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An analog of the Schwartz theorem on spectral analysis on a
hyperbolic plane
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Abstract. Let D be an open unit disk in the complex plane. It is shown that every subspace in C(D)
invariant under weighted conformal shifts contains a radial eigenfunction of the corresponding invariant
differential operator. This function can be expressed via the Gauss hypergeometric function and is a
generalization of the spherical function on the disk D which is considered as a hyperbolic plane with the
corresponding Riemannian structure.

Keywords. Spectral analysis, invariant subspace, hyperbolic plane.

1. Introduction

The well-known theorem by L. Schwartz on spectral analysis asserts that any nonzero shift-invariant
subspace in C(R1) contains the exponential function eλx for some λ ∈ C (see [1]). In work [1],
L. Schwartz assumed that, for n ≥ 2, any nonzero subspace in C(Rn) with analogous property must
contain the function

x→ e(λ,x) (1.1)

for some λ ∈ Cn, where (·, ·) stands for a scalar product in Cn. The question remained open for more
than twenty five years. Finally, D.I. Gurevich [2] disproved the indicated hypothesis by L. Schwartz in
1975. More exactly, he proved the existence of six distributions µ1, . . . , µ6 with compact supports on
Rn, n ≥ 2, such that the space U ⊂ C∞(Rn) of solutions of the system of convolution equations

f ∗ µi = 0, i = 1, . . . , 6,

is nonzero and does not contain a function of the form (1.1) for any λ ∈ Cn.
The question about the additional conditions of validity of analogs of the Schwartz theorem for

C(Rn) and other spaces of continuous functions was considered by many researchers (see, e.g., review [3]
with large number of references and [4–6]). One of the most essential results in this direction was
obtained by L. Brown, B. M. Schreiber, and B. A. Taylor [7]. They proved that any nonzero subspace
U in C(Rn) that is invariant relative to shifts and rotations contains the radial function

x→ (λ |x|)1−
n
2 Jn

2
−1(λ |x|), (1.2)

where λ is some complex number, |x| is the Euclidean norm of a vector x ∈ Rn, Jν is the Bessel
first-kind function with index ν. This is in agreement with the above-formulated Schwartz theorem,
which can be seen in the following way. The exponential function eλx is an eigenfunction of the

differentiation operator
d

dx
on the real line. This operator generates the algebra of all differential
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operators with constant coefficients on R1. Such operators commute, obviously, with shifts in R1.
Analogously, function (1.2) is a radial eigenfunction of the operator

∂2

∂x21
+ · · ·+ ∂2

∂x2n
(1.3)

in Rn. This operator generates the algebra of all differential operators with constant coefficients in Rn

that commute with all motions in Rn. (We recall that a motion in Rn is called an inhomogeneous
linear transformation conserving the distance between points of this space and its orientation.) In
addition to the significant individual interest, the theorem proved by L. Brown, B. M. Schreiber, and
B. A. Taylor has essential applications to integral geometry, for example, to the well-known Pompeiu
problem (see [3]). Without any exaggeration, we can say that the new modern stage of studies of
this old problem began after the publication of work [7]. Details can be found in reviews [3, 8, 9]
and books [4–6] containing the proofs of the most strong results that are related to the Pompeiu
transformation and its generalizations.

Some analogs of the theorem by L. Brown, B. M. Schreiber, and B. A. Taylor for noncompact
symmetric spaces X = G/K of rank 1 (see, e.g., [12]) were considered in works [10, 11]. There, it
was shown that any nonzero subspace U in C(X) that is invariant relative to the group G contains a
spherical function

x→ φλ(x).

This function is invariant relative to the subgroup K ⊂ G and is an eigenfunction of the Laplace–
Beltrami operator L on X. We note that the operator L is a natural analog of operator (1.3) for
the spaces X and, respectively, generates the whole algebra of differential operators with constant
coefficients on X that is invariant relative to the group G. Similar results for the Damek–Ricci spaces
and for the Heisenberg group were got in [13,14].

The proofs of the main results in the above-cited works are based on the methods of classical
harmonic analysis and use essentially the invariance of the problem under study relative to the cor-
responding group of transformations. In a number of cases where such invariance is broken, similar
methods become inapplicable. This is referred, in particular, to the situation where the transforma-
tions with weight which appear frequently in problems of integral geometry are considered. We note
that no analogs of the Schwartz theorem for shifts with weight multipliers on symmetric spaces are
known till now.

In the last decade, the authors of the present work have developed a new approach to the above
problems that is based on the application of operators with transmutation property (see [5,6,15]). This
allows us to get the final results for some problems, in particular, local versions of the above-cited results
(see [5,6]). In the present work, by using the developed technique of transmutation mappings, we will
get the first weighty analog of the Schwartz theorem for the corresponding subspaces of continuous
functions on the hyperbolic plane.

The exact formulation and the discussion of the main result are presented in § 2. In §§ 3–6, we
will prove some auxiliary propositions and develop the necessary apparatus related to the generalized
spherical transformation and transmutation mappings. The proof of the basic theorem 2.1 is given
in § 7.

2. Formulation of the main result

In what follows, G is the group of conformal automorphisms of a unit disk D = {z ∈ C : |z| < 1}.
For any g ∈ G, z ∈ D, we denote the image of the point z at a mapping g by gz. Let α ∈ R. For
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z, ζ ∈ D, we set
W (ζ, z, α) = exp

(
2iα arg (1− z ζ)

)
, (2.4)

where the symbol arg stands for the principal value of the argument. We introduce an α -shift of a
function f ∈ C(D) by the rule

fg,α(z) = f(g−1z)W (g0, z, α), z ∈ D, g ∈ G. (2.5)

Consider a differential operator Lα acting on the space C2(D) in the following way:

Lα = 4(1− |z|2)2 ∂2

∂z∂z
− 4α(1− |z|2)

(
z
∂

∂z
− z

∂

∂z

)
− 4α2|z|2Id, (2.6)

where Id is the identity operator. Below, we will show that the operator Lα is invariant relative to
α -shifts (2.5) (see § 4). Let

Hλ,α(z) = (1− |z|2)
1−iλ

2 F

(
α+

1− iλ

2
,
1− iλ

2
− α; 1 ; |z|2

)
, z ∈ D, (2.7)

where λ ∈ C, and F is the Gauss hypergeometric function. Using the formulas of differentiation for the
hypergeometric function (see [16, formulas 2.8(25), 2.8(26)]) and relations (2.6) and (2.7), we obtain

(LαHλ,α)(z) = −(λ2 + 4α2 + 1)Hλ,α(z). (2.8)

The main result of the present work is the following theorem.

Theorem 2.1. Let α ∈ R, and let U be a nonzero subspace in C(D) invariant relative to all shifts

f → fg,α, g ∈ G.

Then Hλ,α ∈ U for some λ ∈ C.

The proof of Theorem 2.1 is based on the development of authors’ methods proposed in [15] and
consists in the following. The group G is a group of motions of the hyperbolic plane H2 realized in the
form of a disk D with corresponding Riemannian structure (see [17, Introduction, § 4]). The problem
is reduced to the study of the operators of generalized convolution of the form

f →
∫
H2

f(z)K(g−1z)W (g0, z, α) dµ(z), g ∈ G, (2.9)

where K ∈ C(H2) is a radial function with compact support, and dµ is the measure on H2 that is
invariant relative to the group G.

To study operators (2.9), we introduce transmutation operators that establish a homeomorphism
between the space of smooth radial functions on H2 and the space of even functions from C∞(R1).
In some generalized meaning, those operators commute with the operator of generalized convolution,
which allows us to perform a further reduction of the problem to a one-dimensional case. Moreover,
we will use the known possibility to apply the spectral analysis in C∞(R1) (see [1]).

A realization of the indicated approach requires the development of the apparatus related to the
study of generalized spherical functions on H2 and corresponding spherical transformations on the
space of radial functions from C∞(H2) with compact supports. The necessary auxiliary material and
corresponding results are presented in §§ 3–6.

Other aspects of the theory of convolution operators on groups can be found, for example, in [6, Part
2, Chapt. 8], [11].
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3. Basic notations

As known, for any g ∈ G, the numbers τ, z ∈ C exist, are uniquely determined, and are such that
|τ | = 1, |z| < 1, and

gw = τ
w − z

1− zw
(3.10)

for all w ∈ D. Mappings (3.10) are motions in the Poincaré model of a hyperbolic plane H2 realized in
the form of a diskD (see, e.g., [17, Introduction, § 4]). The hyperbolic distance d between the points
z1, z2 ∈ H2 in this model is defined by the equality

d(z1, z2) =
1

2
ln

|1− z1z2|+ |z2 − z1|
|1− z1z2| − |z2 − z1|

.

In particular,

d(z, 0) =
1

2
ln

1 + |z|
1− |z|

and |z| = th d(z, 0), z ∈ H2.

The distance d and the hyperbolic measure dµ on H2 defined by the equality

dµ(z) =
i

2

dz ∧ dz
(1− |z|2)2

are invariant relative to the group G.
For r > 0, we denote, by the symbol Br, an open hyperbolic disk with radius r centered at zero,

i.e.,
Br = {z ∈ H2 : d(0, z) < r}.

For r ≥ 0, we denote Br = {z ∈ H2 : d(0, z) ≤ r}.
Let D(H2) (respectively, D(R1)) be a set of all functions with compact supports from C∞(H2)

(respectively, C∞(R1)) with standard topology (see, e.g., [17, Chapt. 2, § 2, i. 2]). For a function
f ∈ D(H2), we set

r(f) = min {r > 0 : supp f ⊂ Br},
where supp f is the support of f . For f ∈ D(R1), we define the quantity r(f) by the equality

r(f) = min {r > 0 : supp f ⊂ [−r, r]}.

The symbols C♮(H2), C∞
♮ (H2), and D♮(H2) stand for, respectively, the spaces of radial functions from

C(H2), C∞(H2), and D(H2) with induced topology. Analogously, the symbols C∞
♮ (R1) and D♮(R1)

stand for the spaces of even functions from C∞(R1) and D(R1), respectively. For f ∈ C♮(H2), we
define a function f0 on [0,+∞) by the equality

f0(|z|) = f(z), z ∈ H2. (3.11)

As usual, we denote, by the symbol ĥ, the Fourier transformation of a function h ∈ L1(R1), i.e.,

ĥ(λ) =

+∞∫
−∞

h(t)e−iλtdt, λ ∈ R1.

If h1, h2 ∈ L1(R1), then the convolution h1 ∗ h2 ∈ L1(R1) is defined, and

ĥ1 ∗ h2 = ĥ1ĥ2. (3.12)

We now give some identities for the function W (ζ, z, α) which will be necessary in what follows.
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Lemma 3.1. Let ζ, z ∈ D, g ∈ G. Then

W (ζ, z, α) =W (−ζ,−z, α) =W (z, ζ,−α) =W (z, ζ, α), (3.13)

W (g0, ζ, α)W (z, g0, α) =W (g−1ζ, g−1z, α)W (z, ζ, α). (3.14)

In particular,
W (g0, gz, α) =W (z, g−10, α). (3.15)

Proof. The equalities in (3.13) follow directly from (2.4). To prove (3.14), we write the action of g in
the form

gz =
az + b

bz + a
, where a, b ∈ C, |a|2 − |b|2 = 1. (3.16)

Then g0 = b/a,

g−1z =
az − b

−bz + a
,

and (3.14) is obtained by the dirct calculation. Setting ζ = 0 in (3.14) and replacing g by g−1, we
arrive at (3.15).

Relation (3.14) indicates that a superposition of α -shifts is transformed according to the formula

(fg,α)h,α =W (g0, h−10, α)fhg,α, h, g ∈ G.

4. Invariant operator Lα

Our subsequent target is to prove the invariance of the operator Lα relative to α -shifts (2.5). It is
convenient to divide the proof of this assertion into several lemmas. We consider that the action of an
element g ∈ G on a point z ∈ H2 can be written in the form (3.16). For convenience, we set

uα(z) =W (g0, z, α) = exp
(
2iα arg

(
1− a b

|a|2
z
))
.

We recall that the Laplace–Beltrami operator LH2 on a hyperbolic plane takes the form

LH2 = 4(1− |z|2)2 ∂2

∂z ∂z
(4.17)

(see [17, Introduction]).

Lemma 4.1. The equality

LH2(uα)(z) = −4α2|a|2|b|2
(

1− |z|2

|a|2 − abz̄

)2

uα−1(z) (4.18)

holds.

Proof. Using the relations

∂uα
∂z

= − α ā b̄

|a|2 − abz̄
uα−1(z),

∂uα
∂z̄

=
αa b

|a|2 − abz̄
uα(z), (4.19)

we find
∂2uα
∂z∂z̄

=
αa b

|a|2 − abz̄

∂uα
∂z

= − α2|a|2|b|2

(|a|2 − abz̄)2
uα−1(z).

This result and relation (4.17) yield (4.18).
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Lemma 4.2. Let Φ(z) = f(g−1z)uα(z). Then

∂Φ

∂z
=
∂f

∂z
(g−1z)

uα(z)

(a− b̄z)2
− αāb̄ f(g−1z)

uα−1(z)

|a|2 − abz̄
, (4.20)

∂Φ

∂z̄
=
∂f

∂z̄
(g−1z)

uα(z)

(ā− bz̄)2
+ αab f(g−1z)

uα(z)

|a|2 − abz̄
. (4.21)

Proof. Since g−1 is a holomorphic mapping, we have

∂

∂z
(f ◦ g−1) =

∂f

∂z
(g−1z)

∂g−1

∂z
=
∂f

∂z
(g−1z)

1

(a− b̄z)2
, (4.22)

∂

∂z̄
(f ◦ g−1) =

∂f

∂z̄
(g−1z)

∂g−1

∂z̄
=
∂f

∂z̄
(g−1z)

1

(ā− bz̄)2
. (4.23)

Equalities (4.22), (4.23), and (4.19) yield (4.20) and (4.21).

Lemma 4.3. Let a1(z) = −4α2|z|2, and let a2(z) = −4α(1− |z|2). Then

a1(g
−1z) = a1(z) +

4α2|a|2(1− |z|2)
||a|2 − abz̄|2

(
2z(Re(ab)− |b|2Rez)− |b|2(1− |z|2)

)
, (4.24)

(a− b̄z)2a2(g
−1z)g−1(z) =

4αab(1− |z|2)2

|a|2 − abz̄
+ a2(z)z, (4.25)

(ā− bz̄)2a2(g
−1z)g−1(z) =

4α āb̄(1− |z|2)2

|a|2 − āb̄z
+ a2(z)z̄. (4.26)

Proof. Relations (4.24)–(4.26) are obtained by the direct calculation with the use of the equality
|a|2 − |b|2 = 1.

The following proposition concerns the above-mentioned invariance of Lα relative to α -shifts.

Lemma 4.4. The operator Lα possesses the generalized property of the invariance relative to the
action of the group G:

Lα(f(g
−1z)uα(z)) = (Lαf)(g

−1z)uα(z). (4.27)

Proof. By the formula describing the action of the Laplace–Beltrami operator on a product of functions
(see [17, Chapt. 2, § 2, formula (17)]), we have

LH2((f ◦ g−1)uα) = (f ◦ g−1)LH2(uα) + uαLH2(f ◦ g−1)

+ 4(1− |z|2)2
(
∂uα
∂z

∂

∂z̄
(f ◦ g−1) +

∂uα
∂z̄

∂

∂z
(f ◦ g−1)

)
.

Since g−1 is a motion in H2, we have

LH2(f ◦ g−1) = (LH2f) ◦ g−1.

Then relations (4.18)–(4.21) yield

LH2((f ◦ g−1)uα) = uα(LH2f) ◦ g−1 − 4α2|a|2|b|2
(

1− |z|2

|a|2 − abz̄

)2

· uα−1(z) f(g
−1z) + 4(1− |z|2)2

×

(
αab uα(z)

(|a|2 − abz̄)(a− b̄z)2
∂f

∂z
(g−1z)− α āb̄ uα−1(z)

(|a|2 − abz̄)(ā− bz̄)2
∂f

∂z̄
(g−1z)

)
. (4.28)
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Setting

A1 = −4α2|z|2Id, A2 = −4α(1− |z|2)
(
z
∂

∂z
− z̄

∂

∂z̄

)
, (4.29)

and using Lemma 4.2, we get

A1((f ◦ g−1)uα)(z) = a1(z)uα(z) f(g
−1z), (4.30)

A2((f ◦ g−1)uα)(z) = a2(z)

(
z uα(z)

(a− b̄z)2
∂f

∂z
(g−1z)− z̄ uα(z)

(ā− b̄z)2
∂f

∂z̄
(g−1z)

− α z

|a|2 − ab z̄

(
āb̄uα−1(z) + ab uα(z)

)
f(g−1z)

)
. (4.31)

Relations (4.28)–(4.31) yield

Lα

(
(f ◦ g−1)uα

)
= uα(LH2f) ◦ g−1 + c1(z) f(g

−1z) + c2(z)
∂f

∂z
(g−1z) + c3(z)

∂f

∂z̄
(g−1z), (4.32)

where

c1(z) = a1(z)uα(z)− 4α2|a|2|b|2
(

1− |z|2

|a|2 − abz̄

)2

uα−1(z)−
α z a2(z)

|a|2 − abz̄
(āb̄ uα−1(z) + ab uα(z)),

c2(z) =
4αab(1− |z|2)2uα(z)
(|a|2 − abz̄)(a− b̄z)2

+
z a2(z)uα(z)

(a− b̄z)2
,

c3(z) =
−4α āb̄(1− |z|2)2uα−1(z)

(|a|2 − abz̄)(ā− bz̄)2
− z̄ a2(z)uα(z)

(ā− bz̄)2
.

On the other hand,

(Lαf)(g
−1z)uα(z) = uα(z) (LH2f)(g−1z) + uα(z) a1(g

−1z) f(g−1z)

+uα(z) a2(g
−1z)g−1(z)

∂f

∂z
(g−1z)− uα(z) a2(g

−1z)g−1(z)
∂f

∂z̄
(g−1z).

(4.33)

Comparing (4.32) with (4.33) and taking Lemma 4.3 into account, we see that relation (4.27) is
proper.

5. “α′′ -convolution and a generalized spherical transformation on H2

Assume that f1, f2 ∈ C♮(H2) and at least one of the functions f1, f2 has a compact support. We
introduce an “α′′ -convolution f1×f2 in the following way:

(f1×f2)(z) =
∫
H2

f2(ζ) f1

(
z − ζ

1− ζz

)
W (z, ζ, α) dµ(ζ), z ∈ H2. (5.34)

Relation (5.34) and the invariance of the measure dµ imply that f1×f2 ∈ C♮(H2) and

f1×f2 = f2×f1.

In addition, using (3.14), we get
(f1)g,α×f2 = (f1×f2)g,α

178



for any g ∈ G.
If fi ∈ C♮(H2), i = 1, 2, 3, and if at least two of the functions fi have compact supports, then

relation (5.34) yields
(f1×f2)×f3 = f1×(f2×f3).

Lemma 5.1. Let f1, f2 ∈ C♮ ∩ C2(H2), and let at least one of the functions f1, f2 has a compact
support. Then

Lα(f1×f2) = f1×Lαf2 = (Lαf1)×f2. (5.35)

Proof. Relation (5.34) can be rewritten in the form

(f1×f2)(z) =
∫
G

f1(g0) f2(g
−1z)W (g0, z, α) dg, (5.36)

where dg is the Haar measure on G normalized by the condition∫
G

f(g0)dg =

∫
D

f(z)dµ(z), f ∈ D(D)

(see [17, Introduction, § 4, i. 3]). Then the first equality in (5.35) is verified by the direct calculation
with the use of (5.36) and (2.6). The second equality in (5.35) follows from the first one by virtue of
the commutativity of the “α′′ -convolution.

Let the function f ∈ C♮(H2) has a compact support. For λ ∈ C, we introduce the generalized
spherical transformation

F(f)(λ) =

∫
H2

f(z)Hλ,α(z)dµ(z), (5.37)

where, as above, α ∈ R is fixed. For α = 0, this transformation coincides with the classical spherical
transformation f̃ of a function f on H2 (see [17, Introduction, § 4, i. 2]).

Lemma 5.2. Let functions f1 and f2 of the class C♮(H2) have compact supports. Then

F(f1×f2) = F(f1)F(f2). (5.38)

Proof. Equality (5.37) and the associativity of the “α′′ -convolution yield

F(f1×f2)(λ) =
∫
H2

(f1×f2)(z)Hλ,α(z) dµ(z) =

∫
H2

f1(z)F (z) dµ(z), (5.39)

where
F (z) = Hλ,α×f2. (5.40)

Using Lemma 5.1 and (2.8), we get

LαF = (LαHλ,α)×f2 = −(λ2 + 4α2 + 1)F. (5.41)

Equality (5.40) indicates that the function F is continuous at zero. Comparing this fact with rela-
tion (5.41), we may conclude that

F (z) = F (0)Hλ,α(z) = F(f2)Hλ,α(z) (5.42)
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(see [17, Introduction, the proof of Lemma 3.7]). Then relation (5.39) yields

F(f1×f2)(λ) = F(f2)

∫
H2

f1(z)Hλ,α(z) dµ(z) = F(f1)F(f2),

which was to be proved.

Consider the function

a(λ) =
Γ
(
iλ−2α+1

2

)
Γ
(
iλ+2α+1

2

)
22α+1−iλ Γ(iλ)

, λ ∈ C. (5.43)

The properties of the gamma-function imply that the function a(λ) is meromorphic in C. Let P be a
set of singular points of the function a(−λ) in the half-plane {λ ∈ C : Imλ > 0}. We note that, for
α = 0, the set P is empty. We set

τ(λ) = −i res
z=λ

(a(z) a(−z)), λ ∈ P.

We now obtain the inversion formula for the transformation F . Below, all sums with the empty set of
summation indices are considered to be zero.

Lemma 5.3. Let f ∈ D♮(H2). Then

f(z) =
24α

π2

∞∫
0

F(f)(λ)Hλ,α(z) |a(λ)|2dλ+
24α+1

π

∑
λ∈P

τ(λ)F(f)(λ)Hλ,α(z). (5.44)

In this case, the integral in equality (5.44) converges absolutely.

Proof. Let α ≥ 0. The Stirling formula and relation (5.43) yield

|a(λ)| ≤ c1(1 + |λ|)1/2, (5.45)

where c1 > 0 is independent of λ. In addition, for z ∈ H2, t = arth |z|, we have

Hλ,α(z) =
2 3/2

π

t∫
0

(ch2t− ch2ξ)−
1
2F

(
2α,−2α;

1

2
;
cht− chξ

2cht

)
cosλξ dξ (5.46)

(see [5, Proposition 7.3]). We set h(t, ξ) = ch2t − cht for 0 < ξ < t/2 and h(t, ξ) = 2(t − ξ) sh t for
t/2 ≤ ξ < t. Applying the Lagrange mean-value theorem, we get the estimate h(t, ξ) ≤ ch2t − ch2ξ.
Then the expansion of the function F in a hypergeometric series yields

|Hλ,α(z)| ≤ c2

t∫
0

(h(t, ξ))−1/2dξ ≤ c3, (5.47)

where c2 and c3 > 0 depend only on α. Further, we have

F(f)(λ) = 2π

r(f)∫
0

ρ

(1− ρ2)2
f0(ρ)Hλ,α(ρ) dρ, (5.48)
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where Hλ,α(ρ) = Hλ,α(z) for ρ = |z|, z ∈ H2 (see (3.11)). Integrating in (5.48) by parts with the use
of [16, formulas 2.8(25), 2.8(26)], we obtain the equality

F(f)(λ) =
(
(1− iλ− 2α)(1− iλ+ 2α− 2)

)−mF
(
(dD)mf0(ρ)

)
(λ) (5.49)

for any m ∈ N. Here, the differential operators d and D act on the function h ∈ C1(0, 1) in the
following way:

(d h)(ρ) =
(1− ρ2)2−α

ρ

d

dρ

(
ρh(ρ)

(1− ρ2)1−α

)
,

(Dh)(ρ) = (1− ρ2)α+1 d

dρ

(
h(ρ)

(1− ρ2)α

)
.

Since f ∈ D♮(H2), relations (5.47) and (5.49) imply that the function F(f)(λ) decreases, as λ→ +∞,
faster than any negative power of λ. It follows from whence and estimates (5.45) and (5.47) that the
integral in (5.44) converges absolutely. Let

φλ,α(t) = F

(
2α+ 1− iλ

2
,
2α+ 1 + iλ

2
; 1; −sh2t

)
,

△α(t) = 24α+2 sht cht.

In view of [16, formula 2.9(3)], equality (5.37) for the function f can be written in the form

F(f)(λ) =

∞∫
0

Φ(t)φλ,α(t)△α(t) dt,

where
Φ(t) = 2−4α−1π f0(tht)(cht)

−2α.

From whence, using [18, Theorem 2.3], we obtain (5.44).

Corollary 5.1. Let f ∈ C♮(H2) and let it have a compact support. Then if F(f)(λ) = 0 for all λ > 0,
then f = 0.

Proof. Let φ ∈ D♮(H2). Using Lemma 5.2, we have

F(f × φ)(λ) = F(f)(λ)F(φ)(λ) = 0

for all λ > 0. By virtue of the analyticity of the function F(f × φ) in λ, the last equality is valid for
all λ ∈ C. Since f × φ ∈ D♮(H2), Lemma 5.3 yields f × φ = 0 in H2. From whence and from the
arbitrariness of φ, we conclude that f = 0.

Let f ∈ D♮(H2). As was mentioned above in the proof of Lemma 5.3, F(f)(λ) = O(λ−γ) as
λ→ +∞ for any fixed γ > 0. In addition, relation (5.46) implies that the function F(f) is entire and
satisfies the estimate

|F(f)(λ)| ≤ cer(f)|Imλ|

with a constant c > 0 independent of λ. Then the Paley–Wiener theorem implies that (see [19,
Theorem 7.3.1]) there exists a function Λ(f) ∈ D♮(R1) such that Λ̂(f) = F(f) and Λ(f) = 0 outside
the interval [−r(f), r(f)].
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6. Transmutation mapping A

For f ∈ D♮(H2), t ∈ R1, we set

A(f)(t) =
22α

π2

∞∫
0

F(f)(λ)|a(λ)|2 cos(λt)dλ+
24α+1

π

∑
λ∈P

τ(λ)F(f)(λ) cos(λt). (6.50)

It is seen from the proof of Lemma 5.3 that the function A(f) belongs to C∞
♮ (R1). In order to extend

the mapping A : D♮(H2) → C∞(R1) onto the space C∞
♮ (H2), we need the following lemma.

Lemma 6.1. Let f ∈ D♮(H2), r ∈ (0,+∞). Then the following assertions are equivalent:

(i) f = 0 in Br;

(ii) A(f) = 0 on (−r; r).

Proof. Relations (5.44), (6.50), and (5.46) yield

f0(thρ) =
2 3/2

π

ρ∫
0

A(f)(t) (ch2ρ− ch2t)−
1
2F

(
2α,−2α;

1

2
;
chρ− cht

2chρ

)
dt (6.51)

for any ρ > 0. If f = 0 in Br, we get

ρ∫
0

A(f)(t)K(ρ, t)(ρ− t)−
1
2dt = 0

for some function K ∈ C∞(R2). By virtue of the evenness of the function A(f)(t), the given integral
equation (see [20, Chapt. 3, §4, Theorem 4.6]) yields A(f)(t) = 0 on (−r, r). Therefore, we have
shown the validity of the implication (i) ⇒ (ii). The inverse implication is obvious in view of equality
(6.51).

The assertion of Lemma 6.1 allows us to continue the operator A onto the space C∞
♮ (H2) by the

formula
A(f)(t) = A(fη)(t), f ∈ C∞

♮ (H2), t ∈ R1, (6.52)

where η is any function of the class D♮(H2) that is equal to 1 in B|t|+ε for some ε > 0. Then
A(f) ∈ C∞

♮ (R1), and
A(f |Br) = A(f)|(−r,r) for any r > 0.

Theorem 6.1. The following assertions are valid:

(i) If f1 ∈ C∞
♮ (H2), f2 ∈ D♮(H2), then the transmutation relation

A(f1×f2) = A(f1) ∗ Λ(f2)

holds.

(ii) If λ ∈ C, then
A(Hλ,α)(t) = cosλt.

182



(iii) The transformation A realizes the homeomorphism between C∞
♮ (H2) and C∞

♮ (R1).

Proof. The definition of the operator A on the space C∞
♮ (H2) shows (see (6.52)) that it is sufficient to

prove assertion (i) for f1 ∈ D♮(H2). However, in this case, it is a simple consequence of relations (6.50),
(5.38), and (3.12). Then relation (6.52) implies that equality (6.51) holds for any function f ∈ C∞

♮ (H2).
Relation (6.51) and the integral representation (5.46) yield

ρ∫
0

(A(Hλ,α)(t)− cos(λt)) (ch2ρ− ch2t)−
1
2 · F

(
2α,−2α;

1

2
;
chρ− cht

2chρ

)
dt = 0

for any ρ > 0. Like the proof of Lemma 6.1, this yields (ii).
To prove (iii), we will find the inverse operator A−1. For F ∈ D♮(R1), we set

B(F )(z) =
1

π

∞∫
0

F̂ (λ)Hλ,α(z) dλ, z ∈ H2. (6.53)

Let f1 ∈ D♮(R1) and f2 ∈ D♮(H2). Using relations (6.53), (3.12), and (5.42), we get

(B(f1)×f2)(z) =
1

π

∞∫
0

f̂1(λ) (Hλ,α×f2)(z) dλ =
1

π

∞∫
0

f̂1(λ)F(f2)(λ)Hλ,α(z) dλ

=
1

π

∞∫
0

f̂1(λ) Λ̂(f2)(λ)Hλ,α(z) dλ = B(f1 ∗ Λ(f2))(z). (6.54)

Then relations (6.53) and (5.46) and the inversion formula for the Fourier cosine transformation yield

the equality

B(F )(z) =
2 3/2

π

arth ρ∫
0

F (t) (ch2ρ− ch2t)−
1
2 · F

(
2α,−2α;

1

2
;
chρ− cht

2chρ

)
dt.

This equality implies that if F ∈ D♮(R1) and r > 0, then F = 0 on (−r, r) iff B(F ) = 0 in Br (see the
proof of Lemma 6.1). We now continue the operator B onto the space C∞

♮ (R1) by the formula

B(F )(z) = B(Fη)(z), F ∈ C∞
♮ (R1), z ∈ H2,

where η is any function fromD♮(R1) that is equal to 1 in some vicinity of the interval [−arth |z|, arth |z|].
The above consideration implies that such continuation is independent of η. In this case, B(F ) ∈
C∞
♮ (H2), B(F |(−r,r)) = B(F )|Br for any r > 0, and equality (6.54) holds for f1 ∈ C∞

♮ (R1), f2 ∈
D♮(H2). Repeating the reasoning from [5, proof of Theorem 9.5], we getB = A−1. Hence, assertion (iii)
is valid.

7. Proof of the main result

We now prove Theorem 2.1. Let f ∈ U , f ̸= 0. For any g ∈ G, let us consider the function

Φg(z) =

π∫
−π

fg,α(ze
iφ)dφ, z ∈ H2. (7.55)
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Approximating the integral in (7.55) by Riemannian sums locally uniformly in the variable z and using
the invariance of U relative to the group of rotations, we conclude that Φg ∈ U . Relation (7.55) yields

Φg(ze
it) = Φg(z) (7.56)

for any t ∈ R1. In addition, since f ̸= 0 and

Φg(0) =

π∫
−π

fg,α(0)dφ = 2πf(g−10),

we obtain that Φg(0) ̸= 0 for some g ∈ G. This result and relation (7.56) imply that there exists a
nonzero radial function u ∈ U . It follows from the definition of α -convolution that there exists a radial
function v ∈ D(H2) such that u×v ̸= 0. As above, by approximating the integral in the equality

(u×v)(z) =
∫
H2

v(ζ)u

(
z − ζ

1− ζz

)
W (z, ζ, α) dµ(ζ) (7.57)

by Riemannian sums, we have u×v ∈ U . In addition, relation (7.57) implies that the function u×v is
radial and belongs to the class C∞(H2). Thus, there exists a nonzero function w ∈ U ∩ C∞

♮ (H2). By
Theorem 6.1 (iii), A(w) ∈ C∞

♮ (R1) and A(w) ̸= 0. In addition, the closure of the set

{A(w) ∗ ψ, ψ ∈ D♮(R1)}

in the space C∞(R1) coincides with the image of the closure of the set

{w×φ, φ ∈ D♮(H2)}

in C∞(H2) under the mapping A. We now prove that this image contains the function cosλt for
some λ ∈ C. In view of the evenness of a cosine and the function A(w), it is sufficient to prove that
cosλt ∈ A, where A is the closure of the set

{A(w) ∗ ψ, ψ ∈ D(R1)}

in the space C∞(R1). By the Schwartz theorem on the spectral analysis in C∞(R1) (see [1]), the set
A contains the exponential function eiλt for some λ ∈ C. In view of the invariance of A relative to the
reflections t→ −t, we have an analogous assertion also for the function cosλt. Using Theorem 6.1 (ii),
(iii), we get Hλ,α ∈ U . Thus, Theorem 2.1 is proved.
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