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GRAPH-LINKS: NONREALIZABILITY, ORIENTATION,
AND JONES POLYNOMIAL

D.P. Ilyutko and V. S. Safina UDC 515.16+519.17

Abstract. The present paper is devoted to graph-links with many components and consists of two
parts. In the first part of the paper we classify vertices of a labeled graph according to the component
they belong to. Using this classification, we construct an invariant of graph-links. This invariant shows
that the labeled second Bouchet graph generates a nonrealizable graph-link.

In the second part of the work we introduce the notion of an oriented graph-link. We define a
writhe number for the oriented graph-link and we get an invariant of oriented graph-links, the Jones
polynomial, by normalizing the Kauffman bracket with the writhe number.
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1. Introduction

Let us first consider the following question. Let a virtual knot diagram be given, i.e., we have a
4-valent graph embedded (the embedding is fixed) into the plane and each vertex of it is endowed with
a cross structure and over/undercrossing structure. The question is: How much information about
the diagram must we have in order to define the Kauffman bracket and the Jones polynomial? It
turns out that these polynomials can be obtained by knowing only the intersection graph of the Gauss
diagram (all the definitions are given below) and the writhe number of each classical crossing. Thus
the right-left information which is given by arrows on the Gauss diagram is unnecessary for defining
the Kauffman bracket and the Jones polynomial. Note that if we forget about the writhe number and
have just the cross structure (the structure of opposite edges), then we get nontrivial objects (modulo
Reidemeister moves), see [19].

Probably, the simplest evidence that one can get some information out of the intersection graph is
the formula allowing one to count the number of circles in Kauffman’s states out of the intersection
graph. More precisely, this formula allows one to get this number from the adjacency matrix of
the intersection graph [1, 5, 22, 26, 29] (the number of circles is equal to the corank or nullity of
the adjacency matrix plus one, see Fig. 1). In particular, this means that graphs not necessarily
corresponding to knots (these graphs are called nonrealizable, see examples below) admit a way of
generalizing the Kauffman bracket polynomial, which coincides with the usual Kauffman bracket
polynomial when the graph is realizable by a chord diagram. This was the initial point of investigation
for Traldi and Zulli [30] (looped interlacement graphs): They constructed a self-contained theory of
“nonrealizable graphs” possessing lots of interesting knot theoretic properties. These objects are
equivalence classes of (decorated) graphs modulo “Reidemeister moves” (translated into the language
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Fig. 1. Resmoothing along two chords yields one or three circles

Fig. 2. Rotating circuit shown by a thick line; chord diagram

of intersection graphs). A significant disadvantage of this approach was that it had applications only
to knots, not links: In order to encode a link, one has to use a more complicated object rather than
just a Gauss diagram, namely a Gauss diagram on many circles. This approach was further developed
in Traldi’s works [27, 28], and it allowed one to encode not only knots but also links with any number
of components by decorated graphs.

In [9, 10] we suggested another way of looking at knots and links and generalizing them: when a
Gauss diagram corresponds to a transverse passage along a knot, one may consider a rotating cir-
cuit [7, 8, 12, 16, 17]. Moreover, one can also encode the type of smoothing (Kauffman’s A-smoothing
or Kauffman’s B-smoothing) corresponding to the crossing where the circuit turns right or left and
never goes straight; see Fig. 2. We note that each vertex has a label depending on the orientation of
opposite edges (framing 0 or framing 1). Due to Gauss diagrams we can define moves on intersection
graphs; these moves correspond to the moves on chord diagrams, and we can extend the moves for
the case of all simple graphs. As a result, we have a new object: a graph-link.

Thus, an analogy arises: the passage from realizable Gauss diagrams (classical knots) to arbitrary
chord diagrams leads to the concept of a virtual knot, and the passage from realizable (by means of
chord diagrams) graphs to arbitrary graphs leads to the concept of a new object, graph-link.

Note that passing from knots to intersection graphs we lose some information about a knot, for
instance, sometimes a chord diagram can be obtained from the intersection graph in a nonunique way;
see Fig. 3. But it turns out that one can obtain much information about a knot and its invariants from
the graph-link generated by the knot. For example, we can define the number of components of the
graph-link, and this number coincides with the actual number of components of a link in the realizable
case, i.e., in the case where the graph-link can be realized by a link, we can construct an analogue of
the Kauffman bracket polynomial. Having defined the number of components of a graph-link, we can
single out the class of graph-links having one component: graph-knots. Graph-knots, in some sense,
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Fig. 3. A graph not uniquely represented by chord diagrams

Fig. 4. The second Bouchet graph BW3

Fig. 5. The first Bouchet graph W5

are analogues of knots in the set of links. For a graph-knot we have constructed the writhe number
and an invariant: the Jones polynomial [9].

One of the simplest invariants allowing one to show in some cases that a virtual link is not equivalent
to a classical link is the linking number analogous to the usual linking number for classical links [16, 23].
If a virtual link is given, for each pair of components we can find the parity of the number of classical
crossings belonging to both components. If this number is odd for any pair, then this virtual link is not
equivalent to a classical link. In the first part of the paper we rewrite the question whether a vertex
belongs to one or two components of the link in the language of adjacency matrices of intersection
graphs. It turns out that these conditions are invariant under the graph-moves. Thus we can classify
vertices of the graph-link: whether a vertex belongs to one component or to two. Further we classify
vertices belonging to two components. Namely, each class consists of only those vertices that belong
to two components, and these components are the same for the vertices from this class. It turns out
that the parity of the number of classes consisting of an odd number of vertices is invariant under
the graph-moves. Using this invariant, we show that the graph-link generated by the second Bouchet
graph BW3 (see Fig. 4 and [9]) where each vertex has the framing 0, is nonrealizable, i.e., each graph
of the class cannot be realized by a chord diagram. Note that the nonrealizability of the graph-link
generated by the first Bouchet graph W5 (see Fig. 5 and [8]) where each vertex has the framing 0, was
proved with the help of parity; see [18–20].

The second part of the paper is devoted to the Jones polynomial for links with many components.
It is well known that in the case of knots the Jones polynomial does not depend on an orientation
of knots, but in the case of oriented links it does, and we should construct the Jones polynomial
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Fig. 6. The local structure of a crossing

for oriented links. In [9] the Jones polynomial was constructed for graph-knots. To construct the
Jones polynomial for graph-links we should first introduce the notion of an oriented graph-link. In
the second part of the paper we firstly define an oriented graph-link and secondly we construct the
writhe number for it, which generalizes the usual writhe number of a link. Using the latter number,
we define a polynomial analogous to the Jones polynomial. This polynomial is an invariant of oriented
graph-links.
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2. Main Definitions and Notions: a Graph-Link

2.1. Classical and virtual knots. A (classical) knot or link is the image of a smooth embedding
of the circle S1 or disjoint union of several circles S1 � . . . � S1 in the 3-dimensional sphere S3

(in the case of links the image of each circle, a knot, is called a component of the link). We call
such a smooth embedding of a circle (a disjoint union of circles) also a knot (a link). The main
question of knot theory is the following: Which two knots (links) are isotopic and which are not?
Here two knots f1, f2 : S

1 → S3 (links f1, f2 : S
1 � . . . � S1 → S3) are called isotopic if there is

an isotopy Ft : S
3 → S3, t ∈ [0, 1], such that F0 = id (the identity map) and F1(f1(S

1)) = f2(S
1)

(F1(f1(S
1 � . . . � S1)) = f2(S

1 � . . . � S1)). Note that a classification of knots in S3 is equivalent to a
classification of knots in the space R

3.
In the case of fixing an orientation of the circle S1, we have an oriented knot (respectively, in the

case of an oriented link we require orientations of the circles, i.e., the preimages of components of
links); in the case of an isotopy of oriented links we require that the diffeomorphism of the ambient
space preserves both the orientation of S3 (or R3) and the orientations of all the components.

Usually knots (links) are encoded as follows. Fix a knot (link) and consider a plane and the
projection of the knot (link) onto it. Without loss of generality, we can assume that the projection
of the knot (link) is a finite embedded 4-valent graph, being the image of a smooth immersion of the
circle (disjoint union of circles) in the plane. Each vertex of this graph, also called a crossing of the
diagram of the link, is endowed with over/undercrossing structure; see Fig. 6 (the branch going above
forms an overcrossing, and the branch going below forms an undercrossing). Edges of overcrossings
are depicted by continuous lines, and edges of undercrossings are depicted by lines having a break at
the crossing. This image of a knot (link) on the plane is called a plane knot (link) diagram or a knot
(link) diagram.

Reidemeister [25] proved that any two planar diagrams give the same link if and only if they can
be obtained from each other by a finite sequence of some moves (later called Reidemeister moves) and
planar isotopies (see Fig. 7). The Reidemeister theorem allows one to consider isotopy classes of links
as combinatorial objects: they represent equivalence classes of planar diagrams modulo Reidemeister
moves.
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Fig. 7. Reidemeister moves Ω1,Ω2,Ω3

Fig. 8. The Gauss diagram of the right-handed trefoil

On the other hand, each planar diagram of a knot can be represented by the Gauss diagram. Recall
that the Gauss diagram corresponding to a planar diagram is the diagram consisting of an oriented
circle (with a fixed point, which is not the preimage of a crossing) on which the preimages of the
overcrossing and the undercrossing for each crossing are connected by an arrow oriented from the
preimage of the overcrossing to the preimage of the undercrossing. Moreover, each arrow is endowed
with a sign equal to the sign of the crossing, i.e., the sign is equal to 1 for a crossing and −1 for a

crossing .
The Gauss diagram of the right-handed trefoil is shown in Fig. 8. There are circles with chords

(chord diagrams) which are not Gauss diagrams of planar diagrams of classical knots.
It is not difficult to rewrite the Reidemeister moves in the language of Gauss diagrams. Let us

extend all these new moves to the case of all chord diagrams (chords are oriented and endowed
with a sign) and consider equivalence classes of chord diagrams modulo the moves. The list of the
Reidemeister moves for Gauss diagrams can be found in [4]. As a result we get a new theory: virtual
knot theory [6, 14]. Note that all information about a knot and its invariants can be read from any
Gauss diagram encoding this knots [15].

Since Gauss diagrams (on one circle) can encode only knot diagrams, we can define only a virtual
knot, not a link, with the help of Gauss diagrams. Let us give another definition of a virtual link.

Let G be a graph with the set of vertices V (G) and the set of edges E(G) (we consider only finite
graphs, i.e., graphs with finite sets of vertices and edges). We think of an edge as an equivalence class
of the two half-edges constituting the edge. We say that a vertex v ∈ V (G) has the degree k if v is
incident to k half-edges. A graph whose vertices have the same degree k is called k-valent or a k-graph.
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Fig. 9. Detour move

The free loop, i.e., the graph without vertices but with one cyclic edge, is considered as k-valent graph
for any k.

Definition 2.1. A 4-graph is called framed or a graph with a cross structure if for every vertex of this
graph the four emanating half-edges are split into two pairs of (formally) opposite edges, i.e., we have
the structure of opposite edges. The edges from one pair are called opposite to each other.

Definition 2.2. By an isomorphism between 4-graphs with a cross structure we assume a framing-
preserving isomorphism. All 4-graphs with a cross structure are considered up to isomorphism. Denote
by G0 the 4-graph with a cross structure isomorphic to the circle (the free loop).

When drawing graphs with a cross structure on the plane, we always assume the cross structure to
be induced from the plane R

2.

Definition 2.3. A virtual diagram (or a diagram of a virtual link) is the image of an immersion of
a 4-graph with a cross structure in R

2 with a finite number of intersections of edges. Moreover, each
intersection is a transverse double point which we call a virtual crossing and mark by a small circle, and
each vertex of the graph is endowed with the classical crossing structure (with a choice for underpass
and overpass specified). The vertices of the graph with that additional structure are called classical
crossings or just crossings.

A virtual diagram is called connected if the corresponding 4-graph is connected.
A virtual link is an equivalence class of virtual diagrams modulo the generalized Reidemeister moves.

The latter consist of the usual Reidemeister moves referring to classical crossings and the detour move
(see Fig. 9).

Thereby, in order to define a virtual link we need know only the position of classical crossings and
their connections with each other. Moreover, positions of paths connecting classical crossings, their
intersections and self-intersections, are not important for us.

Remark 2.1. Note that this approach, the standard moves inside a local Euclidean plane and the
detour move, was used by N. Kamada and S. Kamada [13] for constructing a formal theory of multi-
dimensional “virtual knots” and their invariants.

Like a classical link, a virtual link has a number of components (unicursal components). The com-
ponents of a virtual link can be described combinatorially by using virtual diagrams. By a unicursal
component of a diagram of a virtual link we mean the following. Consider a virtual diagram K as a
one-dimensional cell-complex on the plane. Some of the connected components of this complex are
circles; we call each such component a (unicursal) component of a link. The remaining part of the
cell-complex represents a 4-graph Γ with vertices which are classical or virtual crossings. Unicursal
components of a diagram are (besides circles) equivalence classes on the set of edges of Γ: two edges
e, e′ are equivalent if there exists a collection of edges e = e1, . . . , ek = e′ and a collection of vertices
v1, . . . , vk−1 (some of them may coincide) of Γ such that edges ei, ei+1 pass to the vertex vi from the
opposite sides. It is easy to see that the number of components of a virtual diagram is invariant under
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Fig. 10. Virtualization

the generalized Reidemeister moves. In the classical case this definition coincides with the definition
given before.

A virtual knot is a virtual link with one unicursal component.
The writhe number w(K) of a virtual diagram K is the number equal to the number of positive

crossings minus the number of negative crossings .

2.2. Graph-link. Since any two equivalent (in the class of all virtual diagrams) connected (see
Definition 2.3) virtual diagrams are equivalent in the class of connected virtual diagrams [9], without
loss of generality, all virtual diagrams are assumed to be connected and to contain at least one classical
crossing [9, 10].

We will construct chord diagrams for links, not only for knots. Therefore, the approach with Gauss
diagrams is not suitable: instead of Gauss diagrams we consider chord diagrams corresponding to
rotating circuits, and at each (classical) crossing we rotate from an edge to an adjacent edge. Further
all chord diagrams correspond to rotating circuits unless we state otherwise.

Definition 2.4. By a chord diagram we mean a cubic graph consisting of one selected nonoriented
Hamiltonian cycle (a cycle passing through all vertices of the graph, core circle or circle) and a set
of nonoriented edges (chords), connecting points on the cycle. Moreover, distinct chords have no
common points on the cycle.

We say that two chords of a chord diagram are linked if the ends of one chord belong to two different
connected components of the complement to the ends of the other chord in the core circle. Otherwise,
we say that the chords are unlinked.

Remark 2.2. As a rule, a chord diagram is depicted on the plane as the Euclidean circle with a
collection of chords connecting end points of chords (intersection points of chords which appear as
artefacts of drawing chords do not count as vertices).

Definition 2.5. A chord diagram is labeled if every chord is endowed with a label (a, α), where
a ∈ {0, 1} is the framing of the chord, and α ∈ {±} is the sign of the chord. If labels of a chord
diagram are not pointed, then we consider them to be equal to (0,+).

We will also consider chord diagrams whose chords have only one bit of information, a label 0 or 1.
We call such diagrams framed.

Let D be a labeled chord diagram. One can construct a virtual link diagram K(D) (up to virtu-
alization, also called Z-move, see Fig. 10) in such a way that the chord diagram D coincides with
the chord diagram of a rotating circuit on K(D). Let us immerse the diagram D in R

2 by taking
an embedding of the core circle and placing some chords inside the circle and the others outside the
circle. After that we remove neighborhoods of each of the chord ends and replace the chord with a
pair of lines connecting four points on the circle which are obtained after removing neighborhoods.
The new chords lead to a classical crossing only (with each other) if the chord is framed by 0, and
form classical and virtual crossings if the chord is framed by 1; see Fig. 11 (intersections of chords from
different pair form virtual crossings). We also require that the initial piece of the circle corresponds

to the A-smoothing A : → if the chord is positive and to the B-smoothing B : → if it is
negative.
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Fig. 11. Replacing a chord with a pair of lines

Fig. 12. Replacing a classical crossing with the labeled chord

Conversely, having a connected virtual diagram K, one can get a labeled chord diagram DC(K).
Indeed, one takes a rotating circuit C on K (more precisely, on the underlying graph of K) and
constructs the labeled chord diagram. The sign of the chord is + (respectively, −) if the circuit
locally agrees with the A-smoothing (respectively, the B-smoothing), and the framing of a chord
is 0 (respectively, 1) if two opposite half-edges have the opposite (respectively, the same) orientations;
see Fig. 12. It can be easily checked that this operation is indeed the inverse operation to the operation
of constructing a virtual link diagram out of a chord diagram: If we take a chord diagram D and
construct a virtual diagram K(D) out of it, then for some circuit C the chord diagram DC(K(D))
will coincide with D. This proves the following theorem.

Theorem 2.1 (see [17]). For any connected virtual diagram L there is a certain labeled chord diagram
D such that L = K(D).

Now we are describing moves on graphs obtained from the Reidemeister moves on virtual diagrams
by using rotating circuits [9, 10]. These moves correspond to the “real” Reidemeister moves when
applied to realizable diagrams. Then we will extend these moves to all graphs (not only realizable
ones). As a result, we get a new object: a graph-link.

Definition 2.6. The intersection graph (see [3]) G(D) of a chord diagramD is a simple graph (without
loops and multiple edges); its vertices are in one-to-one correspondence with chords of D, and two
vertices are connected by an edge if and only if the corresponding chords are linked.

A graph is labeled if every vertex v of it is endowed with a pair (a, α), where a ∈ {0, 1} is the framing
of v, and α ∈ {±} is the sign of v.

Let D be a labeled chord diagram. The labeled intersection graph (cf. [3, 24]) G(D) of D is the
intersection graph whose vertices are endowed with the corresponding labels. A simple graph H is
called realizable if there is a chord diagram D such that H = G(D). Otherwise, a graph is called
nonrealizable.

Remark 2.3. We will also consider simple graphs whose vertices have only one label, 0 or 1. We call
these graphs framed. Thus we have two types of framed graphs: 4-valent graphs and simple graphs.
In the first case we will often refer to these graphs as graphs with a cross structure.
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Fig. 13. Local complementation and pivoting operation

In the realizable case framed graphs are intersection graphs of framed chord diagrams.

The following lemma is evident.

Lemma 2.1. A simple graph is realizable if and only if each of its connected components is realizable.

Definition 2.7. Let G be a graph with the set of vertices V (G) and let v ∈ V (G). The set of all
vertices adjacent to v is called the neighborhood of v and denoted by N(v) or NG(v).

Let us define two operations on simple unlabeled graphs.

Definition 2.8 (Local complementation). Let G be a graph. The local complementation of G at
v ∈ V (G) is the operation which toggles adjacencies between a, b ∈ N(v), a �= b, and does not change
the rest of G. Denote the graph obtained from G by the local complementation at a vertex v by
LC(G; v).

Definition 2.9 (Pivoting operation). Let G be a graph with distinct vertices u and v. The pivoting
operation of a graph G at u and v is the operation which toggles adjacencies between x, y such that
x, y /∈ {u, v}, x ∈ N(u), y ∈ N(v) and either x /∈ N(v) or y /∈ N(u), and does not change the rest of G.
Denote the graph obtained from G by the pivoting operation at the vertices u and v by piv(G;u, v).

Example 2.1. In Fig. 13 we depict graphs G, LC(G;u) and piv(G;u, v).

It is not difficult to prove the following lemma.

Lemma 2.2. If u and v are adjacent , then there is an isomorphism

piv(G;u, v) ∼= LC(LC(LC(G;u); v);u) ∼= LC(LC(LC(G; v);u); v).

Let us define graph-moves, i.e., moves on labeled graphs. We consider labeled chord diagrams con-
structed by using rotating circuits and moves on them which originate from the “real” Reidemeister
moves on virtual diagrams. Then we extend these moves to arbitrary labeled graphs by using inter-
section graphs of chord diagrams. As a result, we get a new object: an equivalence class of labeled
graphs modulo formal moves [9, 10].

Definition 2.10.

Ωg1. The first graph-move is an addition/removal of an isolated vertex labeled (0, α), α ∈ {±}.
Ωg2. The second graph-move is an addition/removal of two nonadjacent (respectively, adjacent) ver-

tices labeled (0,±α) (respectively, (1,±α)) and having the same adjacencies with other vertices.
Ωg3. The third graph-move is defined as follows. Let u, v, w be three vertices of G all having the

label (0,−) so that u is adjacent only to v and w in G, and v and w are not adjacent to each
other. Then we only change the adjacencies of u with the vertices v, w and t ∈ (

N(v)\N(w)
)∪(

N(w) \N(v)
)
(for other pairs of vertices we do not change their adjacencies). In addition, we

switch the sign of v and w to +. The inverse operation is also called the third Reidemeister
graph-move.
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Ωg4. The fourth graph-move for G is defined as follows. We take two adjacent vertices u and v labeled
(0, α) and (0, β), respectively. Replace G with piv(G;u, v) and change the signs of u and v so
that the sign of u becomes −β and the sign of v becomes −α.

Ωg4
′. In this fourth graph-move we take a vertex v with the label (1, α). Replace G with LC(G; v)

and change the sign of v and the framing for each u ∈ N(v).

Remark 2.4. The fourth graph-moves Ωg4 and Ωg4
′ in the realizable case correspond to a rotating

circuit change on a virtual diagram. Sometimes, applying these graph-moves we just say that we
change the circuit.

Remark 2.5. If a labeled graph G2 is obtained from a labeled graph G1 by applying one graph-move,
then there is a one-to-one correspondence between vertices not taking part in this move.

In the case of the third graph-move we will always assume that the vertex u of G1 corresponds to the
vertex u of G2, and the vertex v (respectively, w) of G1 corresponds to the vertex w (respectively, v)
of G2.

In the case of the fourth graph-move Ωg4 we will always assume that the vertex u of G1 corresponds
to the vertex v of G2, and the vertex v of G1 corresponds to the vertex u of G2.

Unless we state otherwise, vertices of Gi are enumerated as follows: vertices of graphs not taking part
in the move have the same number; additional vertices under the first two graph-moves have the last
numbers, the vertices u, v, w for the third graph-move have the numbers 1, 2, 3 for G1 and 1, 3, 2 for
G2, and the vertices u, v (respectively, the vertex u) for the fourth graph-move Ωg4 (respectively, Ωg4

′)
have the numbers 1, 2 (respectively, 1) for G1 and 2, 1 (respectively, 1) for G2 (i.e., the corresponding
vertices under the moves have the same numbers).

Remark 2.6. We have defined the graph-moves for labeled graphs. If we consider framed graphs,
then graph-moves for them are obtained from the graph-moves Ωg1–Ωg4

′ by neglecting the sign, i.e.,
the second component of the label. In this case we use the same notation.

A comparison of the graph-moves with the Reidemeister moves yields the following theorem.

Theorem 2.2. Let G1 and G2 be two labeled intersection graphs corresponding to virtual diagrams
K1 and K2, respectively. If K1 and K2 are equivalent in the class of connected diagrams, then G1 and
G2 are obtained from one another by a sequence of Ωg1–Ωg4

′.

Definition 2.11. A graph-link is an equivalence class of simple labeled graphs modulo Ωg1–Ωg4
′

graph-moves. A graph from a graph-link {G} is called a representative for {G}.
Definition 2.12. The adjacency matrix A(G) of a labeled graph G is the matrix over Z2 defined as
follows: aii is equal to the framing of vi, aij = 1, i �= j, if and only if vi is adjacent to vj and aij = 0
otherwise.

Note that corank (A(G1) + E) = corank (A(G2) + E), where G1, G2 ∈ {G} (see [9]), and corankA
is the corank or nullity of the matrix A, i.e., the difference between the size of the matrix and its
rank (the rank is calculated over Z2). Define the number of components of a graph-link {G} as
corank (A(G)+E)+1, whereE is the identity matrix. A graph-knot is a graph-link with one component.
A graph-link is called nonrealizable if each of its representative is nonrealizable graph.

Note that in the realizable case the number of components of a graph-link coincides with the number
of components of the corresponding links.

3. Intersection of Different Components

Let G be a labeled graph with the set of vertices V (G) = {v1, . . . , vn} and B(G) = A(G) + E,
Bi(G) = A(G) +E +Eii, where Eii is the matrix with the only one nonzero element equal to 1 in the
ith column and ith row.
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3.1. Auxiliary results. Let us prove some lemmas which we need later.

Lemma 3.1. The equality

corank

(
a b�
b C

)
= corankC,

where C is a symmetric matrix, is true if and only if the vector

(
a+ 1
b

)
is a linear combination of

columns of the matrix

(
b�
C

)
, but the vector

(
a
b

)
is not (linear combinations are considered over

Z2, and the case where the empty set of columns take part is possible, i.e., the vector

(
a+ 1
b

)
is

zero vector).

Remark 3.1. Bold characters indicate column vectors.

Proof. The implication ⇐= is evident.
Consider the implication =⇒ . We have

rank

(
a b�
b C

)
= rankC + 1.

If the vector b is not a linear combination of columns of the matrix C, then

rank
(
b C

)
= rankC + 1 and rank

(
a b�
b C

)
= rankC + 2,

and we get a contradiction.

Therefore, one of the two vectors

(
a+ 1
b

)
or

(
a
b

)
is a linear combination of columns of the

matrix

(
b�
C

)
. In the second case we get

corank

(
a b�
b C

)
= corank

(
0 0�
0 C

)
= corankC + 1,

where 0 is the column vector consisting of zeros.

Denote by G\{vi} the labeled graph obtained from G by deleting the vertex vi and all edges incident
to it (the labels of other vertices are preserved).

Corollary 3.1. If corankBi(G) = corankB(G \ {vi}), then corankBi(G) = corankB(G)− 1.

Corollary 3.2. If corankBi(G) �= corankB(G \ {vi}), then either

corankB(G) = corankB(G \ {vi}) = corankBi(G)− 1,

or

corankB(G) = corankBi(G) = corankB(G \ {vi})− 1.

Proof. Without loss of generality, we assume that i = 1 and

B(G) =

(
a b�
b C

)
.

Then

B1(G) =

(
a+ 1 b�
b C

)
and B(G \ {v1}) = C.

Using Lemma 3.1, we have two cases.
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(1) The vector

(
a+ 1
b

)
is a linear combination of columns of the matrix

(
b�
C

)
. Then

corankB(G) = corankB(G \ {vi}) = corankBi(G)− 1.

(2) The vector b is not a linear combination of columns of the matrix C. Then

corankB(G) = corankBi(G) = corankB(G \ {vi})− 1.

3.2. Vertices and components of graph-links. In this section, we first rewrite the condition
stating when a classical crossing of a link belongs to one component of the link into the language of
intersection graphs, more precisely, into the language of adjacency matrices of intersection graphs, and
use this new condition for introducing the notion of lying on one component. Then we do the same for
a pair of crossings where each of two crossings belong to different components, but they both belong
to the same two components.

Let v be a classical crossing of a virtual diagramK. Let us consider an arbitrary rotating circuit onK
and construct the labeled chord diagram and its intersection graph G, see Fig. 14 (the upper picture).
It is evident that the crossing v belongs to the same component if and only if the virtual diagrams K1

and K2 (see the middle and lower pictures in Fig. 14) have a different number of components. It is
easy to see that the number of components of the diagram K1 equals corankB(G \ {v}) + 1, and for
K2 we have corankB(G′) + 1 = corankBi(G) + 1, where i is the number of the vertex v. Using these
two numbers, we give the following definition.

Let G be a labeled graph with the set of vertices V (G) = {v1, . . . , vn}.
Definition 3.1. We say that a vertex vi ∈ V (G) lies on one component of G if

corankBi(G) �= corankB(G \ {vi}).
Otherwise, we say that vi belongs to different components of G.

Let us investigate the behavior of vertices of a labeled graph after applying graph-moves to G.

Lemma 3.2. Let a labeled graph G2 be obtained from a labeled graph G1 by applying a first graph-move
which adds a vertex with the label (0, α). Then

(1) the additional vertex lies on one component of G2;
(2) a vertex of G1 lies on one component if and only if the corresponding vertex of G2 lies on one

component.

Proof. Let V (G1) = {v1, . . . , vn} and V (G2) = {v′1, . . . , v′n+1}, and

A(G2) =

(
A(G1) 0
0� 0

)
, B(G2) =

(
B(G1) 0
0� 1

)
.

(1) From the definition it immediately follows that

corankBn+1(G2) �= corankB(G2 \ {v′n+1}).
From here we have the validity of the first assertion.

(2) It is easy to see that the two equalities

corankBi(G1) = corankB(G1 \ {vi}),
corankBi(G2) = corankB(G2 \ {v′i})

are true or not true simultaneously if i < n + 1. From here we have the validity of the second
assertion.
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Fig. 14. A crossing of a link

Lemma 3.3. Let a labeled graph G2 be obtained from a labeled graph G1 by applying a second graph-
move which adds two vertices. Then:

(1) the additional vertices of G2 simultaneously either lie on one component or belong to different
components of the graph G2;

(2) a vertex of G1 lies on one component if and only if the corresponding vertex of G2 lies on one
component.

Proof. Let V (G1) = {v1, . . . , vn} and V (G2) = {v′1, . . . , v′n+2}. Then

A(G2) =

⎛

⎝
A(G1) c c
c� a a
c� a a

⎞

⎠ , B(G2) =

⎛

⎝
B(G1) c c
c� a+ 1 a
c� a a+ 1

⎞

⎠ .

The first assertion is evident. Let us consider the second one.
Using elementary manipulations (see also [9, Lemma 5.1]), we get

B(G2) =

⎛

⎝
B(G1) c c
c� a+ 1 a
c� a a+ 1

⎞

⎠ �

⎛

⎝
B(G1) c c
c� a+ 1 a
0� 1 1

⎞

⎠

�

⎛

⎝
B(G1) 0 0
c� a+ 1 a
0� 1 1

⎞

⎠ �

⎛

⎝
B(G1) 0 0
c� 1 a
0� 0 1

⎞

⎠ �

⎛

⎝
B(G1) 0 0
0� 1 0
0� 0 1

⎞

⎠ .

Therefore, if i < n+ 1 the equalities

corankBi(G1) = corankB(G1 \ {vi})
and

corankBi(G2) = corankB(G2 \ {v′i})
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are true or not true simultaneously.

Lemma 3.4. Let a labeled graph G2 be obtained from a labeled graph G1 by applying a third graph-
move. Then a vertex of G1 lies on one component if and only if the corresponding vertex of G2 lies
on one component.

Proof. We have

B(G1) =

⎛

⎜⎜
⎝

1 1 1 0�

1 1 0 a�

1 0 1 b�
0 a b C

⎞

⎟⎟
⎠ , B(G2) =

⎛

⎜⎜
⎝

1 0 0 (a+ b)�

0 1 0 b�

0 0 1 a�
a+ b b a C

⎞

⎟⎟
⎠ .

Since for any a, b, and C there exists a chain of elementary manipulations transforming the matrix
B(G2) to the matrix B(G1) (see the proof of [9, Lemma 5.1]), we have the validity of the assertion for
any vertex with the number i > 3.

Let us consider the remaining three cases.
For the first vertex we have

B1(G2) =

⎛

⎜
⎜
⎝

0 0 0 (a+ b)�

0 1 0 b�

0 0 1 a�
a+ b b a C

⎞

⎟
⎟
⎠ �

⎛

⎜
⎜
⎝

0 1 1 0�

1 1 0 a�

1 0 1 b�
0 a b C

⎞

⎟
⎟
⎠ = B1(G1),

i.e., corankB1(G1) = corankB1(G2).
Further, the matrices B(G1 \ {v1}) and B(G2 \ {v′1}) are equal to each other up to a permutation

of rows and columns, i.e., corankB(G1 \ {v1}) = corankB(G2 \ {v′1}). Hence we have the validity of
the assertion for the first vertex.

For the second vertex we have

B2(G1) =

⎛

⎜⎜
⎝

1 1 1 0�

1 0 0 a�

1 0 1 b�
0 a b C

⎞

⎟⎟
⎠ �

⎛

⎜⎜
⎝

1 0 0 0�

0 1 1 a�

0 1 0 b�
0 a b C

⎞

⎟⎟
⎠ ,

B2(G2) =

⎛

⎜
⎜
⎝

1 0 0 (a+ b)�

0 0 0 b�

0 0 1 a�
a+ b b a C

⎞

⎟
⎟
⎠ �

⎛

⎜
⎜
⎝

0 0 1 0�

0 0 0 b�

1 0 1 a�
0 b a C

⎞

⎟
⎟
⎠

�

⎛

⎜
⎜
⎝

0 0 1 0�

0 0 0 b�

1 0 0 0�
0 b 0 C

⎞

⎟
⎟
⎠ �

⎛

⎜
⎜
⎝

1 0 0 0�

0 1 0 0�

0 0 0 b�
0 0 b C

⎞

⎟
⎟
⎠ ,

i.e.,

corankB2(G1) = corank

⎛

⎝
1 1 a�

1 0 b�
a b C

⎞

⎠ , corankB2(G2) = corank

(
0 b�
b C

)
.

Further,

B(G1 \ {v2}) =
⎛

⎝
1 1 0�

1 1 b�
0 b C

⎞

⎠ �

⎛

⎝
1 0 0�

0 0 b�
0 b C

⎞

⎠ ,

B(G2 \ {v′2}) =
⎛

⎝
1 0 (a+ b)�

0 1 a�
a+ b a C

⎞

⎠ �

⎛

⎝
1 1 a�

1 0 b�
a b C

⎞

⎠ .
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i.e.,

corankB2(G1) = corankB(G2 \ {v′2}), corankB2(G2) = corankB(G1 \ {v2}).
Hence we have the validity of the assertion for the second vertex.

The third vertex is considered analogously to the second one.

Lemma 3.5. Let a labeled graph G2 be obtained from a labeled graph G1 by applying a fourth graph-
move. Then a vertex of G1 lies on one component if and only if the corresponding vertex of G2 lies
on one component.
Proof.

1. Let us consider the graph-move Ωg4. We have

B(G1) =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

1 1 0� 1� 0� 1�

1 1 0� 0� 1� 1�
0 0 B0 A1 A2 A3

1 0 A�
1 B4 A5 A6

0 1 A�
2 A�

5 B7 A8

1 1 A�
3 A�

6 A�
8 B9

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

,

B(G2) =

⎛

⎜
⎜⎜
⎜
⎜⎜
⎝

1 1 0� 0� 1� 1�

1 1 0� 1� 0� 1�
0 0 B0 A1 A2 A3

0 1 A�
1 B4 A5 + (1) A6 + (1)

1 0 A�
2 A�

5 + (1) B7 A8 + (1)
1 1 A�

3 A�
6 + (1) A�

8 + (1) B9

⎞

⎟
⎟⎟
⎟
⎟⎟
⎠

,

where (1) is the matrix of the corresponding size consisting of 1.
Since there exists a chain of elementary manipulations transforming the matrix B(G2) to the matrix

B(G1) (see [9, Lemma 5.1]), we have the validity of the assertion for any vertex with the number i > 2.
Let us consider the remaining two vertices. We consider only the first vertex (the other is treated

analogously).
We get

B1(G1) =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

0 1 0� 1� 0� 1�

1 1 0� 0� 1� 1�
0 0 B0 A1 A2 A3

1 0 A�
1 B4 A5 A6

0 1 A�
2 A�

5 B7 A8

1 1 A�
3 A�

6 A�
8 B9

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

�

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

0 1 0� 0� 0� 0�

1 1 0� 1� 0� 1�
0 0 B0 A1 A2 A3

1 1 A�
1 B4 A5 + (1) A6 + (1)

0 0 A�
2 A�

5 + (1) B7 A8 + (1)
1 1 A�

3 A�
6 + (1) A�

8 + (1) B9

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

,

B1(G2) =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

0 1 0� 0� 1� 1�

1 1 0� 1� 0� 1�
0 0 B0 A1 A2 A3

0 1 A�
1 B4 A5 + (1) A6 + (1)

1 0 A�
2 A�

5 + (1) B7 A8 + (1)
1 1 A�

3 A�
6 + (1) A�

8 + (1) B9

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

�

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

0 1 0� 0� 0� 0�

1 1 0� 0� 1� 1�
0 0 B0 A1 A2 A3

0 1 A�
1 B4 A5 A6

1 0 A�
2 A�

5 B7 A8

1 1 A�
3 A�

6 A�
8 B9

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

,

B(G1 \ {v1}) =

⎛

⎜⎜
⎜⎜
⎝

1 0� 0� 1� 1�
0 B0 A1 A2 A3

0 A�
1 B4 A5 A6

1 A�
2 A�

5 B7 A8

1 A�
3 A�

6 A�
8 B9

⎞

⎟⎟
⎟⎟
⎠

,
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B(G2 \ {v′1}) =

⎛

⎜
⎜⎜
⎜
⎝

1 0� 1� 0� 1�
0 B0 A1 A2 A3

1 A�
1 B4 A5 + (1) A6 + (1)

0 A�
2 A�

5 + (1) B7 A8 + (1)
1 A�

3 A�
6 + (1) A�

8 + (1) B9

⎞

⎟
⎟⎟
⎟
⎠

,

i.e.,

corankB1(G1) = corankB(G2 \ {v′1}), corankB1(G2) = corankB(G1 \ {v1}).
Hence we have the validity of the assertion for the first vertex.

2. Let us consider the graph-move Ωg4
′. We have

B(G1) =

⎛

⎝
0 0� 1�
0 A0 A1

1 A�
1 A2

⎞

⎠ , B(G2) =

⎛

⎝
0 0� 1�
0 A0 A1

1 A�
1 A2 + (1)

⎞

⎠ .

The validity of the assertion for vertices with numbers i > 1 is evident. Let us consider the first
vertex. We have

B1(G1) =

⎛

⎝
1 0� 1�
0 A0 A1

1 A�
1 A2

⎞

⎠ �

⎛

⎝
1 0� 0�
0 A0 A1

1 A�
1 A2 + (1)

⎞

⎠ ,

B1(G2) =

⎛

⎝
1 0� 1�
0 A0 A1

1 A�
1 A2 + (1)

⎞

⎠ �

⎛

⎝
1 0� 0�
0 A0 A1

1 A�
1 A2

⎞

⎠ ,

B(G1 \ {v1}) =
(

A0 A1

A�
1 A2

)
, B(G2 \ {v′1}) =

(
A0 A1

A�
1 A2 + (1)

)
,

i.e.,

corankB1(G1) = corankB(G2 \ {v′1}), corankB1(G2) = corankB(G1 \ {v1}).
Hence we have the validity of the assertion.

Let us now consider the mutual position of two vertices of a labeled graph.

Definition 3.2. Let vi and vj be two vertices from V (G) belonging to different components. We say
that two components meet at these vertices if either vi = vj, or vi lies on one component of the labeled
graph G \ {vj}, i.e., either

corankBi(G \ {vj}) �= corankB(G \ {vj , vi})
if i < j, or

corankBi−1(G \ {vj}) �= corankB(G \ {vj , vi})
if i > j. Otherwise, we say that different components meet at these vertices.

Denote by Ĉi,j,...,k (respectively, Ĉi,j,...,k) the matrix obtained from the matrix C by deleting the

columns (respectively, rows) with numbers i, j, . . . , k. Instead of B̂(G) we write B̂(G).

Lemma 3.6. Let B(G) =
(
b1 b2 C

)
. Different components meet at the vertices v1 and v2 if and

only if the vectors b1 and b2 are linear combinations of columns of the matrix C.

Proof. Let

B(G) =

⎛

⎝
a b d�

b c e�
d e F

⎞

⎠ ,
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and the vertices v1 and v2 belong to different components each, i.e., by using Lemma 3.1, the vector⎛

⎝
a
b
d

⎞

⎠ is a linear combination of columns of the matrix

⎛

⎝
b d�

c e�
e F

⎞

⎠ , but the vector

⎛

⎝
a+ 1
b
d

⎞

⎠ is

not, and the vector

⎛

⎝
b
c
e

⎞

⎠ is a linear combination of columns of the matrix

⎛

⎝
a d�

b e�
d F

⎞

⎠ , but the

vector

⎛

⎝
b

c+ 1
e

⎞

⎠ is not (all calculations are done over Z2).

(=⇒) Let different components meet at the vertices v1 and v2. Then

corankB1(G \ {v2}) = corankB(G \ {v1, v2}),

and, by Lemma 3.1, the vector

(
a
d

)
is a linear combination of columns of the matrix

(
d�
F

)
.

Then the vector

(
b
e

)
is a linear combination of columns of the matrix

(
d�
F

)
. Since the vector

⎛

⎝
b

c+ 1
e

⎞

⎠ is not a linear combination of columns of the matrix

⎛

⎝
d�

e�
F

⎞

⎠ , we get the needed assertion.

(⇐=) It immediately follows from Lemma 3.1.

Lemma 3.7. Let two components meet at vertices vi and vj , i < j. Then

corankBj−1(G \ {vi}) = corankBi(G \ {vj}).
Proof. Without loss of generality, we assume that i = 1 and j = 2. We have

B(G) =

⎛

⎝
a b d�

b c e�
d e F

⎞

⎠ .

Using Lemmas 3.1 and 3.6, the sum of the vectors

⎛

⎝
a
b
d

⎞

⎠ and

⎛

⎝
b
c
e

⎞

⎠ is a linear combination of

columns of the matrix

⎛

⎝
d�

e�
F

⎞

⎠ . Performing elementary manipulations, we get

corankBj−1(G \ {vi}) = corank

(
c+ 1 e�
e F

)
= corank

(
b+ 1 e�
d F

)

= corank

(
a+ 1 d�
d F

)
= corankBi(G \ {vj}).

Lemma 3.8. The relation from Definition 3.2 is an equivalence relation on the set of vertices belonging
to different components.
Proof.

1. Reflexivity, i.e., when two vertices coincide, is evident.
2. Symmetry (if two components meet at the vertices vi and vj, then two components meet at the

vertices vj and vi) immediately follows from Lemma 3.7.
3. Transitivity. Let us show that if two components meet at the vertices vi and vj and two compo-

nents meet at the vertices vj and vk; then two components meet at the vertices vi and vk.
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Without loss of generality, we assume that (i, j, k) = (1, 2, 3). Let

B(G) =

⎛

⎜⎜
⎝

a b c k�

b d e l�

c e f m�
k l m Q

⎞

⎟⎟
⎠ =

(
p1 p2 p3 Q̃

)
.

Since the vertices vs, s = 1, 2, 3, belong to different components each, then the vectors ps are linear

combinations of columns of the matrix B̂s(G).
Let two different components meet at the vertices v1 and v3. Then, by Lemma 3.6, the vectors p1

and p3 are linear combinations of columns of the matrix B̂1,3(G).

If the vector p1 (respectively, p3) is a linear combination of columns of the matrix B̂1,2,3(G), then

the vector p2 is a linear combination of columns of the matrix B̂1,2(G) (respectively, B̂2,3(G)). Thus
different components meet at the vertices v1 and v2 (respectively, at the vertices v2 and v3). We get a
contradiction with the fact that two components meet at the vertices v1 and v2 (respectively, at the
vertices v2 and v3).

Suppose that the vectors p1 and p3 are not linear combinations of columns of the matrix B̂1,2,3(G).

Then p1 + p3 is a linear combination of columns of the matrix B̂1,2,3(G) (linear combinations are

considered over Z2), but the vector p2 is a linear combination of columns of the matrix B̂1,2(G) or

B̂2,3(G), but not a linear combination of columns of the matrix B̂1,2,3(G). In the first case, i.e., the

vector p2 is a linear combination of columns of the matrix B̂1,2(G), we have that different components
meet at the vertices v1 and v2, and in the second case we have the same situation at the vertices v2
and v3.

Let us investigate the behavior of a pair of vertices of a labeled graph after applying graph-moves.

Lemma 3.9. Let a labeled graph G2 be obtained from a labeled graph G1 by applying the first graph-
move which adds a vertex with the label (0, α). Then at vertices of G1 belonging to different components
two components meet if and only if two components meet at the corresponding vertices of G2.

Proof. We know (see Lemma 3.2) that under the first graph-move the additional vertex lies on one
component, and the corresponding vertices of G1 and G2 simultaneously either lie on one component
or belong to different components.

Let V (G1) = {v1, . . . , vn}, V (G2) = {v′1, . . . , v′n+1}, and

A(G2) =

(
A(G1) 0
0� 0

)
, B(G2) =

(
B(G1) 0
0� 1

)
.

Assume that the vertices vi, vj , i > j, belong to different components. Then the equality

corankBj(G1 \ {vi}) = corankB(G1 \ {vi, vj})
is equivalent to the equality

corankBj(G2 \ {v′i}) = corankB(G2 \ {v′i, v′j}).
Hence we have the assertion of the lemma.

Lemma 3.10. Let a labeled graph G2 be obtained from a labeled graph G1 by applying the second
graph-move which adds two vertices. Then at vertices of G1 belonging to different components two
components meet if and only if two components meet at the corresponding vertices of G2. Moreover, if
two additional vertices of G2 belong to different components, then two components meet at them.

Proof. Let V (G1) = {v1, . . . , vn} and V (G2) = {v′1, . . . , v′n+2}. Then

A(G2) =

⎛

⎝
A(G1) c c
c� a a
c� a a

⎞

⎠ , B(G2) =

⎛

⎝
B(G1) c c
c� a+ 1 a
c� a a+ 1

⎞

⎠ .
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We know (see Lemma 3.3) that under the second graph-move the additional vertices simultane-
ously either lie on one component or belong to different components, and the same is true for the
corresponding vertices of G1 and G2.

The validity of the assertion, i.e., the validity of the equalities

corankBj(G1 \ {vi}) = corankB(G1 \ {vi, vj}) and corankBj(G2 \ {v′i}) = corankB(G2 \ {v′i, v′j}),
where vi, vj , i < j < n + 1, belong to different components each, easily follows from manipulations
given in Lemma 3.3.

Let us prove the second assertion (about the additional vertices). We have

corankBn+1(G2) = corankB(G2 \ {v′n+1}) ⇐⇒ corankBn+2(G2) = corankB(G2 \ {v′n+2})

⇐⇒ corank

⎛

⎝
B(G1) c c
c� a+ 1 a
c� a a

⎞

⎠ = corank

(
B(G1) c
c� a+ 1

)
,

since the vertices v′n+1, v
′
n+2 belong to different components each. Since
⎛

⎝
B(G1) c c
c� a+ 1 a
c� a a

⎞

⎠ �

⎛

⎝
B(G1) 0 c
0� 1 0
c� 0 a

⎞

⎠ ,

we have

corank

(
B(G1) c
c� a

)
= corank

(
B(G1) c
c� a+ 1

)
.

Therefore, the column-vector c is not a linear combination of columns of the matrix B(G1). If it is a
linear combination, then the first matrix should be equivalent to the matrix

(
B(G1) 0
0� d

)
,

and the second one should be equivalent to
(

B(G1) 0
0� d+ 1

)
.

We get a contradiction. Therefore, since matrices are symmetric, the rank of the matrix
(

B(G1) c
c� a

)

is greater than the rank of the matrix B(G1) by at least 2, i.e.,

corank

(
B(G1) c
c� a

)
�= corankB(G1)

⇐⇒ corankBn+1(G2 \ {v′n+2}) �= corankB(G2 \ {v′n+1, v
′
n+2}).

Lemma 3.11. Let a labeled graph G2 be obtained from a labeled graph G1 by applying the third graph-
move. Then at vertices of G1 belonging to different components two components meet if and only if
two components meet at the corresponding vertices of G2.

Proof. Let V (G1) = {v1, . . . , vn} and V (G2) = {v′1, . . . , v′n}. We have

B(G1) =

⎛

⎜
⎜
⎝

1 1 1 0�

1 1 0 a�

1 0 1 b�
0 a b C

⎞

⎟
⎟
⎠ , B(G2) =

⎛

⎜
⎜
⎝

1 0 0 (a+ b)�

0 1 0 b�

0 0 1 a�
a+ b b a C

⎞

⎟
⎟
⎠ .
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By using Lemma 3.8, the assertion of the lemma for pairs of vertices (v1, vi), (v2, vi), (v3, vi), (vi, vj),
i, j > 3, can be proved analogously as is done in Lemma 3.4.

Let us consider the remaining cases. Due to symmetry it is sufficient to consider the pairs (v1, v2)
and (v2, v3). We consider only one pair; the second one is considered analogously.

Let us consider the pair (v1, v2). We have to show that the equalities (we should watch the numer-
ation of vertices in the new graph)

corankB1(G1 \{v1}) = corankB(G1 \{v1, v2}) and corankB1(G2 \{v′1}) = corankB(G2 \{v′1, v′2})

are true or not true simultaneously.

Using Lemma 3.6, we see that the first equality is true if and only if the vectors

⎛

⎜⎜
⎝

1
1
1
0

⎞

⎟⎟
⎠ and

⎛

⎜⎜
⎝

1
1
0
a

⎞

⎟⎟
⎠

are linear combinations of columns of the matrix

⎛

⎜
⎜
⎝

1 0�

0 a�

1 b�
b C

⎞

⎟
⎟
⎠ . Adding the second and third rows

to the first one, we get that the vectors

⎛

⎜⎜
⎝

1
1
1
0

⎞

⎟⎟
⎠ and

⎛

⎜⎜
⎝

0
1
0
a

⎞

⎟⎟
⎠ are linear combinations of columns of

the matrix

⎛

⎜⎜
⎝

0 (a+ b)�

0 a�

1 b�
b C

⎞

⎟⎟
⎠ . Adding the vectors

⎛

⎜⎜
⎝

0
1
0
a

⎞

⎟⎟
⎠ and

⎛

⎜⎜
⎝

0
0
1
b

⎞

⎟⎟
⎠ to the vector

⎛

⎜⎜
⎝

1
1
1
0

⎞

⎟⎟
⎠ and

transposing the second and third rows, we get that the vectors

⎛

⎜
⎜
⎝

1
0
0

a+ b

⎞

⎟
⎟
⎠ and

⎛

⎜
⎜
⎝

0
0
1
a

⎞

⎟
⎟
⎠ are linear

combinations of columns of the matrix

⎛

⎜
⎜
⎝

0 (a+ b)�

1 b�

0 a�
b C

⎞

⎟
⎟
⎠ . The latter condition, by Lemma 3.6, is

equivalent to the second equality. Since in all cases we had equivalent transformations, we get the
validity of the assertion.

Lemma 3.12. Let a labeled graph G2 be obtained from a labeled graph G1 by applying the fourth
graph-move. Then at vertices of G1 belonging to different components two components meet if and
only if two components meet at the corresponding vertices of G2.

Proof. Let V (G1) = {v1, . . . , vn} and V (G2) = {v1, . . . , v′n}.
1. Let us consider the graph-move Ωg4. We have

B(G1) =

⎛

⎜
⎜
⎜⎜
⎜⎜
⎝

1 1 0� 1� 0� 1�

1 1 0� 0� 1� 1�
0 0 B0 A1 A2 A3

1 0 A�
1 B4 A5 A6

0 1 A�
2 A�

5 B7 A8

1 1 A�
3 A�

6 A�
8 B9

⎞

⎟
⎟
⎟⎟
⎟⎟
⎠

=
(
b1 b2 C

)
,
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Fig. 15. The third Bouchet graph W7

B(G2) =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

1 1 0� 0� 1� 1�

1 1 0� 1� 0� 1�
0 0 B0 A1 A2 A3

0 1 A�
1 B4 A5 + (1) A6 + (1)

1 0 A�
2 A�

5 + (1) B7 A8 + (1)
1 1 A�

3 A�
6 + (1) A�

8 + (1) B9

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

=
(
b2 b1 C̃

)
,

where 1 is the column-vector consisting of 1.
The validity of the assertion for pairs of vertices (v1, vi), (v2, vi), (vi, vj), i, j > 3, can be proved

analogously to the case of Lemma 3.5 (we use the fact that the relation from Definition 3.2 is an
equivalence relation; see Lemma 3.8).

Let us consider the pair (v1, v2). Let the vertices v1 and v2 belong to different components each.
Using Lemma 3.1 and elementary manipulations of rows, it is easy to show that the vector b1 is a
linear combination of columns of the matrix C if and only if the vector b2 is a linear combination of

columns of the matrix C̃.
2. Let us consider the graph-move Ωg4

′. The proof of this item is analogous to the proof of 2) from
Lemma 3.5.

3.3. Invariant and Bouchet graphs. Let G be a labeled graph. Let us consider equivalence
classes in the set of vertices belonging to different components modulo the relation from Definition 3.8.
Define the number ϑ(G) to be the number of equivalence classes having an odd number of vertices.
From Lemmas 3.9, 3.10, 3.11 and 3.12 the theorem follows.

Theorem 3.1. The number ϑ(G) is invariant under graph-moves, i.e., it is an invariant of graph-
links.

Example 3.1. Let us consider the second Bouchet graph BW3 (see Fig. 4) and endow each its vertex
with the framing 0 (the sign is not important for us). Consider the graph-link generated by this graph.
It is easy to show that this graph-link consists of four components and ϑ(BW3) = 7.

It is easy to check that for any virtual link with four components the invariant ϑ is strictly less
than 7. Thus, it follows that the graph-link is nonrealizable.

Remark 3.2. Note that the nonrealizability of the graph-link generated by the third Bouchet graph
W7 (see Fig. 15), where all vertices except the center have the framing 0, can be proved by using
parity [18–20] and the equivalence from [8].

4. An Orientation on Graph-Links and the Jones Polynomial

In this section, we give a definition of an oriented graph-link. For an oriented graph-link we construct
the writhe number corresponding to the real writhe number in the realizable case. With the help of
this number we normalize the Kauffman bracket polynomial (see [9, 10]) to get the Jones polynomial.
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4.1. Deleting vertices from a graph. Let us formulate lemmas showing how the rank and corank
of an adjacency matrix change under the deletion of a vertex from the graph. Later on, these lemmas
help us to define the writhe number for graph-links.

Let G be a labeled graph with the set of vertices V (G) = {v1, . . . , vn}.
Lemma 4.1. Let a vertex vi of G belong to different components. Then there is a graph Gcs(vi) ∈ {G}
obtained from G by fourth graph-moves such that the vertex v′i of Gcs(vi) corresponding to the vertex
vi has sign opposite to the sign sgn(vi) of the vertex vi. Moreover, if the vertex vi belongs to different
components, then the same is true for the vertex v′i.
Proof. If a vertex belongs to different components, then by Lemma 3.2 we cannot apply the first
graph-move to it. Let us consider four cases.

(1) Let the framing of vi equal 1. Then we can apply the fourth graph-move Ωg4
′ to this vertex and

we immediately get the vertex v′i.
(2) Let the framing of vi equal 0 and let there exist a vertex adjacent to it and having framing 0.

Then we can apply the fourth graph-move Ωg4 to this vertex and immediately get the vertex v′i.
(3) Let the framing of vi equal 0 and let there exist a vertex vj adjacent to it and having framing 0.

Then we first apply the Ωg4
′ to the vertex vj, and then we apply the same graph-move to vi in

order to get the vertex v′i.
(4) Let vi be an isolated vertex with framing 0. In this case the vertex vi lies on one component

and we have a contradiction with the condition of the lemma.

The second assertion of the lemma follows straightforwardly from Lemma 3.5.

Lemma 4.2. Let a vertex vk ∈ V (G) belong to different components.

(1) If two components of the graph G meet at vertices vi and vj, i, j �= k, then the corresponding
vertices from the graph G \ {vk} either lie on one component or two components of the graph
G \ {vk} meet at them.

(2) Let a vertex vi, i < k, lie on one component of G. Then the vertex of the graph G \ {vk}
corresponding to vi also lies on one component of the graph G \ {vk} and, moreover,

corankBi(G)− corankB(G) = corankBi(G \ {vk})− corankB(G \ {vk}).
Proof.

(1) The first assertion of the lemma follows from Lemma 3.6. Let us only prove the second one.
(2) Let i = n− 1, k = n and V (G \ {vn}) = {v1, . . . , vn−1}. We have

B(G) =

⎛

⎝
F d e
d� a c
e� c b

⎞

⎠ , B(G \ {vn}) =
(

F d
d� a

)

and
corankBn(G) = corankB(G \ {vn}), corankBn−1(G) �= corankB(G \ {vn−1}).

By Lemma 3.1 the vector

⎛

⎝
e
c
b

⎞

⎠ is a linear combination of the vector

⎛

⎝
d
a
c

⎞

⎠ and columns of

the matrix

⎛

⎝
F
d�

e�

⎞

⎠ , but the vector

⎛

⎝
d
a
c

⎞

⎠ is not a linear combination of the vectors

⎛

⎝
e
c
b

⎞

⎠ and

columns of the matrix

⎛

⎝
F
d�

e�

⎞

⎠ . Therefore, the vector

⎛

⎝
e
c
b

⎞

⎠ is a linear combination of columns of

the matrix

⎛

⎝
F
d�

e�

⎞

⎠ .
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We get

corankBn−1(G) = corank

⎛

⎝
F d e
d� a+ 1 c
e� c b

⎞

⎠ = corank

⎛

⎝
F d 0
d� a+ 1 0
0� 0 0

⎞

⎠

= corank

(
F d
d� a+ 1

)
+ 1 = corankBn−1(G \ {vn}) + 1,

corankB(G \ {vn−1}) = corank

(
F e
e� b

)
= corank

(
F 0
0� 0

)

= corankF + 1 = corankB(G \ {vn−1, vn}) + 1.

Using Corollary 3.1 and the last equalities, we get the validity of the second assertion of the lemma.

Lemma 4.3. Let a vertex vi lie on one component of a graph G. Then the number

wi = sgn(vi)(−1)corankBi(G)−corankB(G)

is invariant under the fourth graph-moves.
Proof.

1. Let a graph G̃ with the set of vertices V (G̃) = {v′1, . . . , v′n} be obtained from the graph G with
the first graph-move Ωg4

′ at a vertex vj . We have two cases: i = j and i �= j.
Let us consider the first case. We assume i = j = 1. We have

B(G) =

⎛

⎝
0 0� 1�
0 A0 A1

1 A�
1 A2

⎞

⎠ , B(G̃) =

⎛

⎝
0 0� 1�
0 A0 A1

1 A�
1 A2 + (1)

⎞

⎠ .

Then sgn(vi) = −sgn(v′i), corankB(G) = corankB(G̃) and

corankBi(G̃) = corank

⎛

⎝
1 0� 1�
0 A0 A1

1 A�
1 A2 + (1)

⎞

⎠ = corank

⎛

⎝
1 0� 0�
0 A0 A1

0 A�
1 A2

⎞

⎠ = corankB(G \ {vi}).

Since corankBi(G) �= corankB(G \ {vi}), we get corankBi(G̃) = corankBi(G)± 1 and wi = w′
i.

Let us consider the second case. We assume j = 1 and i = 2. We have

B(G) =

⎛

⎜
⎜
⎝

0 a 0� 1�

a b c� d�
0 c A0 A1

1 d A�
1 A2

⎞

⎟
⎟
⎠ , B(G̃) =

⎛

⎜
⎜
⎝

0 a 0� 1�

a b+ a c� d� + (a)�
0 c A0 A1

1 d+ (a) A�
1 A2 + (1)

⎞

⎟
⎟
⎠ .

Then sgn(vi) = sgn(v′i), corankB(G) = corankB(G̃), and corankBi(G̃) = corankBi(G), i.e., wi = w′
i.

2. Let a graph G̃ with the set of vertices V (G̃) = {v′1, . . . , v′n} be obtained from the graph G by the
fourth graph-move Ωg4 at vertices vj and vk. We have two cases: i ∈ {j, k} and i /∈ {j, k}.

Let us consider the first case. We assume that i = j = 1 and k = 2. We have

B(G) =

⎛

⎜
⎜
⎜⎜
⎜⎜
⎝

1 1 0� 1� 0� 1�

1 1 0� 0� 1� 1�
0 0 B0 A1 A2 A3

1 0 A�
1 B4 A5 A6

0 1 A�
2 A�

5 B7 A8

1 1 A�
3 A�

6 A�
8 B9

⎞

⎟
⎟
⎟⎟
⎟⎟
⎠

,
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B(G̃) =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

1 1 0� 0� 1� 1�

1 1 0� 1� 0� 1�
0 0 B0 A1 A2 A3

0 1 A�
1 B4 A5 + (1) A6 + (1)

1 0 A�
2 A�

5 + (1) B7 A8 + (1)
1 1 A�

3 A�
6 + (1) A�

8 + (1) B9

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

.

Then sgn(vi) = −sgn(v′i), corankB(G) = corankB(G̃) and

corankBi(G̃) = corank

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

0 1 0� 0� 1� 1�

1 1 0� 1� 0� 1�
0 0 B0 A1 A2 A3

0 1 A�
1 B4 A5 + (1) A6 + (1)

1 0 A�
2 A�

5 + (1) B7 A8 + (1)
1 1 A�

3 A�
6 + (1) A�

8 + (1) B9

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

= corank

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

0 1 0� 0� 0� 0�

1 1 0� 0� 1� 1�
0 0 B0 A1 A2 A3

0 1 A�
1 B4 A5 A6

1 0 A�
2 A�

5 B7 A8

1 1 A�
3 A�

6 A�
8 B9

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

= corankB(G \ {vi})

Since corankBi(G) �= corankB(G \ {vi}), we get corankBi(G̃) = corankBi(G)± 1 and wi = w′
i.

Let us consider the second case. We assume that j = 1, k = 2 and i = 3. We have

B(G) =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

1 1 a 0� 1� 0� 1�

1 1 h 0� 0� 1� 1�

a h b c� d� e� f�
0 0 c B0 A1 A2 A3

1 0 d A�
1 B4 A5 A6

0 1 e A�
2 A�

5 B7 A8

1 1 f A�
3 A�

6 A�
8 B9

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

,

B(G̃) =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

1 1 h 0� 0� 1� 1�

1 1 a 0� 1� 0� 1�

h a b c� d� + (h)� e� + (a)� f� + (a+ h)�
0 0 c B0 A1 A2 A3

0 1 d+ (h) A�
1 B4 A5 + (1) A6 + (1)

1 0 e+ (a) A�
2 A�

5 + (1) B7 A8 + (1)
1 1 f + (a+ h) A�

3 A�
6 + (1) A�

8 + (1) B9

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

.

Then sgn(vi) = sgn(v′i), corankB(G) = corankB(G̃), and corankBi(G̃) = corankBi(G), i.e., wi = w′
i.

Lemma 4.4. Let two components meet at vertices vi and vj , i < j. Then

sgn(vi) sgn(vj) (−1)corankBj−1(G\{vi}) = sgn(v′i) sgn(v
′
j) (−1)corankBj−1(Gcs(vi)

\{v′i}),

where V (Gcs(vi)) = {v′1, . . . , v′n}, and the corresponding vertices of the graphs G and Gcs(vi) have the
same numbers.

Proof. Without loss of generality, we assume that i = 1, j = 2. From Definition 3.2 and Lemma 3.7 it
follows that

corankBj−1(G \ {vi}) = corankBi(G \ {vj}) �= corankB(G \ {vi, vj}).
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According to Lemma 4.3 and the proof of Lemma 4.1, it is enough to consider three cases.
1. Let the framing of the vertex v1 be equal to 1, and we apply the fourth graph-move Ωg4

′ to it.
We have

B(G) =

⎛

⎜⎜
⎝

0 a 0� 1�

a b c� d�
0 c A0 A1

1 d A�
1 A2

⎞

⎟⎟
⎠ , B(Gcs(vi)) =

⎛

⎜⎜
⎝

0 a 0� 1�

a b+ a c� d� + (a)�
0 c A0 A1

1 d+ (a) A�
1 A2 + (1)

⎞

⎟⎟
⎠ ,

where (a) is the vector consisting of a ∈ {0, 1}.
Applying Lemma 3.7 and elementary manipulations, we get

corankBj−1(Gcs(vi) \ {v′i}) = corank

⎛

⎝
1 0� 1�
0 A0 A1

1 A�
1 A2 + (1)

⎞

⎠

= corank

⎛

⎝
1 0� 0�
0 A0 A1

0 A�
1 A2

⎞

⎠ = corankB(G \ {vi, vj}),

i.e.,

corankBj−1(Gcs(vi) \ {v′i}) = corankBj−1(G \ {vi})± 1.

Taking into account the equalities sgn(vi) = −sgn(v′i) and sgn(vj) = sgn(v′j), we get the assertion of
the lemma.

2. Let the framing of the vertex v1 be equal to 0 and let there exist a vertex vk adjacent to v1 and
having the framing 0. In this case we apply the fourth graph-move Ωg4 to them.

We have two cases: vk = v2 and vk �= v2. In the first case we have

B(G) =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

1 1 0� 1� 0� 1�

1 1 0� 0� 1� 1�
0 0 B0 A1 A2 A3

1 0 A�
1 B4 A5 A6

0 1 A�
2 A�

5 B7 A8

1 1 A�
3 A�

6 A�
8 B9

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

,

B(Gcs(vi)) =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

1 1 0� 0� 1� 1�

1 1 0� 1� 0� 1�
0 0 B0 A1 A2 A3

0 1 A�
1 B4 A5 + (1) A6 + (1)

1 0 A�
2 A�

5 + (1) B7 A8 + (1)
1 1 A�

3 A�
6 + (1) A�

8 + (1) B9

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

.

Applying elementary manipulations, we get

corankBj−1(Gcs(vi) \ {v′i}) = corank

⎛

⎜
⎜⎜
⎜
⎝

0 0� 0� 1� 1�
0 B0 A1 A2 A3

0 A�
1 B4 A5 + (1) A6 + (1)

1 A�
2 A�

5 + (1) B7 A8 + (1)
1 A�

3 A�
6 + (1) A�

8 + (1) B9

⎞

⎟
⎟⎟
⎟
⎠

= corank

⎛

⎜⎜
⎜⎜
⎝

0 0� 0� 1� 1�
0 B0 A1 A2 A3

0 A�
1 B4 A5 A6

1 A�
2 A�

5 B7 A8

1 A�
3 A�

6 A�
8 B9

⎞

⎟⎟
⎟⎟
⎠

= corankBj−1(G \ {vi}).
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Taking into account the equalities sgn(vi) = −sgn(v′i) and sgn(vj) = −sgn(v′j), we get the assertion of
the lemma.

In the second case (let k = 3) we have

B(G) =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

1 a 1 0� 1� 0� 1�

a b h c� d� e� f�

1 h 1 0� 0� 1� 1�
0 c 0 B0 A1 A2 A3

1 d 0 A�
1 B4 A5 A6

0 e 1 A�
2 A�

5 B7 A8

1 f 1 A�
3 A�

6 A�
8 B9

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

,

B(Gcs(vi)) =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎝

1 h 1 0� 0� 1� 1�

h b a c� d� + (h)� e� + (a)� f� + (a+ h)�

1 a 1 0� 1� 0� 1�
0 c 0 B0 A1 A2 A3

0 d+ (h) 1 A�
1 B4 A5 + (1) A6 + (1)

1 e+ (a) 0 A�
2 A�

5 + (1) B7 A8 + (1)
1 f + (a+ h) 1 A�

3 A�
6 + (1) A�

8 + (1) B9

⎞

⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎠

.

Applying Lemma 3.7 and elementary manipulations, we get

corankBj−1(Gcs(vi) \ {v′i}) = corank

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

0 1 0� 0� 1� 1�

1 1 0� 1� 0� 1�
0 0 B0 A1 A2 A3

0 1 A�
1 B4 A5 + (1) A6 + (1)

1 0 A�
2 A�

5 + (1) B7 A8 + (1)
1 1 A�

3 A�
6 + (1) A�

8 + (1) B9

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

= corank

⎛

⎜⎜
⎜
⎜⎜
⎜
⎝

0 1 0� 0� 0� 0�

1 1 0� 0� 1� 1�
0 0 B0 A1 A2 A3

0 1 A�
1 B4 A5 A6

1 0 A�
2 A�

5 B7 A8

1 1 A�
3 A�

6 A�
8 B9

⎞

⎟⎟
⎟
⎟⎟
⎟
⎠

= corank

⎛

⎜⎜
⎜
⎜⎜
⎜
⎝

1 0 0� 0� 0� 0�

0 1 0� 0� 1� 1�
0 0 B0 A1 A2 A3

0 0 A�
1 B4 A5 A6

0 1 A�
2 A�

5 B7 A8

0 1 A�
3 A�

6 A�
8 B9

⎞

⎟⎟
⎟
⎟⎟
⎟
⎠

= corankB(G \ {vi, vj}),
i.e.,

corankBj−1(Gcs(vi) \ {v′i}) = corankBj−1(G \ {vi})± 1.

Taking into account the equalities sgn(vi) = −sgn(v′i) and sgn(vj) = sgn(v′j), we get the assertion of
the lemma.

3. Let the framing of the vertex v1 be equal to 0 and let there exist a vertex vk adjacent to the
vertex v1 and having the framing 1. In this case we apply the fourth graph-move Ωg4

′ to the vertex
vk, and then we apply this move to the vertex in the new graph corresponding to the vertex v1.

Two cases are possible: vk = v2 and vk �= v2. In the first case we have

B(G) =

⎛

⎜
⎜
⎜⎜
⎜⎜
⎝

1 1 0� 1� 0� 1�

1 0 0� 0� 1� 1�
0 0 B0 A1 A2 A3

1 0 A�
1 B4 A5 A6

0 1 A�
2 A�

5 B7 A8

1 1 A�
3 A�

6 A�
8 B9

⎞

⎟
⎟
⎟⎟
⎟⎟
⎠

,
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B(Gcs(vi)) =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

0 1 0� 1� 1� 0�

1 1 0� 1� 0� 1�
0 0 B0 A1 A2 A3

1 1 A�
1 B4 + (1) A5 + (1) A6

1 0 A�
2 A�

5 + (1) B7 A8 + (1)
0 1 A�

3 A�
6 A�

8 + (1) B9 + (1)

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

.

Applying elementary manipulations, we get

corankBj−1(Gcs(vi) \ {v′i}) = corank

⎛

⎜
⎜⎜
⎜
⎝

0 0� 1� 0� 1�
0 B0 A1 A2 A3

1 A�
1 B4 + (1) A5 + (1) A6

0 A�
2 A�

5 + (1) B7 A8 + (1)
1 A�

3 A�
6 A�

8 + (1) B9 + (1)

⎞

⎟
⎟⎟
⎟
⎠

= corank

⎛

⎜
⎜⎜
⎜
⎝

0 0� 1� 0� 1�
0 B0 A1 A2 A3

1 A�
1 B4 A5 A6

0 A�
2 A�

5 B7 A8

1 A�
3 A�

6 A�
8 B9

⎞

⎟
⎟⎟
⎟
⎠

= corankBi(G \ {vj}).

Taking into account the equalities sgn(vi) = −sgn(v′i) and sgn(vj) = −sgn(v′j), we get the needed
assertion.

In the second case (let k = 3) we have

B(G) =

⎛

⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎝

1 a 1 0� 1� 0� 1�

a b h c� d� e� f�

1 h 0 0� 0� 1� 1�
0 c 0 B0 A1 A2 A3

1 d 0 A�
1 B4 A5 A6

0 e 1 A�
2 A�

5 B7 A8

1 f 1 A�
3 A�

6 A�
8 B9

⎞

⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎠

,

B(Gcs(vi)) =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

0 a+ h 1 0� 1� 1� 0�

a+ h b a c� d� + (a+ h)� e� + (a)� f� + (h)�

1 a 1 0� 1� 0� 1�
0 c 0 B0 A1 A2 A3

1 d+ (a+ h) 1 A�
1 B4 + (1) A5 + (1) A6

1 e+ (a) 0 A�
2 A�

5 + (1) B7 A8 + (1)
0 f + (h) 1 A�

3 A�
6 A�

8 + (1) B9 + (1)

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

.

Applying Lemma 3.7 and elementary manipulations, we get

corankBj−1(Gcs(vi) \ {v′i}) = corank

⎛

⎜
⎜
⎜⎜
⎜⎜
⎝

1 1 0� 1� 1� 0�

1 1 0� 1� 0� 1�
0 0 B0 A1 A2 A3

1 1 A�
1 B4 + (1) A5 + (1) A6

1 0 A�
2 A�

5 + (1) B7 A8 + (1)
0 1 A�

3 A�
6 A�

8 + (1) B9 + (1)

⎞

⎟
⎟
⎟⎟
⎟⎟
⎠
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= corank

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

1 1 0� 0� 0� 0�

1 1 0� 0� 1� 1�
0 0 B0 A1 A2 A3

1 1 A�
1 B4 A5 A6

1 0 A�
2 A�

5 B7 + (1) A8 + (1)
0 1 A�

3 A�
6 A�

8 + (1) B9 + (1)

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

= corank

⎛

⎜⎜
⎜
⎜⎜
⎜
⎝

1 0 0� 0� 0� 0�

0 0 0� 0� 1� 1�
0 0 B0 A1 A2 A3

0 0 A�
1 B4 A5 A6

0 1 A�
2 A�

5 B7 A8

0 1 A�
3 A�

6 A�
8 B9

⎞

⎟⎟
⎟
⎟⎟
⎟
⎠

= corankB(G \ {vi, vj}),

i.e.,
corankBj−1(Gcs(vi) \ {v′i}) = corankBj−1(G \ {vi})± 1.

Taking into account the equalities sgn(vi) = −sgn(v′i) and sgn(vj) = sgn(v′j), we get the assertion.

4.2. Oriented graph-links and the Jones polynomial. Let G be a labeled graph with k compo-
nents and V (G) = {v1, . . . , vn}. Since under the deletion of a vertex belonging to different components
the number of components of a graph-link decreases by one (see Corollary 3.1), there exists a sequence
of vertices (vi1 , . . . , vik−1

) consisting of k − 1 vertices vi1 , . . . , vik−1
such that the graph

(. . . ((G \ {vi1}) \ {vi2}) . . . ) \ {vik−1
}

obtained from G by deleting vertices of the sequence in consecutive order has only one component.

Lemma 4.5. For any sequence (αi1 , . . . , αik−1
) of signs there exists a labeled graph G(vi1 , . . . , vik−1

)
obtained from G by the fourth graph-moves such that the labeled graph G′=G(vi1 , . . . , vik−1

) \{vi1 , . . . ,
vik−1

} has one component and the signs of the vertices of G(vi1 , . . . , vik−1
), which correspond to the

vertices vij , j = 1, . . . , k − 1, of G, coincide with αij .

Proof. First note that the fourth graph-moves change signs of only those vertices these moves are
applied to. Further, since deleting a vertex from a graph has no influence on signs and adjacencies of
the remaining vertices, the lemma can be proved by the induction with the help of Lemma 4.1.

Since G′ has one component, we can define the writhe number wi of each v′i of its vertices by putting

wi = (−1)corankBi(G
′)sgn(v′i)

and the writhe number of G′ itself by the formula w(G′) =
n−k+1∑

i=1
wi.

Definition 4.1. The writhe number wi(G) of the graph G at the vertex vi ∈ V (G) with respect to
a sequence of vertices (vi1 , . . . , vik−1

) with signs (αi1 , . . . , αik−1
) is the writhe number of the vertex of

G′, which corresponds to the vertex vi if i �= ij , and wij (G) = αij otherwise. The writhe number of G
with respect to the sequence of vertices (vi1 , . . . , vik−1

) with signs (αi1 , . . . , αik−1
) is

w(G) =

n∑

i=1

wi(G).

Remark 4.1. From Lemmas 4.3 and 4.4 it follows that the writhe number is well defined, i.e., it
does not depend on a graph G(vi1 , . . . , vik−1

) and does only on the signs of the vertices being deleted.
Indeed, from these lemmas it follows that a vertex lying on one component has always the same
writhe number for each equivalence class of vertices, and by the relation from Definition 3.2, the
writhe number of each vertex from this class is defined by the writhe number of any vertex from this
class.
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Definition 4.2. Consider two sequences of vertices (vi1 , . . . , vik−1
) and (vj1 , . . . , vjk−1

) with signs
(αi1 , . . . , αik−1

) and (αj1 , . . . , αjk−1
), respectively. Assume that after the deletion of these vertices

from the corresponding graphs G(vi1 , . . . , vik−1
) and G(vj1 , . . . , vjk−1

) we have two graphs with one
component each. We say that these sequences are equivalent if the writhe numbers at vertices vip
(respectively, vjp), p = 1, . . . , k − 1, with respect to these sequences, coincide.

Definition 4.3. We say that a labeled graph G is oriented if an equivalence class of sequences of
vertices with signs after the deletion of which we get a labeled graph with one component, is fixed.

Lemma 4.6. Let a labeled graph G have two components. Assume that vertices vi and vj , i �= j,
belong to different components and we can apply a second decreasing graph-move to them. Then there
exists a vertex vk, k �= i, j, also belonging to different components.

Proof. Let i = 1 and j = 2. Then

B(G) =

⎛

⎝
a+ 1 a b�

a a+ 1 b�
b b C

⎞

⎠

and detB(G) = 0. Since the first and second columns of the matrix B(G) are not zero columns and are
not linearly dependent, there exists a number k such that the kth column is a linear combination of
the other columns of the matrix B(G). Therefore, the vertex vk belongs to different components.

If we have a graph G with an orientation, i.e., a sequence of vertices (vi1 , . . . , vik−1
) of G with

signs (αi1 , . . . , αik−1
) is fixed, we can define an orientation on any graph G̃ obtained from G by

applying a single graph-move. Note that after applying the first, third, and fourth graph-move or

the second graph-move increasing the number of vertices of G, we can define the orientation on G̃
by the sequence of vertices corresponding to the sequence (vi1 , . . . , vik−1

) with the same signs. But
if we apply the second graph-move decreasing the number of vertices of G, then, by Lemma 4.6,
we first choose a sequence of vertices (vj1 , . . . , vjk−1

) with signs (αj1 , . . . , αjk−1
) equivalent to the

sequence (vi1 , . . . , vik−1
) with signs (αi1 , . . . , αik−1

) such that the second graph-move has no effect on

vj1 , . . . , vjk−1
, and then the orientation on G̃ is generated by the sequence of vertices corresponding to

(vj1 , . . . , vjk−1
) with signs (αj1 , . . . , αjk−1

). We say that the graphs G and G̃ have the same orientation.

Lemma 4.7. Let a vertex vi of G belong to different components. Then there exists a graph G̃ obtained
from G by applying the second increasing graph-move such that two components meet at the additional
vertices and at the vertex corresponding to the vertex vi.

Proof. We can consider the graph G̃ obtained from G be adding two vertices with framing 0 and
adjacent to vi.

Lemma 4.8. The writhe number of an oriented labeled graph is changed by ±1 under the first graph-
move Ωg1. More precisely, it is changed by −1 if we add a vertex with the positive sign, and by +1 if
we add a vertex with the negative sign.

The writhe number of an oriented labeled graph is invariant under graph-moves Ωg2–Ωg4
′.

Proof.
1. The changing by ±1 under the first graph-move was proved in [9], and the invariance under the

fourth graph-moves follows from Lemmas 4.3 and 4.4.
2. The invariance under the second graph-move follows from the possibility of taking a sequence of

vertices, giving the orientation, such that each vertex of the sequence does not take part in our second
graph-move, and also from Lemmas 4.2 and 4.3 and the invariance of the writhe number for labeled
graphs with one component; see [9, Lemma 5.4].

3. Let us consider the third graph-move. Using Lemma 4.7 and the invariance under the second
graph-move, we can assume that the orientation on the graph is given with a sequence of vertices
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not taking part in our graph-move. In this case the validity of the assertion of the lemma follows
from Lemmas 4.2 and 4.3 and from the invariance for labeled graphs with one component; see [9,
Lemma 5.4].

Definition 4.4 (see [9, 10]). We call a subset of V (G) a state of G.
The Kauffman bracket polynomial of G is

〈G〉(a) =
∑

s

aα(s)−β(s)(−a2 − a−2)corankA(G(s)),

where the sum is taken over all states s of G, and α(s) is equal to the sum of the vertices labeled
(a,−) from s and the vertices labeled (b,+) from V (G) \ s, β(s) = |V (G)| − α(s).

Theorem 4.1 (see [9, 10]). The Kauffman bracket polynomial of a labeled graph is invariant under
Ωg2–Ωg4

′ and gets multiplied by (−a±3) under Ωg1.

Definition 4.5. We say that a graph-link is oriented if all its representatives are oriented and for any
two representatives G′ and G′′ of it there exists a sequence G1 = G′, G2, . . . , Gs = G′′ such that the
graphs Gp and Gp+1, p = 1, . . . , s− 1, are obtained from each other by one graph-move and have the
same orientation.

Remark 4.2. It is easy to see that to define an orientation on a graph-link it is sufficient to define it
for any representative.

Definition 4.6. Let F be an oriented graph-link. Define the Jones polynomial as

X(G)(t) = (−a)−3w(G)〈G〉(t),
where G is any representative of F.

Remark 4.3. Indeed, to obtain the “real” Jones polynomial we should replace the variable of the
polynomial X(G) by putting a = q−1/4.

From Lemma 4.8 and Theorem 4.1 we get the following theorem.

Theorem 4.2. The Jones polynomial is an invariant of oriented graph-links.
4.3. Examples.

1. The easiest example of a nontrivial graph-link having two components is the graph-link generated
by the labeled graph G consisting of one isolated vertex v with the framing 1 (the sign of this vertex
is not important, since the labeled graphs with different signs are equivalent to each other). For
G we have two states s1 = ∅ and s2 = {v}. Let the sign of v be equal to +. Then α(s1) = 1,
β(s1) = 0, corankA(G(s1)) = 0 and α(s2) = 0, β(s2) = 1, corankA(G(s2)) = corank (1) = 0. We have
〈G〉(a) = a+ a−1. We can define two orientations on this graph: in the first case the writhe number
is equal to +1, and in the second case it equals −1. We have two Jones polynomials: −a−2 − a−4 and
−a4 − a2.

2. Let us consider the graph-link generated by the labeled graph G depicted in Fig. 16 left. This
graph is obtained from the Hopf link, see Fig. 16 right. For G we have four states s1 = ∅, s2 = {v1},
s3 = {v2}, s4 = {v1, v2}. Then α(s1) = 1, β(s1) = 1, corankA(G(s1)) = 0; α(s2) = 2, β(s2) = 0,
corankA(G(s2)) = corank (0) = 1; α(s3) = 0, β(s3) = 2, corankA(G(s3)) = corank (0) = 1; α(s4) = 1,

β(s4) = 1, corankA(G(s4)) = corank

(
0 1
1 0

)
= 0. We have the Kauffman bracket polynomial

〈G〉(a) = −a4 − a−4. There are two orientations on this graph-link. Consider only one orientation
given by the sequence (v1) with the sign (−), see Fig. 17. Then the graph G \ {v1} consists of one
vertex v2 with the label (0,+), and the writhe number of this graph equals −1. Thus, the writhe
number of the oriented labeled graph G equals −2, and the Jones polynomial is −a10 − a2.
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Fig. 16. A graph-link and the Hopf link (the dashed line is a rotating circuit)

Fig. 17. An orientation on the Hopf link

Fig. 18. The labeled second Bouchet graph

3. Let us consider the graph-link generated by the second Bouchet graph BW3 with labels de-
picted in Fig. 18. We know, see Example 3.1, that this graph-link contains four components and is
nonrealizable.

The Kauffman bracket polynomial is a−15 − 3a−11 +6a−7 − 3a−3 + 7a− 3a5 + 4a9 − a13. Define an
orientation on the graph with the sequence (v7, v2, v3) with the signs (−,+,−).

Note that the oriented labeled graph BW3 \ {v7} can be realized by the Borromean rings; see
Fig. 19. Then the writhe number of the labeled graph BW3 is equal to −1. As a result, we get the
Jones polynomial −a−12 + 3a−8 − 6a−4 + 3− 7a4 + 3a8 − 4a12 + a16.

4. Let us consider the graph-link generated by the first Bouchet graph W5 with labels depicted in
Fig. 20 (the looped graph corresponding to this labeled graph (see [8]) was revealed to the authors by
L. Zulli). It is easy to check that this graph-link contains only one component, i.e., it is a graph-knot.

Using parity and the equivalence between the set of graph-knots and the set of homotopy classes
of looped graphs [8, 11, 18, 21], we can easily show that the given graph-knot is nonrealizable, and,
therefore, is nontrivial. It turns out that the Kauffman bracket polynomial of it is equal to 1, and
the writhe number is equal to 0. Thus, we have an example of a nontrivial graph-knot with the trivial
Jones polynomial.
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Fig. 19. The Borromean rings (the dashed line is a rotating circuit)

Fig. 20. A graph-link with the trivial Jones polynomial
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