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ON THE LITTLEWOOD–OFFORD PROBLEM

Yu. S. Eliseeva∗ and A. Yu. Zaitsev† UDC 519.2

The paper deals with studying a connection between the Littlewood–Offord problem and estimating
the concentration functions of some symmetric infinitely divisible distributions. Some multivariate
generalizations of Arak’s results (1980) are given. They establish a relationship of the concentra-
tion function of the sum and arithmetic structure of supports of the distributions of independent
random vectors for arbitrary distributions of summands. Bibliography: 21 titles.

Let X,X1, . . . ,Xn be independent identically distributed random variables. Let a = (a1, . . .,
an), where ak = (ak1, . . . , akd) ∈ Rd, k = 1, . . . , n. The concentration function of a real d-di-
mensional random vector Y with distribution F = L(Y ) is defined by the equality

Q(F, λ) = sup
x∈Rd

P(Y ∈ x + λB), λ ≥ 0,

where B = {x ∈ Rn : ‖x‖ ≤ 1/2}. In the present paper, we study the behavior of the con-

centration function of weighted sum Sa =
n∑

k=1

Xkak depending on properties of the vectors ak.

Recently, interest in this subject has increased considerably in connection with the study of
eigenvalues of random matrices (see, for instance, [9, 13,16–20]). For a detailed history of the
problem, we refer to a recent survey of Nguen and Vu in [14]. The authors of the above articles
(see also [10]) called this question the Littlewood–Offord problem, since for the first time, this
problem was considered in 1943 by Littlewood and Offord [12] in connection with the study
of random polynomials. They considered a special case, where the coefficients ak ∈ R are
one-dimensional and X takes values ±1 with probabilities 1/2.

Let us introduce some notation. In the sequel, let Fa denote the distribution of the sum Sa,
let Ey be the probability measure concentrated at a point y, and let G be the distribution of
the random variable X̃ , where X̃ = X1 − X2 is a symmetrized random variable.

The symbol c will be used for absolute positive constants, which may be different even in
the same formula. Below, A � B means that |A| ≤ cB. Also, we write A � B if A � B
and B � A. We write A �d B if |A| ≤ c(d)B, where c(d) > 0 depends only on d. Similarly,
A �d B if A �d B and B �d A. The scalar product in Rd is denoted by 〈 · , · 〉. In what
follows, 
x� is the largest integer k such that k < x. For x = (x1, . . . , xn) ∈ Rn, we use the
norms ‖x‖2 = x2

1 + · · ·+x2
n and |x| = maxj |xj|. We denote by F̂ (t), t ∈ Rd, the characteristic

function of a d-dimensional distribution F .
Products and powers of measures are understood in the convolution sense. For an infinitely

divisible distribution F , the infinitely divisible distribution with characteristic function F̂ λ(t),
λ ≥ 0, is denoted by F λ.

The elementary properties of concentration functions are well studied (see, for instance,
[3, 11,15]). It is known that

Q(F, μ) �d (1 + 
μ/λ�)d Q(F, λ) (1)

for any μ, λ > 0. Hence,
Q(F, cλ) �d Q(F, λ). (2)
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Let us formulate a generalization of the classical Esséen inequality [7] to the multivariate
case ([8], see also [11]).

Lemma 1. Let τ > 0, and let F be a d-dimensional probability distribution. Then

Q(F, τ) �d τd

∫

|t|≤1/τ

|F̂ (t)| dt. (3)

In the general case, the concentration function Q(F, λ) cannot be estimated from below by
the right-hand side of inequality (3). However, if we assume additionally that the distribution
F is symmetric and its characteristic function is nonnegative for all t ∈ R, then

Q(F, τ) �d τd

∫

|t|≤1/τ

|F̂ (t)| dt (4)

and, therefore,

Q(F, τ) �d τd

∫

|t|≤1/τ

|F̂ (t)| dt (5)

(see Lemma 1.5 for d = 1 in [3, Chap. II] or [1]). In the multivariate case, relations (4) and (5)
were obtained by Zaitsev in [21], see also [4]. The use of relation (5) allows us to simplify the
arguments in [9, 17,20], which were applied to the Littlewood–Offord problem (see [4–6]).

The main result of the present paper is a general inequality, which reduces the estimation of
concentration functions in the Littlewood–Offord problem to the estimation of the concentra-
tion functions of some infinitely divisible distributions. This result is formulated in Theorem 1
below.

For z ∈ R, we introduce the distribution Hz with characteristic function

Ĥz(t) = exp
(
− 1

2

n∑

k=1

(
1 − cos(〈 t, ak〉 z)

))
. (6)

It depends on the vector a. It is clear that Hz is a symmetric infinitely divisible distribution.
Therefore, its characteristic function is positive for all t ∈ Rd.

Theorem 1. Let V be an arbitrary d-dimensional Borel measure such that λ = V {R} > 0
and V ≤ G, i.e., V {B} ≤ G{B} for any Borel set B. Then, for any ε > 0 and τ > 0, we
have

Q(Fa, τ) �d Q(Hλ
1 , ε) exp

(

d

∫

z∈R
log

(
1 + 
τ(ε|z|)−1�) F{dz}

)

, (7)

where F = λ−1V .

Note that log
(
1 + 
τ(ε|z|)−1�) = 0 for |z| ≥ τ/ε. Therefore, the integration in (7) is taken,

in fact, over the set
{
z : |z| < τ/ε

}
only.

Corollary 1. Let δ > 0 and

p(δ) = G
{{z : |z| ≥ δ}} > 0. (8)

Then, for any ε, τ > 0, we have

Q(Fa, τ) �d eΔ Q(Hp(δ)
1 , ε), (9)

where
Δ = Δ(τ, ε, δ) =

d

p(δ)

∫

|z|≥δ

log
(
1 + 
τ(ε|z|)−1�) G{dz}. (10)
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In particular, choosing δ = τ/ε, we get the following statement.

Corollary 2. For any ε, τ > 0, we have

Q(Fa, τ) �d Q(Hp(τ/ε)
1 , ε). (11)

Corollary 2 (usually for τ = ε) is actually a starting point for almost all recent studies on
the Littlewood–Offord problem (see, for instance, [9, 10, 13, 16, 17, 20]). More precisely, with
the help of Lemma 1 or its analogs, the authors of the above-mentioned papers have obtained
estimates of the form

Q(Fa, τ) �d sup
z≥τ/ε

τd

∫

|t|≤1/τ

Ĥp(τ/ε)
z (t) dt. (12)

The fact that (1) and (5) imply

sup
z≥τ/ε

τd

∫

|t|≤1/τ

Ĥp(τ/ε)
z (t) dt �d sup

z≥τ/ε
Q

(
Hp(τ/ε)

z , τ
)

= sup
z≥τ/ε

Q
(
H

p(τ/ε)
1 , τ/z

)
= Q

(
H

p(τ/ε)
1 , ε

)
,

(13)

went apparently unnoticed by the authors of these papers, which significantly complicated
further evaluation of the right-hand side of inequality (12).

Choosing V so that

V {dz} =
(
max

{
1, log

(
1 + 
τ(ε|z|)−1�)})−1

G{dz}, (14)

we obtain one more corollary.

Corollary 3. For any ε, τ > 0, we have

Q(Fa, τ) �d Q(Hλ
1 , ε) exp

(
dλ−1G

{{z : |z| < τ/ε}})
, (15)

where
λ = λ(G, τ/ε) = V {R} =

∫

z∈R

(
max

{
1, log

(
1 + 
τ(ε|z|)−1�)})−1

G{dz}. (16)

In Corollaries 1–3, we choose the measure V in the form V {dz} = f(z)G{dz} with 0 ≤
f(z) ≤ 1. Choosing the optimal function f , minimizing the right-hand sides of inequalities
(9), (11), and (15), is a difficult problem. It is clear that its solution depends on a and G.
Certainly, it is sufficient to consider nondecreasing functions f only.

For a fixed ε, the increase of λ implies the decrease of Q(Hλ
1 , ε). Theorem 1 can be applied to

V = G. Then λ = 1. This is the maximal possible value of λ. However, in this case, the integral
on the right-hand side of (7) can be infinite. In particular, it diverges if the distribution G has
a nonzero atom at zero. This atom must be excluded in constructing the measure V in any
case if we expect to get a meaningful bound for Q(Fa, τ). For a fixed measure V , the decrease
of ε implies the decrease of Q(Hλ

1 , ε), but the integral on the right-hand side of inequality (7)
increases.

In Corollary 3, we used the measure V defined in (14) so that the integral on the right-hand
side of inequality (7) would converge always no matter what the measure G is.

The proof of Theorem 1 is based on elementary properties of concentration functions, which
will be given below. Note that Hλ

1 is an infinitely divisible distribution with Lévy spectral

measure Mλ = λ
4 M∗, where M∗ =

n∑

k=1

(
Eak

+ E−ak

)
. It is clear that the assertions of

Theorem 1 and Corollaries 1–3 reduce the Littlewood–Offord problem to the study of the
measure M∗ uniquely corresponding to the vector a. In fact, almost all the results obtained
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in solving this problem are formulated in terms of the coefficients aj or, equivalently, in terms
of the properties of the measure M∗. Sometimes, this leads to the loss of information on the
distribution of the random variable X, which may help in obtaining more precise estimates. In
particular, if L(X) is the standard normal distribution, then Fa is a Gaussian distribution with
zero mean and covariance operator, which can easily be computed. Thus, there are situations,
in which it is possible to obtain estimates for Q(Fa, τ) that do not follow from the results
formulated in terms of the measure M∗.

Note that using the results of Arak [1, 2] (see also [3]), one could derive from Theorem 1
estimates similar to estimates of the concentration functions in the Littlewood–Offord problem
that were obtained in a recent paper [13] (see also [14]). A detailed discussion of this fact is
presented in a joint paper of the authors and Friedrich Götze, which is preparing for the
publication. In the same paper, the proof of multidimensional analogs of some results of
Arak in [1] is given. In Theorems 2 and 3 below, we cite these results without proofs. They
show a relationship between the order of smallness of the concentration function of the sum
and arithmetic structure of the supports of distributions of independent random vectors for
arbitrary distributions of summands. This is different from the results in [9, 13,16–20], where
a similar relationship was found in a special case of summands with distributions arising in
the Littlewood–Offord problem.

We need some notation. Let Z+ be the set of nonnegative integers. For any r ∈ Z+ and
u = (u1, . . . , ur) ∈ (Rd)r with uj ∈ Rd for j = 1, . . . , r, we introduce the set

K1(u) =
{ r∑

j=1

njuj : nj ∈ {−1, 0, 1} for j = 1, . . . , r
}

. (17)

Denote by [B]τ the closed τ -neighborhood of a set B in the sense of the norm | · |.
Theorem 2. Let τ ≥ 0, and let Fj be a d-dimensional probability distribution, j = 1, . . . , n.

Set ρ = Q
( n∏

j=1
Fj , τ

)
. Then there exist an integer r ∈ Z+ and vectors u1, . . . , ur, x1, . . . , xr

∈ Rd such that

r �d |log ρ| + 1 (18)

and
n∑

j=1

Fj{Rd \ [K1(u)]τ + xj} �d

(|log ρ| + 1
)3

, (19)

where u = (u1, . . . , ur) ∈ (Rd)r and the set K1(u) is defined in (17).

Theorem 3. Let D be a d-dimensional infinitely divisible distribution with characteristic func-
tion of the form exp

{
α(M̂ (t) − 1)

}
, t ∈ Rd, where α > 0 and M is a probability distribution.

Let τ ≥ 0 and γ = Q(D, τ). Then there exist an integer r ∈ Z+ and vectors u1, . . . , ur ∈ Rd

such that

r �d |log γ| + 1 (20)

and

α M{Rd \ [K1(u)]τ} �d

(|log γ| + 1
)3

, (21)

where u = (u1, . . . , ur) ∈ (Rd)r.
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Proof of Theorem 1. Let us show that for arbitrary probability distribution F and λ, T > 0,

log
∫

|t|≤T

exp
(
− 1

2

n∑

k=1

∫

z∈R

(
1 − cos(〈 t, ak〉z)

)
λF{dz}

)
dt

≤
∫

z∈R

(

log
∫

|t|≤T

exp
(
− λ

2

n∑

k=1

(
1 − cos(〈 t, ak〉z)

))
dt

)

F{dz}

=
∫

z∈R

(

log
∫

|t|≤T

Ĥλ
z (t) dt

)

F{dz}.

(22)

It suffices to prove (22) for the discrete distribution F =
∞∑

j=1
pjEzj , where 0 ≤ pj ≤ 1, zj ∈ R,

and
∞∑

j=1
pj = 1. Applying in this case the Hölder inequality, we obtain

∫

|t|≤T

exp
(
− 1

2

n∑

k=1

∫

z∈R

(
1 − cos(〈 t, ak〉 z)

)
λF{dz}

)
dt

=
∫

|t|≤T

exp
(
− λ

2

∞∑

j=1

pj

n∑

k=1

(
1 − cos(〈 t, ak〉 zj)

))
dt

≤
∞∏

j=1

( ∫

|t|≤T

exp
(
− λ

2

n∑

k=1

(
1 − cos(〈 t, ak〉 zj)

))
dt

)pj

.

(23)

Taking the logarithms of the left- and right-hand sides of (23), we get (22). In the general
case, we can approximate the distribution F by discrete distributions in the sense of weak
convergence and to pass to the limit. We use the fact that the weak convergence of probability
distributions is equivalent to the convergence of characteristic functions, which is uniform on
the bounded sets. Moreover, the weak convergence of symmetric infinitely divisible distribu-
tions is equivalent to the weak convergence of the corresponding spectral measures. Note also
that the integrals

∫

|t|≤T

can be replaced in (22) by the integrals
∫

t∈B

over an arbitrary Borel

set B.
For the characteristic function Ŵ (t) of a random vector Y , we have

|Ŵ (t)|2 = E exp(i〈 t, Ỹ 〉) = E cos(〈 t, Ỹ 〉),

where Ỹ is the corresponding symmetrized random vector. Therefore,

|Ŵ (t)| ≤ exp
(
− 1

2
(
1 − |Ŵ (t)|2)

)
= exp

(
− 1

2
E

(
1 − cos(〈 t, Ỹ 〉))

)
. (24)
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According to Theorem 1 and formulas V = λF ≤ G, (22), and (24), we have

Q(Fa, τ) �d τd

∫

τ |t|≤1

|F̂a(t)| dt

�d τd

∫

τ |t|≤1

exp
(
− 1

2

n∑

k=1

E
(
1 − cos(〈 t, ak〉 X̃)

))
dt

= τd

∫

τ |t|≤1

exp
(
− 1

2

n∑

k=1

∫

z∈R

(
1 − cos(〈 t, ak〉 z)

)
G{dz}

)
dt

≤ τd

∫

τ |t|≤1

exp
(
− 1

2

n∑

k=1

∫

z∈R

(
1 − cos(〈 t, ak〉 z)

)
λF{dz}

)
dt

≤ exp
( ∫

z∈R
log

(

τd

∫

τ |t|≤1

Ĥλ
z (t) dt

)

F{dz}
)

.

(25)

Using (1) and (5), we get

τd

∫

τ |t|≤1

Ĥλ
z (t) dt �d Q(Hλ

z , τ) = Q
(
Hλ

1 , τ |z|−1) ≤ (
1 + 
τ(ε|z|)−1�)d

Q(Hλ
1 , ε). (26)

Substituting this estimate into (25), we obtain (7). �
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