibliography: 1 title.

1. Introduction

This article links up with our paper [1], where the same problem was considered for the
group U(2, 2). The main goal is to construct a so-called special representation of the group,
i.e., a representation for which the 1-cohomology of the group with values in this representation
is nontrivial. We consider the maximal solvable subgroup of U(p, p), the Iwasawa subgroup.
For commutative and nilpotent groups, the 1-cohomology with values in irreducible unitary
representations other than one-dimensional ones is trivial. In particular, it is not clear which
solvable groups have irreducible special injective unitary representations. Even in the case of
solvable Lie groups we are interested in, the situation seems to be not so simple. The Iwasawa
subgroup of U(p, p) is an extension of the commutative (additive) group of Hermitian matrices
of order p and the group of lower triangular matrices of order p with positive diagonal elements,
which acts by conjugations on the normal subgroup.

The result of the paper (Theorem 1) is a construction of a special injective operator-
irreducible nonunitary bounded representation of the Iwasawa subgroup of U(p, p) for p > 1. If
p = 1, there exists a special injective unitary representation; this is well known, since SU(1, 1)
is a group of rank 1 (isomorphic to SL(2, R)). Whether such a representation exists for p > 1
is unknown. The constructed nonunitary special representation is bounded, i.e., all operators
of the representation are bounded, which allows one to study it by methods similar to those
used in the analysis of unitary representations. Presumably, as in the case p = 2 (see [1]), this
representation can be extended to an unbounded representation of the whole group U(p, p),
but this unboundedness can also be in a sense controlled. The importance of special represen-
tations (unitary or not) comes from the fact that they can be used to construct, by analogy
with the theory for groups of rank 1, representations of groups of currents with values in the
corresponding semisimple groups U(p, p). This issue will be considered in another paper.

2. Background definitions

2.1. The Iwasawa subgroup. Consider the Iwasawa (= maximal solvable) subgroup P of
the simple Lie group U(p, p). It can be written as the semidirect product

P = S � N,

where S is the solvable group of lower triangular matrices of order p with entries sij such that
sii > 0 and sij ∈ C for i > j. From a geometric point of view, S is the product of the complex

vector space C
p(p−1)

2 and the real octant of dimension p; the group S is not unimodular,
but, using geometry, one can easily describe the left and right Haar measures on S. The
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commutative group N is the additive group of skew-Hermitian matrices of order p. The real
dimensions of these subgroups are equal to p2. Elements of the group P are pairs (s, n), s ∈ S,
n ∈ N . In this notation, the product of elements of P is given by the following formula:

(s1, n1) · (s2, n2) = (s1s2, s
−1
2 n1s

∗−1
2 + n2).

For p = 1, the group P is the two-dimensional subgroup in GL(2, C) of lower triangular
2×2 matrices with equal positive diagonal entries and an imaginary entry under the diagonal.

But we will use only the above definition of the group P , its matrix realization is irrelevant
for us here. Our aim is to find faithful representations of P with nontrivial 1-cohomology. For
a representation π in a vector space H, this means that there exists a π-valued 1-cocycle, i.e.,
a map β : P → H such that

β(g1 · g2) = β(g1) + T (g1)β(g2), (1)

that is not cohomologous to zero (i.e., does not have the form Tgf − f). In the paper, we
describe a family of such nonunitary representations.

2.2. The Hilbert space H. Denote by N∗ the dual group (the group of additive complex
characters) of N , with elements m and the pairing

〈n,m〉 = Tr (nm) ∈ R.

We fix the inner product and realize N∗ as a group isomorphic to N . The group S acts on N∗
by the automorphisms m �→ s∗ms.

Consider the Hilbert space

H = L2(N∗, dν(m)),

where dν(m) is the Lebesgue measure on N∗, which is only quasi-invariant with respect to the
action of S:

d(s∗ms) = θ2p(s) dm, θ(s) = s11 · . . . · spp.

2.3. The space H. On the group N∗ there are 2p orbits of the group S of maximal dimension
dim(S) = p2, and their union is complete in the space N∗. These orbits are N∗

ε = {s∗εs},
where ε = (ε1, . . . , εp), εi = ±1. The set of all these orbits N∗

ε is of full measure in N∗ with
respect to dν(m), hence the Hilbert space H can be written as the direct sum of the subspaces
Hε of functions f(m) concentrated on N∗

ε :

H =
⊕

ε

Hε.

Definition 1. Denote by N∗
0 the orbit {is∗s | s ∈ S}, and let H be the Hilbert subspace of

functions concentrated on this orbit, with the norm ‖f‖2 =
∫

N∗
0

|f(m)| dν(m).

Remark 1. The remaining S-orbits of maximal dimension are N∗
ε = {s∗εs}, where ε =

(ε1, . . . , εp), εi = ±1.

There exists (in general, not measure-preserving) isomorphism of the spaces Hε commuting
with the action of the group S on these spaces.

The representations (of the groups N,S, P ) considered below, which are defined on the
whole space H, induce the corresponding representations on the space H, given by the same
formulas. Hence, in what follows we will consider representations only on the space H.

One can construct another realization of the space H in terms of the group S. To this end,
note that the map S −→ N∗ of the form s �→ is∗s = m ∈ N∗

0 is a bijection commuting with the
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right multiplication on the group S and the action of S on N∗
0 .1 In view of this isomorphism,

H can be realized as the Hilbert space

H = L2(S, dν̃(s)),

where dν̃(s) is the image of the measure dν(m) under the bijection N∗
0 −→ S, i.e., as the space

of functions on S with the norm ||f ||2 =
∫

S

|f(s)|dν̃(s). In this new realization, the operators

of the representation are given by the following formula:

T (n)f(s) = exp(iTr(sns∗))f(s);

thus, just as in the first realization, they act fiberwise. In what follows, we do not use this
realization.

2.4. The representations of the groups S and P in the space H. A unitary represen-
tation of the group N in the space H is defined by the formula

T (n)f(m) = exp(iTr (nm))f(m).

There are many ways to define a representation of the group S on N∗
0 , namely,

(T (s)f)(m) = γ(s,m)f(sms∗),

where γ(s,m) is an arbitrary multiplicative cocycle of S with values in the space of invertible
functions on N∗

0 . The standard choice of this cocycle is the density of the image of the
measure ν under the action of an element s with respect to the original measure. But we will
choose a multiplicative cocycle of the group S later, and now let a(s) be a positive function
on S. At the moment, we formally define a representation of S by the following formulas:

Ta(s0)f(m) =
a(s∗0ms0)

a(m)
f(s∗0ms0). (2)

One can easily see that these operators determine a formal representation of the group S and
that together with the operators of the subgroup N they generate a formal representation of
the whole group P .

We have

||Ta(s0)f ||2 =
∫

N∗
0

|f(m)b(m, s0)|2dν(m),

where

b(m, s0) =
a(s∗0ms0)

a(m)

(
dν(s∗−1

0 ms−1
0 )

dν(m)

)1/2

.

Corollary 1. (a) If b(m, s0) ≡ 1, then the operator Ta is unitary.
(b) If |b(m, s0)| < c, then ||Ta(s0)f || < ∞.
(c) If none of these conditions is satisfied, then the operator Ta is unbounded.

One can easily see that the operators T (n) and Ta(s0) generate, for every fixed a, a repre-
sentation of the whole group P . Analogous representations can be defined in a similar way on
all orbits of the group S.

Proposition 1. The constructed representations in the spaces Hε of functions on orbits of the
group S are operator-irreducible and pairwise nonequivalent.

1This follows from the fact that a positive definite Hermitian matrix can be uniquely written as a product
of a lower triangular matrix with positive diagonal entries and the conjugate matrix.
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Indeed, an operator commuting with the operators of the representation of the group N must
be a multiplicator, since the operators T (n) generate a maximal commutative subalgebra (the
algebra of all multiplicators); and a multiplicator commuting with all operators Ta( · ) must
be constant, since the action of S on an orbit is transitive, and hence ergodic, by the local
compactness of the orbit. Representations on different orbits are, obviously, nonequivalent,
since the orbits are disjoint.

3. Nontrivial cohomology of a commutative group with values in the regular
representation

3.1. The general construction. As is well known, a commutative locally compact group
has no nonidentity unitary representations with nontrivial 1-cohomology; however, the regular
representation in L2(G), which weakly contains the identity representation, does have non-
trivial 1-cohomology. One should take a function that is locally square summable but does
not belong to L2(G) because it is not integrable at infinity; note that the difference of such a
function with any its shift does belong to L2(G). The dual and, of course, equivalent approach
adopted below is to realize the regular representation in L2(Ĝ), i.e., in the group of characters,
by multiplicators, and then find a function such that its singularity at zero (at the identity
character) is not square integrable, but the multiplication of this function by 1− 〈χ, g〉 brings
it back to L2(Ĝ) for every character χ. It is the latter idea that is implemented below for the
group N . Of course, the choice of the function is not unique; moreover, there is a continuum
of pairwise noncohomologous cocycles. Thus the groups H1(G; R) and H1(G; T) are infinite-
dimensional. Worse yet, the group of cocycles cohomologous to zero is dense in the group of
all cocycles, hence the cohomology group has no reasonable structure. In contrast to this, note
that for semisimple groups of rank 1, the groups H1(G; R) are finite-dimensional and nonzero.

3.2. A special representation of the group N . Consider the space H = L2(N∗, dm),
where dm is the Lebesgue measure on N∗, in which we have defined the unitary representa-
tion T . We will prove that there exists a function f0(m) such that f0 does not belong to H,
but the function β(n) = T (n)f0 − f0 does belong to H, i.e., ||β(n)|| < ∞ for every n ∈ N . It
will follow that β is a nontrivial 1-cocycle of the representation T , i.e., the representation T is
special.

Put |m|2 = Tr (mm∗) and define a function β(n) by the following formula:

β(n) = T (n)f0 − f0 where f0(m) =
e−|m|

|m|p2/2
.

Let us check that the function f0 satisfies the required conditions. To this end, consider
spherical coordinates on N∗; namely, given a vector m, its spherical coordinates are r = |m|
and ω = r−1m. The set of elements ω ∈ N∗ such that |ω| = 1 will be called the sphere of N∗
and denoted by Ω. Thus every element m ∈ N∗ can be uniquely written in the form

m = rω where r = |m| and ω ∈ Ω.

In these spherical coordinates, we have dm = drp2−1drdω, where dω is a measure on the
sphere Ω, whence

||f ||2 =
∫

|f(rω)|2rp2−1drdω.

In particular, we have

||f0||2 = e−2rr−1dr dω.

703



Now it is obvious that ||f0|| = ∞, i.e., f0 
∈ H. Let us check that ||β(n)|| < ∞. In polar
coordinates, we have

||β(n)||2 =
∫

| exp(−riTr (nω)) − 1|2 exp(−2r)r−1dr dω;

since the expression under the absolute value vanishes for r = 0, the integral in r converges,
and hence the whole integral converges. Thus we have proved that ||β(n)|| < ∞, i.e., β(n) is
a nontrivial 1-cocycle. The formula for the norm of β(n) can be simplified by integrating in r.
According to a well-known formula,

∞∫

0

(e−ar − e−br)r−1dr = log
b

a
, (3)

and we obtain ||β(n)||2 =
∫

log
(
1 + 1

4 (Tr (nω))2
)

dω.

3.3. A special representation of the group P = S � N . Now we make an appropriate
choice of the function a, i.e., choose a multiplicative cocycle of the group S. Clearly, the repre-
sentation Ta of the group S defined above generates, together with the original representation
of the group N , a representation of the whole Iwasawa group P .

Theorem 1. The operators Ta(s0) on the group S given by the formula

Ta(s0)f(m) =
a(s∗0ms0)

a(m)
f(s∗0ms0),

where a(m) = ‖m‖p2/2, form a bounded special nonunitary representation of the group P .

Proof. As we have proved, ||f0|| = ∞, hence it suffices to check that the norm of the cocycle
β(s) = Ta(s)f0 − f0 is finite: ||β(s)|| < ∞ for every s ∈ S. We use the expression for
elements m in polar coordinates m = rω. It follows from the explicit formulas for a and Ta

that
a(s∗0ms0)

a(m)
= ||s∗0ωs0||p2/2 and

||β(s0)||2 =
∫ ∣∣∣ |s∗0ωs0|p2/2 e−r|s∗0ωs0|

rp2/2|s∗0ωs0|
p2/2

− e−r

rp2/2

∣∣∣
2
rp2−1dr dω.

The obtained expression can be simplified:

||β(s0)||2 =
∫
|e−r|s∗0ωs0| − e−r|2r−1dr dω.

In view of (3), integrating in r yields the following formula for the norm of the nontrivial
1-cocycle β(s0):

||β(s0)||2 =
∫

Ω

log
(

(1 + |s∗0ωs0|)2
4|s∗0ωs0|

)
dω.

The convergence of the integral follows from the fact that the function |s∗0ωs0| is bounded
from below. Thus the cocycle β(s0) is nontrivial, i.e., the representation Ta of the group S is
special.

To prove that this representation is nonunitary, we use the following observation: the rep-
resentation Ta of the group S is unitary if and only if

a(s∗ms)
a(m)

= θp2/2(s).
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Indeed, according to Corollary 1, the operators Ta are unitary if and only if c(m, s0) ≡ 1.
This immediately implies the required assertion in the case p > 1.

In the particular case p = 1, we have S = R
∗
+ and c(m, s0) ≡ 1. Thus the operators Ta form

a unitary representation. In other words, for p = 1 the extension of the special representation
of the subgroup N to a unitary representation of the whole Iwasawa group is also special.

Finally, note that the operators Ta(s0) are bounded. Indeed, it follows from the general
formula that

‖Ta(s0)f(m)‖2 =
∫

|f(m)c(m, s0)|2 dm, (4)

where c(m, s0) =
(a (m))

a
(
s∗−1
0 ms−1

0

)
(

ds∗−1
0 ms−1

0

dm

)1/2

.

Hence the boundedness of the operators of the representation for all p follows from the
boundedness of the functions c(m, s0). The theorem is proved. �

Corollary 2. If a(m) 
= ‖m‖p2/2, then the formula for β(s0) takes the form

‖β(s0)‖2 =
∫

|b(ω)e−r|s∗0ωs0| − e−r|2r−1dr dω,

where b(ω) 
≡ 1. In this case, the integrand does not vanish at r = 0, hence the integral in r
diverges. Thus β(s0) is not a well-defined 1-cocycle in the representation space.

The question of the existence of special representations of the group P reduces to estimating
the norms of cocycles for the subgroups N and S. It was proved above that for p > 1, the
nontrivial 1-cocycle β on N associated with the function f0(m) = e−|m|

|m|p2/2 cannot be extended

to a unitary representation T 0 of the subgroup S. A similar result holds for a wider class of
functions of the form f0 (m) = u(m)

|m|p2/2 . We do not dwell on this fact, since it is not known

whether it is true for arbitrary functions. Note that T 0 is the unitary representation of the
group P corresponding to the right-invariant Haar measure on S. Thus if our conclusion is
true for any functions a and f , this will prove that the group P has no unitary faithful special
representations. This question is still open.

The first author is supported by the RSF grant 14-11-00581; the second author, by the
RFBR grant 13-01-00190-a.

Translated by N. V. Tsilevich.

REFERENCES

1. A. V. Vershik and M. I. Graev, “Cohomology in nonunitary representations of semisimple
Lie groups (the group U(2, 2)),” Funct. Anal. Appl., 48, No. 3, 1–13 (2014).

705


	Abstract
	1. Introduction
	2. Background definitions
	2.1. The Iwasawa subgroup
	2.2. The Hilbert space H
	2.3. The space H
	2.4. The representations of the groups S and P in the space H

	3. Nontrivial cohomology of a commutative group with values in the regularrepresentation
	3.1. The general construction
	3.2. A special representation of the group N
	3.3. A special representation of the group P = S � N
	REFERENCES


