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LIMIT THEOREMS FOR QUEUING SYSTEMS WITH
REGENERATIVE DOUBLY STOCHASTIC INPUT
FLOW*

E.A. Chernavskaya1

This article focuses on queuing systems with doubly stochastic Poisson regenerative input flow and
an infinite number of servers. Service times have the heavy-tailed distribution. The analogs of the
law of large numbers and the central limit theorem for the number of occupied servers are obtained.
These theorems follow from results for systems with general doubly stochastic Poisson processes [1].
As examples, we consider systems in which the input flow is controlled by a semi-Markov modulated
and Markov modulated processes.

1. Introduction

An extensive literature is devoted to queuing systems with an infinite number of servers. Since there
is no opportunity to mention all of the authors, we note only articles closest to the problem studied in
the article. In this regard, we note that different infinite channel systems are considered, for example,
systems with restrictions [12, 13], systems in a random environment [14], infinite network systems [15],
and others. This is due to the wide range of practical issues in which these models are useful, and a
number of emerging interesting mathematical problems.

At first glance, infinite channel systems seem to be unrealistic, but in fact, they can be considered as
models of many real-world objects, for example, in communication theory, in the study of total flow of
impulsesin the description of the formation of queues at the crossroads of unmanaged highways [16], and
in some problems of security (see [17] about the relation between the risk model of Cramer–Lundberg
and the queuing system G/G/∞). In addition, these models can be considered as approximations of
systems with a large number of servers. Note that approaches used for studying such systems are useful
for queuing problems in the case of the high load.

We consider an infinite server queuing system with doubly stochastic Poisson process (DSPP) input
flow and random intensity that is assumed to be a stationary regenerative process. If service time has a
finite mathematical expectation then there exists a proper limit distribution for the number of customers
q(t) in the system at time t as t → ∞. But this is not the case when the distribution function of service
times has a heavy tail, i.e., there is no mean of service times. In this situation q(t) goes to infinity as
t → ∞ and the problem of asymptotic analysis of its behavior occurs. This problem was studied in [2]
for queuing system GI/G/∞. Our results are similar to those obtained there, but we consider another
class of input flows.

The main purpose of this work is the asymptotic analysis of the number of occupied servers. Ana-
logues of the law of large numbers and the central limit theorem for the number of occupied servers for
the system with DSPP input flow were given in [1]. Here we consider a doubly stochastic Poisson re-
generative (DSPR) input flow, which is a particular case of the DSPP. Limit theorems for the number of
occupied servers in the system with such flow are obtained. This becomes possible due to the estimation
of the covariance for the intensity of DSRP and basic results from [1].

1 Lomonosov Moscow State University, Moscow, Russia, e-mail: Chernavskayaak@mail.ru
* This work was supported by the Russian Foundation for Basic Research, grant № 13-01-00653 A.

Proceedings of the XXXII International Seminar on Stability Problems for Stochastic Models, Trondheim, Norway,
June 16–21, 2014.

34 1072-3374/16/2141-0034 � 2016 Springer Science+Business Media New York

DOI 10.1007/s10958-016-2756-7

Chernavskayaak@mail.ru


Limit Theorems for Queuing Systems with Regenerative Doubly Stochastic Input Flow 35

2. Previous results

Consider a system with an infinite number of servers. Arriving customers form a DSPP A(t), which
is defined as follows [3]:

A(t) = A∗(Λ(t))

where {A∗(t), t � 0} is a standard Poisson process, and {Λ(t), t � 0} is a stochastic process with
non-decreasing right-continuous trajectories not depending on A∗(t), Λ(0) = 0.

Condition 1. The process Λ(t) has the following form:

Λ(t) =

t∫

0

λ(y, ω)dy,

where λ(y) is a non-negative bounded stationary stochastic process such that

|r(x)| = |cov(λ(0), λ(x))| � cx−α for x sufficiently large. (1)

Here α and c are certain positive constants.
We denote Eλ(t) = λ.
The process Λ(t) is called the leading process and λ(t) is the intensity of A(t).
We assume that service times {ηi}∞i=1 are independent identically distributed (i.i.d.) random variables

with a distribution function B(x), B(x) = 1−B(x). Suppose that this function satisfies the following

Condition 2. For some positive constants c1, c2

c1t
−Δ � B(t) � c2t

−Δ,0 < Δ < 1, (2)

for t sufficiently large.
Denote β(t) =

∫ t
0 B(x)dx. Let us formulate limit theorems for the process q(t) from [1].

Theorem 1. If Conditions 1 and 2 are fulfilled and
∣∣Δ− 1

2

∣∣ < α− 1
2 , then weak convergence takes

place
q(t)− λβ(t)√

λβ(t)

w→N (0, 1) as t → ∞. (3)

Theorem 2. If Conditions 1 and 2 are fulfilled and α > 2Δ − 1 then

q(t)

λβ(t)

p→ 1 as t → ∞. (4)

An essential part of DSPP flows are processes with intensity λ(t) that is a regenerative process. It
includes Markov modulated process (MMP), semi-Markov modulated process (SMMP), and some others
often used in queuing theory. The purpose of this article is to establish conditions for the validity of
the central limit theorem (CLT) and the law of large numbers (LLN), i.e. (3) and (4) in terms of the
distribution function of the regeneration period for such processes.

3. Model description

We consider an infinite server queuing system with DSPP as input flow A(t) with random intensity
λ(t). Suppose that λ(t) is a regenerative process. This means that there is an increasing sequence of
random variables {θn}∞n=0 such that the sequence {κn}∞n=0 , where

{κn}∞n=1 = {λ(t− θn−1), θn − θn−1, t ∈ (θn−1, θn)}∞n=1 ,

κ0 = {λ(t), θ0, t ∈ (0, θ0)} ,



36 E.A. Chernavskaya

consists of independent random elements and {κn}∞n=1 are identically distributed.
Then τn = θn − θn−1 is the nth period of regeneration for n � 1 and τ0 = θ0. We denote F (t) =

P (τ1 � t), F (t) = 1−F (t), and a = Eτ1 < ∞. In order to use Theorem 1 and 2, in addition, we assume
that λ(t) is a stationary process. It follows from the renewal theory that in this case

F0(t) = P (τ0 � t) =
1

a

t∫

0

F (y)dy.

Condition 3. supt λ(t, ω) � λM < ∞ with probability 1.
We assume that service times are i.i.d. random variables with a distribution function B(x). Below,

we consider the infinite server queuing system S for which Conditions 2 and 3 are always fulfilled and
we will not specify this fact.

Theorem 3. Let for system S

1) F (t) � ce−αt for some α > 0, 0 < c < ∞, and t sufficiently large; then convergences (3) and (4)
take place;

2) F (t) � Ct−d for d > 1, C < ∞ and t sufficiently large; then convergence (3) takes place if∣∣Δ− 1
2

∣∣ < d− 3
2 , and convergence (4) takes place if d > 2Δ.

Proof. First, we state an auxiliary result.

Lemma 1. Assume that a stationary regenerative process λ(t) satisfies Condition 3.
Then

|r(t)| = |cov(λ(0), λ(t))| � 4λ2
MP (τ0 > t) = 4λ2

MF 0(t) for t � 0. (5)

Proof. For t � 0 we have

r(t) = cov(λ(0), λ(t)) = Eλ(0)λ(t) − Eλ(0)Eλ(t) =

= E
(
λ(0)λ(t) (Iτ0>t + Iτ0�t)

)− E
(
λ(0) (Iτ0>t + Iτ0�t)

)
E
(
λ(t) (Iτ0>t + Iτ0�t)

)
= I − II.

Here IA is an indicator function of the event A.
Since λ(t) is a regenerative process, then λ(0) and λ(t) are conditionally independent, provided

{τ0 � t}. Therefore
E(λ(0)λ(t)|τ0 � t) = E(λ(0)|τ0 � t)E(λ(t)|τ0 � t).

Applying the last equality we get

I = E(λ(0)λ(t)|τ0 > t)P (τ0 > t) + E(λ(0)|τ0 � t)E(λ(t)|τ0 � t)P (τ0 � t),

II = P (τ0 > t) [E(λ(0)|τ0 > t)Eλ(t) + E(λ(0)|τ0 � t)E(λ(t)|τ0 > t)P (τ0 � t)]+

+E(λ(0)|τ0 � t)E(λ(t)|τ0 � t)P 2(τ0 � t).

So, we have
r(t) = P (τ0 > t)

[
E(λ(0)λ(t)|τ0 > t)− E(λ(0)|τ0 > t)Eλ(t)−

−E(λ(0)|τ0 � t)E(λ(t)|τ0 > t)P (τ0 � t)
]
+

+E(λ(0)|τ0 � t)E(λ(t)|τ0 � t)
[
P (τ0 � t)− P 2(τ0 � t)

]
.

Thus |r(t)| � P (τ0 > t)
(
λ2
M + λ2

M + λ2
M + λ2

M

)
= 4λ2

MP (τ0 > t).
If F (t) � ce−αt for some α > 0 and 0 < c < ∞ and t sufficiently large then

|r(t)| � c1e
−αt for some positive c1 < ∞.
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So, Theorems 1 and 2 hold for any 0 < Δ < 1 in this case.

If for t sufficiently large F (t) � Ct−d for d > 1 and C < ∞ then

|r(t)| � c2t
1−d for some positive c2 < ∞.

Therefore (3) is valid if
∣∣Δ− 1

2

∣∣ < d− 3
2 and convergence (4) takes place if d > 2Δ.

Now we present an example of the stationary regenerative DSPP. The other examples will be given
in the next sections. We see that the asymptotic behavior of q(t) for system S with this input flow is
determined by the asymptotics of 1− F (t) as t → ∞.

Example 1. Let {xj(t), t � 0}∞j=0 be a sequence of independent identically distributed stationary

stochastic processes taking values in the interval [0, λM ) and {τj}∞j=2 be a sequence of positive i.i.d.
random variables with distribution function F (t) and finite mean a. Let τ1 be a random variable
not depending on {τj}∞j=2 and P {τ1 � t} = F1(t) = 1

a

∫ t
0 F (y)dy. Moreover, sequences {τj}∞j=1 and

{xj(t), t � 0}∞j=0 are independent. We put θj = τ1 + . . . + τj , j � 1 and θ0 = 0. Denote by N(t) the

counting process for the renewal process {θj}∞j=0 i.e.

N(t) = sup {n � 0 : θn � t} .

One can easily see that the process λ(t) = xN(t)(t−θN(t)) is a regenerative stationary stochastic process.

4. System with Markov modulated input flow

Here we consider an infinite server queuing system S with Markov modulated input flow. The Markov
modulated process is DSPP with intensity λ(t) defined by the relation

λ(t) =
∞∑
j=0

λjI(U(t) = j), (6)

where U(t) is a continuous-time Markov chain with the set of states {0, 1, 2, . . .} [19]. We assume that
U(t) is an ergodic and stationary process. Then λ(t) is a stationary regenerative process. As points of
regeneration one may take the moments when U(t) gets into a fixed state, for example, zero. Then F (t)
is the distribution function of the first passage time to the zero state after exit from it.

Throughout what follows, we assume that for the distribution function of service times B(t) Condition
2 holds. Let τ00 be the return time to state (0).

Corollary 1. For a queuing system S with a stationary MMP input flow that has a finite set of
states (0, 1, . . . , N) convergences (4) and (3) hold.

Proof. Let Q = {qij}Ni,j=0 be the infinitesimal matrix for U(t). Since U(t) is ergodic, then
min
i=1,N

(−qij) = q > 0. Therefore, the distribution function Gi(t) of the sojourn time in the state i

satisfies the following inequality (see, e.g., [4])

Gi(t) � e−qt, (7)

for t � 0, i = 1, N . Let us consider the embedded Markov chain Un = U(tn+0), where tn is the moment
of the nth jump of U(t), n = 1, 2, . . .. We denote

νi0 = min {n : Un = 0} provided that U0 = i.

It follows from the ergodic theorem [6] that for a Markov chain with a finite set of states

P {νi0 > n} � cρn for any i = 1, N (8)
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for some 0 < ρ < 1 and c < ∞. Taking into account estimates (7) and (8) we have

P (τ00 > t) � c0e
−q0t

for some c0 and q0. So, according to the first part of the Theorem 3 this proves (3) and (4) for q(t).

Example 2. Consider a two-phase queuing model. The first phase is a classical system M/M/r/m
with a Poisson input flow with rate λ, exponentially distributed service times with parameter μ, r
servers, and m places for waiting of service. Customers served in the first phase arrive at the second
phase. which is a system S with an infinite number of servers and B(x) as a distribution function of
service times. To employ our results, we need to describe the input flow for S. It is clear that the output
flow from the first phase is MMP with the intensity

λ(t, ω) = μ

r−1∑
j=1

jI(U(t) = j) + μrI(r � U(t) � m)

where U(t) is the number of customers in M/M/r/m.

We note that U(t) is continuous-time Markov chain with the set of states {0, 1, 2, . . . , r +m}. It
is ergodic and we assume that it is stationary. So, λ(t) is the stationary regenerative process and its
points of regeneration are the moments when U(t) gets into a fixed state, for example, zero. It follows
from Corollary 1 that for the number of customers q(t) in the second phase limit relations (3) and (4)
take place. To employ Theorem 3 in the case of the countable control Markov chain U(t) we need an
auxiliary result.

Consider a Markov chain {Xn, n � 0} with one class of communicating essential states (0, 1, 2, . . .).
Denote by ν00 the number of steps to return to zero state. Let {αj}+∞

j=−∞ be a sequence defining a
probability measure P on the set {0,±1,±2, . . .} i.e. P (j) = αj such that

+∞∑
j=−∞

jαj = −δ < 0,

+∞∑
j=−∞

(j + δ)2αj = σ2 < ∞. (9)

Lemma 2. If for the probability distribution {αj}+∞
j=−∞ condition (9) holds and

P {Xn −Xn−1 > j|Xn−1 = i} �
∞∑

i=j+1

αi for any i = 0, 1, . . . and j = 0,±1,±2, . . . (10)

then for some 0 < β < 1 and any n � 0

P (ν00 > n) < (1− β)n. (11)

Proof. It follows from (10) that if some random variable ξ has the distribution {αj}+∞
j=−∞, then the

following stochastic inequality holds:

Xn −Xn−1 � ξ.

Let {ξn}∞n=1 be independent random variables with distribution {αj}+∞
j=−∞ and Sn = ξ1 + ξ2 + . . .+ ξn.

Then

P (ν00 > n) = P (X1 > 0,X2 > 0, . . . ,Xn > 0|X0 = 0) � P (Xn > 0|X0 = 0) =

= P

{
n∑

k=1

(Xk −Xk−1) > 0|X0 = 0

}
� P (Sn > 0). (12)
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According to the CLT we have

P (Sn > 0) ∼ 1− Φ

(
δ
√
n

σ

)
,

for n sufficiently large. Here Φ(x) = 1√
2π

∫ x
−∞ e−

y2

2 dy. Using the estimation [6]

1−Φ(x) <
1

x
√
2π

e−
x2

2 ,

we obtain the asymptotic inequality

P (Sn > 0) <
1

c
√
2πn

e−
c2n
2 (13)

as n → ∞, where c = δ
σ . It follows from (12) that for some c1 > 0

P (ν00 > n) < P (Sn > 0) � 1

c
√
2πn

e−
c2n
2 � c1

(
e−

c2

2

)n

for n sufficiently large. So, (11) holds for 0 < β < 1 and any n � 0.

Remark 1. Let the transition probabilities for Xn be given by the relations

pjj+1 = pj , pjj−1 = 1− pj, p01 = 1 for j > 0.

If for some ε > 0 and j > j0

pj �
1

2
− ε

then (11) holds. Here j0 is some positive integer.
Denote by νij the number of steps of the embedded Markov chain Xn to get into the state (j)

provided that X0 = i. Then

νj0j0 = νj0+1j0I (transition from state j0 to state j0 + 1)+

+νj0−1j0I( transition from state j0 to state j0 − 1) + 1.

So,
P (νj0j0 > n) = pj0P (νj0+1j0 > n− 1) + (1− pj0)P (νj0−1j0 > n− 1).

According to Lemma 2 there exists some 0 < β1 < 1 such that P (νj0+1j0 > n − 1) � (1 − β1)
n−1. In

view of (8) there exists some 0 < β2 < 1 such that P (νj0−1j0 > n− 1) � (1− β2)
n−1. So,

P (νj0j0 > n) < c(1 − β)n,

for some constant c and β = min(β1, β2).

Example 3. Let U(t) in (6) be a birth and death process with infinitesimal parameters qii+1 = ai,

qii−1 = bi, i � 0, and b0 = 0. If
∞∑
i=1

i∏
j=1

ai−1

bi
< ∞ then U(t) is ergodic and we assume that it is a

stationary process. Then λ(t, ω), defined by (6) with λj = bj , is also a stationary one. Moreover, it is a
regenerative process. As points of its regeneration one may take moments θn when U(t) gets into any
fix state (i0).

Let {tn}∞n=1 be moments of jumps U(t). We consider the embedded Markov chain Un = U(tn + 0).
Everywhere below we denote by νij the number of steps of the embedded Markov chain Un to get into
the state (j) provided that U0 = i.

Here we assume that the following conditions are fulfilled.
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1. For all j > 0 there exists γ > 0 such that aj + bj � γ > 0.

2. There exist j0 > 0 and δ > 0 such that
aj

aj+bj
� 1

2 − δ for j � j0.

Choosing i0 � j0 according to Remark 1 we get that

P (νi0i0 > n) < (1− β)n for some 0 < β < 1.

The first condition provides 1−Gij(x) � e−γx. In view of the first part of Theorem 3, convergences (3)
and (4) hold.

Example 4. Consider a two-phase queuing model as in Example 2 but, in this case, we assume that
m = ∞. So, output flow from the first phase is MMP with intensity

λ(t, ω) = μ

r−1∑
j=1

jI(U(t) = j) + μrI(U(t) � r)

where U(t) is the number of the customers in M/M/r/∞.
We notice that U(t) is a continuous-time Markov chain with the set of states {0, 1, 2, . . .}. Assume

that a < rμ; therefore U(t) is ergodic. In addition, we suppose that U(t) is a stationary process. Putting
bj = min(j, r)μ and aj = a, j � 0, and i0 = r in Example 3, we obtain that conditions 1 and 2 are
fulfilled and convergences (3) and (4) take place.

5. Systems with semi-Markov modulated input flow

These flows form an important subclass of regenerative DSPP. In this case a random intensity is
given by (6) where {U(t), t ∈ [0,+∞)} is a semi-Markov modulated process with values in {0, 1, 2, . . .}
and {λk, λk < C, k � 0}. It is known (see, e.g., [7]) that the distribution of U(t) is defined by two
matrixes P = (pij) and G = (Gij(x)). The first matrix consists of transition probabilities from state
(i) to state (j), and the second one consists of distribution functions of the sojourn time in the state
i = 0, 1, 2 . . . provided that the following state will be j. Let {tn}∞n=1 be moments of jumps U(t) and
Un = U(tn + 0). Then P is a transition matrix for the Markov chain Un.

We assume that the matrix P is ergodic, i.e., the Markov chain Un is irreducible, aperiodic, and has
a proper limit distribution. In this case, the process U(t) has a stationary distribution, provided that

aij =

∞∫

0

(1−Gij(x))dx < ∞

for all i, j [7].
Further we assume that U(t), and hence λ(t) are stationary processes. As before, let {tn}∞n=1 be

moments of jumps U(t). We also note that λ(t) is a regenerative process with moments of regeneration
{θi}∞i=0 when U(t) gets into a fixed state, for example, zero. We assume that

θi = inf
n�1

{tn > θi−1 : Un = 0} , θ0 = inf {t � 0 : U(t) = 0} , i = 1, 2, . . . ,

τi = θi − θi−1, τ0 = θ0, i = 1, 2, . . . .

Our aim is to find conditions for convergences (3) and (4) for infinite channel system with semi-Markov
modulated input flow. In view of Theorem 3, it is necessary to find the asymptotic behavior of the
probability

P (τ0 > t) =
1

Eτ1

∞∫

t

P (τ1 > y)dy

as t → ∞. Note that the period of regeneration τj, j � 1, consists of the time that the process U(t) is
situated in the zero state and the return time to the zero state after exit from it.
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Theorem 4. Let the following conditions be fulfilled.

1) There exists a distribution function G(x) with a finite mean such that for x sufficiently large

1−Gij(x) � 1−G(x), for i, j = 0, 1, . . . . (14)

2) There are β ∈ (0, 1), constant C < ∞, such that

P (ν00 > n) � C(1− β)n, n = 0, 1, . . . .

Then for any h ∈ (0, 1), some constants C1, C2, and x sufficiently large, the following inequality holds:

P (τ1 > x) � C1(1−G(x1−h)) + C2e
−γxh

. (15)

Here γ = − ln(1− β).

Proof. For the Markov chain Un let ν00 be the number of steps before return to zero state. Let, for
U(t), {ηj}ν00j=1 be the sojourn times in the relevant states. Then

τ00 = η1 + η2 + . . .+ ην00 .

For any M < ∞ we have

P (τ1 > x) � P (

ν00∑
j=0

ηj > x, ν00 � M) + P (

ν00∑
j=0

ηj > x, ν00 > M) �

M∑
n=1

n
(
1−G

(x
n

))
P (ν00 = n) + P (ν00 > M) �

(
1−G

( x

M

))
Eν00 + (1− β)M .

Since Eν00 < ∞, putting M = [xh] for h ∈ (0, 1) and γ = − ln(1 − β), we obtain (15). Here [x] is
the integer part of x.

Corollary 2. Let the conditions of Theorem 4 be satisfied. Then for a queuing system with input
flow of intensity λ(t) defined by (6), where U(t) is a semi-Markov modulated process, we have

1) if 1−G(x) � e−qx for some q > 0, then convergences (3) and (4) hold;

2) if 1 − G(x) < cx−δ for δ > 1, then (3) is fulfilled for
∣∣Δ− 1

2

∣∣ < δ − 3
2 , and (4) is fulfilled for

δ > 2Δ. Here c is some positive constant.

Proof. It follows from Theorem 4 that in the first case the asymptotic behavior of the correlation
function r(t) as t → ∞ is exponential, so (3) and (4) are fulfilled.

In the second case, from (15) for h ∈ (0, 1) and any ε > 0 sufficiently small, we have

P (τ1 > x) � Eν00x
−δ(1−h) + C1e

−γxh � C2x
−(1−h)δ

as x → ∞. Here C1, C2 are some constants. Therefore, we obtain that

|r(t)| � C3t
1−(1−h)δ (16)

as t → ∞ and C3 is a constant.
Hence, the first part of Theorem 3 is true in this case for any 0 < Δ < 1. Similarly, we establish the

validity of the second part of Theorem 3 for δ > 2Δ.
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Remark 2. Function G(x) should be chosen sufficiently close to the family {Gij(x)}. For example,

if G̃(x) = min
i,j

Gij(x) is a distribution function, then G(x) should be taken equal to G̃(x).

Example 5. We assume that the semi-Markov process U(t) has a finite set of states, and P an is
ergodic matrix. Matrix G = (Gij(x)), as before, consists of distribution functions of the sojourn time of
the state i = 0, 1, 2, . . . provided that the following state will be j.

We take G(x) = min
i,j

Gij(x) as the dominating function, which is the distribution function for a finite

N .

So, according to Corollary 2, if 1−G(x) � cx−δ for x sufficiently large then (3) holds for
∣∣Δ− 1

2

∣∣ <
δ − 3

2 and (4) holds for δ > 2Δ. However, if 1 −G(x) � e−qx for some q > 0 and x sufficiently large,
then Theorem 3 is fulfilled for any 0 < Δ < 1.

The author is deeply grateful to Professor L.G. Afanasyeva for her constant interest in this work and
valuable suggestions and guidance, which significantly contributed to the writing of this article.
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