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We present new algebraic-analytic methods for constructing solutions to differential

equations and inverse problems. In particular, we develop a new approach based on

the ray method for inverse problems in mathematical physics. Bibliography: 23 titles.

In this paper, we continue to develop algebraic-analytic methods for studying problems in math-

ematical physics (cf. [1]–[9]). We consider an abstract equation including some classical differ-

ential equations. For such equations with special sources it is possible to construct partial

solutions. In this paper, we use algebraic tools for reproducing the partial solutions. The for-

mulas for solutions obtained in this paper can be used for studying problems in mathematical

physics and, in particular, inverse problems. Furthermore, we develop a new approach to the

use of the ray method [10]–[13] for studying inverse problems in mathematical physics. This

approach consists in searching not only amplitudes, but also a function defining the Riemann

metric under the assumption that the ray series is an exact solution to differential equations in

finite and infinite cases. Owing to this result, it is possible to study particular inverse problems.

In fact, we use the method of generalized separation of variables, i.e., the representation of

solutions, coefficients, and other information in the form of sums (possibly, infinite) in the tensor

product of vector spaces. Solutions to the abstract equation in Sections 1 and 2 and the ray

series in Section 3 are represented in this form. Section 3 contains a criterion of representation

of an analytic function as a finite sum in the tensor product of function spaces.
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1 Construction of Particular Solutions

In this section, we deal with constructive methods for obtaining particular solutions to

abstract equations with rather large arbitrariness. Assume that V and U are vector spaces over

a field K, A and B are linear operators in the spaces V and U sending elements of these spaces

to themselves. We denote by F (α, β) a polynomial in variables α and β with coefficients in K

and by V ⊗ U the tensor product of the spaces V and U . We consider the following equation

for w ∈ V ⊗ U :

F (A,B)w = R, R ∈ V ⊗ U. (1)

Our main goal is to construct partial solutions to Equation (1). Assume that ap ∈ V , bq ∈ U ,

p, q � 0, are elements of the spaces V and U . Let Fpq(α, β) and Gpq(α, β) be polynomials in

variables α and β over the field K.

The following general result will be used below.

Theorem 1. If

R =
∑

p,q�0

Gpq(A,B)(ap ⊗ bq), F (α, β)Fpq(α, β) = Gpq(α, β),

then the function

w =
∑

p,q�0

Fpq(A,B)(ap ⊗ bq)

satisfies Equation (1).

We consider an example connected with the geometric progression and used below for con-

structing partial solutions to evolution systems. Setting

F (α, β) = β − α, Fpq(α, β) =

p+q−1∑

k=0

αp+q−1−kβk, Gpq(α, β) = βp+q − αp+q

in Theorem 1, we get F (α, β)Fpq(α, β) = Gpq(α, β). By Theorem 1, the element

w =
∑

p+q�1

p+q−1∑

k=0

Ap+q−1−kBk(ap ⊗ bq)

is a partial solution to the equation

(B −A)w = R, R =
∑

p+q�1

(Bp+q −Ap+q)(ap ⊗ bq).

From Theorem 1 and the above example we obtain a representation of a partial solution

w(x, y) to the system of differential equations with a special vector-valued source function

R(x, y). We consider the system of linear differential equations

Byw(x, y) = Axw(x, y) +R(x, y), (2)

where (x, y) ∈ D̃ ⊂ R
n+m, x = (x1, x2, . . . , xn), y = (y1, y2, . . . , ym), n � 1, m � 1, D̃

is a domain in the real Euclidean space R
n+m, w(x, y) = (w1(x, y), . . . , wN (x, y)), R(x, y) =
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(R1(x, y), . . . , RN (x, y)) are complex vector-valued functions of dimension N � 1, and By, Ax

are linear differential operators defined by the relations

By =
∑

|β|�m2

Bβ(y)D
β
y , Dβ

y =
∂β1+...+βm

∂yβ1
1 . . . ∂yβm

m

,

where Bβ(y) are infinitely differentiable functions of the variable y,

Ax =
∑

|α|�m1

Aα(x)D
α
x , Dα

x =
∂α1+...+αm

∂xα1
1 . . . ∂xαn

n
,

where Aα(x) are quadratic matrices of order N with infinitely differentiable entries depending

on the variable x.

If m = 1 and y = t, then the system (1) is a system of evolution equations with time-

independent coefficients on the right-hand side, for example, the Lamé or Maxwell equations.

Let b0(y), b1(y),. . . ,bN2(y) be arbitrary infinitely differentiable complex-valued functions of

the variable y, and let a0(x), a1(x),. . . ,aN1(x) be arbitrary infinitely differentiable complex

vector-valued functions of the variable x and dimension N , N1 � 1, N2 � 1.

We denote by Ak
x and Bj

y the powers of operators Ax and By of degree k and j respectively.

The operators A0
x and B0

y are the identity operators.

We also note that the operators Bj
y act on functions depending only on y, whereas the

operators Ak
x act on vector-valued functions of dimension N depending only on x.

Theorem 2. Let

R(x, y) =

N2∑

j=1

Bj
ybj(y)a0(x)− b0(y)

N1∑

k=1

Ak
xak(x)

+

N1∑

k=1

Bk
y

(
b0(y) +

N2∑

j=1

Bj
ybj(y)

)
ak(x)−

N2∑

j=1

bj(y)A
j
x

(
a0(x) +

N1∑

k=1

Ak
xak(x)

)
.

Then the function

w(x, y) =
∑

0�k,s;
k+s+1�N1

Bk
y

(
b0(y) +

N2∑

j=1

Bj
ybj(y)

)
As

xak+s+1(x)

+
∑

0�i,j;
i+j+1�N2

Bj
ybi+j+1(y)A

i
x

(
a0(x) +

N1∑

k=1

Ak
xak(x)

)
+ w̃(x, y)

satisfies the equation

Byw(x, y) = Axw(x, y) +R(x, y),

where w̃(x, y) is any solution to the homogeneous system (2) with the coefficients defined by

ak(x), bl(y), k = 0, . . . , N1, l = 0, . . . , N2.
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Proof. We set Ax = A and By = B in Theorem 1. We fix a pair (p, q) and find a term in

the expression for w that corresponds to the product apbq. Let

w1 =
∑

0�k,s;
k+s+1�N1

Bk
( N2∑

j=0

Bjbj

)
Asak+s+1.

Then for j = q we have

w1q =
∑

0�i,j;
k+s+1�N1

Bk+qbqA
sak+s+1.

Setting k + s+ 1 = p, we obtain

w1pq =

p−1∑

k=0

Bk+qbqA
p−k−1ap.

Similarly, if

w2 =
∑

0�i+j,
i+j+1�N2

Bjbi+j+1A
i
N1∑

k=0

Akak,

then

w2pq =

q−1∑

i=0

Bq−i−1bqA
p+iap.

Thus,

w = w1 + w2 =

N1∑

p=0

N2∑

q=0

(w1pq + w2pq)

=

N1∑

p=0

N2∑

q=0

p+q−1∑

k=0

Ap+q−k−1apB
kbq =

N1∑

p=0

N2∑

q=0

( ∑

0�k,l;
k+l=p+q−1

AlBk
)
(apbq).

According to the example, we find

(B −A)w =

N1∑

p=0

N2∑

q=0

(
Bp+q −Ap+q

)
(apbq) =

N1∑

p=0

ap

N2∑

q=0

Bp+qbq −
N2∑

q=0

bq

N1∑

p=0

Ap+qap = R.

The theorem is proved.

Remark 1. If R(x, y) is a known or partially known function, then the expression for

R(x, y) in Theorem 2 can be regarded as a system of equations for coefficients of the operators

Ax and By, for the coefficients ak(x), bj(y) and so on, which leads to a new method of studying

multidimensional inverse problems. In particular, we set bj(y) = 0, j = 1, . . . , N2, b0(y) �= 0 and

R(x, y) = b0(y)a0(x) +

N1∑

k=1

Bk
y b0(y)ak(x)
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in Theorem 2. By Theorem 2, from the conditions bj(y) = 0, j = 1, . . . , N2, we have

R(x, y) = −b0(y)

N1∑

k=1

Ak
xak(x) +

N1∑

k=1

Bk
y b0(y)ak(x)− b0(y)a0(x) + b0(y)a0(x).

Consequently,

a0(x) +

N1∑

k=1

Ak
xak(x) = 0.

For given ak(x) this equation is an equation for the operator Ax or, for a given operator Ax, it

is an equation for some coefficient ak(x) [9].

2 Algebraic Methods for Reproducing Solutions
to Inverse Problems

According to Theorem 1, by a solution to the inverse problem for the equation

F (A,B)w = R,

where

w =
∑

p,q�0

Fpq(A,B)(ap ⊗ bq), R =
∑

p,q�0

Gpq(A,B)(ap ⊗ bq),

we mean (F (A,B), Fpq(A,B), Gpq(A,B), ap, bq) such that F (A,B)Fpq(A,B) = Gpq(A,B). We

consider the following problem: for a given solution (F (A,B), Fpq(A,B), Gpq(A,B), ap, bq) to

construct another solution (F̃ (Ã, B̃), F̃pq(Ã, B̃), G̃pq(Ã, B̃), ãp, b̃q) by algebraic-analytic opera-

tions. In other words, the problem is to reproduce solutions. We indicate some methods for

solving this problem.

1. Multiplication by an operator. Let H(α, β) be a polynomial in α and β. Then the solution

has the form (H(A,B)F (A,B), Fpq(A,B), H(A,B)Gpq(A,B), ap, bq).

2. Linearity in argument. If (F (A,B), Fpq(A,B), Gpq(A,B), a1p, bq) and (F (A,B), Fpq(A,B),

Gpq(A,B), a2p, bq) are solutions, then (F (A,B), Fpq(A,B), Gpq(A,B), a1p + a2p, bq) is also a so-

lution.

3. Transformation in operator I. Let L : V −→ V be an invertible operator in the space V ,

and let ap = Lãp. Then (F (L−1AL,B), Fpq(L
−1AL,B), Gpq(L

−1AL,B), ãp, bq) is a solution.

4. Transformation in operator II. Let L : V −→ V be an invertible operator in the space V ,

and let A = L−1ÃL. Then (F (Ã, B), Fpq(Ã, B), Gpq(Ã, B), Lap, bq) is a solution.

5. Differentiation in parameter. Let (F (A,B), Fpq(A,B), Gpq(A,B), ap, bq) depend on the

parameter s. Differentiating the equality

F (A,B)
∑

p,q�0

Fpq(A,B)(ap ⊗ bq) =
∑

p,q�0

Gpq(A,B)(ap ⊗ bq)

with respect to s, we find

F ′(A,B)
∑

p,q�0

Fpq(A,B)(ap ⊗ bq) + F (A,B)
∑

p,q�0

F ′
pq(A,B)(ap ⊗ bq)
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+ F (A,B)
∑

p,q�0

Fpq(A,B)(a′p ⊗ bq + ap ⊗ b′q)

=
∑

p,q�0

G′
pq(A,B)(ap ⊗ bq) +

∑

p,q�0

Gpq(A,B)(a′p ⊗ bq + ap ⊗ b′q).

Here, the prime denotes
d

ds
. In particular, if a′p = b′q = 0, then

∑

p,q�0

(
F ′(A,B)Fpq(A,B) + F (A,B)F ′

pq(A,B)
)
(ap ⊗ bq) =

∑

p,q�0

G′
pq(A,B)(ap ⊗ bq).

For example, if F = Fn
0 , n � 2, then

F ′(A,B)Fpq(A,B) + F (A,B)F ′
pq(A,B) = Fn−1

0 (A,B)(nFpq(A,B) + F0(A,B)F ′
pq(A,B)),

i.e., (Fn−1
0 (A,B), nF ′

0(A,B)Fpq(A,B) + F0(A,B)F ′
pq(A,B), G′

pq(A,B), ap, bq) is a solution. If,

in addition, only the operator A depends on the parameter s and AA′ = A′A, then
(
Fn−1
0 (A,B), n

∂F0

∂A
(A,B)Fpq(A,B) + F0(A,B)

∂Fpq

∂A
(A,B),

∂Gpq

∂A
(A,B), A′ap, bq

)

is a solution. To illustrate this transformation, we formulate the following assertion.

Proposition 1. Let

R =
∑

p,q�0

(
Ap+q+1 − (p+ q + 1)ABp+q + (p+ q)Bp+q+1

)
ap ⊗ bq.

Then the element

w =
∞∑

p=0

( p∑

q=0

p+q∑

k=0

(k + 1)Ap+q−kBk(ap+1 ⊗ bq + aq ⊗ bp+1) +

2p−1∑

k=0

(k + 1)A2p−1−kBkap ⊗ bp

)

satisfies the equation (A−B)2w = R.

Corollary 1. If only the operator A depends on the parameter s, AA′ = A′A, and

R =
∑

p,q�0

(p+ q + 1)
(
Ap+q −Bp+q

)
A′ap ⊗ bq,

then the element

w = 2

∞∑

p=0

( p∑

q=0

p+q∑

k=0

(k + 1)Ap+q−kBk(A′ap+1 ⊗ bq +A′aq ⊗ bp+1)

+

2p−1∑

k=0

(k + 1)A2p−1−kBkA′ap ⊗ bp

)

+ (A−B)

∞∑

p=0

( p∑

q=0

p+q∑

k=0

(k + 1)(p+ q − k)Ap+q−k−1Bk(A′ap+1 ⊗ bq +A′aq ⊗ bp+1)

+

2p−1∑

k=0

(k + 1)(2p− 1− k)A2p−2−kBkA′ap ⊗ bp

)
,

satisfies the equation (A−B)w = R.

449



6. The Abelian transformation in operator.

Proposition 2.

∞∑

p,q=0

Fpqap ⊗ bq =
∞∑

p,q=0

( p∑

l=0

q∑

k=0

Flk

)
(ap − ap+1)⊗ (bq − bq+1).

Proof. Applying the Abelian transformation to the series

∞∑

k=0

xkyk =

∞∑

k=0

Xk(yk − yk+1), Xk =

k∑

l=0

xl,

we find

∞∑

p,q=0

Fpqap ⊗ bq =
∞∑

q=0

( ∞∑

p=0

Fpqap

)
⊗ bq =

∞∑

q=0

∞∑

p=0

( p∑

l=0

Flq

)
(ap − ap+1)⊗ bq

=

∞∑

p=0

p∑

l=0

∞∑

q=0

Flq(ap − ap+1)⊗ bq =

∞∑

p=0

p∑

l=0

∞∑

q=0

( q∑

k=0

Flk

)
(ap − ap+1)⊗ (bq − bq+1)

=
∞∑

p=0

∞∑

q=0

( p∑

l=0

q∑

k=0

Flk

)
(ap − ap+1)⊗ (bq − bq+1).

The proposition is proved.

Corollary 2. If (F (A,B), Fpq(A,B), Gpq(A,B), ap, bq) is a solution, then

(F (A,B), F̃pq(A,B), G̃pq(A,B), ap − ap+1, bq − bq+1),

is also a solution, where

F̃pq =

p∑

l=0

q∑

k=0

Flk, G̃pq(A,B) =

p∑

l=0

q∑

k=0

Glk.

Remark 2. If F̃pq =
p∑

l=0

q∑
k=0

Flk, then Fpq = F̃pq − F̃p−1,q − F̃p,q−1 + F̃p−1,q−1.

Corollary 3. If F̃pq =
∑

l+k=p+q

AlBk, then

Fpq = Ap+q +Ap+q−1(B − 2) + (B − 1)2
∑

l+k=p+q−2

AlBk

and for

R =
∞∑

p,q=0

Ap+q+1(ap − ap+1)⊗ (bq − bq+1)−
∞∑

p,q=0

Bp+q+1(ap − ap+1)⊗ (bq − bq+1)

the element w =
∞∑

p,q=0
Fpqap ⊗ bq is a solution to the equation (A−B)w = R.
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Remark 3. If a0 = . . . = aN1 = a, aN1+1 = aN1+2 = . . . = 0, b0 = . . . = bN2 = b, and

bN2+1 = bN2+2 = . . . = 0 in Corollary 1, then R = (AN1+1 −BN2+1)(a⊗ b).

7. The Abelian transformation in argument.

Proposition 3.
∞∑

p,q=0

Fpqap ⊗ bq =

∞∑

p,q=0

ΔpqF
( p∑

l=0

q∑

k=0

al ⊗ bk

)
,

where ΔpqF = Fpq − Fp+1,q − Fp,q+1 + Fp+1,q+1.

Proof. Using the Abelian transformation, we find

∞∑

p,q=0

Fpqap ⊗ bq =
∞∑

q=0

( ∞∑

p=0

Fpqap

)
⊗ bq =

∞∑

q=0

∞∑

p=0

(
Fpq − Fp+1,q

)( p∑

l=0

al

)
⊗ bq

=

∞∑

p=0

∞∑

q=0

(
Fpq − Fp+1,q

)( p∑

l=0

al

)
⊗ bq

=
∞∑

p=0

∞∑

q=0

(
Fpq − Fp+1,q − Fp,q+1 + Fp+1,q+1

)( p∑

l=0

al

)
⊗
( q∑

k=0

bk

)

=

∞∑

p,q=0

ΔpqF
( p∑

l=0

q∑

k=0

al ⊗ bk

)
.

The proposition is proved.

Corollary 4. If (F (A,B), Fpq(A,B), Gpq(A,B), ap, bq) is a solution, then

(F (A,B),ΔpqF (A,B),ΔpqG(A,B), ãp, b̃q)

is also a solution, where ΔpqF = Fpq − Fp+1,q − Fp,q+1 + Fp+1,q+1, ΔpqG = Gpq − Gp+1,q −
Gp,q+1 +Gp+1,q+1, ãp =

p∑
l=0

al, and b̃q =
q∑

k=0

bk.

3 The Ray Method and Inverse Problems

We consider the second order equation

λ2(x)
∂2w

∂t2
=

n∑

i,j=1

aij(x)
∂2w

∂xi∂xj
≡ Lw, (3)

where t0 � t � t1, x ∈ D ⊂ R
n, D is a domain in R

n, n � 1, and aij(x) = aji(x) are continuous

functions. According to the ray method [10]–[13], we look for a solution to Equation (3) in the

form of the formal series

w(x, t) =

∞∑

k=0

wk(x)fk(t− τ(x)), (4)
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where f ′
k(s) = fk−1(s). Substituting (4) into (3), we obtain the following system of differential

equations for τ(x) and wk(x):

Lτw0(x) + 2

n∑

i,j=1

aij(x)
∂w0

∂xi

∂τ

∂xj
= 0,

Lwk−1 = Lτwk(x) + 2

n∑

i,j=1

aij(x)
∂wk

∂xi

∂τ

∂xj
, k = 1, 2, . . . ,

(5)

with the overdetermination condition with a given function λ(x):

n∑

i,j=1

aij(x)
∂τ

∂xi

∂τ

∂xj
= λ2(x). (6)

For w0(x) �= 0, x ∈ D, we can write the system (5) with the resolved higher order derivatives of

τ(x) and wk(x):

Lτ = − 2

w0

n∑

i,j=1

aij(x)
∂w0

∂xi

∂τ

∂xj
,

Lwk−1 =
2

w0

n∑

i,j=1

aij(x)

(
w0

∂wk

∂xi
− wk

∂w0

∂xi

)
∂τ

∂xj
, k = 1, 2, . . . .

(7)

For given aij(x) the system (7) for τ(x), wk(x), k = 1, 2, . . ., is well defined, which is the content

of our approach: find τ(x), wk(x), k = 1, 2, . . ., from (7) and then compute λ(x) by formula (6).

Certainly, to find particular solutions to the nonlinear system (7), we need to impose boundary

conditions on τ(x) and wk(x), for example, τ(x)|∂D and wk(x)|∂D, which allows us to solve a

particular inverse problem for w(x, t) and λ(x).

We emphasize that, according to the ray method for Equation (3), the study of the inverse

problem for w(x, t) and λ(x) is reduced to the study of the well-defined system (7) for wk(x) and

τ(x) in a finite or infinite version. This approach is applicable to other equations and systems

in mathematical physics, for example, the Lamé equations, Maxwell equations, and soliton type

equations. We note that soliton type equations are studied by the Kovalevskii–Painleve method

(known as the Wentzel–Kramers–Brillouin method for equations of quantum mechanics [11]),

where solutions are represented as power series with respect to some functions [13]–[16].

For an example we consider the system of ordinary differential equations with one-dimensional

wave equation

λ2(x)
∂2w

∂t2
=

∂2w

∂x2
,

where t0 � t � t1, x0 � x � x1. In this case, we can exclude the derivative τ ′(x) and obtain an

equation only for wk(x), k = 0, 1, . . . The following assertion holds.

Proposition 4. Let wk(x), k = 0, 1, . . ., w0(x) �= 0, be a solution to the system

w′′
k =

2C

w0

(
wk+1

w0

)′
, k = 0, 1, . . .
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Then the function

w(x, t) =

∞∑

k=0

wk(x)fk(t− τ(x)),

where f ′
k(s) = fk−1(s), k = 1, 2, . . ., and τ = C

∫
dx

w2
0

, C is a constant, is a solution to the

equation (
∂τ

∂x

)2 ∂2w

∂t2
=

∂2w

∂x2
.

In what follows, we consider only exact results for finite series

w(x, t) =

m∑

k=0

wk(x)f
(m−k)(t− τ(x)),

where f(s) is an infinitely differentiable function (possibly, a distribution) in a domain of R.

A counterpart of Proposition 4 for finite representations is formulated as follows.

Proposition 5. Let w0(x), . . . , wm−1(x) be a solution to the system

w′′
k =

2C

w0

(
wk+1

w0

)′
, k = 0, . . . ,m− 1,

where wm = ax+ b, a, b ∈ R. Then the function

w(x, t) =
m∑

k=0

wk(x)f
(m−k)(t− τ(x)),

where τ = C

∫
dx

w2
0

and C is a constant, is a solution to the equation

(
∂τ

∂x

)2 ∂2w

∂t2
=

∂2w

∂x2
.

For the general second order equation (3) the following assertion holds.

Proposition 6. Suppose that x ∈ D ⊂ R
n, D is a domain in the real Euclidean space R

n,

n � 1, and m � 0 is an integer. If wk(x), τ(x), k = 0, 1, . . . ,m, solve the system of m + 2

differential equations for w0(x) �= 0, x ∈ D,

Lτ = − 2

w0

n∑

i,j=1

aij(x)
∂w0

∂xi

∂τ

∂xj
,

Lwk−1 =
2

w0

n∑

i,j=1

aij(x)

(
w0

∂wk

∂xi
− wk

∂w0

∂xi

)
∂τ

∂xj
, k = 1, . . . ,m,

Lwm = 0,

then the function

w(x, t) =

m∑

k=0

wk(x)f
(m−k)(t− τ(x))
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is a solution to the equation

( n∑

i,j=1

aij(x)
∂τ

∂xi

∂τ

∂xj

)∂2w

∂t2
= Lw.

Remark 4. Since the system (7) is resolved with respect to the higher order derivatives, we

obtain a Cauchy–Kovalevskaya type system under additional assumptions on aij(x) [17]. There-

fore, we can formulate the existence and uniqueness result for the class of analytic functions.

We consider the inverse problem and formulate an exact assertion for the Laplace operator

L = Δ =
n−1∑

i=1

∂2

∂x2i
+

∂2

∂y2
.

The inverse problem is to find functions w(x, y, t), λ(x, y) > 0 for |x| < r, y � 0, t � 0 such that

λ2(x, y)
∂2w

∂t2
=

n−1∑

j=1

∂2w

∂x2j
+

∂2w

∂y2
, n � 1, r > 0, (8)

w|y=0 = ϕ(x, t) =
m∑

k=0

ak(x)fk(t− τ0(x)), (9)

∂w

∂y

∣∣∣∣
y=0

= ψ(x, t) =
m∑

k=−1

bk(x)fk(t− τ0(x)), (10)

where m > 1 is a fixed integer, the functions fk(s), f
′
k(s) = fk−1(s) are fixed, τ0(x), ak(x),

k = 0, . . . ,m, bk(x), k = −1, . . . ,m, are known functions for |x| < r.

Theorem 3. If τ0(x), ak(x), k = 0, . . . ,m, bk(x), k = −1, . . . ,m, are analytic functions for

|x| < r and a0(x) �= 0, then there exists a neighborhood of the origin in the space R
n of variables

(x, y) such that there is a unique solution to the inverse problem (8)–(10) represented as a finite

ray series

w(x, y, t) =

m∑

k=0

wk(x, y)fk(t− τ(x, y)) (11)

with analytic functions wk(x, y) and τ(x, y); moreover,

λ(x, y) =

√√√√
n−1∑

j=1

(
∂τ

∂xj

)2

+

(
∂τ

∂y

)2

.

Proof. Substituting the representation (11) of w(x, y, t) with analytic functions wk(x, y)

and τ(x, y) into Equation (8) and assuming that a given function exactly satisfies Equation (8),

we obtain a finite system of m+ 2 equations for wk(x, y) and τ(x, y)

2(∇τ,∇w0) + w0Δτ = 0,

2(∇τ,∇wk) + wkΔτ = Δwk−1, k = 1, . . . ,m,

Δwm = 0.

(12)
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Moreover, the functions λ(x, y) and τ(x, y) are connected by the equality

λ2(x, y) =

n−1∑

j=1

(
∂τ

∂xj

)2

+

(
∂τ

∂y

)2

.

Let us consider the boundary conditions in the inverse problem. From the finite representation

of a solution (11) and the condition (9) it follows that

τ(x, 0) = τ0(x), wk(x, 0) = ak(x), k = 0, . . . ,m. (13)

By (8), the condition (10) takes the form

m∑

k=1

∂wk

∂y

∣∣∣∣
y=0

fk(t− τ0(x))−
m−1∑

k=−1

ak+1(x, 0)
∂τ

∂y

∣∣∣∣
y=0

fk(t− τ0(x)) =
m∑

k=−1

bk(x)fk(t− τ0(x)).

Since a0(x) �= 0, we have

∂τ

∂y

∣∣∣
y=0

= −b−1(x)

a0(x)
,

∂wk

∂y

∣∣∣
y=0

= −ak+1(x)b−1(x)

a0(x)
+ bk(x), k = 0, 1, . . . ,m.

(14)

Thus, based on the finite representation (11), we compute the Cauchy data for the system (12).

We show that the system (10) can be reduced to a Cauchy–Kovalevskaya type system. Since

a0(x) �= 0 and w0(x, 0) = a0(x), there exists a neighborhood of the origin in R
n such that

w0(x, y) �= 0 in this neighborhood. From the first equation in (12) we have

Δτ = − 2

w0
(∇τ,∇w0)

in this neighborhood. Therefore,

∂2wk−1

∂y2
= −

n−1∑

j=1

∂2wk−1

∂x2j
+ 2(∇τ,∇wk)− 2

wk

w0
(∇τ,∇w0), k = 1, . . . ,m,

∂2wm

∂y2
= −

n−1∑

j=1

∂2wk

∂x2j
,

∂2τ

∂y2
= −

n−1∑

j=1

∂2τ

∂x2j
− 2

w0
(∇τ,∇w0).

(15)

The system (15) is a Cauchy–Kovalevskaya type system with analytic Cauchy data (13) and

(14). By the Cauchy–Kovalevskaya theorem, there exists a neighborhood of the origin in R
n

such that the system (15) with the conditions (13), (14) has a unique analytic solution τ(x, y),

wk(x, y), k = 0, . . . ,m.

455



According to Theorem 2 with the functions ak(x) and bl(y), we have the following finite

expansion of the solution w(x, y) to Equation (4):

w(x, y) =

m∑

k=0

ãk(x)̃bk(y).

If the ray series is finite, we have an usual finite expansion. Indeed, let

ŵ(x, ω) =

∞∫

−∞
w(x, t)eiωtdt = eiωτ(x)

m∑

k=0

wk(x)f̂k(ω)

be the Fourier-image of the function

w(x, t) =
m∑

k=0

wk(x)fk(t− τ(x)).

Then in the sum

e−iωτ(x)ŵ(x, ω) =

m∑

k=0

wk(x)f̂k(ω),

the variables ω and x are separated.

In inverse and ill-posed problems, the question arises to find a finite-dimensional expansion

based on different basis functions, solutions and so on. We formulate and prove a criterion for

finite representation of an arbitrary function of many variables.

Let αk(x), βk(y), (x, y) ∈ D ⊆ R
n+m, x = (x1, . . . , xn), y = (y1, . . . , ym), n � 1, m � 1, be

analytic functions, k = 1, . . . ,M − 1, M � 2.

Theorem 4. An analytic function f(x, y) admits the finite representation

f(x, y) =
M−1∑

k=1

αk(x)βk(y), (x, y) ∈ D, (16)

if and only if

det(f(ξi, ηj)) = 0 (17)

at any points (ξi, ηj) ∈ D, i, j = 1, . . . ,M .

Proof. If the equality (16) holds, then an elementary computation shows that the equality

(17) holds. To prove the converse assertion, we proceed by induction on M . For M = 2 we have

∣∣∣∣
f(ξ1, η1) f(ξ1, η2)

f(ξ2, η1) f(ξ2, η2)

∣∣∣∣ = 0.

Consequently,

f(ξ1, η1) = Af(ξ1, η2),

f(ξ2, η1) = Af(ξ2, η2)

for some function A = A(ξ1, ξ2, η1, η2). From the second equation it follows that A depends only

on (ξ2, η1, η2). Then, in the first equality f(ξ1, η1) = A(ξ2, η1, η2)f(ξ1, η2), we fix ξ2 = ξ02 , η2 = η02
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and denote α(ξ1)=f(ξ1, η
0
2), β(η1)=A(ξ02 , η1, η

0
2). Then we obtain the required representation

f(ξ1, η1) = α(ξ1)β(η1).

We assume that the assertion holds for M and prove it for M + 1. Denote f(ξi, ηj) = fij .

The relation (17) is equivalent to the following system for some functions A2, . . . , AM+1 of

(ξ1, . . . , ξn; η1, . . . , ηm):

fi1 =

M+1∑

k=2

Akfik, i = 1, . . . ,M + 1.

Taking the subsystem with i = 2, . . . ,M + 1, we find

Ak =

M+1∑

k=2

gkifi1, k = 2, . . . ,M + 1,

where gki are entries of the inverse matrix (fij)
−1
i,j=2,...,M+1 and, consequently, depend only on

variables (ξ2, . . . , ξn; η2, . . . , ηm). In turn, Ak depend on (ξ2, . . . , ξn; η1, . . . , ηm). (Note that,

assuming the nonsingularity of the matrix (fij)i,j=2,...,M+1, we obtain the relation (17) for M

and, by the inductive assumption, we obtain the representation (16).)

We fix ξi = ξ0i , ηj = η0j , i, j = 2, . . . ,M + 1, and set βk(η1) = Ak|ξ0,η0 , αk(ξ1) = f(ξ1, η
0
k),

k = 2, . . . ,M + 1. Substituting ξi = ξ0i , ηj = η0j , i, j = 2, . . . ,M + 1 into the first relation of the

system

f11 =
M+1∑

k=2

Akf1k,

we find

f(ξ1, η1) =
M+1∑

k=2

αk(ξ1)βk(η1).

The theorem is proved.

We note that the method of physical structures [18, 19] is based on relations of the form (17).

Remark 5. Theorem 4 holds not only for analytic functions, but also for continuously

differentiable functions under certain restrictions.

To conclude the paper, we formulate a counterpart of Proposition 6 for systems of second

order equations

λ(x)
∂2w

∂y2
=

n∑

i,j=1

aij(x)
∂2w

∂xi∂xj
+

n∑

j=1

aj(x)
∂w

∂xj
+A(x)w + F (x, y), (18)

where A(x) is an N × N -matrix, w = (w1, . . . , wN )T , F = (F1, . . . , FN )T are vector-valued

functions, and λ(x), aij(x), aj(x) are functions.

Proposition 7. If

w(x, y) =
m∑

k=0

vk(x)f
(m−k)(y − τ(x)),

F (x, y) =

m∑

k=0

Φk(x)f
(m−k)(y − τ(x)),

457



where τ(x), vk(x), and Φk(x) are connected by

2

n∑

i,j=1

aij(x)
∂τ

∂xi

∂v0
∂xj

+ Lτv0 +

n∑

j=1

aj(x)
∂τ

∂xj
v0 = 0,

Lvk−1 +A(x)vk−1 +Φk−1 = 2

n∑

i,j=1

aij(x)
∂τ

∂xi

∂vk
∂xj

+ Lτvk +

n∑

j=1

aj(x)
∂τ

∂xj
vk,

Lvm +A(x)vm +Φm = 0,

(19)

where

L =

n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑

j=1

aj(x)
∂

∂xj
,

then

λ(x) =
n∑

i,j=1

aij(x)
∂τ

∂xi

∂τ

∂xj

and the vector-valued functions w(x, y) and F (x, y) satisfy the system (18).

It is of interest to study the system (5), (12), (15), (19) by methods of group analysis [20, 21]

or, more generally, by the method of differential connections [22, 23] and find classes of exact

solutions.
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