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Using the dimension reduction procedure for a three-dimensional elasticity system, we

derive a two-dimensional model for elastic laminate walls of a blood vessel. In the case

of a sufficiently small wall thickness, we derive a system of limit equations coupled

with the Navier–Stokes equations through the stress and velocity, i.e., dynamic and

kinematic conditions on the interior surface of the wall. We deduce explicit formulas

for the effective rigidity tensor of the wall in two natural cases. We show that if the

blood flow remains laminar, then the cross-section of the orthotropic homogeneous blood

vessel becomes circular. Bibliography: 30 titles. Illustrations: 2 figures.

1 Introduction

1.1. Formulation of the problem. Blood vessels form one of the most complicated and

important systems (the circulatory system) in a human body which is exposed to various risks

and is poorly amenable to medical treatments. Mathematical modelling of blood transport in

arteries, veins, capillaries, and other blood vessels is a classical problem which is still actual

nowadays (cf. [1]–[3] and [4, Section 8]). Although the existing models are usually based on

the anisotropic and composite structure of blood vessel walls (cf. Figure 1 and [4, 5]), the

analysis in this direction is far from being completed yet. In this way, our paper makes a next

step in derivation of adequate governing relations that carefully take into account the laminated

structure of an elastic blood vessel wall and the complicated composite structure of each laminate

wall layer as well. For this purpose we consider a flow of a viscous incompressible fluid (blood) in
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a cylindrical vessel having an arbitrary cross-section. The vessel wall can consist of several layers

of anisotropic materials. Our goal is twofold: first, to derive a model where a three-dimensional

but thin anisotropic wall of the vessel is replaced with a boundary surface and, second, to

obtain an explicit relation between the Hooke tensors for three- and two-dimensional models.

We obtain such a model under the assumption that the wall thickness is small in comparison

with the vessel diameter, whereas the diameter is small compared with the length of the part of

the vessel under consideration. In this part of the vessel, the blood flow is laminar because the

hydrostatic pressure prevails over the hydrodynamic forces. This allows us to conclude in Section

4 that the circular cross-section of the blood vessel is optimal in a certain sense. Moreover, the

fact that the flow is laminar and the elastic wall material is strong and tough results in a small

wall displacements. Hence the dimensional reduction procedure can be applied to the elastic

vessel wall.

Figure 1. The blood vessel wall consisting of three layers reinforced by collagen fibres.

The dimension reduction procedure for the three-dimensional Navier–Stokes equations in a

blood vessel was developed in [6], where the two-dimensional wall model was considered. Our

results, especially explicit formulas in Section 4, provide concrete values for the elastic moduli

used in [6] in the orthotropic rigidity tensor of the vessel wall. Thus, in this paper, the main

attention is paid to the formal asymptotic analysis resulting in these explicit formulas while we

dot not justify the asymptotics by several reasons.

Figure 2. The cross-section of the blood vessel.
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First, the dimension reduction for a thin elastic cylindrical shell under a fixed external

loading, i.e., with prescribed hydrodynamical forces, follows a standard scheme (cf., for example,

[7]–[10]). In particular, the paper [11] contains a detailed proof of the error estimate in a similar

situation.

Second, the evaluation of effective elastic properties of blood vessels is the most urgent

problem in simulation of circulatory system (cf. [12]).

We give a mathematical formulation of the problem. Let ω be a two-dimensional simply

connected bounded domain enveloped by a smooth contour γ. In a neighborhood V of γ, we

introduce the natural curvilinear orthogonal coordinates (n, s), where n is the oriented distance

to γ (n > 0 outside ω and n < 0 inside ω) and s is the arc length along γ, measured counter-

clockwise. Let H be a smooth positive function on γ, and let h be a small positive parameter.

Setting γh = {y ∈ V , n = hH(s)}, we denote by ςh the domain between γ and γh (cf. Figure

2). Then the lumen of the vessel is given by Ω = ω × R and the vessel wall is Σh = ςh × R. An

appropriate rescaling makes the parameters and coordinates dimensionless.

The flow in the vessel is described by the velocity vector v = (v1, v2, v3) and the pressure p

satisfying the Navier–Stokes equations

∂tv + (v · ∇)v − νΔv = −∇p, in Ω

∇ · v = 0 in Ω,
(1.1)

where ρb is the fluid density and ν is the kinematic viscosity related to the dynamic viscosity μ

by ν = μ/ρb. The stress state of the linear elastic wall is described by the displacement vector

u = (u1, u2, u3) and the stress tensor σ = {σjk}3j,k=1 satisfying the nonstationary elasticity

equations
∂σj1
∂x1

+
∂σj2
∂x2

+
∂σj3
∂x3

= ρ
∂2uj
∂t2

in Σh, j=1,2,3, (1.2)

and the Hooke law

σjk =

3∑

p,q=1

Apq
jkεpq, j, k = 1, 2, 3, εpq =

1

2

(∂up
∂xq

+
∂uq
∂xp

)
, (1.3)

where ρ is the mass density, ε = {εjk}3j,k=1 is the strain tensor, and A = {Apq
jk} is the rigidity

tensor (also called the Hooke tensor) consisting of the moduli of elasticity of the wall material

and possessing the standard symmetry and positivity properties:

Apq
jk = Ajk

pq = Akj
pq ,

3∑

j,k,p,q=1

Apq
jkξjkξpq � CA

3∑

j,k=1

|ξjk|2,

where CA > 0 and {ξjk} is an arbitrary symmetric 3×3-matrix. Within the Eulerian framework

(this is our simplifying assumption), the actual position of the interior surface Γ = γ ×R at the

moment t is given by {x + u(x, t) : x ∈ Γ}; it corresponds to stretching the elastic wall caused

by the pulsatory blood flow.

The exterior surface Γh = γh × R is assumed to be traction free1), i.e.,

σj1n1 + σj2n2 = 0 on Γh. j=1,2,3, (1.4)

1) The Robin boundary condition can be also used for describing an interaction between the surrounding tissue

and the blood vessel (cf., for example, [13] and [14]).
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where n = (n1, n2, 0) is the outward unit normal to Γh. It is natural to impose two conditions

on the interior surface Γ. The first one is that the fluid velocity coincides with the velocity of

the elastic wall, i.e., the kinematic no-slip boundary condition holds

v = ∂tu on Γ, (1.5)

whereas the second (dynamic) condition says that the hydrodynamic force is equal to the normal

stress vector (traction comes with minus because the normal n is interior for Σh):

σΓ := σ · n = ρbF, (1.6)

where F = (Fn, Fz, Fs),

Fn = −p+ ν
∂vn
∂n

,

Fs =
ν

2

(∂vn
∂s

+
∂vs
∂n

− κus

)
,

Fz =
ν

2

(∂vn
∂z

+
∂vz
∂n

)
,

(1.7)

where vn and vs are the velocity components in the direction of the normal n and the tangent

s respectively, whereas vz is the longitudinal velocity component (z = x3). Finally, κ(s) is the

curvature of γ at the point s.

We assume that

ρ =
1

h
ρ
(n
h
, s, z

)
, A =

1

h
A
(n
h
, s, z

)

satisfy one of the following conditions:

(I) (a heterogeneous wall material): ρ(ζ, s, z) and A(ζ, s, z) are smooth on Σ1, where Σ1 =

{(ζ, s, z) : s ∈ γ, ζ ∈ (0, H(s)), z ∈ R},
(II) (a laminate wall with layers of piecewise constant thickness): H(s) = 1, whereas ρ

and A are defined as follows. Let h1, . . . , hN be given numbers such that h1, . . . , hN > 0,

h1 + . . .+ hN = h, a0 = 0, aj = aj−1 + hj , j = 1, . . . , N . Then ρ(ζ, s, z) = ρj(s, z), A(ζ, s, z) =

Aj(s, z), ζ ∈ (aj−1/h, aj/h), where ρj and Aj are independent of ζ.

Our goal is to derive a two-dimensional model of a blood vessel wall under Assumption

(I) which simplifies the demonstration to some extent. However, the walls of veins and arteries

involve composite laminate elastic structures, and so we give explicit formulas under Assumption

(II) attributed mainly to peripheral veins (cf. Subsection 4.1). In arteries and voluminous

veins, bundles of collagen fibres must be taken into account as well (cf. Subsection 4.2). Note

that the dimension reduction procedure intrinsically admits passing to various limits and a

straightforward approach is to approximate composites with piecewise constant elastic moduli

by those having smooth heterogeneous properties and then, in the final integral formula for

effective moduli (cf. Subsection 3.3), to return to the piecewise constant case.

1.2. Results. The dimension reduction plays an important role in mathematical modelling

of engineering problems, where certain elements have small size in some directions. The theory

of rods, plates, shells, elastic multi-structures etc. are examples worth mentioning. There are

many papers on this topic that describe approximate models and justify them mathematically

to a different extent of rigor by using various methods and approaches. Note that there are

many classical engineering theories for laminated plates and shells (cf., for example, [15]).
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We apply the rigorous dimension reduction procedure which was developed for problems

in elasticity in [7, 8, 10, 12, 16] and for general elliptic problems in [17]. The main difficulty

stems from the fact that the anisotropic wall has laminated structure. Our approach is based

on several important ideas (cf. Section 2):

1) application of the matrix notation for equations in the elasticity theory referred to as the

Voigt–Mandel notation in mechanics,

2) rearrangement of components of stress and strain vectors, which reflects different order

asymptotic behavior of “normal” and “tangent” components of the corresponding tensors and

is closely related to the notion of surface enthalpy [18].

The crucial point of our asymptotic approach is to construct an operator U → σΓ of the

Dirichlet–to–Neumann type, where U is a given displacement on the boundary Γ and σΓ is

the corresponding normal stress vector on Γ. This relation is obtained in Section 3 and the

leading term of σΓ on Γ is expressed through a hyperbolic operator on Γ applied to U. By this

fact, the equilibrium equation (1.6) becomes a hyperbolic system for U with the right-hand side

−h−1ρbF (cf. (3.34)). Combining it with the Navier–Stokes system (1.1) and the kinematic

condition (1.5), we obtain a system of constitutive relations describing an interaction between

the blood flow in the vessel and the elastic wall. Similar models were considered (cf. [4, Chapter

8] and [6] and the references therein), but only in the case of vessels with circular cross-section

and isotropic homogeneous walls.

In Section 4, we analyze the model. In particular, we discuss connections between the elastic

coefficient in our model and the elastic coefficient of the vessel wall.

Various laminate composite structures of blood vessel walls are well-known (cf. [4, Chapter

8]) and, as outlined above, we apply the dimension reduction procedure to approximate a thin

anisotropic elastic wall by an anisotropic shell in order to derive an explicit formula for the

limit rigidity matrix (3.3). In contrast to usual mathematical models of vessels, we do not

assume a priori that the cross-section is circular (cf. Subsections 4.4 and 4.5). This allows us

to consider the wall strains caused by such damages of blood vessels as irregular calcification

(hyalinosis, arterial calcinosis), oblong atherosclerotic deposits (atherosclerotic plaque), and/or

various surgical exposures.

2 Elastic Walls

The immediate objective of our asymptotic analysis of the elasticity problem (1.2), (1.3)

with the boundary conditions (1.4) and

uj = Uj on Γ, j=1,2,3, (2.1)

is to compute the normal stress vector σΓ on the boundary Γ. Here, U = (U1, U2, U3) is a given

displacement vector on Γ.

We use the following notation for points inside Σh: x = (x1, x2, x3) = (y, z), where y =

(y1, y2) = (x1, x2) and z = x3.

2.1. Elastic fields in the curvilinear coordinates. We introduce the orthogonal system

of curvilinear coordinates (n, s, z) in V , where n and s are defined in Section 1. In particular,

the contour γ is given by (x1, x2) = ζ(s), 0 � s � |γ|, where |γ| is the length of γ, which, by

rescalling, is assumed to be equal to 1. Let (n1, n2) be the unit outward normal vector to the
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boundary γ of ω. Then n1 = ζ ′2(s), n2 = −ζ ′1(s), and

(x1, x2) = (ζ1(s), ζ2(s)) + n(ζ ′2(s),−ζ ′1(s)), x3 = z (2.2)

in the neighborhood V . Since this system of coordinates is orthogonal, we can use the nota-

tion and general formulas in [19, Appendix C] to write all the elasticity relations in this local

coordinate system. In particular, the corresponding orthonormal basis is n = (−ζ ′2(s), ζ ′1(s), 0),
s = (ζ ′1(s), ζ ′2(s), 0), z = (0, 0, 1) and the scale factors are given by Hn = Hz = 1, Hs = 1+nκ(s),

where κ(s) = ζ ′′2 (s)ζ ′1(s)− ζ ′′1 (s)ζ ′2(s) is the curvature of γ. The Jacobian of the transformation

(2.2) is denoted by J , and J = HnHsHz = 1+nκ(s). The components of the displacement vector

in this coordinate system are expressed as un = n1u1 + n2u2 and us = −n2u1 + n1u2, uz = u3.

The components of the strain tensor are given by

εnn =
∂un
∂n

, εss =
1

J

(∂us
∂s

+ κun

)
, εzz =

∂uz
∂z

,

εns = εsn =
1

2

(∂us
∂n

+
1

J

(∂un
∂s

− κus

))
,

εsz = εzs =
1

2

( 1

J

∂uz
∂s

+
∂us
∂z

)
, εzn = εnz =

1

2

(∂uz
∂n

+
∂un
∂z

)
.

(2.3)

We also need the derivatives of the basis vectors:

∂n

∂n
=

∂n

∂z
=

∂s

∂n
=

∂s

∂z
=

∂z

∂n
=

∂z

∂s
=

∂z

∂z
= 0,

∂n

∂s
= κ(s)s,

∂s

∂s
= −κ(s)n.

Using these relations, we obtain the elasticity equations in Σh

∂σnn
∂n

+
1

J
κ(σnn − σss) +

1

J

∂σsn
∂s

+
∂σzn
∂z

= ρ∂2
t un,

∂σsn
∂n

+ 2
1

J
κσsn +

1

J

∂σss
∂s

+
σsz
∂z

= ρ∂2
t us,

∂σzn
∂n

+
1

J
κσzn +

1

J

∂σsn
∂s

+
∂σzz
∂z

= ρ∂2
t uz

(2.4)

(cf. [19, Appendix C]).

2.2. The matrix notation. We use the matrix, rather than tensor, notation. We denote

by U = (u1, u2, u3)
T a column vector with components u1, u2, and u3. Using the Voigt–Mandel

notation (cf., for example, [16, 20, 21]), we introduce the strain and stress columns

ε(U ) = (ε11,
√
2ε12,

√
2ε13, ε22, ε33,

√
2ε32)

T ,

σ(U ) = (σ11,
√
2σ12,

√
2σ13, σ22, σ33,

√
2σ32)

T .
(2.5)

The factor
√
2 is used for equalizing the Euclidian norm of columns and the norm of the

corresponding tensors and the superscript T denotes the transpose of the corresponding vec-

tor/matrix. Moreover, the Hooke law in (1.3) converts into

σ(U ) = Aε(U ), (2.6)
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where A is a symmetric positive definite 6×6-matrix (the rigidity (Hooke) matrix) whose entries

are related to the entries of the rigidity tensor A = {Apq
ij } by

A11 = A11
11, A12 =

√
2A12

11, A13 =
√
2A13

11, A14 = A22
11, A15 = A33

11, A16 =
√
2A23

11,

A21 =
√
2A11

12, A22 = 2A12
12, A23 = 2A13

12, A24 =
√
2A22

12, . . .

Let ϕ ∈ [0, 2π). Consider the orthogonal transformation

x → x̂ = θx, θ =

⎛

⎜⎝
cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

⎞

⎟⎠ , (2.7)

which is the rotation about the z-axis by the angle ϕ. Then the displacement, strain, and stress

column vectors are transformed as

Û = θU , ε̂ = ΘTε, σ̂ = ΘTσ, (2.8)

where the 6× 6-matrix Θ is orthogonal and given by

Θ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos2 ϕ
√
2 sinϕ cosϕ 0 sin2 ϕ 0 0

−√
2 sinϕ cosϕ cos2 ϕ− sin2 ϕ 0

√
2 sinϕ cosϕ 0 0

0 0 cosϕ 0 0 sinϕ

sin2 ϕ −√
2 sinϕ cosϕ 0 cos2 ϕ 0 0

0 0 0 0 1 0

0 0 − sinϕ 0 0 cosϕ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This formulas is easily verified and can be found in [16, Chapter 2]. Note that the orthogonality

property of Θ in (2.8) is valid due to the presence of the factor
√
2 in (2.5).

Comparing (2.8) and (2.6), we conclude that the change of variables (2.7) leads to the

following transformation of the rigidity matrix: A �→ A = ΘT AΘ. Using the notation (2.5),

we write the last formula in (1.3) in the matrix form

ε(U ) = D(∇x)U ,

where ∇x = grad and D(∇x) is a 6× 3-matrix of first order differential operators,

D(ξ) =

⎛

⎜⎝
ξ1

1√
2
ξ2

1√
2
ξ3 0 0 0

0 1√
2
ξ1 0 ξ2 0 1√

2
ξ3

0 0 1√
2
ξ1 0 ξ3

1√
2
ξ2

⎞

⎟⎠

T

.

2.3. The surface rearrangement for stresses and strains. As shown, for example,

in [18], it is convenient to rearrange components in the stress and strain vectors. First, let us

introduce the strain and stress columns in the orthogonal curvilinear coordinates (n, s, z):

ε(u) = (εnn,
√
2εns,

√
2εnz, εss, εzz,

√
2εzs)

T ,

σ(u) = (σnn,
√
2σns,

√
2σnz, σss, σzz,

√
2σzs)

T ,
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where u is the column vector (un, us, uz)
T . Then the Hooke law takes the form

σ(u) = A ε(u), (2.9)

where A = Θ(ϕ)TAΘ(ϕ). Here, ϕ is the angle between y1-axis and the normal n depending on

s, but independent of n and z. We introduce two columns

η(u) = (σnn,
√
2σns,

√
2σnz, εss, εzz,

√
2εzs)

T ,

ξ(u) = (−εnn,−
√
2εns,−

√
2εnz, σss, σzz,

√
2σzs)

T .
(2.10)

The important property of this rearrangement is that all the components in η(u) are “observ-

able” on the surface Γ. This means that the stress column σ†(u) = (σnn,
√
2σns,

√
2σnz)

T implies

the traction on Γ given in the elasticity problem data, and the strain column

ε�(u) = (εss, εzz,
√
2εzs)

T (2.11)

can be evaluated from components of the displacement vector on Γ and their derivatives with

respect to s and z, i.e., along the surface Γ only (cf. (2.3)). The columns

ε†(u) = (εnn,
√
2εns,

√
2εnz)

T ,

σ�(u) = (σss, σzz,
√
2σzs)

T
(2.12)

gathered into a column in (2.10), do not possess the above properties and can be regarded

as “unobservable.” Indeed, to compute the components in (2.12), one has to differentiate the

displacements in n (cf. (2.3)). Therefore, one needs to know those displacements inside the

body that are unobservable.

We represent the rigidity matrix A blockwise

A =

(
A†† A†�

A�† A��

)
, (2.13)

where all the blocks are 3 × 3-matrices, the matrices A†† and A�� are positive definite, and

A†� = (A�†)T . We write (2.9) in the form

σ†(u) = A††ε†(u) +A†�ε�(u),

σ�(u) = A�†ε†(u) +A��ε�(u).

Then

σ�(u) = (A�� −A�†(A††)−1A†�)ε�(u) +A�†A−1
†† σ

†(u),

− ε†(u) = (A††)−1A†�ε�(u)− (A††)−1σ†(u).

Thus, we get the following relation connecting the ξ and η columns:

ξ(u) = Qη(u), Q =

(
Q†† Q†�

Q�† Q��

)
,

Q�� = A�� −A�†(A††)−1A†� > 0, Q†† = −(A††)−1 < 0, Q�† = A�†(A††)−1, Q†� = (A††)−1A†�. The
positivity of Q�� follows from the relations 0 < aTA a = (a�)TQ��a�, a = (−(A††)−1A†�a�, a�)T

for any a� ∈ R
3 \ {0}. It is clear that Q is symmetric and invertible, but not positive definite.

Remark 2.1. According to [18], the quantity 1
2ξ(u)

Tη(u) is the density of the surface

enthalpy. This particular Gibbs functional naturally appears in the asymptotic analysis of thin

layers and surface structures such as elastic coatings, phase interfaces, propagating cracks etc.
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3 The Dimension Reduction Procedure

The main goal of this section is to show that the leading term of σΓ obtained from the

solution to the problem (1.2), (1.3) and satisfying the boundary conditions (1.4) and u = U on

Γ has the form

σΓ = −hD�(κ(s),−∂s,−∂z)
T Q

��
(s, z)D�(κ(s), ∂s, ∂z)U(s, z)− hρ(s, z)∂2

tU(s, z), (3.1)

where κ is defined after formula (1.7),

D�(κ, ∂s, ∂z) =

⎛

⎜⎝
κ ∂s 0

0 0 ∂z

0 1√
2
∂z

1√
2
∂s

⎞

⎟⎠ (3.2)

Q
��
(s, z) =

⎛

⎜⎜⎝

Q
��
11 Q

��
12 Q

��
13

Q
��
21 Q

��
22 Q

��
23

Q
��
31 Q

��
32 Q

��
33

⎞

⎟⎟⎠ (s, z) =

H(s)∫

0

Q��(ζ, s, z)dζ, (3.3)

ρ(s, z) =

H(s)∫

0

ρ(ζ, s, z)dζ. (3.4)

The matrix Q�� is the Schur complement of the block A†† of the matrix A , defined in (2.13),

i.e.,

Q�� = A�� −A�†(A††)−1A†�. (3.5)

3.1. The asymptotic ansatz and leading term. We suppose that ρ and A satisfy one

of conditions (I) or (II) from Section 1. Therefore, Equation (2.9) takes the form

σ(u;n, s, z) = A (ζ, s, z)ε(u;n, s, z), (3.6)

where ζ = h−1n is regarded as the fast variable or the stretched transversal coordinate.

We look for an asymptotic solution to the problem (1.2), (1.3) satisfying the boundary

conditions (1.4) and (2.1) in the form

uh(n, s, z) = u0(s, z) + hu′(ζ, s, z) + h2u′′(ζ, s, z) + . . . (3.7)

The superscript h on the left-hand side of (3.7) emphasizes the dependence of the solution on

the small parameter h. On the right-hand side of (3.7), u0 stands for the leading term which is

independent of the fast variable, as we will explain below. In Section 4, we find the correction

terms u′ and u′′ and derive a limit system of differential equations for u0 = U. All functions

may depend also on the parameter t, but we will not indicate this dependence explicitly.

Substituting ∂n = h−1∂ζ into (2.3), we find

ε(uh) = h−1D(∂ζ , 0, 0)u
0 + . . . (3.8)

Here and in the sequel, the dots stand for higher-order terms which are not important for the

current step of asymptotic procedure. Similarly, the elasticity equations (2.4) take the form

h−1D(∂ζ , 0, 0)
Tσ(uh) + . . . = . . . (3.9)
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Moreover, since the gradient operator ∇x in the curvilinear coordinates goes to (∂n, J
−1∂s, ∂z),

the normal nh on the exterior boundary Γh = γh × R has the form

nh(n, s) = (1 + J(n, s)−2h2|∂sH(s)|2)−1/2(1,−hJ(n, s)−1∂sH(s), 0)T . (3.10)

Hence nh
n = 1 +O(h2), nh

s = O(h), and nh
z = 0 which converts the boundary condition (1.4) to

D(1, 0, 0)Tσ(uh) + . . . = 0. (3.11)

From (3.9), (3.11), (3.8), (3.6), and (2.1) we get the mixed boundary value problem for the

system of ordinary equations in ζ with the parameters (s, z) ∈ Γ

−D(∂ζ , 0, 0)
TA (ζ, s, z)D(∂ζ , 0, 0)u

0(ζ, s, z) = 0, ζ ∈ Υ(s),

D(1, 0, 0)TA (H(s), s, z)D(∂ζ , 0, 0)u
0(H(s), s, z) = 0,

u0(0, s, z) = U(s, z).

(3.12)

Since the matrix A is symmetric and positive definite and the rank of D(1, 0, 0) is equal to 3,

the 3× 3-matrix

a = D(1, 0, 0)TAD(1, 0, 0) (3.13)

is also symmetric and positive definite. In this notation, the differential operator in the first

line of (3.12) takes the form −∂ζa(ζ, s, z)∂ζ and the operator in the second line is as follows:

a(ζ, s, z)∂ζ . Hence the problem (3.12) has a unique solution independent of ζ:

u0(ζ, s, z) = U(s, z). (3.14)

3.2. The first correction term. Since u0 is independent of ζ, we get

ε(uh;n, s, z) = ε0(s, z) +D(∂ζ , 0, 0)u
′(ζ, s, z) + . . .

where

ε0 =
(
0,

1√
2
(∂su

0
n − κu0s),

1√
2
∂zu

0
n, ∂su

0
s + κu0n, ∂zu

0
z,

1√
2
(∂su

0
z + ∂zu

0
s)
)T

. (3.15)

Collecting coefficients of order h−1 in the elasticity equations, we arrive at the system of ordinary

differential equations

−D(∂ζ , 0, 0)
TA(ζ, s, z)D(∂ζ , 0, 0)u

′(ζ, s, z) = D(∂ζ , 0, 0)
TA(ζ, s, z)ε0(s, z), ζ ∈ Υ(s). (3.16)

The boundary conditions (1.4) on the exterior boundary Γh imply

D(1, 0, 0)TA(H(s), s, z)D(∂ζ , 0, 0)u
′(H(s), s, z) = −D(1, 0, 0)TA(H(s), s, z)ε0(s, z). (3.17)

Furthermore, we derive the second boundary condition

u′(0, s, z) = 0 (3.18)

because the right-hand side of (2.1) contains no term of order h. Since the matrix differential

operator on the left-hand side of (3.17) can be written as

D(1, 0, 0)TA(ζ, s, z)D(1, 0, 0)∂ζ = a(ζ, s, z)∂ζ ,
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we can solve (3.16), (3.17) and use the matrix (3.13) to have

∂ζu
′(ζ, s, z) = −a(ζ, s, z)−1D(1, 0, 0)TA(ζ, s, z)ε0(s, z). (3.19)

Taking into account (3.18), we obtain

u′(ζ, s, z) = −
ζ∫

0

a(τ, s, z)−1D(1, 0, 0)TA(τ, s, z)ε0(s, z)dτ.

We can calculate the trace of the leading term of the normal stresses on Γ:

D(1, 0, 0)Tσ(uh; 0, s, z) = D(1, 0, 0)TA(0, s, z)(ε0(s, z)

+D(1, 0, 0)∂su
′(0, s, z) + . . .) = D(1, 0, 0)TA(0, s, z)ε0(s, z)

−D(1, 0, 0)TA(0, s, z)D(1, 0, 0)a(0, s, z)−1D(1, 0, 0)TA(0, s, z)ε0(s, z) + . . . = 0 + . . . ,

where we used the equality (3.13) to show that the leading term vanishes. In other words, the

first couple of asymptotic terms in the ansatz (3.7) brings zero traction on the interior surface

contacting blood. In Section 4, we show that the traction generated by the third term h2u′′

becomes nontrivial and is given by the matrix differential operator applied to the vector (3.13).

In the asymptotic analysis, it is convenient to endow formally the rigidity matrix A with the

order h−1, which means that the elastic wall is thin, but hard. Certainly, this is true for both

arteries and veins.

3.3. The second correction term. As in Subsection 3.2, we conclude that the term u′′

in (3.7) satisfies the same mixed boundary value problem for the system of ordinary differential

equations in ζ but with new right-hand sides f ′′ and g′′:

−D(∂ζ , 0, 0)
TA(ζ, s, z)D(∂ζ , 0, 0)u

′′(ζ, s, z) = f ′′(ζ, s, z), ζ ∈ Υ(s),

D(1, 0, 0)TA(H(s), s, z)D(∂ζ , 0, 0)u
′′(H(s), s, z) = g′′(s, z),

u′′(0, s, z) = 0.

(3.20)

To find f ′′ and g′′, we take into account the lower-order terms in the strain columns ε(u0) and

ε(u′). First, we obtain

ε(u0;n, s, z) = ε0(s, z) + hε1(ζ, s, z) + . . . , (3.21)

where ε0 is given by (3.15). According to (2.3), we set

ε1 = −ζκ
(
0,

1√
2
(∂sun − κus),

1√
2
∂suz, ∂sus + κun, 0, 0

)T
, (3.22)

where the factor −ζκ(s) comes from the decomposition

J(n, s)−1 = (1 + nκ(s))−1 = 1− hζκ(s) +O(h2).

For ε(u′) we have

ε(u′;n, s, z) = h−1D(∂ζ , 0, 0)u
′(ζ, s, z) + ε′(ζ, s, z) + . . . , (3.23)
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where, as in (3.15),

ε′ =
(
0,

1√
2
(∂su

′
n − κu′s),

1√
2
∂zu

′
n, ∂su

′
s + κu′n, ∂zu

′
z,

1√
2
(∂su

′
z + ∂zu

′
s)
)T

. (3.24)

Formulas (3.21) and (3.23) allow us to compute the traction on Γ

D(1, 0, 0)Tσ(uh; 0, s, z) = h
(
D(1, 0, 0)TA(0, s, z)D(∂ζ , 0, 0)u

′′(0, s, z)

+D(1, 0, 0)TA(0, s, z)(ε1(0, s, z) + ε′(0, s, z))
)
+ . . .

= h
(
D(1, 0, 0)TA(0, s, z)D(∂ζ , 0, 0)u

′′(0, s, z) +D(1, 0, 0)TA(0, s, z)ε′(0, s, z)
)
+ . . . , (3.25)

where we used that ε1(ζ, s, z) = 0 for ζ = 0 due to the factor ζ in (3.22). Solving (3.20), we get

D(1, 0, 0)TA(0, s, z)D(∂ζ , 0, 0)u
′′
(0, s, z) =

H(s)∫

0

f ′′(ζ, s, z)dζ + g′′(s, z).

Therefore, for calculating the next term for the traction on Γ it suffices to determine the right-

hand sides f ′′ and g′′.
To compute f ′′, we need the terms (3.22) and (3.24) and asymptotic expansion of the matrix

differential operator on the left-hand side of the equilibrium equations (2.4) which is

−h−1D(∂ζ , 0, 0)
T − h0(D(0, ∂s, ∂z)

T + κ(s)K) + . . . ,

where

K =

⎛

⎝
1 0 0 −1 0 0

0
√
2 0 0 0 0

0 0 1/
√
2 0 0 0

⎞

⎠ .

Hence

f ′′(ζ, s, z) = D(∂ζ , 0, 0)
TA(ζ, s, z)(ε1(ζ, s, z) + ε′(ζ, s, z)) + (D(0, ∂s, ∂z)

T

+ κ(s)K)A(ζ, s, z)
(
ε0(s, z) +D(∂ζ , 0, 0)u

′(ζ, s, z)) + ρ(ζ, s, z)∂2
t u

0(s, z), (3.26)

where the right-hand side of (2.4) was taken into account.

To calculate g′′, we recall that D(nh(s, z)) = D(1, 0, 0) − hD(0, ∂sH(s), 0) + . . . in view of

(3.10). Therefore,

g′′(s, z) = −D(1, 0, 0)TA(H(s), s, z)(ε1(H(s), s, z)+ε′(H(s), s, z))

+D(0, ∂sH(s), 0)TA(H(s), s, z)(ε0(s, z)+D(∂ζ , 0, 0)u
′(H(s), s, z)). (3.27)

From (3.26) and (3.27) it follows that

H(s)∫

0

f ′′(ζ, s, z)dζ + g′′(s, z) =

( H(s)∫

0

D(∂ζ , 0, 0)
TA(ζ, s, z)(ε1(ζ, s, z) + ε′(ζ, s, z))dζ

−D(1, 0, 0)TA(H(s), s, z)(ε1(H(s), s, z) + ε′(H(s), s, z))

)
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+

( H(s)∫

0

(D(0, ∂s, ∂z)
T + κ(s)K)A(ζ, s, z)(ε0(s, z) +D(∂ζ , 0, 0)u

′(ζ, s, z))dζ

+D(0, ∂sH(s), 0)TA(H(s), s, z)(ε0(s, z) +D(∂ζ , 0, 0)u
′(H(s), s, z))

)

−
H(s)∫

0

ρ(ζ, s, z)dζ∂2
t u

0(s, z) =: I1 + I2 − I3.

Integrating by parts, we find I1 = −D(1, 0, 0)TA(0, s, z)ε′(0, s, z), which cancels the last term

in (3.25). Furthermore, one can directly check that

I2 = (D(0, ∂s, ∂z)
T + κ(s)K)

H(s)∫

0

A(ζ, s, z)(ε0(s, z) +D(∂ζ , 0, 0)u
′(ζ, s, z))dζ.

Using (3.19), we get

I2 = (D(0, ∂s, ∂z)
T + κ(s)K)M(s, z)ε0(s, z), (3.28)

where

M(s, z) =

H(s)∫

0

(
A(ζ, s, z)−A(ζ, s, z)D(1, 0, 0)a(ζ, s, z)−1D(1, 0, 0)TA(ζ, s, z)

)
dζ (3.29)

is a symmetric 6× 6 matrix.

Lemma 3.1. The matrix M has the form

M(s, z) =

(
O O

O Q
��
(s, z)

)
, (3.30)

where O is the null 3× 3-matrix and Q
��
(s, z) is given by (3.3) and (3.5).

Proof. By (2.13), (3.12), and (3.32), the integrand in (3.29) is expressed as
(
A†† A†�

A�† A��

)
−
(
A†† A†�

A�† A��

)(
E

O

)[
(
E O

)
(
A†† A†�

A�† A��

)(
E

O

)]−1

× (
E O

)
(
A†† A†�

A�† A��

)
=

(
A†† A†�

A�† A��

)
−

(
A
††

A
�†

)
(A††)−1

(
A†† A†�)

=

(
O O

O A�� −A�†(A††)−1A†�

)
=

(
O O

O Q��

)
,

where Q�� is defined by (3.5) and

E =

⎛

⎝
0 0 0

0 1 0

0 0 0

⎞

⎠ . (3.31)

The above relation together with (3.3) yields (3.30).
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Let D�(κ(s), ∂s, ∂z) be defined by (3.2). Lemma 3.1 together with (3.14) shows that (3.28)

can be written as

I2 = −D�(κ(s),−∂s,−∂z)
TQ

��
(s, z)ε�(U; s, z), (3.32)

where ε� is given by (2.11). Using the evident equality J(0, s) = 1, we get

ε�(U) =
(
∂sus + κun, ∂zuz,

1√
2
(∂suz + ∂zus)

)T
= D�(κ, ∂s, ∂z)U.

Finally, since I3 = ρ(s, z)∂2
tU(s, z), where ρ is defined by (3.4), we arrive at the following

expression for the normal stress vector on Γ:

σΓ = D(1, 0, 0)Tσ(uh; 0, s, z) = −hρ(s, z)∂2
tU(s, z)

− hD�(κ(s),−∂s,−∂z)
T Q

��
(s, z)D�(κ(s), ∂s, ∂z)U(s, z) + . . . , (3.33)

which together with (3.14) leads to (3.1).

Remark 3.1. Writing the Hooke law (2.6) in the form ε(u) = Bσ(u), where B = A−1 is

the compliance matrix, we observe that Q�� = B��.

3.4. The model of the vessel wall. The flow in the cylindrical vessel Ω is described by

the Navier–Stokes equations (1.1), where v is the velocity vector, p is the pressure, and ν is the

kinematic viscosity. On the vessel walls, it is assumed that the wall velocity coincides with the

fluid velocity described by the relation (1.5) and the hydrodynamic force is equal to the normal

stress vector on the boundary. By (3.33), the latter means

D�(κ(s),−∂s,−∂z)
TQ

��
(s, z)D�(κ(s), ∂s, ∂z)U(s, z) + ρ(s, z)∂2

tU(s, z) = −h−1ρbF(s, z) (3.34)

on ∂Ω, where ρbF is the hydrodynamic force with components given by (1.7), ρb is the blood

density, and D� is defined by (3.2).

4 Analysis of the Model

4.1. The additive property of the rigidity matrix. Let Σh = ςh × R be a laminated

wall consisting of K layers of thickness hk. In each layer, the rigidity matrix A(k) is assumed to

be constant. The relations (3.4) and (3.3) take the form

ρ(s, z) =

N∑

j=1

hj
h
ρj(s, z),

Q
��
=

K∑

k=1

hk
h
Q��

(k),

where hk/h is the normalized thickness of the kth layer and Q��
(k) is the block of the matrix Q(k)

constructed by using the matrix A(k) according to (3.5).

4.2. The rigidity matrix for an arterial wall. The laminate structure of walls depends

on the type of blood vessels. The most studied vessels are arteries (cf. [1, 3, 4, 5, 22]) whose
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walls consist of three layers: intima, media, and adventitia. The internal layer, which is just a

very thin film, does not affect elastic properties of the wall. However, the media and adventitia

layers are composites formed by bundles of collagen fibers of a homogeneous material consisting

of muscle cells. In each layer, the bundles are usually modeled by two families of fibres that

are wound around the cylinder under the angles ±ϕm and ±ϕa to the z-axis respectively. Here,

ϕm, ϕa ∈ (0, π/2). As a result, we obtain composite materials reinforced by periodic families of

rigid rods.

There are several approaches for determining elastic properties of laminated composite walls

of arteries. For example, a nonlinear rheological stress/strain relation is proposed in [5] for

the entire arterial wall, as well as in the case of dissection of the media and adventitia. For

estimating elastic properties of vessels by solving inverse problems we refer to [23] and [24].

However, for these rheological relations no two-dimensional model still exists. In this paper, we

use a technique based on the linear homogenization theory, which allows us to compute explicitly

the matrix (3.3) with the boundary condition (3.1).

Applying the asymptotic homogenization procedure developed in [9, 25], we obtain the fol-

lowing representation of the rigidity matrix:

Q
��
= Q��

(c) +Q��
(m) +Q��

(a), (4.1)

where

Q��
(m) = Em

∑

±
Θ�(±ϕm)EΘ�(±ϕm)T ,

Q��
(a) = Ea

∑

±
Θ�(±ϕa)EΘ

�(±ϕa)
T .

Here,

Q(c) =

⎛

⎝
2μ+ λ λ 0

λ 2μ+ λ 0

0 0 2μ

⎞

⎠

is the rigidity matrix of an isotropic filler with the Lamé constants λ and μ, which are small with

respect to the Young moduli Em and Ea of the collagen fibers from the media and adventitia

layers, i.e., μ, λ � Em, Ec. Furthermore, the matrix E is given by (3.31) and

Θ�(ϕ) =

⎛

⎜⎝
cos2 ϕ sin2 ϕ −√

2 sinϕ cosϕ

sin2 ϕ cos2 ϕ
√
2 sinϕ cosϕ√

2 sinϕ cosϕ −√
2 sinϕ cosϕ cos2 ϕ− sin2 ϕ

⎞

⎟⎠

(cf. [16, Chapter 2] for details). In particular,

Q��
(a) = 2Ea

⎛

⎜⎝
sin4 ϕa sin2 ϕa cos

2 ϕa 0

sin2 ϕa cos
2 ϕa cos4 ϕa 0

0 0 2 sin2 ϕa cos
2 ϕa

⎞

⎟⎠ . (4.2)

A similar formula for Q��
(m) can be obtained from (4.2) with ϕa replaced by ϕm. Thus, the

composite material of the artery wall after averaging is orthotropic with the main orthotropy

axes directed along the z- and s- axes.
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The matrices Q��
(m) and Q��

(a) are not positive definite. For example, (cos2 ϕa,− sin2 ϕ, 0)T

belongs to the kernel of the matrix (4.2). However, Q��
(m) +Q��

(a) and, consequently, the matrix

(4.1) is positive definite provided that ϕm �= ϕa. The last condition is satisfied by arteries (cf.

[1, 3, 4, 5, 22]). Thus, the main elastic cyclic load is taken by collagen fibers and their location

determines the orthotropic properties of the wall.

On the other hand, each layer is anisotropic and has different resistence properties in different

directions depending on the angles ϕa and ϕm respectively. Under separation of media and

adventitia layers, such loads, caused by blood pulsation, lead to oscillations of large amplitude,

which can be a reason of dissonance in media and adventitia layers. This observation can explain

the well-known fact in medical practice that the artery dissection (separation of layers) can lead

to aneurysm and even may stimulate crushing of vessel walls.

4.3. The stability estimate and Green formula for the limit problem. The goal of

this subsection is to present the Green formula and obtain a stability estimate for the problem

(1.1), (3.34), (1.5). For the sake of simplicity, we consider the Navier–Stokes system without

convective acceleration, i.e., instead of (1.1), we consider the Stokes system

∂tv − νΔv = −∇p in Ω.

We consider a pair (V,W), where V is a solenoidal vector-valued function on Ω× [0, T ] and W

is a vector-valued function on Γ × [0, T ], T is a positive number. We assume that V|Γ = ∂tW

and note that the pair (v,U) in (1.1) and (3.34) also possesses these properties. Multiplying

the equation by a solenoidal vector field V = (V1, V2, V3) and using the Green formula for the

Stokes system (cf. [26, Chapter 3, Section 2]), we get

∫

Ω

(∂tv − νΔv +∇p) ·Vdx =
ν

2

∫

Ω

(∂vk
∂xi

+
∂vi
∂xk

)(∂Vk

∂xi
+

∂Vi

∂xk

)
dx

−
∫

Γ

Tik(v)VinkdSΓ +

∫

Ω

∂tv ·Vdx, (4.3)

where summation over repeating indexes is assumed, the dot denotes the inner product of two

vectors, and

Tik(v) = −δki p+ ν
(∂vk
∂xi

+
∂vi
∂xk

)
.

Here, δki is the Kronecker delta. By (1.6) and (3.34),

∫

Γ

Tik(v)VinkdSΓ = − h

ρb

(
a(U,V) +

∫

Γ

ρ(s, z)∂2
tU ·Vdx

)

with

a(U,V) =

∫

Γ

Q
��
(s, z)D�(κ(s), ∂s, ∂z)U(s, z) ·D�(κ(s), ∂s, ∂z)VdSΓ.
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Using this identity, we write (4.3) in the form

∫

Ω

(∂tv − νΔv +∇p) ·Vdx =
ν

2

∫

Ω

(∂vk
∂xi

+
∂vi
∂xk

)(∂Vk

∂xi
+

∂Vi

∂xk

)
dx

+
h

ρb

(
a(U, ∂tW) +

∫

Γ

ρ(s, z)∂2
tU · ∂tWdSΓ

)
+

∫

Ω

∂tv ·Vdx. (4.4)

Setting (V,W) = (v,U) and integrating over [0, T ], we find

ν

2

T∫

0

∫

Ω

(∂vk
∂xi

+
∂vi
∂xk

)(∂vk
∂xi

+
∂vi
∂xk

)
dx+

1

2

∫

Ω

|v|2dx|t=T +
h

2ρb

(
a(U,U)|

+

∫

Γ

ρ(s, z)|∂tU|2dSΓ

)∣∣∣
t=T

=
1

2

∫

Ω

|v|2dx|t=0 +
h

2ρb

(
a(U,U) +

∫

Γ

ρ(s, z)|∂tU|2dSΓ

)∣∣∣
t=0

,

(4.5)

where we recalled that the right-hand side in (4.4) vanishes in view of (1.1). Since the problem

(1.1), (3.34), (1.5) is supplied with initial conditions for v and U, the equality (4.5) implies the

stability estimate for the norm of the solution in terms of the norms of the initial conditions.

The relation (4.4) can be used to define a weak solution to the problem (1.1), (3.34), (1.5).

4.4. On the shape of the vessel cross-section. The relations (3.1) and (3.3) allow

us to find the geometry of the wall, which is based on two observations. First, according to

[6, 22, 27, 28, 29], the vessel walls are mainly subject to homogeneous hydrostatical pressure at

low velocities, i.e., the leading term for F in (1.6) and (3.34) is of the form

Fn(s, z, t) = −p0(z, t) + . . . ,

Fs(s, z, t) = 0 + . . . ,

Fz(s, z, t) = 0 + . . . .

Let us assume that both derivatives of p0(z, t) with respect to z and t are small, i.e., the

hydrostatic pressure changes slowly in time and along the vessel. Then the system (3.34) takes

the form
κ(Q

��
11(κu

0
n + ∂su

0
s) +Q

��
132

−1/2∂su
0
z) = h−1p0,

− ∂s(Q
��
11(κu

0
n + ∂su

0
s) +Q

��
132

−1/2∂su
0
z) = 0,

− 21/2∂s(Q
��
31(κu

0
n + ∂su

0
s) +Q

��
332

−1/2∂su
0
z) = 0.

(4.6)

Comparing the first and second equations, we see that κ is independent of s and, consequently,

κ = κ0 = const, which implies that the cross-section is a disc. From the first and third equations

in (4.6) we get

Q
��
11(κ0u

0
n + ∂su

0
s) +Q

��
132

−1/2∂su
0
z = h−1

κ
−1
0 p0,

Q
��
31(κ0u

0
n + ∂su

0
s) +Q

��
332

−1/2∂su
0
z = c0.
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Therefore,

u0n =
1

q�

(
(Q

��
31κ0 +Q

��
332

−1/2)
p0
hκ0

− (Q
��
11κ0 +Q

��
132

−1/2)c0

)
,

∂su
0
z =

1

q�
(Q

��
11κ0c0 −Q

��
31p0),

where q� = Q
��
11κ0(Q

��
31κ0 +Q

��
332

−1/2)−Q
��
31κ0(Q

��
11κ0 +Q

��
132

−1/2).

4.5. The vessel cross-section revisited. It is reasonable to assume that the vessel wall

is subject to residual stresses, which can be explained as follows. The blood circulation system

is formed in the embryonic state of organism and then develops through the growth of collagen

fibres and muscle cells which is different for them. This fact may cause residual stresses in elastic

walls which can be described by the additional terms

D�(κ(s),−∂s,−∂z)(gs(s), gz(s), 0)
T = (κ(s)gs(s)− ∂sgz(s), 0, 0)

T (4.7)

on the right-hand side of (3.34), which do not destroy the structure of the system (4.6) and lead

to the same conclusion about the circular shape of the cross-section of vessel as in Subsection 4.2.

The situation is different if external forces are taken into account. These forces can be

caused, for example, by an asymmetric position of a surgical suture. In this case, the right-hand

side of (3.34) has the additional stress term τ(s) = (τn(s), τs(s), τz(s)) and (4.6) takes the form

κ(Q
��
11(κu

0
n + ∂su

0
s) +Q

��
132

−1/2∂su
0
z) = p0 + τn,

− ∂s(Q
��
11(κu

0
n + ∂su

0
s) +Q

��
132

−1/2∂su
0
z) = τs,

− 21/2∂s(Q
��
31(κu

0
n + ∂su

0
s) +Q

��
332

−1/2∂su
0
z) = τz.

(4.8)

Integrating the second equation, we get

Q
��
11(κu

0
n + ∂su

0
s) +Q

��
132

−1/2∂su
0
z = −

s∫

0

τs(ρ)dρ+ c1. (4.9)

Let the right-hand side of (4.9) be a continuous 1-periodic function, i.e.,

1∫

0

τs(ρ)dρ = 0. From

(4.8) and (4.9) it follows that κ

(
−

s∫

0

τs(ρ)dρ+ C1

)
= p0 + τn. Since κ is the curvature of a

closed curve with the unit length, we have

1∫

0

κ(s)ds = 2π (4.10)

provided that the origin is located inside the curve. Hence for C1 we obtain the equation

2π =

1∫

0

(p0 + τn(s))

(
−

s∫

0

τs(ρ)dρ+ C1

)−1

ds.

578



Then we find the curve from the curvature.

Let κ = κ(s) be given. It is convenient to assume that κ is given for all s and is periodic

with period 1. We assume that the relation (4.10) is valid and reconstruct the curve ζ(s). We

have the following explicit formulas for ζ (cf., for example, [30, Chapter 3, Section 5]):

ζ1(s) =

s∫

0

sinα(ρ)dρ+ x0, ζ2(s) =

s∫

0

sinα(ρ)dρ+ y0, (4.11)

where α(s) =

s∫

0

κ(ρ)dρ and x0, y0 are constants. By the periodicity of κ and (4.10), we get

α(s + 1) = 2π + α(s). Hence the sufficient conditions for the curve (4.11) to be closed are as

follows:
1∫

0

sinα(ρ)dρ = 0,

1∫

0

cosα(ρ)dρ = 0. (4.12)

If κ is positive, then we change variable y = α(ρ), dy = κ(ρ)dρ, in (4.12), which yields

2π∫

0

sin y dy

κ(s(y))
= 0,

2π∫

0

cos y dy

κ(s(y))
= 0.

The violation of (4.12), which means that the wall shape is unstable and supports the same

artery pathologies as in the case of dissection described in Subsection 4.4. The deviation of the

cross-section shape from the circular one causes the deterioration of the blood permeability: it

is known that, among all cross-sections of the set perimeter, it is the circular cross section that

provides the largest stream of a fluid for the Poiseuille flow. However, the local distortion of

the artery shape represents a risk of secondary significance for the vascular system because the

basic threat follows from a decrease in the cross-section area by means of the formation and

accumulation of atherosclerotic damages.
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