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FINAL DISTRIBUTION OF A DIFFUSION PROCESS
WITH FINAL STOP

B. P. Harlamov∗ UDC 519.2

A one-dimensional diffusion process is considered. The characteristic operator of this process is
assumed to be a linear differential operator of the second order with negative coefficient at the term
with zero derivative. Such an operator determines the measure of a Markov diffusion process with
break (the first interpretation), and also the measure of a semi-Markov diffusion process with final
stop (the second interpretation). Under the second interpretation, the existence of the limit of the
process at infinity (the final point) is characterized. This limit exists on any interval almost surely
with respect to the conditional measure generated by the condition that the process never leaves
this interval. The distribution of the final point expressed in terms of two fundamental solutions
of the corresponding ordinary differential equation, and also the distribution of the instant final
stop are derived. A homogeneous process is considered as an example. Bibliography: 6 titles.

1. Diffusion process with final distribution

Characteristic operator. We consider a one-dimensional diffusion process. It is assumed
that the characteristic operator of this process, defined on the set of twice differentiable func-
tions, is a trinomial of the form

Df = a(x)f ′′ + b(x)f ′ − c(x)f,

the coefficients a(x) and c(x) of which are positive [2, p. 726].
In the theory of Markov processes, where the term “characteristic operator” first appeared

and actively used (see [2, p. 207]), the presence of the term −c(x)f suggests that the process
X(t), t ≥ 0, we are interested in, has a break at some random time ζ < ∞. This means that
the trajectory of the process is determined only until the break and the fact of termination
results from the defect of Markov transition probability of the process with this characteristic
operator. Namely, the function u(t, x) ≡ Px(X(t) ∈ R) (where R = (−∞,∞) is the range of
possible values of the process) satisfies the equation

∂u

∂t
= Du,

which implies that for some t > 0 and x,

P (X(t) ∈ R |X(0) = x) < 1.

Another interpretation of the characteristic operator is associated with a class of semi-
Markov processes of diffusion type (see below). By definition, the class of strictly Markov
processes is a part of the class of semi-Markov processes, see [4]. Therefore speaking of the
semi-Markov processes, we will sometimes specify them as semi-Markov, but not Markov. For
such semi-Markov processes, Markov transition probability can be defined in the usual way,
but it does not determine the measure of the process and, more importantly, does not satisfy
the previous parabolic partial differential equation. However, for the semi-Markov process of
diffusion type, there are other functionals that satisfy a similar equation of elliptic type. In
particular, the functional

fΔ(x) ≡ Px(σΔ < ∞),
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where σΔ is the first exit of the process trajectory outside the open interval Δ ⊂ R, satisfies
the equation

DfΔ = 0,
taking the value 1 in the boundary points of the interval. But this implies that fΔ(x) < 1
inside the interval. And if we assume that the trajectories of the process are not terminated,
then the condition

Px(σΔ = ∞) > 0
must be satisfied for some points x ∈ Δ. And this leads to a completely different interpretation
of the characteristic operator. A process with break is replaced by a process with stop, which
is an infinite interval of constancy at the end of the trajectory. In the present paper, we prove
this statement and find the limit (final) distribution of the process.

A continuous process with limit at infinity. Thus, we assume that the process in question
belongs to a broader class than the class of strictly Markov processes. Note that other than
that the semi-Markov diffusion process remains similar to Markov diffusion process with break.
Only at the time of a break, the process is not terminated, but stops forever at the reached
point of the trajectory.

Consider a one-dimensional continuous random process X(t)(t ≥ 0). The distribution Px

of the process with initial state x ∈ R is a probability measure on the measurable space
(C, F ), where C is the set of all continuous sample functions ξ : [0.∞) → R and F is the
Borel sigma-algebra of the subsets of this set. In terms of the sample functions, the object
X(t) ≡ Xt plays the role of projection, i.e., gives the value of the sample function at the time
t : Xt(ξ) = ξ(t).

Let −∞ ≤ a < b ≤ ∞, and let σ(a,b) be the first exit of the process outside the interval
(a, b), i.e., the function on the set C of the form

σ(a,b)(ξ) = inf{t ≥ 0 : ξ(t) 	∈ (a, b)} (ξ ∈ C).

The problem on final distribution of the process arises from the interpretation of the events of
the form {σ(a,b) = ∞}, especially if there exist points x ∈ (a, b), for which

Px(σ(a,b) = ∞) > 0.

In what follows, we use a special notation for the event, the meaning of which is that from
a certain moment, the process does not leave the interval Δ. Let

ρ(Δ) ≡
⋃

t≥0

θ−1
t {σΔ = ∞},

where θt is a translation operator on the set C:

(∀s ≥ 0) (θt(ξ))(s) = ξ(t + s).

Let (tn) be a sequence of random variables, which tends to infinity as n → ∞ almost surely.
Then almost surely

ρ(Δ) =
∞⋃

n=1

θ−1
tn {σΔ = ∞}. (1)

Clearly, {σΔ = ∞} ⊂ ρ(Δ) and
θ−1
t ρ(Δ) = ρ(Δ)

for every t > 0.
One of the reasons that a process starting at a certain time does not leave the interval, is

that the sample trajectory ξ of the process has a limit as t → ∞, where lim
t→∞ ξ(t) ∈ (a, b).

Denote by Clim the set of the sample trajectories with limit at infinity.
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Lemma 1. On the set C, the relation

Clim ∩ {σΔ = ∞} =
⋂

ε>0

⋃

Δ1∈Π(ε)

ρ(Δ1)

holds, where Δ is an open interval and Π(ε) is a covering of the set Δ by open intervals of
length at most ε,

⋃
Δ1∈Π(ε)

Δ1 = Δ.

Proof. Every function ξ ∈ ⋂
ε>0

⋃
Δ∈Πε

ρ(Δ) satisfies the Cauchy criterion at infinity and, hence,

converges (converges in itself). The reverse inclusion is trivial. �

The set Clim contains as a special subclass the class of functions having the so-called infinite
stop, which is an infinite interval of constancy on its domain. The term “infinite stop” do not
mean the break of a function in some finite time. The break of a process is usually interpreted
as a process getting to some additional state ϑ 	∈ R, from which there is no return. Infinite
stop is defined to be a stay of the process with continuous sample trajectories in the same state
belonging to the set R for all t ≥ t0 with respect to a certain t0 ≥ 0. It is easy to determine
the beginning of the infinite stop if some information about the entire trajectory as a whole is
given. But it is impossible to know that the infinite stop has already begun even if the process
prehistory is given. This means that the beginning of the infinite stop (a random moment ζ)
is a measurable function with respect to F , but is not a Markov moment with respect to the
natural filtration of the process (Ft)∞0 , where Ft is the σ-algebra generated by all the events
of the form {Xs ≤ x} (s ≤ t, x ∈ R).

Denote by C∞ the set of sample trajectories with infinite stop. Obviously, C∞ ⊂ Clim. It is
easy to prove that both of these sets are measurable with respect to F .

In the final distribution problem solved by a semi-Markov method, the difference between
the processes with infinite stop and processes with limits at infinity of a general form is not
essential as long as the problem of beginning the infinite stop is not considered. We will return
to this problem at the end of the paper.

Continuous semi-Markov process. Let (Px) be a consistent measurable family of measures
on (C,F) and indexed by the starting points of the trajectories of the process x ∈ R. We assume
that the consistency of (Px) is defined by the condition

Px(θ−1
σΔ

B, A, σΔ < ∞) = Ex(PX(σΔ)(B); A, σΔ < ∞) (2)

for all x ∈ R, B ∈ F , and A ∈ FσΔ
, where Δ is an interval contained in the set of the process

values and FσΔ
is a σ-algebra defined in a standard way with respect to the Markov moment σΔ.

Thus, the probability that depends on the value of the process at random time σΔ, coincides
almost surely with conditional probability with respect to the entire prehistory of the process
up to this point, i.e., the homogeneous Markov condition holds at the time of the first exit
outside open interval included to the range of the process [4]. In general, this process is not
Markov. We call this process a continuous semi-Markov one [4]. The adjective “continuous”
is used to distinguish our definition from the definition, which is used in the theory of semi-
Markov step-processes (although the definition of continuous semi-Markov process with no
restrictions on the measures domain area is also suitable for step-processes). We note that
according to this definition, every continuous strictly Markov process is a continuous semi-
Markov process, but not vice versa. However, to study processes with infinite stop, the Markov
model is not suitable, except for some special cases of the stop choice.
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Semi-Markov transition functions. For each interval (a, b) and x ∈ (a, b), we define the
semi-Markov transition functions

G(a,b)(dt |x) ≡ Px(σ(a,b) ∈ dt, X(σ(a,b)) = a),

H(a,b)(dt |x) ≡ Px(σ(a,b) ∈ dt, X(σ(a,b)) = b),

and the corresponding Laplace transform in t (λ ≥ 0) :

g(a,b)(λ, x) ≡
∞∫

0

e−λtG(a,b)(dt |x),

h(a,b)(λ, x) ≡
∞∫

0

e−λtH(a,b)(dt |x).

Thus,
g(a,b)(λ, x) = Ex(exp(−λσ(a,b)); σ(a,b) < ∞, X(σ(a,b)) = a),

h(a,b)(λ, x) = Ex(exp(−λσ(a,b)); σ(a,b) < ∞, X(σ(a,b)) = b).

We assume that the limit values satisfy the conditions

g(a,b)(λ, a+) = h(a,b)(λ, b−) = 1, g(a,b)(λ, b−) = h(a,b)(λ, a+) = 0

and at the boundary points of the interval, the values of the above functions are defined by
continuity.

Denote the sum “with shift” of any two nonnegative functions τ1 and τ2 on D (which possibly
have infinite values) by

τ1+̇τ2 = τ1 + τ2 ◦ θτ1

if τ1 < ∞ and by τ1+̇τ2 = ∞ if τ1 = ∞. The operation +̇ is associative, but not commutative.
It is known that for any interval (c, d) such that (c, d) ⊂ (a, b), we have

σ(a,b) = σ(c,d)+̇ σ(a,b).

From this relation, using the found values of the functions g(c,d) and h(c,d) at the ends of the
interval h(c,d) and the semi-Markov property of the process, we obtain the equations (see [4])

g(a,b)(λ, x) = g(c,d)(λ, x)g(a,b)(λ, c) + h(c,d)(λ, x)g(a,b)(λ, d), (3)

h(a,b)(λ, x) = g(c,d)(λ, x)h(a,b)(λ, c) + h(c,d)(λ, x)h(a,b)(λ, d) (4)

for any point x such that x ∈ [c, d] ⊂ [a, b] and λ ≥ 0. In particular,

g(a,b)(λ, x) = h(a,d)(λ, x)g(a,b)(λ, d) + g(a,d)(λ, x),

h(a,b)(λ, x) = h(a,d)(λ, x)h(a,b)(λ, d),

g(a,b)(λ, x) = g(c,b)(λ, x)g(a,b)(λ, c),

h(a,b)(λ, x) = g(c,b)(λ, x)h(a,b)(λ, c) + h(c,b)(λ, x).

We will deal with processes, for which there exist the ranges (a, b) of values and points
x ∈ (a, b) such that Px(σ(a,b) = ∞) > 0. Note that if for such a point x, this probability is less
than one, then it may happen that the process leaves and returns to the interval (a, b) many
times prior to being remained in this range forever after one such return. This is the meaning
of the event (subset) ρ(Δ), where Δ = (a, b).
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Semi-Markov diffusion process. A semi-Markov process is said to be diffusion in a neigh-
borhood of the point x if there exist the functions A(x) and B(λ, x), such that

g(x−r,x+r)(λ, x) =
1
2
(1 − A(x)r − B(λ, x)r2) + o(r2), (5)

h(x−r,x+r)(λ, x) =
1
2
(1 + A(x)r − B(λ, x)r2) + o(r2) (6)

as r → 0. It is assumed that A(x) is continuously differentiable in a neighborhood of x and
B(λ, x) is positive, continuous in the second argument in a neighborhood of x, does not de-
crease, and has completely monotone partial derivative with respect to the first argument. If
the condition of diffusion is satisfied for any point in the open interval (a, b) for certain admis-
sible functions A(x) and B(λ, x) (x ∈ (a, b), λ ≥ 0), then the functions g(a,b)(λ, x), h(a,b)(λ, x)
satisfy on this interval the differential equation [4]

1
2
f ′′ + A(x)f ′ − B(λ, x)f = 0 (7)

with boundary values

g(a,b)(λ, a) = h(a,b)(λ, b) = 1, g(a,b)(λ, b) = h(a,b)(λ, a) = 0,

and, hence, for any λ ≥ 0, form the fundamental system of solutions of this equation.
In the present paper, we are especially interested in diffusion semi-Markov processes such

that for any x ∈ (a, b) the condition B(0, x) > 0 is satisfied. Exactly for these coefficients and
λ = 0, equation (7) has solutions g(c,d) and h(c,d), for which g(c,d)(0, x) + h(c,d)(0, x) < 1 for
all (c, d) ⊂ [a, b] and x ∈ (c, d). Note that the latter is equivalent to the condition Px(σ(c,d) =
∞) > 0.

In the theory of Markov processes, equation (7) with B(0, x) > 0 is used to describe a
process with break at some Markov moment ζ < ∞. Namely, as initial object, one takes
a measurable with respect to F nonnegative random variable ζ <∞. Next, a new space of
elementary events, which is the set of trajectories broken at time ζ, is defined. On this set, a
growing family of σ-algebras of subsets (filtration) defined in a standard way with the help of
cylindrical subsets is considered (see [2, p. 116], [3, p.110], etc.). It is clear that with respect to
this filtration, the time ζ is a Markov moment. But in general, it is not a Markov moment on
the set of stopped (not broken) trajectories, for which a natural filtration of subsets is given.
The final distribution problem is meaningful for a continuous semi-Markov process stopped
at a random time ζ, but not for a Markov process broken at this point. An analogue of this
problem in the theory of Markov processes is the problem on distribution of process at the
point “immediately before the break.” It is difficult to give any real interpretation for this
step other than a stop at the moment of “break.” Semi-Markov approach to solving these
problems consists in using semi-Markov transition functions to formulate the results and to
derive the relevant formulas.

The Markov diffusion processes form a subclass of the class of semi-Markov diffusion pro-
cesses. The Markov property of a semi-Markov diffusion process can be defined in terms of
the coefficients of equation (7). A semi-Markov diffusion process is locally Markov on the
interval (a, b) if there exists a function B0(x) > 0 such that for any x ∈ (a, b) and λ ≥ 0, the
representation

B(λ, x) = B0(x) + cλ (c > 0)

holds (see, e.g., [4, p.115]). In this case, the coefficients of the equation can be expressed via
the Feller diffusion coefficients b(x) and a(x) of drift and local variance, respectively. Namely,
A(x) = b(x)/a(x), B0(x) = 1/a(x), and c = 1 [4].
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Limit at infinity. Denote by

G(a,b)(x) ≡ g(a,b)(0, x) = Px(σ(a,b) < ∞, X(σ(a,b)) = a),

H(a,b)(x) ≡ h(a,b)(0, x) = Px(σ(a,b) < ∞, X(σ(a,b)) = b)

the marginal transition probabilities, where −∞ < a < x < b < ∞. On the interval (a, b),
these functions satisfy the equation

1
2
f ′′ + A(x)f ′ − B(0, x)f = 0, (8)

(in what follows, B(0, x) ≡ B(x)) with boundary values

G(a,b)(a) = H(a,b)(b) = 1 and G(a,b)(b) = H(a,b)(a) = 0.

The solution of the final distribution problem will be given in terms of these functions.

Theorem 1. If the continuous function B(x) is positive everywhere on a closed interval [a, b],
then Px(σΔ = ∞) > 0 for any point x ∈ Δ ≡ (a, b) and

Px(Clim |σΔ = ∞) = 1.

Proof. Under the theorem condition, we consider a process such that Px(σ(c,d) = ∞) ≡ 1 −
G(c,d)(x) − H(c,d)(x) > 0 for any (c, d) ⊂ [a, b] and x ∈ (c, d). Let a = a1 < a2 < b1 < b2 = b.
Set

Δi = (ai, bi) (i = 1, 2).
Further, for brevity, we introduce the following notation: if Δ = (a, b), then

μ(Δ) ≡ {σ(Δ) = ∞}, φ(Δ) ≡ φΔ = {σ(Δ) < ∞, X(σ(Δ)) = a},
ψ(Δ) ≡ ψΔ = {σ(Δ) < ∞, X(σ(Δ)) = b}.

Similarly, for a continuous process, we will distinguish the points of exit outside any other
interval.

In what follows, considering relations between sets, we replace the sign ∪ (disjunction) by the
sign + if the operands of the union are disjoint, and omit the intersection sign ∩ (conjunction)
or replace it by a point, where it does not lead to confusion.

Let x ∈ Δ1. This determines the order of the points of the first exit. Other location of the
starting point inside the interval Δ is considered similarly.

Set τ0 = 0, τ1 = σΔ1 on ψ(Δ1), τ2 = τ1+̇σΔ2 on θ−1
τ1 φ(Δ2), τ3 = τ2+̇σΔ1 on θ−1

τ2 ψ(Δ1), and
so on (each first exit outside the intervals Δ1 and Δ2 occurs inside the interval Δ),

τ2n+1 = τ2n+̇σΔ1 on θ−1
τ2n

ψ(Δ1) (n ≥ 0),

τ2n+2 = τ2n+1+̇σΔ2 on θ−1
τ2n+1

φ(Δ2), (n ≥ 0),

B0 = ψ(Δ1), B1 = θ−1
τ1 φ(Δ2), B2 = θ−1

τ2 ψ(Δ1), and so on,

B2n+1 = θ−1
τ2n+1

φ(Δ2), B2n+2 = θ−1
τ2n+2

ψ(Δ1) (n ≥ 0),

A0 = μ(Δ1), A1 = A0 + B0θ
−1
τ1 μ(Δ2), A2 = A1 + B0B1θ

−1
τ2 μ(Δ1), and so on,

A2n+1 = A2n + B0B1 . . . B2nθ−1
τ2n+1

μ(Δ2),

A2n+2 = A2n+1 + B0B1 . . . B2n+1θ
−1
τ2n+2

μ(Δ1), (n ≥ 0).

In these terms, we form equations corresponding to the successive stages of the series expansion
for the set μ(Δ). From the previous notation, it follows that

μ(Δ) = A0 + B0θ
−1
τ1 μ(Δ),
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Using the representation μ(Δ) on the right-hand side of this equation with respect to the
starting point belonging to the set Δ2, distributivity of the inverse translation map θ−1

t , and
associativity of the translation operator θ−1

τ1 θ−1
τ2 = θ−1

τ1+̇τ2
, we obtain

μ(Δ) = A0 + B0θ
−1
τ1 [μ(Δ2) + φ(Δ2)θ−1

σ(Δ2)μ(Δ)] = A1 + B0B1θ
−1
τ2 μ(Δ),

and so on. By induction, we get the formula

μ(Δ) = An + B0B1 . . . Bnθ−1
τn+1

μ(Δ) (n ≥ 0).

The sequence of the sets (An) is monotonically increasing and sequence of the residues

B0B1 . . . Bnθ−1
τn+1

μ(Δ) (n ≥ 0)

decreases monotonically. Set Px(σΔ = ∞) ≡ MΔ(x). Using the semi-Markov property of the
process (the Markov regeneration with respect to the first exit outside open set), we obtain

Px(B0B1 . . . Bnθ−1
τn+1

μ(Δ)) =

{
HΔ1(x)[GΔ2(b1)HΔ1(a2)]n/2GΔ2(b1)MΔ(a2) n is even,
HΔ1(x)[GΔ2(b1)HΔ1(a2)](n+1)/2MΔ(b1) n is odd.

The probability tends to zero as n → ∞. Hence, the sequence (An) tends to the limit μ(Δ)
with Px-probability 1. The equality

μ(Δ) = μ(Δ1) +
∞∑

n=1

B0B1 . . . Bn−1 · θ−1
τn

{
μ(Δ1) n is even
μ(Δ2) n is odd

}

holds almost surely with respect to Px. We divide the right-hand side of this equation into
two parts

μ(Δ) =
(

μ(Δ1) +
∞∑

n=1

B0B1 . . . B2n−1 · θ−1
τ2n

μ(Δ1)
)

+
∞∑

n=0

B0B1 . . . B2n · θ−1
τ2n+1

μ(Δ2).

Removing the components Bi from the right-hand side can not decrease it. This implies almost
surely the equality

μ(Δ) = μ(Δ)

( ∞⋃

n=0

θ−1
τ2n

μ(Δ1) ∪
∞⋃

n=0

θ−1
τ2n+1

μ(Δ2)

)
.

Taking into account the configuration of the ends of overlapping intervals, we conclude that
the sequence (τn) tends to infinity almost surely with respect to Px. From formula (1), it
follows that

μ(Δ) = μ(Δ)[ρ(Δ1) ∪ ρ(Δ2)], (9)

which implies the equality
Px(ρ(Δ1) ∪ ρ(Δ2) |μ(Δ)) = 1.

On the other hand,

ρ(Δ) =
⋃

t≥0

θ−1
t μ(Δ) ⊂

⋃

t≥0

θ−1
t (ρ(Δ1) ∪ ρ(Δ2)) =

⋃

t≥0

(ρ(Δ1) ∪ ρ(Δ2)) = ρ(Δ1) ∪ ρ(Δ2).

Let us now consider a finite covering γn = (Δk)n1 of the interval (a, b) by the intervals Δk:
n⋃

k=1

Δk = (a, b), Δk = (ak, bk), 1 ≤ k ≤ n, n ≥ 2,

a = a1 < a2 < b1 < a3 < b2 < a4 < b3 < a5 < b4 < · · · < an < bn−1 < bn = b.

(10)
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Applying this formula to subcoverings of this covering, we obtain

μ(Δ) = μ(Δ)
n⋃

k=1

ρ(Δk). (11)

Clearly, in this way one can get a covering γn with arbitrarily small elements. Let εn be the
maximum length of the elements of γn, and let εn → 0. Then from the above formula, it
follows that

Px

( n⋃

Δk∈γn

ρ(Δk)
∣∣∣∣ σΔ = ∞

)
= 1.

Therefore, for any N ≥ 1 we have

Px

( N⋂

n=1

n⋃

Δk∈γn

ρ(Δk)
∣∣∣∣ σΔ = ∞

)
= 1,

and, hence, by Lemma 1,
Px

(
Clim |σΔ = ∞

)
= 1.

Thus, the process has limit at infinity with conditional probability 1. �

2. Final distribution

Any process having limit at infinity is not ergodic, but for any x ∈ (a, b) there exists a limit
one-dimensional distribution (the final distribution) of this process:

Q(a,b)(y |x) ≡ Px( lim
t→∞X(t) < y |σ(a,b) = ∞),

where a < y ≤ b. This kernel characterizes the conditional distribution of the final point X(ζ),
where the passage to the limit or the stop of the process occurred before the first exit outside
the interval (a, b). The distribution Q(a,b)(y |x) can be found directly in terms of marginal
transition probabilities.

Theorem 2. Suppose that the conditions of Theorem 1 hold, Δ1 = (a, y), and Δ2 = (y, b).
(1) If x < y, then

QΔ(y |x) = M−1
Δ (x)

(
1 − GΔ(x) − HΔ1(x) + HΔ(x)

H ′
Δ1

(y−)
H ′

Δ2
(y+)

)
.

(2) If x > y, then

QΔ(y |x) = M−1
Δ (x)

(
− GΔ(x) + GΔ2(x) − GΔ(x)

G′
Δ2

(y+)
G′

Δ1
(y−)

)
.

Proof. (1) Let a = a1 < a2 < b1 < b2 = b, Δ = (a, b), Δ1 = (a1, b1), and Δ2 = (a2, b2).
Consider the process starting from the point x ∈ Δ1. In the proof of Theorem 1, we derived
the formula

μ(Δ) = Ψ1 + Ψ2,

where

Ψ1 = μ(Δ1) +
∞∑

n=1

B0B1 . . . B2n−1 · θ−1
τ2n

μ(Δ1),

Ψ2 =
∞∑

n=0

B0B1 . . . B2n · θ−1
τ2n+1

μ(Δ2).
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From the definition of Δ1 and Δ2, it follows that

Ψ1 ⊂ { lim
t→∞X(t) ≤ b1} and Ψ2 ⊂ { lim

t→∞X(t) ≥ a2}.
Hence,

Px(Ψ1 |σΔ = ∞) ≤ Px

(
lim
t→∞X(t) ≤ b1 |σΔ = ∞)

,

Px(Ψ2 |σΔ = ∞) = 1 − Px

(
Ψ1 |σΔ = ∞) ≤ Px( lim

t→∞X(t) ≥ a2 |σΔ = ∞)

= 1 − Px

(
lim
t→∞X(t) < a2 |σΔ = ∞)

.

Consequently,

Px( lim
t→∞X(t) < a2 |σΔ = ∞) ≤ Px(Ψ1 |σΔ = ∞) ≤ Px( lim

t→∞X(t) ≤ b1 |σΔ = ∞)

and as a2 → b1, the left-hand side of the double inequality tends to the right-hand side at any
point of continuity of the distribution function of the random variable lim

t→∞X(t). This implies

that for almost all b1 (with respect to the Lebesgue measure),

Px( lim
t→∞X(t) ≤ b1 |σΔ = ∞) = lim

a2→b1
Px(Ψ1 |σΔ = ∞).

From the definition, it follows that

Px(Ψ1) = Px

(
μ(Δ1) +

∞∑

n=1

B0B1 . . . B2n−1 · θ−1
τ2n

μ(Δ1)
)

= MΔ1(x) +
∞∑

n=1

Px(B0B1 . . . B2n−1 · θ−1
τ2n

μ(Δ1))

= MΔ1(x) + HΔ1(x)GΔ2(b1)MΔ1(a2)+
∞∑

n=1

HΔ1(x)(GΔ2(b1)HΔ1(a2))nGΔ2(b1)MΔ1(a2)

= MΔ1(x) + HΔ1(x)GΔ2(b1)
MΔ1(a2)

1 − GΔ2(b1)HΔ1(a2)
.

Let us find the limit of this expression as a2 → b1 ≡ y. Set b1 − a2 = h. From the boundary
conditions, it follows that

GΔ1(y − h) = GΔ1(y − h) − GΔ1(y) = −G′
Δ1

(y−)h + o(h),

HΔ1(y − h) = HΔ1(y − h) − HΔ1(y) + 1 = 1 − H ′
Δ1

(y−)h + o(h).

The interval Δ2 ≡ (y − h, b) also depends on h. We have

GΔ(y) = GΔ2(y)GΔ(y − h),

whence

GΔ2(y) =
GΔ(y)

GΔ(y − h)
→ 1 (h → 0),

1
h

(GΔ2(y) − 1) =
1
h

(GΔ(y)/GΔ(y − h) − 1) → G′
Δ(y−)

GΔ(y)
.

From the semi-Markov property, it follows that GΔ(y + h) = G(y,b)(y + h)GΔ(y) and, hence,

1
h

(G(y,b)(y + h) − 1) =
1
h

(GΔ(y + h)/GΔ(y) − 1) → G′
Δ(y+)

GΔ(y)
.
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If the derivative G′
Δ is continuous at the point y, then

GΔ2(y) = 1 + G′
(y,b)(y+)h + o(h).

Consequently,

Px(Ψ1) → MΔ1(x) + HΔ1(x)
H ′

Δ1
(y−) + G′

Δ1
(y−)

H ′
Δ1

(y−) − G′
(y,b)(y+)

for almost all y.
To simplify this expression, we use formulas proved in [6] (see Appendix). For almost all

y ∈ (a, b) ≡ Δ, we have

HΔ(y) =
H ′

Δ2
(y+)

H ′
Δ1

(y−) − G′
Δ2

(y+)
, GΔ(y) =

−G′
Δ1

(y−)
H ′

Δ1
(y−) − G′

Δ2
(y+)

, (12)

where Δ1 = (a, y), Δ2 = (y, b). It follows that

lim
h→0

Px(Ψ1) = 1 − GΔ(x) − HΔ1(x) + HΔ(x)
H ′

Δ1
(y−)

H ′
Δ2

(y+)

and since Ψ1 ⊂ {σΔ = ∞}, the proof of the first statement is complete.
(2) Let us consider the process starting at the point x ∈ Δ2, where Δ = (a, b), Δ1 = (a1, b1),

and Δ2 = (a2, b2).
Let

τ1 = σΔ2 , τ2 = τ1+̇σΔ1, τ3 = τ2+̇σΔ2 , τ4 = τ3+̇σΔ1 , and so on,

B0 = φ(Δ2), B1 = θ−1
τ1 ψ(Δ1), B2 = θ−1

τ2 φ(Δ2), B3 = θ−1
τ3 ψ(Δ1), and so on,

Ψ3 = μ(Δ2) +
∞∑

n=1

B0B1 . . . B2n−1 · θ−1
τ2n

μ(Δ2),

Ψ4 =
∞∑

n=0

B0B1 . . . B2n · θ−1
τ2n+1

μ(Δ1).

Here, Px(Ψ3 + Ψ4 |σΔ = ∞) = 1, and also

Ψ3 ⊂ { lim
t→∞X(t) ≥ a2}, Ψ4 ⊂ { lim

t→∞X(t) ≤ b1}.

It follows that

Px(Ψ3|σΔ = ∞) ≤ Px( lim
t→∞X(t) ≥ a2 |σΔ = ∞),

Px(Ψ4|σΔ = ∞) = 1 −Px(Ψ3|σΔ = ∞) ≤ Px( lim
t→∞X(t) ≤ b1 |σΔ = ∞)

= 1 − Px( lim
t→∞X(t) > b1 |σΔ = ∞).

Consequently,

Px( lim
t→∞ X(t) > b1 |σΔ = ∞) ≤ Px(Ψ3|σΔ = ∞) ≤ Px

(
lim
t→∞X(t) ≥ a2 |σΔ = ∞)

.

As b1 → a2, the left term of this double inequality tends to the right one at any point of
continuity of the required distribution function. Therefore,

Px

(
lim
t→∞X(t) ≥ a2 |σΔ = ∞)

= lim
b1→a2

Px(Ψ3|σΔ = ∞).
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Let y = a2 and h = b1 − a2. From the definition, it follows that

Px(Ψ3) = MΔ2(x) +
∞∑

n=0

GΔ2(x)HΔ1(y)(GΔ2(y + h)HΔ1(y))nMΔ2(y + h)

= MΔ2(x) + GΔ2(x)HΔ1(y)
MΔ2(y + h)

1 − GΔ2(y + h)HΔ1(y)
.

Here,

GΔ2(y + h) = GΔ2(y + h) − GΔ2(y) + 1 = 1 + G′
Δ2

(y+)h + o(h),

HΔ2(y + h) = HΔ2(y + h) − HΔ2(y) = H ′
Δ2

(y+)h + o(h),

HΔ1(y) =
HΔ(y)

HΔ(y + h)
= 1 − H ′

Δ(y+)h
HΔ(y)

+ o(h).

From the semi-Markov property, it follows that HΔ(y − h) = H(a,y)(y − h)HΔ(y) and hence,

1
h

(H(a,y)(y − h) − 1) → −H ′
Δ(y−)

HΔ(y)
.

And if the derivative H ′
Δ is continuous at the point y, then

HΔ1(y) = 1 − H ′
Δ1

(y−)h + o(h).

Consequently,

Px(Ψ3) → MΔ2(x) + GΔ2(x)
−H ′

Δ2
(y+) − G′

Δ2
(y+)

H ′
Δ1

(y−) − G′
Δ2

(y+)

for almost all y. It follows that

Px( lim
t→∞X(t) ≥ y |σΔ = ∞) = M−1

Δ (x)

(
MΔ2(x) + GΔ2(x)

−H ′
Δ2

(y+) − G′
Δ2

(y+)
H ′

(a,y)(y) − G′
Δ2

(y+)

)

or

Px( lim
t→∞X(t) < y |σΔ = ∞) = 1 − Px( lim

t→∞ X(t) ≥ y |σΔ = ∞)

= M−1
Δ (x)

(
MΔ(x) − MΔ2(x) + GΔ2(x)

G′
Δ2

(y+) + H ′
Δ2

(y+)
−G′

Δ2
(y+) + H ′

(a,y)(y−)

)
.

After using formulas (12), we get

lim
h→0

Px(Ψ3) = −GΔ(x) + GΔ2(x) − GΔ(x)
G′

Δ2
(y+)

G′
Δ1

(y−)
,

where Δ1 = (a, y) and Δ2 = (y, b). �

Let

f(x, y) ≡ Px(lim
t→0

X(t) < y, σΔ = ∞) ≡ QΔ(y |x)MΔ(x),

where x, y ∈ Δ ≡ (a, b). According to Theorem 2, this function has different analytic repre-
sentations on the areas {x < y} and {x > y}. Denote the first and the second representations
by f1(x, y) and f2(x, y), respectively. We show that this function is continuous on the line
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{x = y}, i.e., that the two limits lim
x→y

f1(x, y) ≡ f1(y, y) and lim
x→y

f2(x, y) ≡ f2(y, y) are equal.

Indeed, if x → y, then

f1(x, y) = 1 − GΔ(x) − HΔ1(x) + HΔ(x)
H ′

Δ1
(y−)

H ′
Δ2

(y+)
→ −GΔ(y) + HΔ(y)

H ′
Δ1

(y−)
H ′

Δ2
(y+)

≡ f1(y, y);

f2(x, y) = −GΔ(x) + GΔ2(x) − GΔ(x)
G′

Δ2
(y+)

G′
Δ1

(y−)
→ −GΔ(y) + 1 − GΔ(y)

G′
Δ2

(y+)
G′

Δ1
(y−)

≡ f2(y, y).

Here, using formulas (12) we conclude that for almost all y,

f1(y, y) − f2(y, y) =
H ′

Δ1
(y−)

H ′
Δ1

(y−) − G′
Δ2

(y+)
− 1 +

−G′
Δ2

(y+)
H ′

Δ1
(y−) − G′

Δ2
(y+)

= 0.

Corollary 1. If the conditions of Theorem 2 are satisfied, then

f1(x, y) = 1 − GΔ1(x) − HΔ1(x) + HΔ1(x)f(y, y), (13)

f2(x, y) = GΔ2(x)f(y, y), (14)

where in each formula, one can use any of the two presentations of f(y, y):

f(y, y) ≡ f1(y, y) = −GΔ(y) + HΔ(y)
H ′

Δ1
(y−)

H ′
Δ2

(y+)
,

f(y, y) ≡ f2(y, y) = 1 − GΔ(y) − GΔ(y)
G′

Δ2
(y+)

G′
Δ1

(y−)
.

Proof. Set

rG =
G′

Δ2
(y+)

G′
Δ1

(y−)
, rH =

H ′
Δ1

(y−)
H ′

Δ2
(y+)

.

From the two presentations of f(y, y), we obtain the following formulas for rH and rG:

rG =
f(y, y) + GΔ(y) − 1

−GΔ(y)
, rH =

f(y, y) + GΔ(y)
HΔ(y)

.

Substituting these expressions into the corresponding formulas, we complete the proof of the
corollary. �

Note that G′
Δ1

(y−)→ −∞ and G′
Δ2

(y+)→G′
Δ(a+)> −∞ if y → a, and also H ′

Δ2
(y+)→∞

and H ′
Δ1

(y−) → H ′
Δ(b−) < ∞ if y → b. It follows that

QΔ(a |x) = 0, QΔ(b |x) = 1 (∀x ∈ Δ).

Example. Let us consider equation (8) with constant coefficients A(x) ≡ A, B(0, x) ≡ B on
the interval Δ = (a, b). Solving the homogeneous differential equation with given boundary
conditions, we obtain

GΔ(x) = e−A(x−a) sh(b − x)r
sh(b − a)r

, HΔ(x) = eA(b−x) sh(x − a)r
sh(b − a)r

,

where r =
√

A2 + 2B. It follows that

GΔ(x) ∼ e−A(x−a) 2 sh(b − x)r
e(b−a)r

= e−(x−a)(r+A) 2 sh(b − x)r
e(b−x)r

→ 0 (a → −∞),

HΔ(x) ∼ eA(b−x) 2 sh(x − a)r
e(b−a)r

= e−(b−x)(r−A) 2 sh(x − a)r
e(x−a)r

→ 0 (b → ∞).
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Let us find the limit of the final distribution as a → −∞ and b → ∞. Obviously,
Px(μ(Δ)) → 1, and if x < y, then

QΔ(y |x) ∼ 1 − HΔ1(x) + HΔ(x)
H ′

Δ1
(y−)

H ′
Δ2

(y+)
.

Next,

HΔ1(x) = e(y−x)A sh(x − a)r
sh(y − a)r

∼ e(y−x)A e(x−a)r

e(y−a)r
= e−(y−x)(r−A) (a → −∞),

H ′
Δ1

(y−) = −A + r
ch(y − a)r
sh(y − a)r

, H ′
Δ2

(y+) = r e(b−y)A/ sh(b − y)r,

HΔ(x)
H ′

Δ1
(y−)

H ′
Δ2

(y+)
∼ e−(b−x)(r−A)

(
2 sh(x − a)r

e(x−a)r

) −A + r ch(y − a)r/sh(y − a)r
re(b−y)A/ sh(b − y)r

∼ 1
2

(
1 − A

r

)
e−(y−x)(r−A),

whence

QΔ(y |x) ∼ 1 − 1
2

(
1 +

A

r

)
e−(y−x)(r−A).

For the case x > y, we have

QΔ(y |x) ∼ GΔ2(x) − GΔ(x)
G′

Δ2
(y+)

G′
Δ1

(y−)
,

G′
Δ2

(y+) = −A − r
ch(b − y)r
sh(b − y)r

, G′
Δ1

(y−) = −r
e−(y−a)A

sh(y − a)r
,

GΔ(x)
G′

Δ2
(y+)

G′
Δ1

(y−)
∼ e−(x−a)(r+A)

(
2 sh(b − x)r

e(b−x)r

) −A − r ch(b − y)r/sh(b − y)r
−r e−(y−a)A/sh(y − a)r

∼ 1
2

(
1 +

A

r

)
e−(x−y)(r+A).

Therefore,

QΔ(y |x) ∼ 1
2

(
1 − A

r

)
e−(x−y)(r+A).

The density of the final measure for the one-dimensional diffusion process with characteristic
operator

Af =
1
2

f ′′ + Af ′ − B f

and the domain (−∞,∞) is of the form

q(y |x) =

{
B
r e−(x−y)(r+A), x > y,
B
r e−(y−x)(r−A), x < y,

(15)

where B > 0 and r =
√

A2 + 2B.
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3. Distribution of time before stop

Having the formula Px(C lim |σ(a,b) = ∞) = 1 and distribution Q(a,b)(y |x), it is natural to
ask whether it is possible to replace C lim in the first expression by its proper subset C∞ (of
continuous trajectories with infinite interval of constancy, i.e., with stop), and if so, then how
to allocate the time to the beginning of the stop; we denote this time by ζ. The lack of the
stop can be identified with infinite time before stopping. Thus, we need to distinguish between
the finite moment ζ and the infinite one, in which for every t0 there exists t1 > t0 such that
X(t1) 	= lim

t→∞X(t).
To determine the distribution of the variable ζ, we consider the sequence of the semi-Markov

step-processes generated by the process and sequence of the so-called correct coverings of the
interval Δ by intervals of finite length. Let the covering γ = (Δk)m1 be constructed by a finite
number of boundary points inside the interval Δ = (a, b),

a ≡ c0 < c1 < c2 < · · · < cm < cm+1 ≡ b (m ≥ 1),

so that
Δ1 = (c0, c2), Δ2 = (c1, c3), Δ3 = (c2, c4), . . . ,Δm = (cm−1, cm+1).

Such a covering is said to be correct. The rank of the covering is defined to be the greatest
length of the intervals belonging to the covering.

Fix a correct covering and the smallest index N(x) of an element of the covering that
contains the starting point x ∈ Δ of the process (there are at most two such indices). Let
N(x) = k (1 ≤ k ≤ m). We define a mapping Lγ : C → D, where D is the Skorokhod space
(the set of functions continuous from the right that have limit from the left at any point t > 0).
Let ξ(0) = x. The function Lγξ is a piecewise constant function taking a finite number of
values. In addition to the starting point x, it takes values from the set of boundary points of
the intervals of the covering γ and makes a finite number of jumps on every finite time interval.
Each possible value of the step-function corresponds to a unique interval of values of the initial
function ξ. In particular, for a and b, the intervals are (−∞, c1) and (cm,∞), respectively. The
function Lγξ (if it is not equal to the constant x) makes a jump at the points (τn) (n ≥ 1) of
the first exit of the function ξ or shifted functions θτn−1(ξ) outside the corresponding intervals
(if such an exit for ξ does not exist, then the function stops at the last reached point). Thus,
if τn(ξ) is the next jump from the state cp to state cq, then the process Lγξ keeps the constant
value cq on the interval [τn(ξ), (τn+̇σΔq)) (here, under Δq we mean infinite intervals if q = 0
or q = m + 1).

The measurable mapping Lγ induces a measure of the semi-Markov step-process (X ◦Lγ)(t),
which we call the embedded semi-Markov chain. The evolution of the semi-Markov chain until
the moment σΔ ◦ Lγ is given by the following objects: (1) the initial state x and the index
N(x) of the initial interval of the covering γ, to which it belongs, (2) the set of regular possible
states {c1, c2, . . . , cm} giving a sequence of the intervals Δk = (ck−1, ck+1), where c0 = a
and cm+1 = b, (3) the time of being in the initial state or the infinite time with probability
MΔN(x)

(x), or the finite time defined by the functions gΔN(x)
(λ, x) and hΔN(x)

(λ, x), (4) the
matrix S(λ) of the Laplace images of the time of regular transitions from the boundary point
of an interval belonging to the covering to the border of the next interval belonging to the
covering, (5) the vector of stop probabilities at the points of the regular set of the states

M = (MΔ1(c1),MΔ2(c2), . . . ,MΔm(cm))T

(here, T denotes the transposition).
The element Sij(λ) of the matrix S(λ) determines the expectation of the variable exp(−λσΔi)

on the set {σΔi < ∞, X(σΔi) = cj} provided that the process starts from the point ci. The

575



value
m∑

j=1
Sij(0)MΔj (cj) is the stop probability of the semi-Markov chain exactly after the first

jump with the same initial condition.
From the semi-Markov property of the original process, it follows that the nth power of the

matrix S characterizes the state of the process at the time of the nth jump of the embedded
semi-Markov chain, which is denoted by τn, on the set {τn < σΔ ◦ Lγ}. By definition, we put

τn = τn−1+̇σΔk
(n ≥ 1)

on the set {τn−1 < ∞, X(τn−1) = ck}.
Let us prove that

Sn
ij(λ) = Eci(e

−λτn ; X(τn) = cj , τn < σΔ) (i, j = 1, . . . m). (16)

Indeed, we can rewrite (16) in the form

Sn
ij(λ) = Eci(e

−λτn ; τn < ∞, X(τ1), . . . ,X(τn−1) ∈ Δ, X(τn) = cj).

For n = 1, the formula is true if we set τ1 = σΔi . Further, from assumption (16) and the
semi-Markov property, it follows that

Sn+1
kp (λ) =

m∑

i=1

Eck

(
e−λτn ; τn < ∞, X(τ1), . . . ,X(τn−1) ∈ Δ, X(τn) = ci

)

× Eci

(
e−λσΔi ; σΔi < ∞,X(σΔi) = cp

)

=
m∑

i=1

Eck

(
e−λτne−λσΔi

◦ θτn ; σΔi ◦ θτn < ∞,X(σΔi) ◦ θτn = cp,

τn < ∞,X(τ1), . . . ,X(τn−1) ∈ Δ, X(τn) = ci

)

=
m∑

i=1

Eck

(
e−λτn+1 ; τn+1 < ∞, X(τn+1) = cp,X(τ1), . . . ,X(τn−1) ∈ Δ, X(τn) = ci

)

= Eck

(
e−λτn+1 ; τn+1 < ∞, X(τ1), . . . ,X(τn) ∈ Δ, X(τn+1) = cp

)
.

Thus, formula (16) is true for all n.
For λ = 0, from formula (16) it follows that

Sn
ij(0) = Pci

(
τn < ∞, X(τ1), . . . ,X(τn−1) ∈ Δ, X(τn) = cj

)
.

Thus, Sn(0)M is the vector of stop probabilities of the semi-Markov chain exactly after the
nth jump and Sn(λ)M is the vector of the expectations of the variable e−λτn for different stop
points in the set {τn < ∞, τn+1 = ∞}.

Denote by ζγ the stopping time of the embedded semi-Markov chain generated by the
covering γ. By definition, ζγ = τn on the set {τn < ∞, τn+1 = ∞}. For the process controlled
by equation (7), assuming B(0, x) > 0 we have

Px(σΔ = ∞) > 0 and Px(ζγ < ∞|σΔ = ∞) = 1.

This probability can be expressed in terms of the functions GΔk
, HΔk

, and MΔk
. We derive

this probability as a consequence of a formula that represents the expectation

Ex(e−λζγ ; ζγ < ∞|σΔ = ∞)

expressed in terms of gΔk
(λ, · ), hΔk

(λ, · ), and MΔk
. To group terms with respect to x, we use

the terminal property of the time ζγ , which is formulated for the Markov moments τ , namely,
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if τ < ζγ , then ζγ = τ+̇ ζγ . For x ∈ Δ, this implies that

Ex

(
e−λζγ ; ζγ < ∞, σΔ = ∞)

=
m∑

k=1

Ex

(
e−λζγ ; ζγ < ∞, X(ζγ) = ck, σΔ = ∞

)

=
∑

ck<x

Ex

(
e−λσ(ck,b)+̇ ζγ ; σ(ck,b)+̇ ζγ < ∞, X(σ(ck ,b)+̇ ζγ) = ck, σ(ck,b)+̇ σΔ = ∞

)

+
∑

ck>x

Ex

(
e−λσ(a,ck)+̇ ζγ ; σ(a,ck)+̇ ζγ < ∞, X(σ(a,ck)+̇ ζγ) = ck, σ(a,ck)+̇ σΔ = ∞

)

=
∑

ck<x

Ex

(
e−λσ(ck,b) ; σ(ck,b) < ∞, X(σ(ck ,b)) = ck

)
Eck

(
e−λζγ ; ζγ < ∞, X(ζγ) = ck, σΔ = ∞

)

+
∑

ck>x

Ex

(
e−λσ(a,ck) ; σ(a,ck) <∞, X(σ(a,ck))= ck

)
Eck

(
e−λζγ ; ζγ < ∞, X(ζγ) = ck, σΔ = ∞

)

=
∑

ck<x

g(ck ,b)(λ, x)Eck

(
e−λζγ ; ζγ < ∞, X(ζγ) = ck, σΔ = ∞

)

+
∑

ck>x

h(a,ck)(λ, x)Eck

(
e−λζγ ; ζγ < ∞, X(ζγ) = ck, σΔ = ∞

)
.

We note that the problem is reduced to finding the required expectation in the regular initial
points of the process. The problem is particularly simple if m = 3, where both multiples not
depending on x are determined by the process emerging from the point c2.

Let us show that for any m ≥ 3 and 1 < k < m, finding the function Ex(e−λζγ ; ζγ <∞,
X(ζγ) = ck, σΔ = ∞) can be reduced to the case m = 3 (and to the case m = 2 for the
“boundary” intervals of the covering, where k = 1 or k = m).

If 1 < k < m, we pass to the case m = 3 by removing all the internal boundary points with
numbers less than k−1 and greater than k +1. The new three-point correct covering contains
three intervals Δ̃1 = (a, ck), Δ̃2 = Δk ≡ (ck−1, ck+1), and Δ̃3 = (ck, b). Obviously, the removal
of the boundary points of the covering does not affect the initial process, by means of which the
semi-Markov chains are constructed. On the other hand, removal of the boundary points of
the covering, for example, from the right group of points, leads to the use of the two functions
g(ck,b)(λ, c(k+1)) and M(ck,b)(c(k+1)), which can be expressed by the semi-Markov process law
via the composition of the functions

gΔk+i
(λ, ck+i), hΔk+i

(λ, ck+i), MΔk+i
(ck+i),

(i = 1, . . . ,m − k), which describe the probabilities of all trajectories of the original semi-
Markov chain from the moment of the first contact with the point ck+1 to the first exit outside
the interval (ck, cm+1) through the left border or to the stop there. For example, if k = m− 2
and only one boundary cm is removed, then

g(ck ,b)(λ, ck+1) =
gΔk+1

(λ, ck+1)
1 − hΔk+1

(λ, ck+1)gΔk+2
(λ, ck+2)

,

M(ck,b)(ck+1) =
MΔk+1

(ck+1) + hΔk+1
(λ, ck+1)MΔk+2

(ck+2)
1 − hΔk+1

(λ, ck+1)gΔk+2
(λ, ck+2)

.

The formulas become more cumbersome if we remove two or more boundary points. In the
present paper, we do not need these formulas.
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For m = 3, we get the matrix

S(λ) =

⎛

⎝
0 hΔ1(λ, c1) 0
gΔ2(λ, c2) 0 hΔ2(λ, c2)
0 gΔ3(λ, c3) 0

⎞

⎠

of regular transition functions. To find its powers, we consider the matrix

A =

⎛

⎝
0 a 0
b 0 c
0 d 0

⎞

⎠ (a, b, c, d > 0).

The odd powers of this matrix have the same order of placement of zeros and positive elements
as A has, and zeros of the even powers are located in the places of the positive values of the
original matrix. Hence, we obtain the values of the elements of the second column for all
powers of the matrix A,

A
2(n+1)+1
12 = A2n+1

12 (ab + cd), A2n+1
12 = a(ab + cd)n (n ≥ 0),

and, similarly,

A2n
22 = (ab + cd)n (n ≥ 1), A2n+1

32 = d(ab + cd)n (n ≥ 0).

It follows that

S2n
22 (λ) = (hΔ1(λ, c1)gΔ2(λ, c2) + hΔ2(λ, c2)gΔ3(λ, c3))n.

Consequently,

Ec2

(
e−λζγ ; ζγ < ∞, X(ζγ) = c2, σΔ = ∞)

= MΔ2(c2) +
∞∑

n=1

Ec2

(
e−λτn ; τn < ∞, τn+1 = ∞, X(τn) = c2, X(τ1), . . . X(τn−1) ∈ Δ

)

= MΔ2(c2) +
∞∑

n=1

MΔ2(c2)Ec2

(
e−λτn ; τn < ∞, X(τn) = c2, X(τ1), . . . X(τn−1) ∈ Δ

)

= MΔ2(c2) +
∞∑

n=1

MΔ2(c2)Sn
22(λ)

= MΔ2(c2) +
∞∑

n=1

MΔ2(c2)(hΔ1(λ, c1)gΔ2(λ, c2)) + hΔ2(λ, c2)gΔ3(λ, c3))n

=
MΔ2(c2)

1 − hΔ1(λ, c1)gΔ2(λ, c2)) − hΔ2(λ, c2)gΔ3(λ, c3)
.

For λ = 0, we obtain

Pc2

(
ζγ < ∞, X(ζγ) = c2, σΔ = ∞)

=
MΔ2(c2)

1 − HΔ1(c1)GΔ2(c2)) − HΔ2(c2)GΔ3(c3)
.

For m = 2, the matrix of regular transition functions has the form

S(λ) =
(

0 hΔ1(λ, c1)
gΔ2(λ, c2) 0

)
.

To study its powers, we consider the matrix

B =
(

0 a
b 0

)
(a, b > 0).
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The odd powers of this matrix have the same order of placement of zeros and positive elements
as B has, and zeros of the even powers are located in the places of the positive values of the
original matrix. Hence, we obtain the values of the elements of the powers of the matrix B,

B2n
11 = (ab)n (n ≥ 1), B2n+1

12 = a(ab)n (n ≥ 0),

B2n+1
21 = b(ab)n (n ≥ 0), B2n

22 = (ab)n (n ≥ 1)
and, hence,

S2n
11 (λ) = S2n

22 (λ) = (hΔ1(λ, c1)gΔ2(λ, c2))n.

Next,

Ec1(e
−λζγ ; ζγ < ∞, X(ζγ) = c1, σΔ = ∞)

= MΔ1(c1) +
∞∑

n=1

Ec1(e
−λτn ; τn < ∞, τn+1 = ∞,X(τn) = c1, X(τ1), . . . ,X(τn−1) ∈ Δ)

= MΔ1(c1) +
∞∑

n=1

MΔ1(c1)Ec1(e
−λτn ; τn < ∞,X(τn) = c1, X(τ1), . . . ,X(τn−1) ∈ Δ)

= MΔ1(c1) +
∞∑

n=1

MΔ1(c1)Sn
11(λ)

= MΔ1(c1) +
∞∑

n=1

MΔ1(c1)(hΔ1(λ, c1)gΔ2(λ, c2))n =
MΔ1(c1)

1 − hΔ1(λ, c1)gΔ2(λ, c2)

and also

Ec2

(
e−λζγ ; ζγ < ∞, X(ζγ) = c2, σΔ = ∞)

=
MΔ2(c2)

1 − hΔ1(λ, c1)gΔ2(λ, c2)
.

Thus, for x ∈ Δ,

Ex(e−λζγ ; ζγ < ∞, σΔ = ∞) =
m∑

k=1

Ex(e−λζγ ; ζγ < ∞, X(ζγ) = ck, σΔ = ∞)

=
∑

a<ck<x

Ex(e−λζγ ; ζγ < ∞, X(ζγ) = ck, σΔ = ∞)

+
∑

x<ck<b

Ex(e−λζγ ; ζγ < ∞, X(ζγ) = ck, σΔ = ∞)

=
∑

a<ck<x

g(ck,b)(λ, x)Eck
(e−λζγ ; ζγ < ∞, X(ζγ) = ck, σΔ = ∞)

+
∑

x<ck<b

h(a,ck)(λ, x)Eck
(e−λζγ ; ζγ < ∞, X(ζγ) = ck, σΔ = ∞)

=
∑

a<ck<x

g(ck,b)(λ, x)MΔk
(ck)

1 − h(a,ck)(λ, ck−1)gΔk
(λ, ck) − g(ck ,b)(λ, ck+1)hΔk

(λ, ck)

+
∑

x<ck<b

h(a,ck)(λ, x)MΔk
(ck)

1 − h(a,ck)(λ, ck−1)gΔk
(λ, ck) − g(ck,b)(λ, ck+1)hΔk

(λ, ck)
,

where h(a,c1)(λ, c0) = g(cm,b)(λ, cm+1) = 0.
Our next task is to prove the convergence ζγ → ζ as ε → 0, where ε is the rank of the

covering γ. For this purpose, it is convenient to use some regular method for constructing a
sequence of correct covering with decreasing ranks.
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Given a covering γ(ε), a correct covering of rank ε/2 is constructed by dividing each odd
interval in half, followed by adding to thus formed new sequence of odd intervals the even
elements of the cover, which are the intervals between the midpoints of adjacent odd intervals.
We call this operation a correct subdivision. Suppose that the covering γ2 is obtained by
the correct subdivision from a right covering γ1. Clearly, in this case, ζγ1 ≤ ζγ2 ≤ ζ. Let
(γn)∞1 be a sequence of correct coverings, each of which is obtained from the previous by
the correct subdivision. The stop moments (ζn) corresponding to these coverings form a
nondecreasing sequence of measurable functions defined on the same probability space. This
sequence converges almost surely.

Lemma 2. The sequence (ζn) converges to ζ on the set {σΔ = ∞} almost surely with respect
to Px.

Proof. From the definition of ζn, it follows that for every function ξ ∈ Clim,

sup
t≥ζn

|ξ(t) − ξ(ζn)| ≤ εn.

The fact that ζn ≤ ζn+1 for every n ≥ 1, implies the existence of the limit lim
n→∞ ζn ≡ ζ∞ almost

surely with respect to Px, where ζ∞ ≥ ζn. Obviously, ζ ≥ ζn. This implies that for any t > 0,
we have |ξ(ζ∞ + t) − ξ(ζ)| ≤ 2εn. Since n and ξ are arbitrary, it follows that these two values
are equal almost surely with respect to Px. Therefore, ζ∞ = ζ almost surely with respect
to Px. �

It follows that

Ex(e−λζ ; σΔ = ∞) = Ex(e−λζ − e−λζn ; σΔ = ∞)

+
mn∑

k=1

Ex(e−λζn ; ζn < ∞, X(ζn) = cn,k, σΔ = ∞),

where mn and cn,k are the number of intervals and the internal boundary point of the cover-
ing γn, respectively. Consequently,

Ex(e−λζγ ; ζγ < ∞, σΔ = ∞) = Ex(e−λζ − e−λζn ; σΔ = ∞)

+
∑

k:a<cn,k<x

g(cn,k ,b)(λ, x)MΔn,k
(cn,k)

1 − h(a,cn,k)(λ, cn,k−1)gΔn,k
(λ, cn,k) − g(cn,k,b)(λ, cn,k+1)hΔn,k

(λ, cn,k)

+
∑

k:x<cn,k<b

h(a,cn,k)(λ, x)MΔn,k
(cn,k)

1 − h(a,cn,k)(λ, cn,k−1)gΔn,k
(λ, cn,k) − g(cn,k ,b)(λ, cn,k+1)hΔn,k

(λ, cn,k)
.

Denote by εn,k the length of the interval Δn,k. From the definition of semi-Markov process of
diffusion type, it follows that as n → ∞, we have

MΔn,k
(cn,k) = B(0, cn,k)ε2

n,k + o(ε2
n,k),

gΔn,k
(λ, cn,k) =

1
2
(1 − A(cn,k)εn,k) + o(εn,k),

hΔn,k
(λ, cn,k) =

1
2
(1 + A(cn,k)εn,k) + o(εn,k).

The existence of the derivatives of the functions g(cn,k,b)(λ, x) and h(a,cn,k)(λ, x) on the interval
boundaries implies that

g(cn,k ,b)(λ, cn,k+1)=g(cn,k ,b)(λ, cn,k+1)−g(cn,k,b)(λ, cn,k) + 1=1+g′(cn,k ,b)(λ, cn,k+)εn,k+o(εn,k),

h(a,cn,k)(λ, cn,k−1)=h(a,cn,k)(λ, cn,k−1)−h(a,cn,k)(λ, cn,k)+1=1−h′
(cn,k ,b)(λ, cn,k+)εn,k+o(εn,k).
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It follows that

Ex(e−λζγ ; ζγ < ∞, σΔ = ∞) = Ex(e−λζ − e−λζn ; σΔ = ∞)

+
∑

k:a<cn,k<x

g(cn,k ,b)(λ, x)B(0, cn,k)ε2
n,k + o(ε2

n,k)
(1/2)(h′

(a,cn,k )(λ, cn,k−) − g′(cn,k,b)(λ, cn,k+))εn,k + o(εn,k)
,

+
∑

k:x<cn,k<b

h(a,cn,k)(λ, x)B(0, cn,k)ε2
n,k + o(ε2

n,k)
(1/2)(h′

(a,cn,k)(λ, cn,k−) − g′(cn,k ,b)(λ, cn,k+))εn,k + o(εn,k)
.

As n → ∞, we obtain the integral representation

Ex(e−λζ ; ζ < ∞, σΔ = ∞) =

x∫

a

g(y,b)(λ, x)
2B(0, y) dy

h′
(a,y)(λ, y−) − g′(y,b)(λ, y+)

+

b∫

x

h(a,y)(λ, x)
2B(0, y) dy

h′
(a,y)(λ, y−) − g′(y,b)(λ, y+)

.

(17)

Applying formulas (12) and semi-Markov formulas (3, 4), we get

Ex(e−λζ ; ζ < ∞, σΔ = ∞) = gΔ(λ, x)

x∫

a

2B(0, y) dy

−g′Δ1
(λ, y−)

+ hΔ(λ, x)

b∫

x

2B(0, y) dy

h′
Δ2

(λ, y+)
. (18)

Example. Consider this formula for A and B(λ, · ) to be constant. We have

gΔ(λ, x) = e−A(x−a) sh(b − x)r
sh(b − a)r

,

hΔ(λ, x) = eA(b−x) sh(x − a)r
sh(b − a)r

,

(19)

where r =
√

A2 + 2B(λ), and also

g′Δ1
(λ, y−) = e−A(y−a) −r

sh(y − a)r
,

h′
Δ2

(λ, y+) = eA(b−y) r

sh(b − y)r
.

It follows that

Ex(e−λζ ; ζ < ∞, σΔ = ∞)

= gΔ(λ, x)

x∫

a

2B(0) sh(y − a)r dy

re−A(y−a)
+ hΔ(λ, x)

b∫

x

2B(0) sh(b − y)r dy

r eA(b−y)

=
B(0)
B(λ)

gΔ(λ, x)

(
− 1 + eA(x−a) ch(x − a)r − A

r
eA(x−a) sh(x − a)r

)

+
B(0)
B(λ)

hΔ(λ, x)

(
− 1 + e−A(b−x) ch(b − x)r +

A

r
e−A(b−x) sh(b − x)r

)

=
B(0)
B(λ)

(
− gΔ(λ, x) +

sh(b − x)r
sh(b − a)r

ch(x − a)r − A

r

sh(b − x)r
sh(b − a)r

sh(x − a)r
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− hΔ(λ, x) +
sh(x − a)r
sh(b − a)r

ch(b − x)r +
A

r

sh(x − a)r
sh(b − a)r

sh(b − x)r

)

=
B(0)
B(λ)

(1 − gΔ(λ, x) − hΔ(λ, x). (20)

In some cases, one can find the inverse image of the Laplace transform of this expression.
If the original process is developed as a diffusion Markov process until the stop, then the
coefficient B(λ) depends linearly on λ, i.e., B(λ) = B + cλ, where B > 0, c > 0. The inverse
image of the relation B

B+cλ is the density of exponential distribution. At the same time, the
inverse images of the functions gΔ(λ, x) and hΔ(λ, x) are known (see [1, p. 303]):

L−1
λ gΔ(λ, x) = e−A(x−a)−(A2/2+B)t

∞∑

k=−∞

x − a + 2k(b − a)√
2πt3

e−(x−a+2k(b−a))2/(2t),

L−1
λ hΔ(λ, x) = eA(b−x)−(A2/2+B)t

∞∑

k=−∞

b − x + 2k(b − a)√
2πt3

e−(b−x+2k(b−a))2/(2t).

To obtain the full inverse image, we use a known result, according to which the product of
images corresponds to the convolution of the inverse images.

An unexpected result is obtained from this formula as a → −∞ and b → ∞. In this case,

Ex(e−λζ ; ζ < ∞, σΔ = ∞) → B(0)
B(λ)

and the limit does not depend on x. It follows that in “Markov’s” case, for any starting point
of the process, the time before the final stop of the process is exponentially distributed with
the same parameter B/c.

Appendix. Let us prove formulas (12). Let a < y−h < y < y+h < b, Δ = (a, b), Δ1 = (a, y),
and Δ2 = (y, b). Then

HΔ(y − h) = HΔ1(y − h)HΔ(y);

HΔ(y − h) − HΔ(y) = HΔ(y)(HΔ1(y − h) − HΔ1(y));

H ′
Δ(y−) = H ′

Δ1
(y−)HΔ(y), (21)

HΔ(y + h) = HΔ2(y + h) + GΔ2(y + h)HΔ(y);

HΔ(y + h) − HΔ(y) = HΔ2(y + h) − HΔ2(y) + (GΔ2(y + h) − GΔ2(y))HΔ(y);

H ′
Δ(y+) = H ′

Δ2
(y+) + G′

Δ2
(y)HΔ(y). (22)

GΔ(y − h) = GΔ1(y − h) + HΔ1(y − h)GΔ(y);

GΔ(y − h) − GΔ(y) = GΔ1(y − h) − GΔ1(y) + GΔ(y)(HΔ1(y − h) − HΔ1(y));

G′
Δ(y−) = G′

Δ1
(y−) + H ′

Δ1
(y−)GΔ(y), (23)

GΔ(y + h) = GΔ2(y − h)GΔ(y);

GΔ(y + h) − GΔ(y) = GΔ(y)(GΔ2(y + h) − GΔ2(y)),

G′
Δ(y+) = G′

Δ2
(y+)GΔ(y). (24)

Comparing formulas (21) and (22) at the points y, where the derivative from the right equals
the derivative from the left, we obtain

HΔ(y) =
H ′

Δ2
(y+)

H ′
Δ1

(y−) − G′
Δ2

(y+)
.
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Comparing formulas (23) and (24) at the points y, where the derivative from the right equals
the derivative from the left, we obtain

GΔ(y) =
−G′

Δ1
(y−)

H ′
Δ1

(y−) − G′
Δ2

(y+)
.
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