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QUANTUM GROUPS: FROM
THE KULISH–RESHETIKHIN DISCOVERY TO
CLASSIFICATION

B. Kadets,∗ E. Karolinsky,∗ I. Pop,† and A. Stolin‡ UDC 517.9

The aim of this paper is to provide an overview of results about classification of quantum groups
which were obtained by the authors. Bibliography: 17 titles.

Dedicated to P. P. Kulish on the occasion of his 70th birthday

1. Introduction

The first example of a quantum group was found by Kulish and Reshetikhin in [13]. They
discovered what was later named Uq(sl2) in relation to the study of the inverse quantum
scattering method. Later, Drinfeld [3] and Jimbo [9] independently developed a general notion
of quantum group. Today there are many different approaches to what a quantum group is,
and the term has no clear meaning. Informally speaking, a quantum group is a deformation
of a universal enveloping algebra of some Lie algebra g. Of course, the precise meaning should
be given to the term deformation. We use the following definition.

Definition 1.1. A quantum group is a topologically free cocommutative mod � Hopf algebra
over C[[�]] such that H/�H is a universal enveloping algebra of some Lie algebra g over C.

It is well known that many problems about Lie groups become simpler when they are written
in the language of Lie algebras. In general, the existence of almost one-to-one correspondence
between Lie groups and Lie algebras is one of the central parts of Lie theory. Therefore,
it is desirable to obtain a notion of quantum algebra that will help to simplify problems
about quantum groups gradually. The first natural attempt was to look at the linear part of
the comultiplication of a quantum group H. Indeed, one can define a co-Poisson structure
δ : U(g) → U(g) ⊗ U(g) by the formula

δ(x) =
Δ(a) − Δ21(a)

�
mod �,

where x ≡ a mod �. Furthermore, from a co-Poisson structure on U(g) one gets a Lie bialgebra
structure on g, and the co-Poisson structure is uniquely determined by this Lie bialgebra
structure. The process of recovering the (nonunique) quantum group structure from the Lie
bialgebra structure is known as quantization.

The following problem naturally arises.

Conjecture 1.2 (Drinfeld’s quantization conjecture). Any Lie bialgebra can be quantized.

The conjecture was solved by Etingof and Kazhdan in [5, 6].
Kazhdan and Etingof not only proved Drinfeld’s quantization conjecture but found a correct

notion of quantum algebra. This was very important because it was not difficult to see that
there might be many different quantizations of a given Lie bialgebra over C. They constructed
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a canonical co-Poisson structure on U(g) ⊗ C[[�]]. This structure is much finer then the
co-Poisson structure discussed above. The Lie groups – Lie algebras correspondence has an
analogy in the quantum world.

Theorem 1.3. Let Qgroup be the category of quantum groups in the sense of Definition 1.1.
Let LieBialg be the category of topologically free Lie bialgebras over C[[�]] with δ ≡ 0 mod �.
Then there exists a dequantization functor deQuant : Qgroup → LieBialg that is an equivalence
of categories.

In their solution of Drinfeld’s quantization conjecture, Etingof and Kazhdan constructed a
functor Quant : LieBialg → Qgroup, which informally can be called universal quantization
formula or quantum Baker–Campbell–Hausdorff formula. They proved that if one starts with
a Lie bialgebra L[[�]] and first applies the functor Quant to it and then applies deQuant,
the resulting Lie bialgebra will be isomorphic to L[[�]]. The same is true if one starts with a
quantum group H: Quant(deQuant(H)) will be isomorphic to H.

One of applications of the Lie groups – Lie algebras correspondence is the classification of
semisimple Lie groups because the classification of semisimple Lie algebras is a much easier
problem. In the same way, one can use Theorem 1.3 as an approach to classification of quantum
groups over semisimple Lie algebras. This was done in the papers [10, 11]. The rest of the
paper is devoted to an exposition of the main results of these papers.

2. First steps of the classification

Let g be a simple Lie algebra over C. We have seen that the classification of quantum groups
over g is equivalent to the classification of Lie bialgebra structures on g[[�]] := g ⊗ C[[�]]. It
is easy to see that any Lie bialgebra structure on g[[�]] gives rise to a Lie bialgebra structure
on g((�)) := g ⊗ C((�)), and any Lie bialgebra structure on g((�)) becomes a Lie bialgebra
structure on g[[�]] after a multiplication by an appropriate power of �. Therefore, it is enough
to classify Lie bialgebra structures on g((�)).

Let us first look at the classification of Lie bialgebra structures on semisimple Lie algebras
over an algebraically closed field F of characteristic zero. This classification was obtained by
Belavin and Drinfeld [1]. We now give a brief outline of their results. Let δ be a Lie bialgebra
structure on g. First, one notices that the “compatibility condition” for δ is equivalent to the
fact that δ is a cocycle. From the triviality of cohomology of simple Lie algebras we see that
there exists r ∈ g ⊗ g such that δ = dr. The condition that δ is a Lie bialgebra structure
can be rewritten in terms of r. It turns out that after an appropriate scaling, r should satisfy
the classical Yang–Baxter equation. There are two quite different cases, r skewsymmetric or
nonskewsymmetric. In the first case, there is no hope to obtain a meaningful classification.
However, there is a lot of structure associated to a skewsymmetric r-matrix; these objects are
intimately related to quasi-Frobenius Lie algebras [1]. In the second case, Belavin and Drinfeld
found explicit formulas for r-matrices up to conjugation.

Theorem 2.1. Let g be a simple Lie algebra over an algebraically closed field of characteristic
zero. Then any Lie bialgebra structure on g is coboundary. Let r be a corresponding r-matrix.
If r is not skewsymmetric, then

r = r0 +
∑

α>0

e−α ⊗ eα +
∑

α∈Span(Γ1)+

∑

k∈N
e−α ∧ eτk(α)

for some root decomposition. Here Γ1 and Γ2 are subsets of the set of simple roots, τ : Γ1 → Γ2

is an isometric bijection, and for every α ∈ Γ1 there exists k ∈ N such that τk(α) ∈ Γ2 \ Γ1.
The triple (Γ1,Γ2, τ) is called admissible. The tensor r0 ∈ h⊗h must satisfy the following two
conditions:
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(1) r0 + r21
0 =

∑
tk ⊗ tk, where tk is an orthonormal basis of h;

(2) (τ(α) ⊗ id + id ⊗ α)r0 = 0 for any α ∈ Γ1.

It is worth noticing that there is an equivalent way to distinguish skewsymmetric and
nonskewsymmetric r-matrices. In the first case, the Drinfeld double D(g) is isomorphic to
g⊗ F[ε], ε2 = 0; in the second case, D(g) � g⊕ g, see [17].

We want to obtain a version of the Belavin–Drinfeld classification over the nonclosed field
C((�)). Let again g be a simple Lie algebra over C. First notice that we have a natural notion
of equivalence for Lie bialgebras on g((�)): δ1 ∼ δ2 if and only if there exist λ ∈ C((�)) and
X ∈ G(C((�))) such that δ1 = λAdXδ2. Here G is an algebraic group associated to g.

Any Lie bialgebra structure on g((�)) can be lifted to g ⊗ C((�)). Over the algebraically
closed field C((�)), we have the Belavin–Drinfeld classification. Therefore, any Lie bialgebra
structure on g((�)) is given by an r-matrix of the form λAdXr, where r is an r-matrix from
the Belavin–Drinfeld list or a skewsymmetric r-matrix. One can prove that for a nonskew
matrix, up to equivalence, λ is either 1 or

√
�. Therefore, for any nonskew matrix from the

Belavin–Drinfeld list there are two sets H1
BD(rBD) and H

1
BD(rBD) of equivalence classes of

r-matrices. H1
BD(rBD) parametrizes equivalence classes of r-matrices of the form AdXrBD

which define a Lie bialgebra structure on g((�)), and, respectively, H
1
BD(rBD) parametrizes

equivalence classes of matrices of the form
√

�AdXrBD. We call H
1
BD(rBD) and H1

BD(rBD)
the sets of, respectively, twisted and nontwisted Belavin–Drinfeld cohomologies. Analogously,
for a skewsymmetric r-matrix r we define the Frobenius cohomology set H1

F (r).
There is an alternative way to see the difference between twisted and nontwisted Lie bial-

gebra structures. Let us look at the structure of the Drinfeld double. It easily follows from
methods developed in [15] that there are three possible cases: D(g((�))) can be isomorphic
to g((�)) ⊕ g((�)), g((�))[

√
�], or to g((�))[ε], where ε2 = 0. These possibilities precisely

correspond to the nontwisted, twisted, and skew cases, respectively.
We have shown that all Lie bialgebra structures on g fall into one of the three types:

nontwisted, twisted, or skew. In what follows, we examine each case in more detail.

3. Nontwisted case

We have defined H1
BD(rBD) as the set of equivalence classes of Lie bialgebra structures.

However, there is an equivalent definition which appeals only to the inner structure of g((�)).
In what follows, G is an algebraic group that corresponds to g.

Definition 3.1. The centralizer C(r) of an r-matrix r is the set of all X ∈ G(C((�))) such
that AdXr = r.

Definition 3.2. X ∈ G(C((�))) is called a nontwisted Belavin–Drinfeld cocycle for rBD if
X−1σ(X) ∈ C(rBD) for any σ ∈ Gal(C((�))/C((�))). The set of nontwisted cocycles will be
denoted by Z(rBD) = Z(G, rBD).

Definition 3.3. Two cocycles X1,X2 ∈ Z(rBD) are called equivalent if there exist Q ∈
G(C((�))) and C ∈ C(rBD) such that X1 = QX2C.

Definition 3.4. The set of equivalence classes of nontwisted cocycles is denoted by H1
BD(rBD)

= H1
BD(G, rBD) and called the nontwisted Belavin–Drinfeld cohomology.

We were able to compute H1
BD for the algebras of A − D series. First let us make a small

remark about the An case. In this case, g((�)) is naturally acted upon by the group GL(n),
and we can compute the cohomology with respect to conjugation by GL(n) or SL(n). To
distinguish between these cases we write H1

BD(GL(n), rBD) and H1
BD(SL(n), rBD).
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If (Γ1,Γ2, τ) is an admissible triple, then the set α, τ(α), . . . , τk(α), where α ∈ Γ1 \ Γ2 and
τk(α) ∈ Γ2 \Γ1, will be called a string of τ . The following table describes H1

BD for algebras of
type A − D. The cohomology is called trivial if |H1

BD(rBD)| = 1.

Algebra Triple type H1
BD for

an arbitrary field H1
BD for C((�))

An trivial (GL(n) case)
Bn trivial
Cn trivial

Dn

there exists a
string of τ that
contains αn−1

and αn

F ∗/(F ∗)2 two elements

αn−1 and αn

do not belong to
the same string of τ

trivial

Table 1

Remark 3.5. In this paper, αn and αn−1 are the branchendpoints in the Dynkin diagram
for Dn.

Remark 3.6. One can similarly define the Belavin–Drinfeld cohomologies over an arbitrary
field F as a tool to understand Lie bialgebra structures on g(F ).

The result for H1
BD(SL(n), rBD) is more interesting. Let αi1 , . . . , αik be a string of τ ,

τ(αip) = αip+1 . If τ(αip) is not defined, then anyway we define the corresponding string which
consists of one element {αip} only.

For any string S = {αi1 , . . . , αik} of τ , we define the weight of S by wS =
∑

p ip. Moreover,
for any Belavin–Drinfeld triple we also formally consider the string {αn} with weight n.

Let N be the greatest common divisor of the weights of all strings.

Theorem 3.7. The number of elements of H1
BD(SL(n), r) is N . Each cohomology class

contains a diagonal matrix D = A1A2, where A2 ∈ C(GL(n), r) and A1 ∈ diag(n, C((�))).
Two such diagonal matrices D1 = A1A2 and D2 = B1B2 are contained in the same class of
H1

BD(SL(n), r) if and only if det(A1) = det(B1) in C((�))∗/(C((�))∗)N .

4. Twisted case

As in the nontwisted case, there is a way to define H
1
BD without mentioning Lie bialgebra

structures.

Theorem 4.1. aAdXrBD defines a Lie bialgebra structure on g(C((�))) if and only if X

is a nontwisted cocycle for the field C((�))[
√

�] and AdX−1σ0(X)rBD = r21
BD. Here σ0 is the

nontrivial element of the group Gal(C((�))[
√

�]/C((�))).

To deal with the condition AdX−1σ0(X)rBD = r21
BD, we classified all the triples (Γ1,Γ2, τ)

such that r21
BD and rBD are conjugate. In each case, we found a suitable S ∈ C((�)) such that

r21
BD = AdSrBD. Then we can define Belavin–Drinfeld cocycles and cohomologies similarly to

the nontwisted case. In all cases, S2 = ±1.
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Definition 4.2. X ∈ G(C((�))) is called a Belavin–Drinfeld twisted cocycle if X−1σ(X) ∈
C(rBD) and SX−1σ0(X) ∈ C(rBD) for any σ ∈ Gal(C((�))/C((�))[

√
�]). The set of Belavin–

Drinfeld twisted cocycles is denoted by Z(rBD) = Z(G, rBD).

Definition 4.3. Two twisted cocycles X1,X2 are called equivalent if there exist Q ∈ G(C((�)))
and C ∈ C(rBD) such that X1 = QX2C. The set of equivalence classes of twisted cocycles is
called the twisted Belavin–Drinfeld cohomology and denoted by H

1
BD(rBD) = H

1
BD(G, rBD).

Algebra Triple type H
1
BD for C((�))

An

sτ = τ−1s, where s is the nontrivial
automorphism of the Dynkin diagram one element

other empty

Bn
Drinfeld-Jimbo one element

not DJ empty

Cn
Drinfeld-Jimbo one element

not DJ empty

Dn

even n
Drinfeld-Jimbo one element

not DJ empty

odd n

Γ1 = {αn−1}
τ(αn−1) = αn ;

Γ1 = {αn}
τ(αn) = αn−1 ;

Γ1 = (αn−1, αk), k �= n
τ(αn−1) = αk, τ(α(k)) = αn;

Γ1 = (αn, αk), k �= n − 1
τ(αn = αk), τ(αk) = αn−1

two elements

Drinfeld-Jimbo one element
not DJ empty

Table 2

Here the cohomology for sln is considered with respect to the group GL(n). For the results
for An over an arbitrary field, see [16].

5. Skewsymmetric case

Following the pattern of [1], it can be easily proved that the classification of Lie bialgebra
structures related to skew (triangular) r-matrices on g((�)) is equivalent to the classification of
quasi-Frobenius Lie subalgebras of g((�)). This can be used to prove that if r is skewsymmetric,
then r has to be defined over C((�)). However, different r-matrices defined over C((�)) can
be conjugate over C((�)). We can define the Frobenius cohomology similarly to the Belavin–
Drinfeld cohomology. We call two r-matrices equivalent if there exist a ∈ C((�)) and X ∈
G(C((�))) such that r1 = aAdXr2. If r defines a Lie bialgebra structure on g((�)), then we
define the Frobenius cohomology set H1

F (r) to be the set of equivalence classes of r-matrices
that are conjugate to r over C((�)). We do not have a classification of skew r-matrices even
over an algebraically closed field, but this cohomology can be computed in a way similar to
the Belavin–Drinfeld case.

Definition 5.1. The centralizer C(r) of an r-matrix r is the set of all X ∈ G(C((�))) such
that AdXr = r.
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Definition 5.2. X ∈ G(C((�))) is called a nontwisted Frobenius cocycle for r if X−1σ(X) ∈
C(r) for any σ ∈ Gal(C((�))/C((�))). The set of nontwisted cocycles will be denoted by
ZF (r) = ZF (G, r).

Definition 5.3. Two cocycles X1,X2 ∈ ZF (r) are called equivalent if there exist Q ∈
G(C((�))) and C ∈ C(r) such that X1 = QX2C.

Definition 5.4. The set of equivalence classes of Frobenius cocycles is denoted by H1
F (r) =

H1
F (G, r) and called the Frobenius cohomology.

Example 5.5. Let rJ be the Jordan r-matrix, i.e., rJ = E ∧H. Then H1
F (rJ ) is trivial. Here

{E,F,H} is the standard basis in sl2.

6. Historical remarks

Quantum groups (as in Definition 1.1) were defined by Drinfeld in his talk at the Inter-
national Congress of Mathematicians in Berkeley, 1986. Relations between quantum groups
and quantum algebras (quantization and dequantization functors, quantum Baker-Campbell-
Hausdorff formula) were obtained by Etingof and Kazhdan in a series of papers [5, 6].

The first example of a quantum group of nontwisted type is due to Kulish and Reshetikhin
[13]. Generalizations for all simple Lie algebras were obtained by Drinfeld and Jimbo in [3, 9],
where they found quantum groups which quantize Lie bialgebra structures on g defined by
Γ1 =Γ2 =∅.

Further classes of Lie bialgebra structures on g, related to certain triples (Γ1,Γ2, τ), were
quantized by Kulish and Mudrov in [12].

Finally, Etingof, Schiffman, and Schedler quantized all Lie bialgebra structures defined by
all admissible triples (Γ1,Γ2, τ) [7].

There are no explicit formulas for quantum groups related to the twisted Belavin–Drinfeld
cohomologies.

Construction of quantum groups of skewsymmetric type appeared in the work of Drinfeld [4]
by means of a certain twisting element F . The first explicit formula for F is due to Coll,
Gerstenhaber, and Giaquinto [2]. This formula was used by Kulish and Stolin to explicitly
quantize a certain nonstandard Lie bialgebra structure on the polynomial Lie algebra sl2[u].

This paper is dedicated to Petr P. Kulish on the occasion of his 70-years jubilee. The authors
are thankful for valuable remarks to G. Rozenblum who joins the congratulations.
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