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We consider new applications of the generalized interpretation method for studying the

decidability of theories of some structures in analysis. We study the algebraic structure

of continuous functions over a perfectly normal space and prove the decidability of the

theory of this structure. Bibliography: 20 titles.

The connection between the decidability of a theory of some structure and the topology of the

space determining the structure was first established in [1] and further studied in [2]. The log-

ical approach to analysis of topological spaces was applied in [3]. Based on these results, the

lattice (C(R),�) of continuous functions from R to R equipped with the pointwise order was

studied in [4]. The choice of this structure is reasonable because, first, some results concerning

the undecidability of elementary theories of lattices and semilattices in classical structures were

obtained in [5] and, second, a similar structure was used in [6]. However, the classical methods

(cf., for example, [2] and [7]–[14]) are not suitable to prove whether or not the elementary theory

(C(R),�) is decidable. The decidability of (C(R),�) was proved by the generalized interpreta-

tion method proposed by O. Kudinov and described in [4]. It is natural to try to generalize this

result. We note that the structure of continuous functions over R can be generalized in various

ways, whereas the proof of reducibility in [4] can be extended with slight modifications to the

case of the lattice of continuous functions over Rn, n > 1.

One can consider an arbitrary metric space instead of Rn. In turn, metric spaces can be

replaced with perfectly normal spaces [15] and the generalized interpretation method can be

used to establish the m-reducibility of the theory of the structure of continuous functions over

a perfectly normal space to the theory of the structure of open subsets of this space.

The class of perfectly normal spaces, regarded as the class of topological spaces, is of a

special interest [16, 17]. These spaces are the most general among the spaces where the theory

of continuous functions is m-reducible to the theory of open subsets. Using the generalized

interpretation method (Section 1) and some properties of perfectly normal spaces, we establish

(Section 2) the m-reducibility. Using the classical interpretation method, we prove (Section 3)

the inverse m-reducibility of the theory of open subsets to the theory of continuous functions over
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a perfectly normal space. In this case, we extend the signature of the structure of continuous

functions with the relation < defined by the rule

f < g ⇔ f(x) < g(x) ∀ x ∈ X,

which leads to slight modifications in the proof of the m-reducibility in Section 2. At the end

of the paper, we describe an important example. All necessary facts of mathematical analysis

can be found in [18, 19].

1 Generalized Interpretation Method

Assume that A = (A, σ) is a structure of a signature σ, B = (B, σ1) is a structure of a

signature σ1, and g : A<ω �→ B<ω is a mapping from a finite set of elements of A to some

finite set of elements of B. We write Φ(x1, . . . , xn) if all free variables in Φ are contained among

x1, . . . , xn. We write 〈a1, . . . , ak〉 	 〈a1, . . . , an〉 if 〈a1, . . . , ak〉, k � n, is the initial segment. We

denote by x � {u} the concatenation of a tuple x and a letter u. Under the above notation, we

assume that there is a monotone computable function m : N → N such that

1) m(0) = 0 and g(∅) = ∅,

2) lh(g(a)) = m(n), where a = 〈a1, . . . , an〉, i.e., the length of the tuple g(〈a1, . . . , an〉) is equal
to the value of the function m of variable n,

3) if k � n, then g(〈a1, . . . , ak〉) 	 g(〈a1, . . . , an〉),
4) there exists an effective procedure of transformation of atomic formulas Φ(x1, . . . , xn) of

a signature σ to some formulas Φg(y1, . . . , ym(n)) of a signature σ1 such that A |= Φ(a) ⇔
B |= Φg(g(a)) for any a = 〈a1, . . . , an〉 ∈ An,

5) there exists a computable sequence of formulas {Ψn(z)}n∈ω, where z = 〈z1, . . . , zm(n)〉 is a
tuple of variables of the signature σ1, such that

(a) for any b = 〈b1, . . . , bm(n)〉 ∈ Bm(n)

B |= Ψn(b) ⇔ ∃a g(a) = b, a = 〈a1, . . . , an〉 ∈ An,

(b) for any b = 〈b1, . . . , bm(n+1)〉 ∈ Bm(n+1) from the condition g(a) 	 b (with some

a = 〈a1, . . . , an〉) and B |= Ψn+1(b) it follows that ∃u ∈ A g(a � {u}) = b.

Conditions 1)–5) are sufficient for the reducibility of the theory of the structure A to the

theory of the structure B because of the following lemma proved in [4].

Lemma 1. If Conditions 1)–5) are satisfied, then there is an effective procedure of transfor-

mation of arbitrary formulas Φ(x1, . . . , xn) of a signature σ to some formulas Φg(y1, . . . , ym(n))

of a signature σ1 such that A |= Φ(a) ⇔ B |= Φg(g(a)) for any formula Φ(x1, . . . , xn) of the

signature σ and any a = 〈a1, . . . , an〉 ∈ An

2 Reducibility of Theory of Continuous Functions
to Theory of Open Sets

For a set X we denote by AX � (C(X),�, <) the algebraic structure of continuous functions

from X to R equipped with the pointwise order � and the relation < defined by

f < g ⇔ f(x) < g(x) ∀ x ∈ X.
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We denote by BX the structure (O(X),⊆), where O(X) is the set of open subsets of X.

We recall some definitions from [15].

A subset A of a topological space X is called functionally closed if A = f−1(0) for some

continuous mapping f : X → R.

A topological space X is called a T1-space if for each pair of distinct points x1, x2 ∈ X there

exists an open set U ⊂ X such that x1 ∈ U and x2 /∈ U .

We formulate one of the equivalent definitions of a perfectly normal space (cf. [15]). A

topological T1-space X is called a perfectly normal space if closed subsets of X are functionally

closed.

As is noted in [15], the class of perfectly normal spaces is narrower than the class of normal

spaces. In other words, any perfectly normal space is normal. The converse assertion is false.

Finally, we recall the following fact [15] which will be used below: for each pair of disjoint

closed sets A and B of a perfectly normal space X there exists a continuous function f : X →
[0, 1] such that f−1(0) = A and f−1(1) = B.

To prove the main result of this section, we need the following assertion.

Lemma 2. Assume that X is a perfectly normal space, A and B are closed subsets of X,

and h1, h2 : X → R are two continuous functions such that h1(x) � h2(x) for x ∈ X and

h1(x) = h2(x) for x ∈ A ∩B. Then there exists a continuous function h : X → R such that

1) h(x) = h1(x) if and only if x ∈ A,

2) h(x) = h2(x) if and only if x ∈ B,

3) h1(x) < h(x) < h2(x) for all x ∈ X \ (A ∪B).

Proof. By the definition of a perfectly normal space, for closed sets A and B there exist

continuous functions χA and χB such that χA(x) = 0 for x ∈ A, χA(x) > 0 for the remaining

x ∈ X, χB(x) = 0 for x ∈ B, and χB(x) > 0 for the remaining x ∈ X. We verify that

f(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

χB(x)h1(x) + χA(x)h2(x)

χA(x) + χB(x)
, x /∈ A ∩B,

h1(x) + h2(x)

2
, x ∈ A ∩B,

is continuous and satisfies the required conditions. Indeed, let x0 ∈ X be an arbitrary fixed

point in A ∩B such that any neighborhood of x contains points y ∈ X \ (A ∩B). We fix ε > 0.

By the continuity of h1 and h2, we can choose a neighborhood of the point x0 such that for all z

in this neighborhood we have |h1(x0)− h1(z)| < ε/2 and |h2(x0)− h2(z)| < ε/2. For any point

y0 ∈ X \ (A ∩B) in this neighborhood

∣
∣
∣
h1(x0) + h2(x0)

2
− χB(y0)h1(y0) + χA(y0)h2(y0)

χA(y0) + χB(y0)

∣
∣
∣

=
∣
∣
∣

1

2(χA(y0) + χB(y0))

(
χA(y0)(h1(x0)− h2(y0)) + χA(y0)(h2(x0)− h2(y0))

+ χB(y0)(h1(x0)− h1(y0)) + χB(y0)(h2(x0)− h1(y0))
)∣
∣
∣

�
∣
∣
∣

χA(y0)

2(χA(y0) + χB(y0))

∣
∣
∣ ∗ (|h1(x0)− h2(y0)|+ |h2(x0)− h2(y0)|)
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+
∣
∣
∣

χB(y0)

2(χA(y0) + χB(y0))

∣
∣
∣ ∗ (|h1(x0)− h1(y0)|+ |h2(x0)− h1(y0)|) < 1

2

(
4
ε

2

)
= ε.

Thus, we proved the continuity at the point x0. The continuity at interior points of the set

A ∩ B and at points of the open set X \ (A ∩ B) follows from the formula for constructing the

function h (we use the composition of continuous functions and the fact that the denominator

does not vanish). Thus, h is continuous.

We verify that h(x) = h1(x) for x ∈ A and h(x) = h2(x) for x ∈ B. We note that χA(x) = 0

for all x ∈ A and χB(x) = 0 for all x ∈ B. For points x ∈ A \ B we use the upper formula for

computing h and get h(x) = h1(x). The equality h(x) = h2(x) for x ∈ B \A is proved as above.

For x ∈ A ∩B we use the lower formula for h and the assumption h1(x) = h2(x).

Let us prove that h1(x) < h(x) < h2(x) for x /∈ A ∪B. We have

h(x) =
χB(x)h1(x) + χA(x)h2(x)

χA(x) + χB(x)
= h1(x) +

χA(x)(h2(x)− h1(x))

χA(x) + χB(x)
> h1(x), x /∈ A ∪B,

h(x) =
χB(x)h1(x) + χA(x)h2(x)

χA(x) + χB(x)
= h2(x)− χB(x)(h2(x)− h1(x))

χA(x) + χB(x)
< h2(x), x /∈ A ∪B.

Thus, the lemma is proved.

The following assertion is proved in Sections 2 and 3.

Theorem 1. Let X be a perfectly normal space. The theories of the structures AX and BX

are m-equivalent.

In this section, we prove the following lemma.

Lemma 3. The theory of the structure AX is m-reduced to the theory of the structure BX .

Proof. Let us verify that all the conditions of the generalized interpretation method are

satisfied. Then the required result follows from Lemma 1.

According to the generalized interpretation method, we need to construct a mapping g :

C(X)<ω �→ O(X)<ω sending a finite tuple of elements of the set C(X) to some finite tuple of

elements of the set O(X) in such a way that certain conditions are satisfied. We set

g(∅) = ∅,

g(〈f1, . . . , fn〉) = 〈{Gij : 1 � i, j � n}〉, n � 1, where Gij = {x ∈ X|fi(x) < fj(x)}, and the

number of position Gij in this tuple (denoted by Num (i, j)) is computed as follows:

Num (i, j) =

{
j2 − i+ 1, i � j,

(i− 1)2 + j, j < i.
(1)

A tuple of open sets Gij ordered by Num (i, j) is written as 〈{Gij : 1 � i, j � n}〉.
We show that for the monotone computable function m(n) = n2 the conditions of the

generalized interpretation method are satisfied.

Indeed, m(0) = 0 and g(∅) = ∅. The cardinality of the set {Gij : 1 � i � n, 1 � j � n}
is equal to n2, i.e., Condition 2 holds. The position Gij is computed by formula (1). Then
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Condition 3 holds. Condition 4 is satisfied since it is possible to construct Φg(y1, . . . , yn2) from

the atomic formula Φ(x1, . . . , xn) as follows:

[xi � xj ]g � yNum(j,i) = ∅,

[xi < xj ]g � yNum(i,j) = X.

These effective construction procedures preserve the truth of the corresponding formulas. Thus,

Condition 4 is satisfied.

It remains to construct a computable sequence {Ψn(y
n)}n∈ω of the signature BX such that

Condition 5 holds. Let a = 〈a1, . . . , an〉 ∈ An
X . Then g maps a to b = 〈b1, . . . , bn2〉 ∈ Bn2

X .

We extend b to b′ by adding the sets Gn+1 1, . . . , Gn+1 n, Gn+1 n+1, Gn n+1, . . . , G1 n+1 to the

tuple. Thus, lh(b′) = (n + 1)2. We see that it is the value of the function m of n + 1, i.e.,

m(n+ 1) = (n+ 1)2. Thereby b′ = 〈{Gij | 1 � i, j � n+ 1}〉.
For the sake of brevity we denote by Tij the set {x | fi(x) � fj(x)}. We note that Tij =

X \Gji. We introduce the sequence {Ψn}n∈ω as follows:

Ψ0(y) is identically true,

Ψn(〈{Gij : 1 � i, j � n}〉)
� (

∧n
i=1Gii = ∅) ∧ (

∧n
i,j,k=1Gij ∩Gjk ⊆ Gik) ∧ (

∧n
i,j,k=1 Tij ∩ Tjk ⊆ Tik).

We note that the formula Ψn is a formula of the signature BX . We show the validity of

Condition 5 which can be written as follows.

(a) BX |= Ψn(b) ⇔ ∃a g(a) = b, a = 〈a1, . . . , an〉 ∈ An
X for any b = 〈b1, . . . , bm(n)〉 ∈ B

m(n)
X ,

(b) for any b = 〈b1, . . . , bm(n+1)〉 ∈ B
m(n+1)
X from the conditions g(a) 	 b for some a =

〈a1, . . . , an〉 and BX |= Ψn+1(b) it follows that ∃u ∈ AX g(a � {u}) = b.

It is easy to verify condition (a) from right to left. Using (a), we can prove (b).

Assume that Gij , 1 � i, j � n + 1, are given open subsets of BX |= Ψn+1(〈{Gij |1 � i, j �
n+ 1}〉) and f1, . . . , fn are continuous functions such that

x ∈ Gij ⇔ fi(x) < fj(x) ∀ 1 � i, j � n.

We construct a continuous function fn+1 such that

g(〈f1, . . . , fn+1〉) = 〈{Gij : 1 � i, j � n+ 1}〉,
i.e.,

x ∈ Gi n+1 ⇔ fi(x) < fn+1(x) ∀ 1 � i � n,

x ∈ Gn+1 j ⇔ fn+1(x) < fj(x) ∀ 1 � j � n.

1. Let x /∈ Gi n+1 ∪ Gn+1 i for some i � n. We write x ∈ Ai, where Ai � {x ∈ X | x /∈
Gi n+1 ∪Gn+1 i}. We set fn+1(x) � fi(x) at such points x, i.e., for fn+1(x) we take the known

value fi(x).

2̊. Let A and B be fixed disjoint number sets such that A ∪B = {1, . . . , n} (the sets A and

B are assumed to be nonempty; the case where one of these sets is empty will be considered

independently). We denote

C �
⋂

i∈A
Ti n+1 ∩

⋂

j∈B
Tn+1 j .
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We note that C contains only those points x ∈ X where max
i∈A

fi(x) � fn+1(x) � min
j∈B

fj(x). For

x ∈ C we introduce the closed sets

A∗ �
⋃

i0∈A
Ai0 , B∗ �

⋃

j0∈B
Aj0 .

We note that

A∗ =
{
x ∈ X | fn+1(x) = max

i∈A
fi(x)

}
, B∗ =

{
x ∈ X | fn+1(x) = min

j∈B
fj(x)

}
.

We use Lemma 2. We take maxi∈A fi for h1 and minj∈B fj for h2. We note that C is a

closed subset of X. Hence all closed sets in C are also closed in X and, consequently, they are

functionally closed. Thus, C is a perfectly normal space. We have h1(x) � h2(x) for all x ∈ C.

It is easy to see that h1(x) = h2(x) ⇔ x ∈ A∗ ∩ B∗ for x ∈ C. By Lemma 2, there exists a

continuous function h such that

h(x) = h1(x) ⇔ x ∈ A∗; h(x) = h2(x) ⇔ x ∈ B∗; h1(x) < h(x) < h2(x)

for all x in the set TA,B � C \ (A∗ ∪B∗). We note that this set can be written as

TA,B =
⋂

i∈A
Gi n+1 ∩

⋂

j∈B
Gn+1 j .

Thus, fn+1 for all x in TA,B satisfies the inequalities

max
i∈A

fi(x) < fn+1(x) < min
j∈B

fj(x).

For x ∈ Cl(TA,B), where Cl(TA,B) is the closure of the set TA,B, we set fn+1(x) = h(x).

If we consider A′ ∪ B′ = {1, . . . , n} instead of A and B, then fn+1(x) for x ∈ Cl(TA′,B′) is

constructed in a similar way.

Assume that A or B is empty. We begin with the case A = {1, . . . , n}; B = ∅. We denote

by fmax(x) the continuous function max
i∈A

fi(x) = max
i∈{1,...,n}

fi(x). As above, A∗ denotes the set

where {x ∈ X | fn+1(x) = max
i∈A

fi(x) = fmax(x)}. For given A and B we denote

TA,B �
⋂

i={1,...,n}
Gi n+1.

We construct fn+1 on Cl(TA,B) by the rule

fn+1(x) = fmax(x) + χA∗(x).

If A = ∅ and B = {1, . . . , n}, then we set fmin(x) � min
j∈{1,...,n}

fj(x) and B∗ � {x ∈ X |
fn+1(x) = fmin(x)}. In this case,

TA,B �
⋂

j={1,...,n}
Gn+1 j .

We construct fn+1 on Cl(TA,B) by the rule

fn+1(x) = fmin(x)− χB∗(x).

426



It is easy to see that

Cl(TA,B) \ TA,B ⊆
n⋃

i=1

Ai

for any A and B such that A ∪B = {1, . . . , n}.
To prove 5 (b), it remains to verify the following conditions:

(a) fn+1(x) is defined for any x ∈ X,

(b) the function fn+1 is well defined, i.e. if fn+1(x) for some x ∈ X is defined more than

once, then these values coincide,

(c) for fn+1

x ∈ Gi n+1 ⇔ fi(x) < fn+1(x) ∀ i = 1, . . . , n,

x ∈ Gn+1 j ⇔ fn+1(x) < fj(x) ∀ j = 1, . . . , n,

(d) the constructed function fn+1 is continuous.

Indeed if x ∈ Ai for some i � n, then fn+1(x) = fi(x). If x /∈ Ai for all i � n, then for every

i � n either x ∈ Gi n+1 or x ∈ Gn+1 i. Thus, there are A and B such that A ∪ B = {1, . . . , n}
and x ∈ ⋂

i∈AGi n+1 ∩
⋂

j∈B Gn+1 j (A or B can be empty) and for such x it is indicated how

to construct fn+1(x). Thus, we have verified Condition (a).

Let us check that if fn+1(x0) is constructed more than once for some point x0 ∈ X, then these

values coincide. We consider the case where x0 ∈ Ai ∩ Aj for some i, j = 1, . . . , n. In this case,

fn+1(x0) = fi(x0). On the other hand, fn+1(x0) = fj(x0). However, as was already mentioned,

from the condition Ψn+1(〈{Gij | 1 � i, j � n + 1}〉); namely, from Ti n+1 ∩ Tn+1 j ⊆ Tij and

Tj n+1 ∩ Tn+1 i ⊆ Tji it follows that fi(x0) = fj(x0).

Let x0 ∈ Ai for some i � n and, at the same time, x0 ∈ Cl(TA,B) for some number sets

A and B. We note that x0 /∈ TA,B; otherwise, at least one of the following inequalities holds:

fn+1(x0) > fi(x0) if i ∈ A or fn+1(x0) < fi(x0) if i ∈ B. However, fn+1(x0) = fi(x0) since

x0 ∈ Ai. Hence x0 ∈ Cl(TA,B) \ TA,B. Then x0 ∈ A∗ or x0 ∈ B∗, i.e., x0 ∈ ⋂
k∈M Ak, where M

is a nonempty set of indices in 1, . . . , n. It is known that i ∈ M . If M consists of more than one

i, then we argue in the same way as in the previous case.

It can happen that x0 ∈ Cl(TA,B) ∩ Cl(TA′,B′) for some A �= A′ and B �= B′. We note that

x0 ∈ Cl(TA,B) \ TA,B and x0 ∈ Cl(TA′,B′) \ TA′,B′ since for every x ∈ TA,B the sets A and B are

uniquely defined. Then x0 ∈ Ai and x0 ∈ Ai′ for some i, i′ � n, i.e., x0 ∈ Ai ∩Ai′ . The fact that

the values of fn+1 coincide was already shown.

Let us verify condition (c). We first show that the conditions Ψn+1(〈{Gij |1 � i, j � n+1}〉)
imply the inclusion Gi n+1 ∩ Tn+1 j ⊆ Gij for some i, j � n. Indeed, the following equivalent

transformations hold:

Tn+1 j ∩ Tji ⊆ Tn+1 i, Tji ∩ Tn+1 j ⊆ Tn+1 i, Tji ⊆ (X \ Tn+1 j) ∪ Tn+1 i,

Tn+1 j ∩Gi n+1 ⊆ Gij , Gi n+1 ∩ Tn+1 j ⊆ Gij .

Let x ∈ Gi n+1. Two cases are possible: either x ∈ Aj for some j �= i, j = 1, . . . , n, or there are

no j = 1, . . . , n such that x ∈ Aj . In the first case, without loss of generality we can assume that

i < j. We note that the conditions Ψn+1(〈{Gij | 1 � i, j � n+1}〉) imply Gi n+1∩Tn+1 j ⊆ Gij .

Consequently, x ∈ Gij , i.e., fi(x) < fj(x) = fn+1(x). In the second case, x ∈ TA,B for some

uniquely defined number sets A and B; moreover, i ∈ A. By the construction of fn+1, we

have fn+1(x) > maxk∈A fk(x) � fi(x). Thus, in both cases, the required inequality is proved.
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Further, fi(x) � fn+1(x) for x /∈ Gi n+1 Thereby we have probed the first required equivalence.

The inequality fn+1(x) < fi(x) for x ∈ Gn+1 i can be proved as above. Thus, x /∈ Gi n+1, i.e.,

x ∈ Tn+1 i. Two cases are possible: x ∈ Ai and x ∈ Gn+1 i. In the first case, fn+1(x) = fi(x),

whereas fn+1(x) < fi(x) in the second one. Therefore, in both cases, fi(x) � fn+1(x). The first

equivalence is proved. The second equivalence is proved in a similar way.

It remains to verify Condition (d), i.e., the continuity of fn+1. For this purpose we use the

following assertion which can be found in [20].

Proposition 1. Let F1 and F2 be two closed sets in X that constitute the entire space X,

and let continuous mappings f1 : F1 → Y and f2 : F2 → Y from F1 and F2 to a space Y coincide

on F1 ∩ F2. Then the following mapping f : X → Y is continuous:

f(x) =

{
f1(x), x ∈ F1,

f(x) = f2(x), x ∈ F2.

This assertion can be generalized to the case where the space X is the union of finitely many

closed sets.

Proposition 2. Let F1, . . . , Fp be closed sets in X such that X = F1 ∪ · · · ∪ Fp, and let

continuous mappings f1 : F1 → Y, . . . , fp : Fp → Y from F1, . . . , Fp to a space Y coincide on

all possible pairwise intersections Fi ∩ Fj, i, j � p. Then the following mapping f : X → Y is

continuous:

f(x) =

{
f1(x), x ∈ F1,

fp(x), x ∈ Fp.

Proof. It suffices to prove that the preimage f−1Φ of any set Φ closed in Y is closed in

X. However, it is easy to verify that f−1Φ = f−1
1 Φ ∪ · · · ∪ f−1

p Φ. The sets f−1
1 Φ, . . . , f−1

p Φ are

closed in the closed sets F1, . . . , Fp respectively and, consequently, in the entire space X. Hence

the set f−1Φ = f−1
1 Φ ∪ · · · ∪ f−1

p Φ is also closed.

In our case, a perfectly normal space X can be represented as the union of finitely many

closed sets

X = A1 ∪ · · · ∪An ∪ Cl(TA1,B1) ∪ · · · ∪ Cl(TAl,Bl),

where Ai, Bi, i = 1, . . . , l, are all possible disjoint number sets (one of these sets can be empty)

such that Ai ∪ Bi = {1, . . . , n}. On each closed set, the required continuous functions are well

constructed (they coincide on the corresponding intersections). By assumption, the function

fn+1 coinciding with the constructed functions on the corresponding closed sets is continuous.

It remains to prove Condition 5(a) from left to right, i.e.,

BX |= Ψn(〈b1, . . . , bm(n)〉) ⇒ ∃〈a1, . . . , an〉 g(〈a1, . . . , an〉) = 〈b1, . . . , bm(n)〉.

We proceed by induction on n. It is easy to prove the base n = 0. We assume that the required

assertion is proved for n = k. Let n = k + 1. By the construction of {Ψn}n∈ω, it is clear that

BX |= Ψk+1(〈b1, . . . , bm(k+1)〉) implies BX |= Ψk(〈b1, . . . , bm(k)〉). By the induction assumption,

∃〈a1, . . . , ak〉 g(〈a1, . . . , ak〉) = 〈b1, . . . , bm(k)〉.
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By Condition (b),

∃u ∈ C(X) g(ak � {u}) = 〈b1, . . . , bm(k+1)〉.
We denote by ak+1 the concatenation of ak � {u}. Thus, we have shown that

BX |= Ψk+1(〈b1, . . . , bm(k+1)〉) ⇒ ∃ak+1 g(ak+1) = 〈b1, . . . , bm(k+1)〉.

Condition 5(a) is proved.

Thus, all the assumptions of Lemma 1 are satisfied. Hence Th (AX) �m Th (BX).

3 Reducibility of Theory of Open Subsets to Theory of

Continuous Functions

In this section, we preserve the notation AX and BX introduced in Section 2. To complete

the proof of Theorem 1, it remains to prove the following assertion.

Lemma 4. Th (BX) �m Th (AX).

Proof. We use the method of relative elementary definability [7]. We note that the theory

BX is undecidable if and only if the theory of the structure DX of closed subsets of X is

undecidable. In particular, Th (DX) �m Th (BX). We show that Th (AX) �m Th (DX).

Since AX is the lattice of continuous functions, for any two continuous functions there are

the greatest lower bound f ∩ g and the least upper bound f ∪ g.

We define a predicate Ψ2 such that Ψ(f, g) is true if and only if f � g and the set C � {x ∈
X|f(x) = g(x)} is nonepmty and connected. It is convenient to construct a formula ¬Ψ(f, g)

that is true if either ¬g � f , or f < g, or the nonempty set C is not connected, i.e., there exist

two closed disjoint sets A ⊆ X and B ⊆ X such that

f(x) = g(x) ⇔ x ∈ A ∪B,

¬Ψ(f, g) � ¬g � f ∨ g > f ∨ ∃fA∃fB∃gA∃gB(fA ∪ fB = f ∧ gA ∩ gB = g

∧ ¬g > fA ∧ ¬g > fB ∧ gA > fB ∧ gB > fA). (1)

If there are functions fA, fB, gA, and gB satisfying all the conjunctions in the above formulas,

then we consider the sets A′ = {x|g(x) = fA(x)} and B′ = {x|g(x) = fB(x)}. Since ¬g > fA
and ¬g > fB , both sets are nonempty.

We prove that C = A′ ∪ B′. Indeed, if x ∈ C, then g(x) = f(x). Consequently, at

least one of the equalities g(x) = fA(x) or g(x) = fB(x) holds since fA ∪ fB = f . Thus,

x ∈ A′ ∪ B′. Let x ∈ A′ ∪ B′, i.e., g(x) = fA(x) or g(x) = fB(x). Then g(x) � f(x) � fA(x)

and g(x) � f(x) � fB(x) imply g(x) = f(x), i.e., x ∈ C.

We prove that A′ ∩ B′ = ∅. Indeed, if there is x0 ∈ A′ ∩ B′, then for such x0 we have

g(x0) = fA(x0) = fB(x0) = y0 with some y0. On the other hand, gA(x0) > fB(x0) = y0 and

gB(x0) > fA(x0) = y0, i.e., g(x0) > y0. We obtain a contradiction.

Assume that the set {x ∈ X|f(x) = g(x)} is not connected, i.e., there are disjoint closed sets

A and B such that f(x) = g(x) if and only if x ∈ A ∪ B. We construct functions fA, fB , gA,

and gB satisfying all the conjunctions in formula (1).
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Since X is a perfectly normal space, there exists a continuous function hA,B(x) from X to

[0, 1] such that

hA,B(x) =

{
0, x ∈ A,

1, x ∈ B.

The property of perfectly normal spaces was already mentioned at the beginning of Section 2.

The following continuous functions satisfy all the conjunctions in the formula ¬Ψ(f, g):

fA(x) =

{
f(x), hA,B(x) � 1/2,

f(x) + 2hA,B(x)− 1, hA,B(x) � 1/2,

fB(x) =

{
f(x), hA,B(x) � 1/2,

f(x)− 2hA,B(x) + 1, hA,B(x) � 1/2,

gA(x) =

{
g(x), hA,B(x) � 1/2,

g(x)− 2hA,B(x) + 1, hA,B(x) � 1/2,

gB(x) =

{
g(x), hA,B(x) � 1/2,

g(x) + 2hA,B(x)− 1, hA,B(x) � 1/2.

Indeed, fA(x) � f(x), fB(x) � f(x), gA(x) � g(x), and gB(x) � g(x). All these functions

are continuous, gA ∩ gB = g, and fA ∪ fB = f . It remains to prove that gA(x) > fB(x) and

gB(x) > fA(x).

Case 1. hA,B(x) > 1/2. Then for any x

gA(x) = g(x) > f(x)− 2hA,B(x) + 1 = fB(x),

gB(x) = g(x) + 2hA,B(x)− 1 > g(x) � f(x) = fA(x).

Case 2. hA,B(x) < 1/2. For such x

gA(x) = g(x)− 2hA,B(x) + 1 > g(x) � f(x) = fB(x),

gB(x) = g(x) > f(x) + 2hA,B(x)− 1 = fA(x).

Case 3. hA,B(x) = 1/2. Then f(x) < g(x) for all such x since f(x) = g(x) only for x ∈ A∪B,

i.e., such that hA,B(x) = 0 or hA,B(x) = 1. Thus, for all x such that hA,B(x) = 1/2

gA(x) = g(x) > f(x) = fB(x),

gB(x) = g(x) > f(x) = fA(x).

The predicate Ψ(f, g) is satisfied for continuous functions f and g such that f � g. However,

it is more convenient to use the predicate Ψ′(f, g) of the same sense as Ψ(f, g), but the functions

f and g do not necessarily satisfy the condition f � g:

Ψ′(f, g) � Ψ(f ∩ g, f ∪ g).

This formula is correct since for any two functions in the lattice AX we can consider their

supremum and infimum.
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Now, we consider the predicate Ψ∗(f, g) that is true if and only if the intersection of the

graphs of the continuous functions f and g consists of a single point:

Ψ∗(f, g) � Ψ′(f, g) ∧ (∀g′ � f ∪ g)(g′ > f ∩ g ∨Ψ′(f ∩ g, g′))).

Let us assume that there are two distinct points x0 ∈ X and x1 ∈ X such that f(x0) = g(x0)

and f(x1) = g(x1). We show that there exists a function g′ � f ∪ g such that ¬g′ > f ∩ g

and ¬Ψ′(g′, f ∩ g). For this purpose we consider the sets A = {x0} and B = {x1}. Since X

is perfectly normal, there exists a continuous function hA,B(x) such that 0 � hA,B(x) � 1 for

all x ∈ X, h−1
A,B(0) = x0, and h−1

A,B(1) = x1. Then the required function g′ can be defined as

follows:

g′(x) = (f ∪ g)(x) + hA,B(x)(1− hA,B(x)).

It is easy to verify that this function satisfies all the required conditions.

Conversely, let (x0, y0) be a unique common point of the continuous functions f and g. We

consider an arbitrary continuous function g′ � f ∪ g. Two cases are possible: g′ > f ∩ g or

(¬g′ > f ∩ g) ∧ (g′ � f ∪ g). In the second case, ¬g′ > f ∩ g implies the existence of at least

x∗ ∈ X such that g′(x∗) = (f ∩ g)(x∗). The inequalities g′(x) � (f ∪ g)(x) � (f ∩ g)(x) also hold

for all x ∈ X. Thus, g′(x∗) = (f ∪g)(x∗) = (f ∩g)(x∗) if and only if x∗ = x0. Hence Ψ
′(f ∩g, g′)

is true and the formula holds.

We introduce a predicate that is true if and only if the intersection of the graphs of the three

continuous functions consists of a single point, i.e., the graphs of the three functions are pairwise

intersect at unique points and the points of the pairwise intersections coincide:

R(g1, g2, g3) � Ψ∗(g1, g2) ∧Ψ∗(g2, g3) ∧Ψ∗(g1, g3) ∧Ψ∗(g1 ∩ g2 ∩ g3, g1 ∪ g2 ∪ g3).

We denote l1 = g1 ∩ g2 ∩ g3 and l2 = g1 ∪ g2 ∪ g3. Assume that the graphs of g1, g2, and g3
intersect at a unique point (x0, y0), i.e., the graphs of g1, g2 (g1, g3 and g2, g3) intersect at a

single point (x0, y0). Hence the graphs of any two functions in the set {g1, g2, g3} have a unique

common point (x0, y0). It is easy to see that the graphs of l1 and l2 also have a unique common

point (x0, y0). Conversely if the graphs of any two functions have a unique common point and

there is only one point (x0, y0) such that l1(x0) = l2(x0), then g1(x0) = g2(x0) = g3(x0) and

(x0, y0) is a unique common point of the graphs of the three functions in the above sense.

Let the predicate θ3 be such that the predicate θ(f1, f2, f3) is true if and only if there exists

a unique element x0 such that f1(x0) = f2(x0) and for this x0 we have f3(x0) = f1(x0) = f2(x0)

(in general, the graph of f3 can intersect the graphs of f1 and f2 at more than one point):

θ(f1, f2, f3) � Ψ∗(f1, f2) ∧ (∀h > f3)¬R(f1, f2, h) ∧ (∀h < f3)¬R(f1, f2, h).

Indeed, assume that there exists a unique element x0 such that f1(x0) = f2(x0) and f3(x0) =

f1(x0) = f2(x0). By definition, from the first conditions we obtain the predicate Ψ∗(f1, f2). Let
h > f3 be an arbitrary continuous function. Then h(x0) > f1(x0) = f2(x0). Since the graphs of

f1 and f2 intersect at a single point, there are no points where the graphs of the functions f1,

f2, and h intersect, i.e., ¬R(f1, f2, h). A similar argument is valid for h < f3.

Assume that the intersection of the graphs of f1 and f2 consists of more than one point

or there exists a unique element x0 ∈ X such that f1(x0) = f2(x0), but f3(x0) �= f1(x0). In

the first case, the predicate Ψ∗(f1, f2) fails. In the second case, without loss of generality we
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can assume that f3(x0) < f1(x0). Since X is perfectly normal and {x0} is closed, there exists a

continuous function χ such that χx0(x0) = 0 and χx0(x) �= 0 for x �= x0. We set cx0(x) = |χx0(x)|
and construct a continuous function h such that h(x) � max (f1(x), f2(x), f3(x)) + cx0(x). By

assumption, max (f1(x0), f2(x0), f3(x0)) = f1(x0) = f2(x0). By construction, cx0(x0) = 0.

Hence h(x0) = f1(x0) = f2(x0). If x �= x0, then h(x) > f1(x) and h(x) > f2(x). We note that

h(x) > f3(x) for all x ∈ X. Thus, (∃h > f3)R(f1, f2, h) and the predicate θ is true.

Let the predicate N4 be true if and only if the intersection of the graphs of f1 and f2 consists

of a single point. The graphs of f3 and f4 also have a single intersection point. The abscissas of

these intersection points are equal, whereas the ordinates are different:

N(f1, f2, f3, f4) � Ψ∗(f1, f2) ∧Ψ∗(f3, f4) ∧ ¬∃g(θ(f1, f2, g) ∧ θ(f3, f4, g)).

We assume that the graphs of f1 and f2 have only one intersection point. The graphs of f3
and f4 also have a unique intersection point. The abscissas of these intersection points are equal

(denoted by x0) and f1(x0) = f2(x0) �= f3(x0) = f4(x0). The first conditions imply Ψ∗(f1, f2)
and Ψ∗(f3, f4). Let us verify the last conjunction. Assume that there is a function g such that

θ(f1, f2, g) ∧ θ(f3, f4, g). By the definition of θ, we have g(x0) = f1(x0) = f2(x0) �= f3(x0) =

f4(x0) = g(x0). We arrive at a contradiction which proves the last conjunction.

Let f1, f2, f3, and f4 satisfy one of the following conditions:

1) the intersection of the graphs of f1 and f2 consists of more than one point,

2) the intersection of the graphs of f3 and f4 consists of more than one point,

3) the graphs of f1, f2 and f3, f4 intersect at unique points (x0, y0) and (x1, y1) respectively;

moreover, x0 �= x1,

4) the graphs of f1, f2 and f3, f4 intersect at unique points (x0, y0) and (x1, y1) respectively;

moreover, x0 = x1 and y0 = y1.

We have listed all the cases where the predicate N(f1, f2, f3, f4) fails. In cases 1) and 2),

the first conjunctions of the predicate N do not hold. In case 4), for any continuous function g

with the graph passing through the point (x0, y0) = (x1, y1) we have θ(f1, f2, g) and θ(f3, f4, g).

In the remaining case 3), we show that there is a continuous function g such that θ(f1, f2, g)

and θ(f3, f4, g) hold. Thus, we assume that the graphs of f1 and f2 intersect at a unique point

(x0, y0), the graphs of f3 and f4 intersect at a unique point (x1, y1), and x0 �= x1. We first define

the function g in the closed set {x0, x1} by the formula

g(x) =

{
y0, x = x0,

y1, x = x1.

To define g in the whole space X, we use the Tietze–Urysohn theorem on normal spaces.

Theorem 2 (cf. [15]). Every continuous function on a closed subspace of some normal space

X with the range in R is continuously extended to X.

Thus, we proved the existence of the required function g and justified the predicate N .

We note that the predicate N can be easily modified to a predicate N∗ such that N∗ is true

for the same collections of functions f1, f2, f3, and f4 as for the predicate N , and for the same

continuous functions f1, f2, f3, and f4 as the graphs of f1 and f2 have a unique intersection

point (x0, y0), the graphs of f3 and f4 have a unique intersection point (x1, y1); x0 = x1; y0 = y1,
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i.e., the graphs of all functions intersect at the point (x0, y0):

N∗(f1, f2, f3, f4) � N(f1, f2, f3, f4) ∨ (θ(f1, f2, f3) ∧ θ(f1, f2, f4) ∧Ψ∗(f3, f4)).

Indeed if for functions f1, f2, f3, f4 we have a description of the predicate N∗, and it is

known that ¬N(f1, f2, f3, f4), then the graphs of f1 and f2 have a unique intersection point

x0, y0; the graphs of f3 and f4 also have a unique intersection point x0, y0, i.e., the predicate

Ψ∗(f3, f4) holds. Since f3(x0) = y0 and f4(x0) = y0, we have θ(f1, f2, f3) ∧ θ(f1, f2, f4). It is

easy to verify the converse assertion.

With each closed subset of V we associate a pair pari of continuous functions in the following

sense. We say that two continuous functions f and g represent a closed subset V of the perfectly

normal space X if f � g and V = {x ∈ X | f(x) = g(x)}. We note that for every closed

subset V ⊆ X there are continuous functions f and g such that f � g and f(x) = g(x) ⇔
x ∈ V . Indeed, since V is functionally closed, there exists a continuous function χV such that

χV (x) = 0 ⇔ x ∈ V . Then for f and g we can take f(x) = −|χV (x)| and g(x) = |χV (x)|. These
representations are not unique. Therefore, we will write the congruence relation on the set of

pairs of continuous functions.

Thus, we introduce the following formulas of the signature AX :

U(f, g) � f � g,

S(f1, f2, f3, f4) � (∀h � f2)(Ψ
∗(f1, h) → (∃g � f4)(Ψ

∗(f3, g) ∧N∗(f1, h, f3, g))),

W(f1, f2, f3, f4) � S(f1, f2, f3, f4) ∧ S(f3, f4, f1, f2).

It is easy to verify that the set L � {(f, g)|f, g ∈ AX ,AX |= U(f, g)} is not empty.

The formula W defines the congruence relation η on the structure L of the signature AX

with the universe L, whereas the predicate ⊆ is defined by the formula S(f1, f2, f3, f4). Indeed,

we show that if f1 and f2 are closed subsets of V , whereas f3 and f4 are closed subsets of T ,

then

DX |= V ⊆ T ⇔ AX |= S(f1, f2, f3, f4).

Suppose that f1 � f2 and {x ∈ X|f1(x) = f2(x)} = V , f3 � f4 and {x ∈ X|f3(x) = f4(x)} = T ,

DX |= V ⊆ T . Assume that h is an arbitrary continuous function such that h � f2 and Ψ∗(f1, h).
By condition there exists a unique point x0 such that f1(x0) = f2(x0) = h(x0). We construct

the required function g as follows: g(x) = f4(x)+ |χx0(x)|, where, as usual, χ(x) is a continuous

function such that χx0(x0) = 0, χx0(x) �= 0 if x �= x0. We note that g(x0) = f4(x0) = f3(x0)

since x0 ∈ T ; g(x) > f4(x) � f3(x) for x �= x0. Hence the predicate Ψ∗(f3, g) si true. Further,

from the conditions Ψ∗(f1, h), f1(x0) = h(x0), Ψ
∗(f3, g) f3(x0) = g(x0) we obtain the predicate

N∗(f1, h, f3, g). Consequently, AX |= S(f1, f2, f3, f4).

Let DX |= ¬V ⊆ T , i.e., there is x0 ∈ V such that x0 /∈ T . We show that

AX |= (∃h � f2)(Ψ
∗(f1, h) ∧ (∀g � f4)(¬Ψ∗(f3, g) ∨ ¬N∗(f1, h, f3, g))).

We define h(x) = f2(x) + |χx0(x)|. It is easy to see that Ψ∗(f1, h). Let g be an arbitrary

continuous function such that g � f4 and Ψ∗(f3, g). Then g(x∗) = f3(x
∗) for unique x∗ ∈ X.

For f1 and h we have f1(x0) = h(x0). We note that x0 �= x∗ since x0 /∈ T . Thus, ¬N∗(f1, h, f3, g).
Two pairs of continuous functions are congruent if they represent the same closed subset.

For such pairs of continuous functions the formula W holds.
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It is easy to verify that the quotient structure DX is isomorphic to the structure L/∼.
Thereby all the assumptions of the method of relative elementary definability [7] hold, which,

in particular, means Th (DX) �m Th (AX). The lemma is proved.

Thus, the theorem is proved. In fact, we proved a more general result: Th2(DX) �m

Th (AX), where Th2(DX) is the theory of the second order of closed subsets of X such that the

values of the variables over sets are closed subsets of X. An element x0 ∈ X, regarded as a

closed set, can be represented by a pair of continuous functions f and g such that {x ∈ X|f(x) =
g(x)} = {x0}. Let functions f1 and f2 present an element x, and let f3 and f4 present a closed

set in V . Then with a formula x ∈ V of the signature DX we associate the formula

P (f1, f2, f3, f4) � ∃h1∃h2(h1 � f3 ∧ h2 � f4 ∧Ψ∗(h1, h2) ∧N∗(f1, f2, h1, h2))

of the signature AX . It is easy to verify that

AX |= x ∈ V ⇔ DX |= P (f1, f2, f3, f4).

The further proof of the m-reducibility is the same as in the theorem.

Thus, the (un)decidability of the theory of open subsets in theories of open subsets of some

spaces in the class of perfectly normal spaces implies the (un)decidability of the theory of

continuous functions over this space.

For an important example one can consider Rn. The decidability of the theory of open sets

in R
n is established in [4]. Consequently, the following assertion holds.

Corollary 1. The theory of lattices of continuous functions over R
n, n > 1, is decidable.
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