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PROBABILITIES OF SMALL DEVIATIONS OF
THE WEIGHTED SUM OF INDEPENDENT RANDOM
VARIABLES WITH COMMON DISTRIBUTION THAT
DECREASES AT ZERO NOT FASTER THAN A POWER

L. V. Rozovsky∗ UDC 519.2

The paper presents estimates of small deviation probabilities of the sum
∑

j≥1

λj Xj, where {λj} are

positive numbers and {Xj} are i.i.d. positive random variables satisfying weak restrictions at zero
and infinity. Bibliography: 16 titles.

1. Introduction and results. Let S =
∑

j≥1
λ(j)Xj , where {Xi} are independent copies of

a positive random variable X with distribution function V (x), and let λ( · ) be a bounded
positive nonincreasing function defined on the interval [1,∞]. We assume that the series S
converges almost surely, which is equivalent to the condition

∑

j≥1

Emin (1, λ(j)X) < ∞. (1.1)

It is known that a convergence rate of the probability P(S < r) to zero as r ↘ 0 depends
on the behavior of the distribution V at zero and at infinity, and the latter, in a sense, is
determined by condition (1.1). So, if λ(n) � n−A, A > 1, or λ(n) � qn, 0 < q < 1, then (1.1)
is equivalent to the conditions EX1/A < ∞ and E log (1 + X) < ∞, respectively.

Henceforth, u(y) � v(y) ⇐⇒ log {u(y)/v(y)} = O (1), y → ∞.
If the behavior of V at zero is not too restricted, then it is possible to get an optimal

logarithmic asymptotics for P(S < r) (see, for instance, [1–6]).
In order to obtain more exact estimates, it is usually assumed that V decreases at zero as

a power, for example, it is a regularly varying function (see [7, 8, 16]), or satisfies essentially
milder condition proposed in [9] (see also [10]):

L. There exist constants b ∈ (0, 1), c1, c2 > 1, and ε > 0 such that for each r ≤ ε,

c1 V (b r) ≤ V (r) ≤ c2 V (b r). (1.2)

Later on, results from [9] were improved in [11] and [12]. In the last paper, the condition L
was replaced by a more general assumption R (see below), which, in particular, allows V (r),
in addition, to decrease at zero slower than any power of r (for instance, to be a slowly varying
function).

For y > 0, set

ν(y) =
1
y

y∫

0

u dV (u)

and introduce the following condition:
R. There exist constants b ∈ (0, 1), c1 > b, c2 > 1, and ε > 0 such that for every r ≤ ε,

c1 ν(b r) ≤ ν(r) ≤ c2 ν(b r). (1.3)
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It was shown in [12] that L ⇐⇒ R
∣
∣
∣
c1>1

. At the same time, if

ν(y) � l(y), y → +0, (1.4)

where l(y) is a function slowly varying at zero, then

V (y) � l̃(y) =

y∫

0

l(u)/u du, y → +0 (1.5)

and l̃(y) is also slowly varying at zero. From (1.4) and (1.5), it follows that (1.3) is satisfied
for b small enough, whereas the left-hand side of condition (1.2) is violated. Thus, R is weaker
than L.

Set
f(u) = Ee−uX , L(u) =

∑

n≥1

log f(uλ(n)), u ≥ 0. (1.6)

We assume (see [14, (3.2)]) that the distribution V satisfies at infinity the condition
F. lim sup

s→∞
s2 P(X ≥ s)/EX2 1[X < s] < ∞.

The condition F holds if X belongs to the attraction domain of a stable law and, in partic-
ular, has a finite variance. It also implies that EXδ < ∞ for some positive δ (see [11]).

Theorem 1. ([12]). Let conditions (1.1), R, and F be satisfy and, in addition,

τ2(u) = u2 L′′(u) → ∞, u → ∞. (1.7)

Then
P(S < r) ∼ exp (L(u) + ur)

τ(u)
√

2π
, r → 0, (1.8)

where the function u = u(r) is a unique solution of the equation

L′(u) + r = 0. (1.9)

Remark 1. Condition (1.7) follows from L. Also, it is valid (without any assumption concern-
ing the behavior of V at zero) if the conditions F and λ(j) � e−g(j) hold, where the function
g is nondecreasing and g(u)/u monotonically tends to zero at infinity (see [12]). On the other
hand, if, for example, λ(j) � exp (−j2), EX2 < ∞, and (see (1.4)) l(y) � log−2 y, y → +0,
then lim inf

u→∞ τ(u) = 0.

For rapidly decreasing weights λ(j), the necessary condition (1.1) is significantly weaker
than the condition F playing a key role in the proof of Theorem 1.

In [13], the asymptotics of the probability P(S < r) was studied in the case where the
condition L is satisfied and the condition F is not. In particular, the following result was
obtained there.

Theorem 2. Let conditions (1.1), L, and

sup
m≥1

λ(m l)/λ(m) ≤ Aλ(l), l ≥ 1, (1.10)

hold, where A is a positive constant. Then

P(S < r) � exp (L(u) + ur)
τ(u)

, r → 0, (1.11)

where the function u = u(r) satisfies equation (1.9).
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Note that (1.10) holds if λ(n) � e−g(logn), where the function g(y)/y does not decrease for
all y large enough. For example, as λ(n), one can take n−δ or e−nδ

with δ > 0.

In the present paper, the behavior of the probability P(S < r) is studied provided that L
is replaced by R and the condition F is relaxed.

Let us formulate the results.

Theorem 3. Let conditions (1.1), R, and (see (1.6))

lim sup
s→0

s |f ′′′(s)|/f ′′(s) < ∞ (1.12)

hold. Then

P(S < r) � exp (L(u) + ur)
1 + τ(u)

, r → 0, (1.13)

where the function u = u(r) satisfies the equation (1.9).

Remark 2. Condition (1.12) holds if the function

β(x) = EX2 I[X < x]

satisfies the condition
sup
x≥u

x−k β(x) = O (u−k β(u)), u → ∞, (1.14)

for some k > 0, or, more generally, if

sup
t≥1

β(tu)/β(t) = O (g(u)), u → ∞,

where
∞∫

1

g(u)u e−u du < ∞.

Note that (1.14) is weaker than F. Indeed, F implies

x−2 β(x) ≤ x−2 Emin (x2,X2) ≤ u−2Emin (u2,X2) = O (u−2 β(u)), u → ∞
for any x ≥ u > 0.

Remark 3. Theorem 3 is still valid if the function u in (1.13) satisfies the conditions

L′(u) + r
√

L′′(u)
= O (1), r → 0, (1.15)

and
L′(εu) + r ≤ 0 ≤ L′(u/ε) + r, (1.16)

where ε ∈ (0, 1) is a constant and r > 0 is small enough.
In other words, the exact solution of equation (1.9) can be replaced by an approximate one.

Remark 4. Set I0(u) =
∞∫

1

log f(uλ(t)) dt. If the function λ( · ) satisfies the condition

∞∫

1

| log′′ λ(t)| dt < ∞ (1.17)

and, moreover,
∞∫

1

|(s log′ f(s))′| ds < ∞, (1.18)
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then (see (1.13))
L(u) = I0(u) + 0.5 log f(u) + O (1), u → ∞. (1.19)

We remark that (1.18) holds if the function s log′ f(s) is monotone at infinity. Some other
conditions can be found in [10] and [15].

The following consequence of Theorem 3 is similar to [13, Theorem 4].

Theorem 4. Let conditions (1.1), R , (1.12), (1.17), (1.18), and s2 I ′′0 (s) → ∞, s → ∞, hold.
Then

P(S < r) �
√

f(u)
u2 I ′′0 (u)

eI0(u)+ur, r → 0,

where the function u = u(r) satisfies the conditions

I ′0(εu) + r ≤ 0 ≤ I ′0(u/ε) + r and
∣
∣
∣
I ′0(u) + r
√

I ′′0 (u)

∣
∣
∣ < 1/ε

with constant ε ∈ (0, 1) and all positive r small enough.

2. Proofs. Below, we essentially use results from [12] and [13].
Let a random variable X(u), u ≥ 0, have distribution e−u r V (dr)/f(u).
From [13, (3.4), (3.5)], it follows that

P(S < r) ≤ eL(u)+ur

τ(u)

(
1√
2π

+ 6 τ(u)μ(u)
)

, (2.1)

where

μ(u) =
1

σ3(u)

∑

j≥1

λ3
j E|X(uλ(j)) −EX(uλ(j)|3 (2.2)

and the function u satisfies condition (1.9). Moreover,

P(S < r) ≤ eL(u)+ur. (2.3)

We have,
μ(u) ≤ 8

∑

j≥1

λ3(j)EX3(uλ(j)) ≤ 8A/τ(u), (2.4)

where owing to [12, (2.5) for h ≥ 1] and (1.12) (see also [14, Lemma 2.2]),

A = sup
γ>0

γ EX3(γ)/VarX(γ) < ∞. (2.5)

The upper bound in (1.13) follows from (2.1) and (2.3)–(2.5).
Next, from [13, (3.6), (3.7), and (3.10)] with regard to (2.2), (2.4), and (2.5), it follows that

for any K > 0,

P(S < r) ≥ eL(u)+ur−2K max
(

1 − τ2(ū)
K2

,
1

τ(ū)
(
K Φ̄(K/τ(ū)) − 48A

)
)

, (2.6)

where u and ū satisfy conditions (1.9) and ū( r + L′(ū)) = K, respectively, Φ̄(t) = 1
t

t∫

0

dΦ(X),

and Φ( · ) is the standard normal distribution. Moreover,

|τ2(ū) − τ2(u)| ≤ (2 + 8A)K. (2.7)

The lower bound in (1.13) follows from (2.6) and (2.7), provided that K is large enough.
Theorem 3 is proved.
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Let us consider Remark 1. The first statement follows from [9]. To check the second one,
we observe that if uλ(n + 1) < 1 ≤ uλ(n), then

τ2(u) ≤
( ∑

1≤j≤n

+
∑

j>n

)

(uλ(j))2 EX2(uλ(j)) = J1 + J2.

In our example,

J1 = O

(

u2
∑

j>n

λ2(j)
)

, J2 = O

(

u2
∑

1≤j≤n

1
| log uλ(j)|

)

, u → ∞.

Let u = uN = e(N+1/2)2 , where N = 1, 2, . . . . Then n = N and, accordingly to the previous
estimates, for zN = (N + 1/2)2 and N → ∞, we have

J1 = O

( ∑

j≥N

e−2(j2−zN )

)

= O(e−cN ), J2 = O

( ∑

1≤j≤N

1
zN − j2

)

= O(log N/N).

Thus, lim
N→∞

τ(u) = 0. Remark 1 is completely checked.

Remark 2 is a consequence of the obvious estimates f ′′(s) ≥ β(1/s)/e and s |f ′′(s)| ≤
β(1/s) +

∞∫

1

β(x/s) e−x(x − 1) dx.

Remark 3 is a consequence of the following relations (see [13, (3.10) and below]), in which
the function h = h(r) satisfies the equation L′(h) + r = 0:

∣
∣
∣ log

τ2(u)
τ2(h)

∣
∣
∣ =

∣
∣
∣
∣

u∫

h

dτ2(u)
τ2(u)

∣
∣
∣
∣ ≤ (2 + 8A)

∣
∣
∣
∣

u∫

h

du

u

∣
∣
∣
∣ = (2 + 8A)

∣
∣
∣ log

u

h

∣
∣
∣,

0 ≤ L(u)+u r−(L(h)+h r) =

u∫

h

(L′(t)+r) dt ≤ |(u−h)| |L′(u)+r| = (u−h)2 L′′(ũ), ũ ∈ (u, h).

Remark 4 and Theorem 4 with regard to (2.5) are checked in the same way as similar
statements from [10].
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