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We present mew algebraic-analytic methods for constructing solutions to differential
equations and inverse problems. In particular, we develop a new approach based on
the ray method for inverse problems in mathematical physics. Bibliography: 23 titles.

In this paper, we continue to develop algebraic-analytic methods for studying problems in math-
ematical physics (cf. [1]-[9]). We consider an abstract equation including some classical differ-
ential equations. For such equations with special sources it is possible to construct partial
solutions. In this paper, we use algebraic tools for reproducing the partial solutions. The for-
mulas for solutions obtained in this paper can be used for studying problems in mathematical
physics and, in particular, inverse problems. Furthermore, we develop a new approach to the
use of the ray method [10]-[13] for studying inverse problems in mathematical physics. This
approach consists in searching not only amplitudes, but also a function defining the Riemann
metric under the assumption that the ray series is an exact solution to differential equations in
finite and infinite cases. Owing to this result, it is possible to study particular inverse problems.

In fact, we use the method of generalized separation of variables, i.e., the representation of
solutions, coefficients, and other information in the form of sums (possibly, infinite) in the tensor
product of vector spaces. Solutions to the abstract equation in Sections 1 and 2 and the ray
series in Section 3 are represented in this form. Section 3 contains a criterion of representation
of an analytic function as a finite sum in the tensor product of function spaces.
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1 Construction of Particular Solutions

In this section, we deal with constructive methods for obtaining particular solutions to
abstract equations with rather large arbitrariness. Assume that V and U are vector spaces over
a field K, A and B are linear operators in the spaces V' and U sending elements of these spaces
to themselves. We denote by F(«, 3) a polynomial in variables o and 8 with coefficients in K
and by V ® U the tensor product of the spaces V and U. We consider the following equation
forweVeU:

F(A,Bjw=R, ReV®U. (1)

Our main goal is to construct partial solutions to Equation (1). Assume that a, € V, b, € U,
p,q = 0, are elements of the spaces V and U. Let Fp4(c, f) and Gpg(c, ) be polynomials in
variables a and S over the field K.

The following general result will be used below.
Theorem 1. If

R = Z Gpq(A, B)(ap @ bg),  Fla, B)Fpq(a, B) = Gpglav, B),

p,q=0

then the function

w= Z Fpq(A, B)(ap @ by)
p,q=0

satisfies Equation (1).

We consider an example connected with the geometric progression and used below for con-
structing partial solutions to evolution systems. Setting

pt+q—1

Fla,B)=B—a, Fyla,B)= Z aPTlkgh G (a, B) = BPTT — gP
k=0

in Theorem 1, we get F'(a, §)Fpq(c, ) = Gpq(a, 5). By Theorem 1, the element

pt+q—1
w= ) Y ATIEBNa, @)
p+q=1 k=0

is a partial solution to the equation

(B-Aw=R, R= Y (B —AP")(q,®b,).
p+g=1

From Theorem 1 and the above example we obtain a representation of a partial solution
w(z,y) to the system of differential equations with a special vector-valued source function
R(z,y). We consider the system of linear differential equations

Byw(xv y) = Axw(m,y) + R(l’,y), (2)
where (.%',y) € 5 - Rn+m7 r = (‘rl’wa-'?xn)’ Yy = (y17927---7ym)7 n = 17 m = 17 5
is a domain in the real Euclidean space R""™ w(x,y) = (wi(z,y),...,wn(z,y)), R(z,y) =



(Ri(z,y),...,Rn(x,y)) are complex vector-valued functions of dimension N > 1, and By, A,
are linear differential operators defined by the relations

— B B —
By = Z Bﬁ(?/)Dy7 Dy_ma

|B]<ma
where Bg(y) are infinitely differentiable functions of the variable y,

8a1+-~~+am

Az = Z Ao(2)D, Dy = 9 .. Oaan

la|<ma

where A, (z) are quadratic matrices of order N with infinitely differentiable entries depending
on the variable z.

If m =1 and y = t, then the system (1) is a system of evolution equations with time-
independent coefficients on the right-hand side, for example, the Lamé or Maxwell equations.

Let bo(y), b1(y),-. - .,bn,(y) be arbitrary infinitely differentiable complex-valued functions of
the variable y, and let ag(z), ai(z),...,an,(x) be arbitrary infinitely differentiable complex
vector-valued functions of the variable z and dimension N, N1 > 1, Ny > 1.

We denote by A% and BZ the powers of operators A, and B, of degree k and j respectively.
The operators AY and BS are the identity operators.

We also note that the operators BZZ act on functions depending only on y, whereas the
operators A¥ act on vector-valued functions of dimension N depending only on z.

Theorem 2. Let

N2 Nl
R(z,y) =Y Bibj(y)ao(z) — bo(y) Y Akay(x)
=1 k=1

Ny No No N,
+> B, (bO(y) +) Bibj(y)) ar(z) = bi(y) Al (ao(m) +> A’;ak(m)) .
k=1 =1 =1 k=1

Then the function

N2
wey)= Y B (bow) + Y Bbiw)) Asarssi (2)
0<k,s; Jj=1
k+s+1<Ny

Ny
+ > Bibign(w)AL (ao(ﬂf) +> A%k(@) + w(z,y)
0<4,5; k=1
i+j+1< N2

satisfies the equation
Byw(z,y) = Ayw(z,y) + R(z,y),

where w(x,y) is any solution to the homogeneous system (2) with the coefficients defined by
ar(x), bi(y), k=0,...,N1,1=0,...,No.
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Proof. We set A, = A and B, = B in Theorem 1. We fix a pair (p,¢) and find a term in
the expression for w that corresponds to the product a,b,. Let

No
w1 = Z Bk (Z ijj>Asak+S+1.

0<k,s; Jj=0
k+s+1<N,

Then for j = g we have
w1q = Z Bk+qqusak+s+]_.

0<1,5;
k+s+1<Ny

Setting k 4+ s + 1 = p, we obtain

p—1
Wipg = g Bk+qqup7k71ap
k=0

Similarly, if

N1
wy = Z B]bi—&-j—i-lAlZAkak,

0<i+j, k=0
i+j+1<N,
then
q—1
W2pg = Z Bq_z_lqup—Hap
i=0
Thus,
N1 No
w=w +wy = Z Z(wlpq + Wapg)
p=0 q=0
N1 Ny p+q—1 N1 N2
YN i, =Y (Y ARk,
p=0¢=0 k=0 p=0 ¢q=0 0<k,l;
k+l=p+q—1
According to the example, we find
N1 N2 Nl N2
(B D= 35 (B4 - A7) (agb) = S S BP0, ->n Zwa R
p=0 ¢=0 p=0  ¢=0
The theorem is proved. U

Remark 1. If R(z,y) is a known or partially known function, then the expression for
R(z,y) in Theorem 2 can be regarded as a system of equations for coefficients of the operators
A, and By, for the coefficients ay(x), bj(y) and so on, which leads to a new method of studying
multidimensional inverse problems. In particular, we set b;(y) =0, j =1,..., N2, bo(y) # 0 and

Ny
R(z,y) = bo(y)ao(x) + Y Bybo(y)ax(x)
k=1
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in Theorem 2. By Theorem 2, from the conditions b;(y) =0, j =1,..., N2, we have

R(z,y) = —bo(y ZA ar(x ZB bo(y x) — bo(y)aop(z) + bo(y)ao(z).

Consequently,
N1
z)+ Y Abay(z) =
k=1

For given ay(x) this equation is an equation for the operator A, or, for a given operator A, it
is an equation for some coefficient ay(z) [9].

2 Algebraic Methods for Reproducing Solutions
to Inverse Problems

According to Theorem 1, by a solution to the inverse problem for the equation
F(A,B)w =R,

where

w = Z A B ap®b) R= Z qu(AvB)(ap®bQ>7

p,q=0 p,q=0

we mean (F(A, B), Fyq(A, B),Gpe(A, B), ap, by) such that FI(A, B)F,q(A, B) = Gpe(A, B). We
consider the following problem: for a given solution (F(A, B), Fyq(A, B), Gpg(4, B), ap, by) to
construct another solution (F(A, B), pq(A B), qu(A B),Ep,gq) by algebraic-analytic opera-
tions. In other words, the problem is to reproduce solutions. We indicate some methods for
solving this problem.

1. Multiplication by an operator. Let H(«, ) be a polynomial in & and 5. Then the solution
has the form (H(A, B)F(A, B), Fq(A, B), H(A, B)Gpe(A, B), ap, by).

2. Linearity in argument. If (F(A, B), Fpq(A, B), Gpe(A, B), a1p, by) and (F (A, B), Fpq(A, B),
Gpq(A, B), azp, by) are solutions, then (F(A, B), Fpq(A, B), Gpe(A, B), a1p + azp, by) is also a so-
lution.

3. Transformation in operator I. Let L : V — V be an invertible operator in the space V,
and let a, = La,. Then (F(L7YAL, B), F,,i(L YAL, B), Gpy(L7YAL, B), @y, b,) is a solution.

4. Tmnsform@ion in operator Il. Let L : V — V~be an invertible operator in the space V,
and let A= L71AL. Then (F(A, B), Fp(A, B),Gpe(A, B), Lay, b,) is a solution.

5. Differentiation in parameter. Let (F'(A, B), Fpq(A, B),Gpe(A, B),ap,by) depend on the

parameter s. Differentiating the equality

F(A, B) Z Fyq(A, B)(ap @ bg) = Z Gpq(A, B)(ap @ bg)

p,q=0 p,q=0

with respect to s, we find

F'(A,B) Y Fpy(A,B)(ap, ®by) + F(A,B) Y F},(A B)(a, ®by)

p,q=0 p,q=0
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F(A,B) ) Fpy(A, B)(a), ® by + ap @ b))
p,q20

= Gp(A,B)(ap®@bg) + > GpglA, B)(a), @ by + a, @ b).

P,q=0 P,q=0
. d . e ,
Here, the prime denotes Is In particular, if a,, = b;, = 0, then
> (F'(A, B)Fpy(A, B) + F(A,B)F},(A,B)) (a, @ b) = Y Gpy(A, B)(ap @ by).
p,q20 p,q=0
For example, if F' = F§, n > 2, then
F'(A, B)Fy,(A,B) + F(A, B)Flgq(A, B) = FSL*I(A, B)(nFpe(A, B) + Fy(A, B)Flgq(A, B)),

ie., (F7'(A, B),nF}(A, B)Fy(A, B) + Fy(A, B)F, (A, B),G,,(A, B),ap,b,) is a solution. If,
in addition, only the operator A depends on the parameter s and AA" = A’A, then

OF, OFy, 0Gpg
DA 9A 9A

is a solution. To illustrate this transformation, we formulate the following assertion.

(Fo" (4, B).,n 52 (A B)Fyy(A, B) + Fo(A, B) 521 (A, B), ¥4, B), A'ay. b,

Proposition 1. Let

R= Z (APTIHL — (p 4 g+ 1)ABPT + (p + q) BPT1) ), @ b,

p,q=0
Then the element
p ptq 2p—1
Z(Z > (k+ 1A FBR gy @by + ag @bpa) + Y (k+ 1)AP T FBRe, @ bp)
p=0 ¢=0 k=0 k=0

satisfies the equation (A — B)>w = R.

Corollary 1. If only the operator A depends on the parameter s, AA' = A’A, and

R=> (p+q+1) (AW - B””) Alay @ by,

P,q=0
then the element
) P ptq
(Z Sk + D) AP TFBE (A a0 @ by + Alag @ bys)
p=0 ¢=0 k=0
2p—1
+ > (k+1)AP 1k BR A, @ bp)
k=0
00 p ptq
—B) Y (ke V(g - KA BN (W ay @ by + Alag @ byi)
p=0 ¢=0 k=0
2p—1
+ 3 (k4 1)(2p— 1 - k)AP > FB* Mg, bp),
k=0

satisfies the equation (A — B)w = R.
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6. The Abelian transformation in operator.

Proposition 2.

o] o] p q
Z quap®bq: Z (ZZF’U@)(ap_aerl)®(bq_bQ+1)'
P,q=0 p,q=0 =0 k=0

Proof. Applying the Abelian transformation to the series

9] ) k
S wrge =Y Xilyk —yrr1), Xk =Y,
k=0 k=0 1=0
we find

i Fpqap @ by = i(inq%) @by = ii(gp:ﬂq)(%_%ﬂ)@bq

p,q=0 q¢=0 p=0

The proposition is proved.
Corollary 2. If (F(A, B), Fpy(A, B),Gpe(A, B),ap, by) is a solution, then

(F(A, B), Fpq(A, B), Gpg(A, B, ap — apr1. by = bern),

s also a solution, where

_ P q _ _ _ _
Remark 2. If F,y = > > Fig, then Fpy = Fpg — Fpo1 40— Fpq-1 + Fp

Corollary 3. If ﬁpq = Y A'B* then
I+k=p+q

Fpq= APT9 4 AP (B —2)+(B—1)> )  A'B*
I4+k=p+q—2
and for

R = Z Ap+q+1(ap — apt1) @ (bg — bg41) — Z Bp+q+1(ap — ap+1) ® (bg — bg+1)

p,g=0 P,q=0

[e.°]
the element w = ) Fpea, @ by is a solution to the equation (A — B)w = R.
p,q=0
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Remark 3. If ap = ... = an, = a, any,+1 = anj42 = ... =0, b9 = ... = by, = b, and
bNy+1 = bN,12 = ... = 0 in Corollary 1, then R = (AM+! — BN2+1) (g ® b).

7. The Abelian transformation in argument.

Proposition 3.

00 00 p q
Z Fpqap ® by = Z quF(ZZal@)bk),

p,q=0 p,q=0 =0 k=0

where ApgF' = Fpq — Fpi1,g = Fpgr1 + Fpp1,g41-

Proof. Using the Abelian transformation, we find

Z ap@bq:i(inqap)®bq:§:i(qu p+1q><zp:al>

p,q=0 q=0 p=0 q=0 p=0 =0
[ slNe'e) p
S (e B ()
p=0 ¢=0 =0
00 00 p q
= Z Z(qu — Fpr1q — Fpgr1 + Fp+1,q+1> (Z al> ® ( bk)
p=0 ¢=0 =0 k=0
[ee] p q
-3 Br(E Yo
p,q=0 =0 k=0
The proposition is proved. O

Corollary 4. If (F(A,B), Fpy(A, B),Gpe(A, B),ap, by) is a solution, then

(F(A, B), ApgF(A, B), AyyG(A, B), dp, by)

is also a solution, where quF Fpy — Fp+17q Fpgt1 + Fprig41, DpgG = Gpg — Gpr1,9 —
Gpg+1+ Gprigl, ap = Z a;, and by = Z by,
1=0 k=0
3 The Ray Method and Inverse Problems
We consider the second order equation
Pw O w
22 = ii(t)——=— =1L 3
( )6t2 ijz:l a”(x)&ri@:nj w, ( )

where tg <t < t;, x € D CR", D is a domain in R", n > 1, and a;;(x) = a;;(z) are continuous

functions. According to the ray method [10]-[13], we look for a solution to Equation (3) in the
form of the formal series

Zwk Vit —7(2)), (4)
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where f}(s) = fr—1(s). Substituting (4) into (3), we obtain the following system of differential
equations for 7(x) and wg(z):

- 6w0 or
Lrwy(x) + 2 E aij(x) — =0,
ii=1 69:,~ 8acj
. - (5)
wy OT
Lwy_1 = LTwg(x) + 2 g aij(x)=——=—, k=1,2,...,
ig—1 J 8ZEZ al‘j

with the overdetermination condition with a given function A(z):
n
or or
(1) o =— = N (). 6
2,7=1
For wo(z) # 0, z € D, we can write the system (5) with the resolved higher order derivatives of
7(x) and wg(x):

n

2
Ir—_~2 Z alj(l‘) a'LUO or

wo ij=1 8.1‘Z G—:Uj’
R 0 0 0 )
w w T
kail:w_o Zai]‘(l‘) <’LU() 8$k — Wk 833[)) %, k:1,2,... .
ij=1 ) ) 7

For given a;;(x) the system (7) for 7(z), wi(x), k = 1,2,..., is well defined, which is the content
of our approach: find 7(z), wg(x), k =1,2,..., from (7) and then compute A(x) by formula (6).
Certainly, to find particular solutions to the nonlinear system (7), we need to impose boundary
conditions on 7(x) and wg(x), for example, 7(z)|gp and wi(x)|sp, which allows us to solve a
particular inverse problem for w(x,t) and A(x).

We emphasize that, according to the ray method for Equation (3), the study of the inverse
problem for w(x,t) and A(z) is reduced to the study of the well-defined system (7) for wy(x) and
7(z) in a finite or infinite version. This approach is applicable to other equations and systems
in mathematical physics, for example, the Lamé equations, Maxwell equations, and soliton type
equations. We note that soliton type equations are studied by the Kovalevskii—Painleve method
(known as the Wentzel-Kramers-Brillouin method for equations of quantum mechanics [11]),
where solutions are represented as power series with respect to some functions [13]-[16].

For an example we consider the system of ordinary differential equations with one-dimensional
wave equation

0? 0?
N(@) 5y = 53
ot ox
where tg <t < t1, vo < x < 1. In this case, we can exclude the derivative 7/(x) and obtain an
equation only for wg(z), k = 0,1,... The following assertion holds.

Proposition 4. Let wi(x), k =0,1,..., wo(x) # 0, be a solution to the system

w”:& wii1)’ k=01
k wo wo 9 9 Ly oo
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Then the function
Zwk )fi(t —7(2)),
where fl.(s) = fi—1(s), k =1,2,..., and T = C’/

equation
or\ OPw _ 0w
ox ot2 0z’

In what follows, we consider only exact results for finite series

, C is a constant, is a solution to the

m

w(w,t) =Y wi(@) 0 (8 7(2)),

k=0
where f(s) is an infinitely differentiable function (possibly, a distribution) in a domain of R
A counterpart of Proposition 4 for finite representations is formulated as follows

Proposition 5. Let wy(z), ..., wn—1(x) be a solution to the system

fw”—@ Ykt / k=20 m—1
k wo wo ) 9y 9

where w,, = ax + b, a,b € R. Then the function

x
where T = C/ —5 and C is a constant, is a solution to the equation
Wy

or\* *w  w
ox) o2 0x%’
For the general second order equation (3) the following assertion holds.

Proposition 6. Suppose that x € D C R", D is a domain in the real Euclidean space R™
n > 1, and m > 0 is an integer. If wi(x), 7(z), k = 0,1

.,m, solve the system of m + 2
differential equations for wo(z) #0, x € D,

2 Z Owo or
02 8@ 8:3]
2 & owy, owo\ OT
Lwy_1 = — ¥ — —_— =1,...
Wk—1 wo ijZ:1 al] (Q?) <’LU() axl Wk 8$Z> 81']7 k ) , TN,
Lw, =0,
then the function
w(z,t) =Y wi(@) "0 (t - (x))
k=0
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1$ a solution to the equation
n
or Ot \ 0*w
a;i(r)=——=—)—= = Lw.
(Z i) 50 axj> oz~ Y
4,j=1

Remark 4. Since the system (7) is resolved with respect to the higher order derivatives, we
obtain a Cauchy-Kovalevskaya type system under additional assumptions on a;;(z) [17]. There-
fore, we can formulate the existence and uniqueness result for the class of analytic functions.

We consider the inverse problem and formulate an exact assertion for the Laplace operator

n—1
92
L=A=S"2 .9
:1ax§+ay2

The inverse problem is to find functions w(z,y,t), A(z,y) > 0 for |z| < r, y > 0, t > 0 such that

1

9 Pw = Pw  Pw
/\(x’y)ﬁ_;a—x?_'_@—yw 77,21,7”>0, (8)
wly—o = @(x,t) =Y ar(x) fr(t — 70(z)), 9)
k=0
W == Y bl — (), (10)
Yly=0 k=—1

where m > 1 is a fixed integer, the functions fi(s), f.(s) = fr—1(s) are fixed, 79(z), ag(x),
k=0,...,m, bp(z), k= —1,...,m, are known functions for |z| < r.

Theorem 3. If 1o(x), ax(x), k=0,...,m, by(x), k = —1,...,m, are analytic functions for
|x| < r and ag(x) # 0, then there exists a neighborhood of the origin in the space R™ of variables
(z,y) such that there is a unique solution to the inverse problem (8)—(10) represented as a finite

ray series
m

w(a:,y,t) = Zwk(wvy)fk(t_T(x>y)) (11)

k=0

with analytic functions wg(z,y) and 7(x,y); moreover,

J=1

Proof. Substituting the representation (11) of w(x,y,t) with analytic functions wg(z,y)
and 7(z,y) into Equation (8) and assuming that a given function exactly satisfies Equation (8),
we obtain a finite system of m + 2 equations for wy(z,y) and 7(z,y)

2(V7‘, ng) + woAT =0,
2(Vr, V) + wegAT = Awg—q, k=1,...,m, (12)
Aw,, = 0.
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Moreover, the functions A(x,y) and 7(x,y) are connected by the equality
a2 or\?
22 = — — ) .
w0 =3 (=) +(5)

Let us consider the boundary conditions in the inverse problem. From the finite representation
of a solution (11) and the condition (9) it follows that

7(x,0) = 10(z), wi(x,0)=ak(z), k=0,...,m. (13)

By (8), the condition (10) takes the form

é a—u;k - fi(t = 1o(2)) — ]:z__:l ak+1(z,0) ? - fr(t —10(z)) = kgm_: by () fio(t — 70(2)).
Since ag(z) # 0, we have
ﬁ‘ _ _b—l(ﬂf)’
zikyzo acjiii(x)b_l(w) (14)
8—y‘y:0 ST w@ +bp(x), k=0,1,...,m.

Thus, based on the finite representation (11), we compute the Cauchy data for the system (12).

We show that the system (10) can be reduced to a Cauchy—Kovalevskaya type system. Since
ap(z) # 0 and wo(x,0) = ap(z), there exists a neighborhood of the origin in R™ such that
wo(x,y) # 0 in this neighborhood. From the first equation in (12) we have

2
Wo

AT = (V1, V)

in this neighborhood. Therefore,

82wk_1 = 82wk_1 Wi
=— 5— +2(V7,Vwyg) —2—(V7,Vuyg), k=1,...,m,
Oy? st o wo
0wy, B el 0wy, (15)
9,2 9.2
%y j=1 8xj

0t 9 2
o N L 2 (Y, V).
Oy? Z O0x? wo( ™ Vo)
7j=1 J
The system (15) is a Cauchy—Kovalevskaya type system with analytic Cauchy data (13) and
(14). By the Cauchy-Kovalevskaya theorem, there exists a neighborhood of the origin in R™
such that the system (15) with the conditions (13), (14) has a unique analytic solution 7(z,y),

wi(z,y), k=0,...,m. O
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According to Theorem 2 with the functions ag(x) and b;(y), we have the following finite
expansion of the solution w(z,y) to Equation (4):

w(z,y) = 3 an(@)bu(y).
k=0

If the ray series is finite, we have an usual finite expansion. Indeed, let

o0 m

w(r,w) = / w(z, t)e“tdt = () Zwk(x)fk(w)
e k=0
be the Fourier-image of the function
w(z,t) =Y wi(@) fr(t — 7(x)).
k=0

Then in the sum

o~

e_im(x)zﬂ(:v, w) = Z wy, () fr(w),

k=0
the variables w and z are separated.

In inverse and ill-posed problems, the question arises to find a finite-dimensional expansion
based on different basis functions, solutions and so on. We formulate and prove a criterion for
finite representation of an arbitrary function of many variables.

Let ag(z), Br(y), (z,y) € D CR"™™ = (z1,...,2,), y = (Y1, -, Ym), n = 1, m > 1, be
analytic functions, k=1,..., M —1, M > 2.

Theorem 4. An analytic function f(z,y) admits the finite representation

M—-1
f(x7y) = Z ak(x)ﬁk(y)a (xay) € D7 (16)
k=1
if and only if
det(f(&,n;)) =0 (17)

at any points (&,m;) € D, i,j=1,..., M.

Proof. If the equality (16) holds, then an elementary computation shows that the equality
(17) holds. To prove the converse assertion, we proceed by induction on M. For M = 2 we have

F&m) f&m) | _
f(&2,m)  f(&2,m2) '

Consequently,

f(&,m) = Af(&,m2),
f(£2a 771) = Af(§27772)

for some function A = A(&1,&2,m1,m2). From the second equation it follows that A depends only
on (&2,71,72). Then, in the first equality f(&1,m) = A(E2,m1,m2) f(€1,72), we fix & = £, n2 = )
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and denote a(&1)=f(&1,19), B(m)=A(£3,m,19). Then we obtain the required representation
f(&,m) = al&)B(m).

We assume that the assertion holds for M and prove it for M + 1. Denote f(&,n;) = fi;-
The relation (17) is equivalent to the following system for some functions As,..., Apry1 of

(gla" . agn;nla--' 777m):
M+1

fir= ZAkfikv i=1,...,M+1.

Taking the subsystem with i =2,..., M + 1, we find

M+1

Ae = grifin, k=2,... . M+1,
k=2

where gi; are entries of the inverse matrix ( fzj)Z =2 M1 and, consequently, depend only on
variables (&a,...,&m;m2, ..., 0m). In turn, Ay depend on (&2,...,&u;m1,...,nm). (Note that,
assuming the nonsingularity of the matrix (fi;)i j=2.. am+1, we obtain the relation (17) for M
and, by the inductive assumption, we obtain the representation (16).)

We fix & = §Z, nj = 77?, i,j =2,...,M + 1, and set Bx(m) = Ak|5o’no, ai(&) = f(&,m?),
k=2,...,M + 1. Substituting & = {?, n; = 17?, i,7=2,...,M + 1 into the first relation of the

System
M+1

=Y Acfur,
k=2
we find
M+1
F&m) = ar(€)Br(m)
k=2
The theorem is proved. O

We note that the method of physical structures [18, 19] is based on relations of the form (17).

Remark 5. Theorem 4 holds not only for analytic functions, but also for continuously
differentiable functions under certain restrictions.

To conclude the paper, we formulate a counterpart of Proposition 6 for systems of second
order equations

0*w =
A(x>a—y2 = ijzl axzax] ;a] ( )’U} + F(.f,y), (18)
where A(x) is an N x N-matrix, w = (w1,...,wy)?, F = (Fy,...,Fy)T are vector-valued

functions, and A(z), a;;j(z), aj(z) are functions.

Proposition 7. If

w(z,y) =Y o) f" N (y - (@),
k=0

Flz,y) =) ®(2)f" Py —71(x)),
k=0
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where T(x), vp(x), and Pr(x) are connected by

8 0 0
22@2] T UO+LTUO+ZCL] —Tvo—O

] (%Z = 8%
= o duy, aT (19)
Luj_q + A(z)vp_q + ®p_q = 2 L Lo,
V-1 + A(x)vg—1 + Pp—q i;flg( 91 Oz, + TU’“L;QJ axjvk
Lvy, + A(x)vy + @4, =0,
where
n 62 n
- ;1 @ii(2) g z:: i) 5
then
- or Or
Az) = ay(z ) 5 B
ij=1 i by

and the vector-valued functions w(z,y) and F(x,y) satisfy the system (18).

It is of interest to study the system (5), (12), (15), (19) by methods of group analysis [20, 21]

or, more generally, by the method of differential connections [22, 23] and find classes of exact
solutions.

Acknowledgments

The work is supported by the Division of Mathematical Sciences of the Russian Academy of

Sciences (project No. 1.3.1-2012) and the Russian Foundation for Basic Research (project No.
14-01-00014).

458

References

Yu. E. Anikonov, Formulas in Inverse and Ill-Posed Problems, VSP, Utrecht (1997).

Yu. E. Anikonov and M. V. Neshchadim, “On analytical methods in the theory of inverse
problems of mathematical physics” [in Russian|, Sib. Elektron. Mat. Izv. 7, 11-61, electronic
only (2010).

Yu. E. Anikonov and M. V. Neshchadim, “On analytical methods in the theory of inverse
problems for hyperbolic equations. I” [in Russian], Sib. Zh. Ind. Mat., 14, No. 1, 27-39
(2011); English transl.: J. Appl. Ind. Math. 5, No. 4, 506-518, electronic only (2011).

Yu. E. Anikonov and M. V. Neshchadim, “On analytical methods in the theory of inverse
problems for hyperbolic equations. II” [in Russian|, Sib. Zh. Ind. Mat., 14, No. 2, 28-33
(2011); English transl.: J. Appl. Ind. Math., 6, No. 1, 6-11 (2012).

Yu. E. Anikonov and M. V. Neshchadim, “Analytical methods of the theory of inverse
problems for parabolic equations” [in Russian|, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh.
Inform. 11, No. 3, 20-35 (2011); English transl.: J. Math. Sci., New York 195, No. 6, 754—
770 (2013).



10.

11.

12.
13.
14.

15.

16.
17.

18.
19.
20.

21.

22.

23.

Yu. E. Anikonov and M. V. Neshchadim, “Representations for the solutions and coefficients
of hyperbolic and elliptical equations” [in Russian]|, Sib. Elektron. Mat. Izv. 8, C.51-C.73,
electronic only (2011).

Yu. E. Anikonov and M. V. Neshchadim, “On inverse problems for equations of mathematical
physics with parameter” [in Russian|, Sib. Elektron. Mat. Izv. 9, 45-64, electronic only
(2012).

Yu. E. Anikonov and M. V. Neshchadim, “Representations for the solutions and coefficients
of evolution equations” [in Russian], Sib. Zh. Ind. Mat. 16, No. 2, 40-49 (2013); English
transl.: J. Appl. Ind. Math. 7, No. 3, 326-334 (2013).

Yu. E. Anikonov, “Representation of solutions to functional and evolution equations and
identification problems” Sib. Elektron. Mat. Izv. 10, 591-614, electronic only (2013).

V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Problems of Diffraction of Short
Waves, [in Russian|, Nauka, Moscow (1972).

V. M. Babich, “The highest-dimensional WKB method or ray method. Its analogues and
generalizations” [in Russian|, Itogi Nauki Tekhn., Ser. Sovrem. Probl. Mat. Fund. Napr.
34, 93-134 (1988); English transl.: Partial differential equations V. Encycl. Math. Sci. 34,
91-131 (1999).

V. P. Maslov, Operational Methods [in Russian], Nauka, Moscow (1973).
G. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, New York (1974).

M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, STAM Studies
in Applied Mathematics, Philadelphia (1981).

A. Goriely, Integrability and Nonintegrability of Dynamical Systems, World Scientific, Sin-
gapore (2001).

R. M. Conte and M. Musette, The Painlevé handbook, Springer, Dordrecht (2008).

J. F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups, Gordon
and Breach, New York etc. (1978).

Yu. I. Kulakov, Theory of Physical Structures [in Russian|, Dominiko, Moscow (2004).
G. G. Mikhailichenko, Group Symmetry of Physical Structures [in Russian], Barnaul (2003).

L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow
(1978); English transl.: Academic Press, New York (1982).

P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York etc.
(1986).

O. V. Kaptsov, Methods of Integration of Partial Differential Equations [in Russian], Fiz-
matlit, Moscow (2009).

A. F. Sidorov, V. P. Shapeev, and N. N. Yanenko, Method of Differential Relations and its
Applications to Gas Dynamics [in Russian], Nauka, Novosibirsk (1984).

Submitted on November 24, 2014

459



	Abstract
	1 Construction of Particular Solutions
	2 Algebraic Methods for Reproducing Solutionsto Inverse Problems
	3 The Ray Method and Inverse Problems
	Acknowledgments
	References

