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A NOTE ON CHARACTERIZATIONS OF THE
EXPONENTIAL DISTRIBUTION*

N.G. Ushakov1 and V.G. Ushakov2

The following classical characterization of the exponential distribution is well known. LetX1, X2, . . . Xn

be independent and identically distributed random variables. Their common distribution is exponen-
tial if and only if random variables X1 and nmin(X1, . . . , Xn) have the same distribution. In this
note we show that the characterization can be substantially simplified if the exponentiality is char-
acterized within a broad family of distributions that includes, in particular, gamma, Weibull and
generalized exponential distributions. Then the necessary and sufficient condition is the equality only
expectations of these variables. A similar characterization holds for the maximum.

1. Introduction and main results

The exponential distribution plays an important role in many areas of statistics, including reliability
and survival analysis; therefore there is an extensive literature on this distribution. In particular, many
works are devoted to characterizations of exponentiality. A detailed survey of these characterizations
can be found in [1]. References to more recent publications are in [2].

The three main generalizations of the exponential distribution are the gamma distribution, the
Weibull distribution, and the generalized exponential distribution. Denote these three families by G, W,
and Eg respectively. Thus, G is the set of all distributions with the probability density function

1

βαΓ(α)
xα−1e−x/β, x > 0, α > 0, β > 0, (1)

W is the set of all distributions with the cumulative distribution function

1− e−(x/β)α , x � 0, α > 0, β > 0, (2)

and Eg is the set of all distributions with the cumulative distribution function

(
1− e−x/β

)α
, x � 0, α > 0, β > 0. (3)

Parameters α and β are called (for all these three families) the shape parameter and the scale parameter
respectively. The gamma distribution is widely used in various scientific fields including reliability,
survival analysis, and financial mathematics. The Weibull distribution was introduced by Frćhet and
is named after Weibull who used it for the statistical analysis of the strength of materials and studied
properties of this distribution. The generalized exponential distribution (let us call it g-exponential)
was introduced relatively recently in [3] as an alternative to the gamma and Weibull distributions for
analyzing lifetime data. We denote the family of all exponential distributions by E , that is, E is the set
of all distributions with the cumulative distribution function

1− e−x/β, x � 0, α > 0, β > 0.
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Thus E = G∩W∩Eg, and an exponential distribution is a gamma/Weibull/g-exponential with the shape
parameter 1.

Let F (x) and f(x) be the distribution function and the probability density function of a nonnegative
random variable, F (x) < 1. The function

h(x) =
f(x)

1− F (x)

is called the hazard rate. The hazard rate is used in many theoretical and applied problems, and
distributions with the monotone hazard rate are of special interest. The hazard rate of the gamma
distribution, the Weibull distribution and the g-exponential distribution decreases when the shape pa-
rameter 0 < α < 1 and increases when α > 1, that is all distributions from these families have the
monotone hazard rate.

Let X1, . . . ,Xn be independent and identically distributed random variables. The following classical

characterization of the exponential distribution was obtained by Desu: if X1 is not degenerate, thenX1
d
=

nmin(X1, . . . ,Xn) (
d
= means equal in distribution) if and only if X1 has an exponential distribution.

In this note, we prove that the characterization can be substantially simplified if the exponentiality is
characterized within the class of distributions with the monotone hazard rate. In this case the necessary
and sufficient condition is the equality only expectations of the variables X1 and nmin(X1, . . . ,Xn).
We obtain also a similar characterization for the maximum. The families G, W, Eg will be studied
separately.

Theorem 1. Let X1,X2, . . . be independent and identically distributed random variables with the
distribution F having the monotone (non-increasing or non-decreasing) hazard rate. Then F ∈ E if and
only if for at least one k � 2 either

EX1 = kEmin(X1, . . . ,Xk) (4)

or

EX1 =

(
1 +

1

2
+ . . .+

1

k

)−1

Emax(X1, . . . ,Xk). (5)

Note that Eq. (4) and (5) do not characterize the exponential distribution in the set of all distri-
butions (and even in the set of all distributions concentrated on the positive half-line). Indeed, let X1

have the probability density function

f(x) =

{
1

2
√
x

for 0 � x � 1,

0 otherwise.

Then max(X1,X2) has the uniform on [0, 1] distribution and therefore

EX1 =
1

3
=

2

3
Emax(X1,X2).

Theorem 2. Let X and Y be independent and identically distributed random variables having one
of distributions (1)–(3). Then the ratio

R1(α) =
Emin(X,Y )

EX

strictly increases in α, and the ratio

R2(α) =
Emax(X,Y )

EX

strictly decreases in α.
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2. Proofs

Proof of the Theorem 1 is based on the following lemma.

Lemma 1. If F (x) is a distribution function with the strictly decreasing hazard rate, then

nEmin(X1, . . . ,Xn) < EX1 <

(
1 +

1

2
+ . . .+

1

n

)−1

Emax(X1, . . . ,Xn);

if F (x) is a distribution function with the strictly increasing hazard rate, then

nEmin(X1, . . . ,Xk) > EX1 >

(
1 +

1

2
+ . . . +

1

n

)−1

Emax(X1, . . . ,Xn).

Proof. Consider the difference EX1 − nEmin(X1, . . . ,Xn).

Since the distribution function of the random variable min(X1, . . . ,Xn) is 1 − (1 − F (x))n, the
following equality holds:

EX1 − nEmin(X1, . . . ,Xn) =

∞∫

0

(1− F (x))dx− n

∞∫

0

(1− F (x))ndx =

=

∞∫

0

1− F (x)

f(x)
(1− n(1− F (x))n−1)f(x)dx. (6)

We have

∞∫

0

(1− n(1− F (x))n−1)f(x)dx =

∞∫

0

(1− n(1− F (x))n−1)dF (x) =

=

1∫

0

(1− n(1− u)n−1)du =

1∫

0

(1− nvn−1)dv = (v − vn)
∣∣1
0 = 0.

Consider the function ψ(u) = 1−n(1−u)n−1. It increases in the interval [0, 1] and ψ(0) = 1−n < 0,
ψ(1) = 1 > 0. Hence there exists a unique u0 ∈ (0, 1) such that ψ(u0) = 0, ψ(u) < 0, u ∈ [0, u0),
ψ(u) > 0, u ∈ (u0, 1]. Let x0 be such that F (x0) = u0. The integral in (6) is represented as a difference
of two integrals of nonnegative functions:

∞∫

0

1− F (x)

f(x)
(1− n(1− F (x))n−1)f(x)dx =

=

∞∫

x0

1− F (x)

f(x)
(1− n(1− F (x))n−1)f(x)dx−

x0∫

0

1− F (x)

f(x)
(n(1− F (x))n−1 − 1)f(x)dx.

Let F (x) be a distribution function with the decreasing hazard rate. Then
1− F (x)

f(x)
increases. Therefore

∞∫

x0

1− F (x)

f(x)
(1− n(1− F (x))n−1)f(x)dx >

1− F (x0)

f(x0)

∞∫

x0

(1− n(1− F (x))n−1)f(x)dx,
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and
x0∫

0

1− F (x)

f(x)
(n(1− F (x))n−1 − 1)f(x)dx <

1− F (x0)

f(x0)

x0∫

0

(n(1− F (x))n−1 − 1)f(x)dx.

This implies

EX1 − nEmin(X1, . . . ,Xn) >

>
1− F (x0)

f(x0)

⎛
⎝

∞∫

x0

(1− n(1− F (x))n−1)f(x)dx−
x0∫

0

(n(1− F (x))n−1 − 1)f(x)dx

⎞
⎠ =

=
1− F (x0)

f(x0)

∞∫

0

(1− n(1− F (x))n−1)f(x)dx = 0.

If F (x) is a distribution function with the increasing hazard rate, then we obtain the inverse inequalities.
Thus the lemma is proved for min(X1, . . . ,Xn).

Consider now

(
1 +

1

2
+ . . . +

1

n

)
EX1 − Emax(X1, . . . ,Xn).

Since the distribution function of max(X1,. . . ,Xn) is F
n(x), we obtain

(
1 +

1

2
+ . . . +

1

n

)
EX1 − Emax(X1, . . . ,Xn) =

=

(
1 +

1

2
+ . . .+

1

n

) ∞∫

0

(1− F (x))dx −
∞∫

0

(1− Fn(x))dx =

=

∞∫

0

1− F (x)

f(x)

(
1 +

1

2
+ . . .+

1

n
− (1 + F (x) + F 2(x) + . . .+ Fn−1(x))

)
f(x)dx.

We have

∞∫

0

(
1 +

1

2
+ . . . +

1

n
− (1 + F (x) + F 2(x) + . . . + Fn−1(x))

)
f(x)dx =

=

1∫

0

(
1 +

1

2
+ . . .+

1

n
− (1 + u+ u2 + . . . + un−1)

)
du =

=

(
1 +

1

2
+ . . .+

1

n

)
u

∣∣∣∣
1

0

−
(
u+

u2

2
+ . . .+

un

n

)∣∣∣∣
1

0

= 0.

The function

χ(u) =

(
1 +

1

2
+ . . .+

1

n
− (1 + u+ u2 + . . . + un−1)

)

satisfies conditions

χ(0) =
1

2
+ . . .+

1

n
> 0, χ(1) = 1 +

1

2
+ . . .+

1

n
− n < 0,
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χ(u) decreases in the interval [0, 1]. Let u0 be the unique zero of the function χ(u) in the interval (0, 1),
and F (x0) = u0. We have

(
1 +

1

2
+ . . . +

1

n

)
EX1 − Emax(X1, . . . ,Xn) =

=

x0∫

0

1− F (x)

f(x)

(
1 +

1

2
+ . . .+

1

n
− (1 + F (x) + F 2(x) + . . .+ Fn−1(x))

)
f(x)dx−

−
∞∫

x0

1− F (x)

f(x)

(
(1 + F (x) + F 2(x) + . . .+ Fn−1(x)) − 1− 1

2
− . . .− 1

n

)
f(x)dx.

For the distribution function F (x) with the strictly decreasing hazard rate we have

(
1 +

1

2
+ . . . +

1

n

)
EX1 − Emax(X1, . . . ,Xn) <

<
1− F (x0)

f(x0)

x0∫

0

(
1 +

1

2
+ . . .+

1

n
− (1 + F (x) + F 2(x) + . . .+ Fn−1(x))

)
f(x)dx−

− 1− F (x0)

f(x0)

∞∫

x0

(
(1 + F (x) + F 2(x) + . . . + Fn−1(x))− 1− 1

2
− . . .− 1

n

)
f(x)dx =

=
1− F (x0)

f(x0)

∞∫

0

(
1 +

1

2
+ . . . +

1

n
− (1 + F (x) + F 2(x) + . . .+ Fn−1(x))

)
f(x)dx = 0.

For the distribution function F (x) with the increasing hazard rate, the inverse inequality holds. The
lemma is proved.

For the proof of Theorem 2, we need the following proposition.
Lemma 2. Let X and Y be independent and identically distributed random varables with the gamma

distribution with the shape parameter α and the scale parameter β. Then

Emin(X,Y ) = αβ

(
1− Γ(2α)

22α−1Γ(α)Γ(α + 1)

)
= αβ

(
1− Γ(α+ 1

2)√
πΓ(α+ 1)

)
, (7)

Emax(X,Y ) = αβ

(
1 +

Γ(2α)

22α−1Γ(α)Γ(α + 1)

)
= αβ

(
1 +

Γ(α+ 1
2 )√

πΓ(α+ 1)

)
. (8)

Proof. Since Emin(cX, cY ) = cEmin(X,Y ), we can suppose without loss of generality that β =
1. Denote the cumulative distribution function and the probability density function of the gamma
distribution with parameters α and 1 by Gα(x) and gα(x) respectively. That is,

gα(x) =
1

Γ(α)
xα−1e−x, x > 0.

Let pα(x) be the density of min(X,Y ). Then pα(x) = 2(1−Gα(x))gα(x). Let us show first that

Emin(X,Y ) = 2α

∞∫

0

gα(u)Gα+1(u)du. (9)
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Indeed, since xgα(x) = αgα+1(x), we have

Emin(X,Y ) = 2

∞∫

0

x(1−Gα(x))gα(x)dx = 2α

∞∫

0

⎛
⎝

∞∫

x

gα(u)du

⎞
⎠ gα+1(x)dx =

= 2α

∞∫

0

gα(u)

⎛
⎝

u∫

0

gα+1(x)dx

⎞
⎠ du = 2α

∞∫

0

gα(u)Gα+1(u)du,

i.e., (9) holds. Use the following equality:

Gα+1(u) = Gα(u)− uαe−u

Γ(α+ 1)
, (10)

see for example [4]. From (9) and (10) we obtain

Emin(X,Y ) = 2α

∞∫

0

gα(u)

(
Gα(u)− uαe−u

Γ(α+ 1)

)
du = 2α

∞∫

0

Gα(u)dGα(u)−

− 2α

∞∫

0

gα(u)
uαe−u

Γ(α+ 1)
du = α− 2α

∞∫

0

u2α−1e−2u

Γ(α)Γ(α + 1)
du = α− 2αΓ(2α)

22αΓ(α)Γ(α + 1)
.

Thus the first equality in (7) is proved.
To prove the second equality in (7), it is suffisient to use the following identity:

Γ(2z) = (2π)−1/222z−1/2Γ(z)Γ(z + 1/2);

see [4].
To obtain Eq. (8) note that

min(X,Y ) + max(X,Y ) = X + Y ;

therefore
Emax(X,Y ) = E(X + Y )− Emin(X,Y ).

Now (8) follows from (7) and E(X + Y ) = 2αβ.
Proof of Theorem 2.
1). First suppose that X and Y have a gamma distribution. Since EX = αβ, due to Lemma 2, the

two ratios are

R1(α) = 1− Γ(α+ 1
2 )√

πΓ(α+ 1)

and

R2(α) = 1 +
Γ(α+ 1

2)√
πΓ(α+ 1)

.

Thus it is sufficient to show that the function

Γ(z + 1
2 )√

πΓ(z + 1)

decreases in z for z > 0. Let us use the Euler formula for the gamma function

Γ(z) = lim
n→∞

n!nz

z(z + 1) · . . . · (z + n)
.
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Then we obtain
Γ(z + 1/2)

Γ(z + 1)
= lim

n→∞
z + 1

z + 1
2

· z + 2

z + 3
2

· . . . · z + n+ 1

z + n+ 1
2

· 1√
n
=

= lim
n→∞

(
1 +

1

2z + 1

)
· . . . ·

(
1 +

1

2z + 2n + 1

)
· 1√

n
.

Each factor on the right-hand side (apart from 1/
√
n) is a decreasing function of z; therefore the left-hand

side decreases in z.
2) Let X and Y be independent and identically distributed random variables having a Weibull

distribution with the shape parameter α and the scale parameter β. Then

Emin(X,Y ) = 2−1/αEX

and
Emax(X,Y ) = (2− 2−1/α)EX.

Similiary,
P(21/α min(X,Y ) � x) = 1− (1− F (x/21/α))2 = 1− e−(x/β)α = P(X � x),

that is, 21/α min(X,Y ) has the same distribution as X, which implies the first equality. To obtain the
second equality, note that

Emax(X,Y ) + Emin(X,Y ) = 2EX.
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