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Using the dimension reduction procedure for a three-dimensional elasticity system, we
derive a two-dimensional model for elastic laminate walls of a blood vessel. In the case
of a sufficiently small wall thickness, we derive a system of limit equations coupled
with the Navier—Stokes equations through the stress and wvelocity, i.e., dynamic and
kinematic conditions on the interior surface of the wall. We deduce explicit formulas
for the effective rigidity tensor of the wall in two natural cases. We show that if the
blood flow remains laminar, then the cross-section of the orthotropic homogeneous blood
vessel becomes circular. Bibliography: 30 titles. Illustrations: 2 figures.

1 Introduction

1.1. Formulation of the problem. Blood vessels form one of the most complicated and
important systems (the circulatory system) in a human body which is exposed to various risks
and is poorly amenable to medical treatments. Mathematical modelling of blood transport in
arteries, veins, capillaries, and other blood vessels is a classical problem which is still actual
nowadays (cf. [1]-[3] and [4, Section 8]). Although the existing models are usually based on
the anisotropic and composite structure of blood vessel walls (cf. Figure 1 and [4, 5]), the
analysis in this direction is far from being completed yet. In this way, our paper makes a next
step in derivation of adequate governing relations that carefully take into account the laminated
structure of an elastic blood vessel wall and the complicated composite structure of each laminate
wall layer as well. For this purpose we consider a flow of a viscous incompressible fluid (blood) in
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a cylindrical vessel having an arbitrary cross-section. The vessel wall can consist of several layers
of anisotropic materials. Our goal is twofold: first, to derive a model where a three-dimensional
but thin anisotropic wall of the vessel is replaced with a boundary surface and, second, to
obtain an explicit relation between the Hooke tensors for three- and two-dimensional models.
We obtain such a model under the assumption that the wall thickness is small in comparison
with the vessel diameter, whereas the diameter is small compared with the length of the part of
the vessel under consideration. In this part of the vessel, the blood flow is laminar because the
hydrostatic pressure prevails over the hydrodynamic forces. This allows us to conclude in Section
4 that the circular cross-section of the blood vessel is optimal in a certain sense. Moreover, the
fact that the flow is laminar and the elastic wall material is strong and tough results in a small
wall displacements. Hence the dimensional reduction procedure can be applied to the elastic
vessel wall.
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Figure 1. The blood vessel wall consisting of three layers reinforced by collagen fibres.

The dimension reduction procedure for the three-dimensional Navier—Stokes equations in a
blood vessel was developed in [6], where the two-dimensional wall model was considered. Our
results, especially explicit formulas in Section 4, provide concrete values for the elastic moduli
used in [6] in the orthotropic rigidity tensor of the vessel wall. Thus, in this paper, the main
attention is paid to the formal asymptotic analysis resulting in these explicit formulas while we
dot not justify the asymptotics by several reasons.

n =h H(s)

Figure 2. The cross-section of the blood vessel.
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First, the dimension reduction for a thin elastic cylindrical shell under a fixed external
loading, i.e., with prescribed hydrodynamical forces, follows a standard scheme (cf., for example,
[7]-[10]). In particular, the paper [11] contains a detailed proof of the error estimate in a similar
situation.

Second, the evaluation of effective elastic properties of blood vessels is the most urgent
problem in simulation of circulatory system (cf. [12]).

We give a mathematical formulation of the problem. Let w be a two-dimensional simply
connected bounded domain enveloped by a smooth contour 7. In a neighborhood ¥ of v, we
introduce the natural curvilinear orthogonal coordinates (n, s), where n is the oriented distance
to v (n > 0 outside w and n < 0 inside w) and s is the arc length along -, measured counter-
clockwise. Let H be a smooth positive function on v, and let h be a small positive parameter.
Setting v, = {y € ¥, n = hH(s)}, we denote by ¢, the domain between v and ~;, (cf. Figure
2). Then the lumen of the vessel is given by 2 = w x R and the vessel wall is ¥ = ¢, x R. An
appropriate rescaling makes the parameters and coordinates dimensionless.

The flow in the vessel is described by the velocity vector v = (v1, v, v3) and the pressure p
satisfying the Navier—Stokes equations

v+ (v-V)v—vAv=-Vp, inQ

1.1
V-v=0 1in Q, (1.1)

where pp is the fluid density and v is the kinematic viscosity related to the dynamic viscosity u
by v = p/pp. The stress state of the linear elastic wall is described by the displacement vector
u = (u1,us,us3) and the stress tensor o = {o-jk}?,kzl satisfying the nonstationary elasticity
equations
00‘j1 00‘j2 80‘j3 82u]‘
+ = in % i=1,2,3 1.2
axl axQ ax3 p atQ hs .] 1= ( )

and the Hooke law
3

] 1/0u ou
Ujk = Z A?}Z‘g])qv 75 /{ = 1,2,3, qu = 5(8—12 + 8—[EZ)’ (13)
p,g=1

where p is the mass density, € = {5jk}?,k=1 is the strain tensor, and A = {A?Z} is the rigidity

tensor (also called the Hooke tensor) consisting of the moduli of elasticity of the wall material
and possessing the standard symmetry and positivity properties:

3 3
A= A=A X0 AlGkEa > Ca 3 16T,
Jik,p,q=1 g,k=1
where Cy4 > 0 and {1} is an arbitrary symmetric 3 x 3-matrix. Within the Eulerian framework
(this is our simplifying assumption), the actual position of the interior surface I' = v x R at the
moment ¢ is given by {z + u(x,t) : x € I'}; it corresponds to stretching the elastic wall caused
by the pulsatory blood flow.

The exterior surface I', = v, X R is assumed to be traction freeV, ie.,

0j1n1 + 0jone = 0 onlIYy. j=1,2,3, (1.4)

1) The Robin boundary condition can be also used for describing an interaction between the surrounding tissue
and the blood vessel (cf., for example, [13] and [14]).
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where n = (nq,ne,0) is the outward unit normal to I',. It is natural to impose two conditions
on the interior surface I'. The first one is that the fluid velocity coincides with the velocity of
the elastic wall, i.e., the kinematic no-slip boundary condition holds

v=0mu onl, (1.5)

whereas the second (dynamic) condition says that the hydrodynamic force is equal to the normal
stress vector (traction comes with minus because the normal n is interior for ¥j):

or =0 -n=pF, (1.6)
where F = (F,, F,, Fy),
F,=-p+ V%,
F, = g(% + %7: - %us), (1.7)

B:z@&+MQ7

2\ 0z on

where v, and vg are the velocity components in the direction of the normal n and the tangent
s respectively, whereas v, is the longitudinal velocity component (z = x3). Finally, »(s) is the
curvature of v at the point s.

We assume that ) 1
n n
=3o(02) A=A(52)

satisfy one of the following conditions:

(I) (a heterogeneous wall material): p((, s, z) and A((, s, z) are smooth on X1, where ¥1 =
{(¢,8,2) : s€, C€(0,H(s)),z € R},

(IT) (a laminate wall with layers of piecewise constant thickness): H(s) = 1, whereas p
and A are defined as follows. Let hi,...,hy be given numbers such that hi,...,Ax > 0,
hi+...+hy=h,a0=0,a; =aj_1 +hj, j=1,...,N. Then p((,s,z) = p/(s,2), A((,s,2) =
AJ(s,z), ¢ € (aj_1/h,aj/h), where p’ and A7 are independent of (.

Our goal is to derive a two-dimensional model of a blood vessel wall under Assumption
(I) which simplifies the demonstration to some extent. However, the walls of veins and arteries
involve composite laminate elastic structures, and so we give explicit formulas under Assumption
(IT) attributed mainly to peripheral veins (cf. Subsection 4.1). In arteries and voluminous
veins, bundles of collagen fibres must be taken into account as well (cf. Subsection 4.2). Note
that the dimension reduction procedure intrinsically admits passing to various limits and a
straightforward approach is to approximate composites with piecewise constant elastic moduli
by those having smooth heterogeneous properties and then, in the final integral formula for
effective moduli (cf. Subsection 3.3), to return to the piecewise constant case.

1.2. Results. The dimension reduction plays an important role in mathematical modelling
of engineering problems, where certain elements have small size in some directions. The theory
of rods, plates, shells, elastic multi-structures etc. are examples worth mentioning. There are
many papers on this topic that describe approximate models and justify them mathematically
to a different extent of rigor by using various methods and approaches. Note that there are
many classical engineering theories for laminated plates and shells (cf., for example, [15]).
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We apply the rigorous dimension reduction procedure which was developed for problems
in elasticity in [7, 8, 10, 12, 16] and for general elliptic problems in [17]. The main difficulty
stems from the fact that the anisotropic wall has laminated structure. Our approach is based
on several important ideas (cf. Section 2):

1) application of the matrix notation for equations in the elasticity theory referred to as the
Voigt-Mandel notation in mechanics,

2) rearrangement of components of stress and strain vectors, which reflects different order
asymptotic behavior of “normal” and “tangent” components of the corresponding tensors and
is closely related to the notion of surface enthalpy [18].

The crucial point of our asymptotic approach is to construct an operator U — or of the
Dirichlet—to—-Neumann type, where U is a given displacement on the boundary I' and or is
the corresponding normal stress vector on I'. This relation is obtained in Section 3 and the
leading term of or on I' is expressed through a hyperbolic operator on I' applied to U. By this
fact, the equilibrium equation (1.6) becomes a hyperbolic system for U with the right-hand side
—h~'ppF (cf. (3.34)). Combining it with the Navier-Stokes system (1.1) and the kinematic
condition (1.5), we obtain a system of constitutive relations describing an interaction between
the blood flow in the vessel and the elastic wall. Similar models were considered (cf. [4, Chapter
8] and [6] and the references therein), but only in the case of vessels with circular cross-section
and isotropic homogeneous walls.

In Section 4, we analyze the model. In particular, we discuss connections between the elastic
coefficient in our model and the elastic coefficient of the vessel wall.

Various laminate composite structures of blood vessel walls are well-known (cf. [4, Chapter
8]) and, as outlined above, we apply the dimension reduction procedure to approximate a thin
anisotropic elastic wall by an anisotropic shell in order to derive an explicit formula for the
limit rigidity matrix (3.3). In contrast to usual mathematical models of vessels, we do not
assume a priori that the cross-section is circular (cf. Subsections 4.4 and 4.5). This allows us
to consider the wall strains caused by such damages of blood vessels as irregular calcification
(hyalinosis, arterial calcinosis), oblong atherosclerotic deposits (atherosclerotic plaque), and/or
various surgical exposures.

2 Elastic Walls

The immediate objective of our asymptotic analysis of the elasticity problem (1.2), (1.3)
with the boundary conditions (1.4) and

u;=U; onl, j=1723, (2.1)

is to compute the normal stress vector or on the boundary I'. Here, U = (Uy, Us, Us) is a given
displacement vector on I'.

We use the following notation for points inside ¥j: = = (x1,x9,23) = (y,2), where y =
(y1,y2) = (z1,22) and z = z3.

2.1. Elastic fields in the curvilinear coordinates. We introduce the orthogonal system
of curvilinear coordinates (n, s, z) in ¥, where n and s are defined in Section 1. In particular,
the contour ~ is given by (z1,z2) = ((s), 0 < s < ||, where |y| is the length of v, which, by
rescalling, is assumed to be equal to 1. Let (n1,n2) be the unit outward normal vector to the
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boundary 7 of w. Then ny = ¢4(s), no = —(}(s), and
(21, 22) = (Ci(s), C2(8)) +n(Ga(s), =Ci(s)), @3 ==z (2.2)

in the neighborhood ¥#. Since this system of coordinates is orthogonal, we can use the nota-
tion and general formulas in [19, Appendix C] to write all the elasticity relations in this local
coordinate system. In particular, the corresponding orthonormal basis is n = (—¢4(s), (1(s),0),
s = ((1(s),¢5(s),0),z = (0,0,1) and the scale factors are given by H,, = H, = 1, Hy = 1+n(s),
where 3(s) = (5(s)C}(s) — ({(s)¢5(s) is the curvature of . The Jacobian of the transformation
(2.2) is denoted by J, and J = H,HsH, = 14+n(s). The components of the displacement vector
in this coordinate system are expressed as u, = nijuj + noug and us = —ngui + N1z, Uy = U3.
The components of the strain tensor are given by

. Oouy, . 1 (8u5 n ) . ou,
= — = — U - -
nn an ) SS J 88 n | zZZ 82 )
1/0u 1 /0u
= =5 (G + 5 (50 ), 22
e _1(18%_’_8%) . _1(8uz+%)
T 9T 9s 9z /) " T 2\ on 0z /)’
We also need the derivatives of the basis vectors:
On On 0s 0O0s 0z 0z Oz
on 9z On 9z On  Ods 90z
on Os
95 = x#(s)s, 55 = —x(s)n.
Using these relations, we obtain the elasticity equations in >,
Oo 1 1900 oo
o T g omn = ows) 55 A T = 0,
0o gn 1 1 0o Osz 2
2= = 2 =50 24
on + J%Usn + 7 0s 0z PO Us, ( )
00 ., 1 1 0oy, do. 2
- - = 00
on +J%U'm+J Js + 0z POy

(cf. [19, Appendix C]).

2.2. The matrix notation. We use the matrix, rather than tensor, notation. We denote
by U = (u17u27u3)T
notation (cf., for example, [16, 20, 21]), we introduce the strain and stress columns

a column vector with components u1, uo, and uz. Using the Voigt—Mandel

e(%) = (11, V212, V2e13, €92, €33, V2e32) T, 2.5
2.5
0'(%) = (0117 \/5012, \/501370227033, \/50'32)T-

The factor /2 is used for equalizing the Euclidian norm of columns and the norm of the
corresponding tensors and the superscript T denotes the transpose of the corresponding vec-
tor/matrix. Moreover, the Hooke law in (1.3) converts into

o(U) = Ae(U), (2.6)
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where A is a symmetric positive definite 6 x 6-matrix (the rigidity (Hooke) matrix) whose entries
are related to the entries of the rigidity tensor A = {Af]q} by

An = Afl, A =V241, A =V2410, Au=Al, A =AY A= V2473,
Agy = V2AL5, Ay =2A15, Ay =241, Ay =243, ...
Let ¢ € [0,27). Consider the orthogonal transformation

cosp —sing 0
r—T=0x, 0= |sing cosp 0], (2.7)
0 0 1

which is the rotation about the z-axis by the angle ¢. Then the displacement, strain, and stress
column vectors are transformed as

—~

U =0, e¢=0%T, ¢=0%c, (2.8)

where the 6 x 6-matrix © is orthogonal and given by

cos? o V/2sin ¢ cos @ 0 sin? o 0 0
—V2sinpcosg cos?p —sin? p 0 V2singcosg 0 0
0 0 cos 0 0 sine
@ = . 2 . 2
sin“ ¢ —V/25sin p cos @ 0 cos” ¢ 0 0
0 0 0 0 1 0
0 0 —singp 0 0 cose

This formulas is easily verified and can be found in [16, Chapter 2]. Note that the orthogonality
property of © in (2.8) is valid due to the presence of the factor v/2 in (2.5).

Comparing (2.8) and (2.6), we conclude that the change of variables (2.7) leads to the
following transformation of the rigidity matrix: A — o/ = @7 A©. Using the notation (2.5),
we write the last formula in (1.3) in the matrix form

&1 %52 %53 0 0 0
D) =10 %51 0 & 0 %53
0 0 %51 0 & %52

2.3. The surface rearrangement for stresses and strains. As shown, for example,
in [18], it is convenient to rearrange components in the stress and strain vectors. First, let us
introduce the strain and stress columns in the orthogonal curvilinear coordinates (n, s, z):

e(1) = (Enn, V26ns, V2602, €ss, €22, V225)
0'(11) = (Unna \/§Gns> \/50—7’1,27 O55y02z2, \/io'zs)T,
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where u is the column vector (u,, us, uz)T. Then the Hooke law takes the form
o(u) = e(u), (2.9)

where 7 = O(p)T AO(y). Here, ¢ is the angle between y;-axis and the normal n depending on
s, but independent of n and z. We introduce two columns

77(11) = (O'm"m \/§Un57 \/io'nzv Ess1E22; \/§Ezs)T7
é(u) = (_5nn7 _ﬂ5n57 _ﬂgnza 055502z, \/ia'zs)T-

The important property of this rearrangement is that all the components in n(u) are “observ-
able” on the surface I'. This means that the stress column of(1) = (00, V205, V20,,.)T implies
the traction on I' given in the elasticity problem data, and the strain column

Eﬁ(u) = (ESS) €2z, \/ngs)T (2.11)

can be evaluated from components of the displacement vector on I' and their derivatives with
respect to s and z, i.e., along the surface I" only (cf. (2.3)). The columns

5T(u) = (Enna \/557157 \/ignz)T>
Uﬁ(u) = (0857 02z, \/§Uzs)T

gathered into a column in (2.10), do not possess the above properties and can be regarded
as “unobservable.” Indeed, to compute the components in (2.12), one has to differentiate the
displacements in n (cf. (2.3)). Therefore, one needs to know those displacements inside the
body that are unobservable.

(2.10)

(2.12)

We represent, the rigidity matrix o/ blockwise
Attt ATH
where all the blocks are 3 x 3-matrices, the matrices AT and A% are positive definite, and
ATt = (AT, We write (2.9) in the form
of(u) = ATel(u) + AT (),
of(u) = AHel(u) + A%t (u).
Then
aﬁ(u) - (Atiﬁ _ AN(ATT)—IAW)E&(H) + jélttTATlegT(u)7
— 5T(u) - (ATT)—IATﬁeﬁ(u) _ (ATT)—IUT(U).
Thus, we get the following relation connecting the & and 1 columns:
Qft Qft
Qf Q)

QM = A — AMT(ATH=1ATE > 0, QTT = —(AT) =1 < 0, QFF = AFT(ATH =L QT = (ATT)=1 AT, The
positivity of Q¥ follows from the relations 0 < a’@a = (a*)TQ%*af, a = (—(ATT)"1AMa! oF)T
for any af € R?\ {0}. Tt is clear that @ is symmetric and invertible, but not positive definite.

ﬂ®=Qmw,Q=<

Remark 2.1. According to [18], the quantity &(u)”m(u) is the density of the surface
enthalpy. This particular Gibbs functional naturally appears in the asymptotic analysis of thin
layers and surface structures such as elastic coatings, phase interfaces, propagating cracks etc.
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3 The Dimension Reduction Procedure

The main goal of this section is to show that the leading term of or obtained from the
solution to the problem (1.2), (1.3) and satisfying the boundary conditions (1.4) and u = U on
I" has the form

o1 = —hD!(5e(s), =05, —0.)T Q™ (s, 2) D (5¢(5), By, 0, )U (s, 2) — hp(s, 2)02U(s,2),  (3.1)

where s is defined after formula (1.7),

»x O 0
D*(5¢,0,,0.)= |0 0 0. (3.2)
0 %az 7505
oY QF aof H(s)
Plon) = | @ 2% |60 = [ s (3.3)
RV
H(s)
pls.2) = [ plCsi)dc (3.4)
0

The matrix Q% is the Schur complement of the block AT of the matrix .27, defined in (2.13),
ie.,

QM = At _ AﬁT(ATT)—lATﬁ' (3.5)

3.1. The asymptotic ansatz and leading term. We suppose that p and A satisfy one
of conditions (I) or (II) from Section 1. Therefore, Equation (2.9) takes the form

o(un, s, z)=((,s,2)e(u;n,s, z), (3.6)

where ¢ = h™!n is regarded as the fast variable or the stretched transversal coordinate.

We look for an asymptotic solution to the problem (1.2), (1.3) satisfying the boundary
conditions (1.4) and (2.1) in the form

u(n,s,z) =u’(s,2) + ha'((, s, 2) + h2u”((, s, 2) + . .. (3.7)

The superscript h on the left-hand side of (3.7) emphasizes the dependence of the solution on
the small parameter h. On the right-hand side of (3.7), u” stands for the leading term which is
independent of the fast variable, as we will explain below. In Section 4, we find the correction
terms u’ and u” and derive a limit system of differential equations for u® = U. All functions
may depend also on the parameter ¢, but we will not indicate this dependence explicitly.

Substituting 9, = h~19, into (2.3), we find
e(u") = h™'D(8;,0,0)u° + ... (3.8)

Here and in the sequel, the dots stand for higher-order terms which are not important for the
current step of asymptotic procedure. Similarly, the elasticity equations (2.4) take the form

h D0, 0,0) o (u) +... = ... (3.9)
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Moreover, since the gradient operator V, in the curvilinear coordinates goes to (9, J'9s,d.),
the normal n” on the exterior boundary I'j, = v, x R has the form

n"(n,s) = (14 J(n,s) 2h2|0,H(s)[>) V2 (1, —=hJ(n, s)"'0,H(s),0)T. (3.10)
Hence n! =1+ O(h?), n® = O(h), and n" = 0 which converts the boundary condition (1.4) to
D(1,0,0) a(u") +...=0. (3.11)

From (3.9), (3.11), (3.8), (3.6), and (2.1) we get the mixed boundary value problem for the
system of ordinary equations in ¢ with the parameters (s,z) € T’

— D(9¢,0,0)"27(¢, 5,2)D(0¢,0,0)u’(¢, 5,2) =0, ¢ €Y(s),
D(1,0, O)T;zi(H(s), s,2)D(0, 0, O)uO(H(s), s,2) =0, (3.12)
u’(0,s,2) = U(s, 2).

Since the matrix & is symmetric and positive definite and the rank of D(1,0,0) is equal to 3,
the 3 x 3-matrix
a=D(1,0,00T.27D(1,0,0) (3.13)

is also symmetric and positive definite. In this notation, the differential operator in the first
line of (3.12) takes the form —dca((,s,2)0; and the operator in the second line is as follows:
a((, s, z)0¢. Hence the problem (3.12) has a unique solution independent of ¢:

u’(¢,s,2) = U(s, 2). (3.14)

3.2. The first correction term. Since u°

is independent of (, we get
E(uh; n,s, Z) = 50(57 Z) + D(aCa()?O)u/(g’ 5, Z) +..

where

1 1 1
el = (O, —(9sul — »u?), —zazu%, Dsul 4 u®, 0.uY, —

V2 V2 V2

Collecting coefficients of order h~! in the elasticity equations, we arrive at the system of ordinary

T
(95 + azug)) . (3.15)

differential equations
—D(9¢,0,0)TA(¢, 5,2)D(;,0,0)00'(¢, 5,2) = D(9,0,0)T A((, 5,2)€%(s,2), ¢ € Y(s). (3.16)
The boundary conditions (1.4) on the exterior boundary I'j, imply
D(1,0,0)"A(H(s),s,2)D(¢,0,0)u'(H(s),s,2) = —D(1,0,0)" A(H(s),s,2)e(s,2).  (3.17)
Furthermore, we derive the second boundary condition
u'(0,5,2) =0 (3.18)

because the right-hand side of (2.1) contains no term of order h. Since the matrix differential
operator on the left-hand side of (3.17) can be written as

D(1,0,0)TA(¢, 5,2)D(1,0,0)9; = a(¢, s, 2)d,
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we can solve (3.16), (3.17) and use the matrix (3.13) to have
Ow'(C,5,2) = —a((,,2) 7 D(1,0,0)7A((, 5, 2)e(s, 2). (3.19)

Taking into account (3.18), we obtain
¢
u'(¢,s,2) = —/a(r,s,z)1D(1,O,O)TA(T,s,z)eo(s,z)dT.
0

We can calculate the trace of the leading term of the normal stresses on I':

D(1,0,0)T o (u";0,s,2) = D(1,0,0TA(0, 5, 2)(°(s, 2)

+ D(1,0,0)0,u'(0,5,2) +...) = D(1,0,0)TA(0, 5, 2)e%(s, 2)

— D(1,0,0)7A(0, s, 2)D(1,0,0)a(0, s, 2) "' D(1,0,0)T A(0,5,2)e%(s,2) +... =0+ ...,
where we used the equality (3.13) to show that the leading term vanishes. In other words, the
first couple of asymptotic terms in the ansatz (3.7) brings zero traction on the interior surface
contacting blood. In Section 4, we show that the traction generated by the third term h%u”
becomes nontrivial and is given by the matrix differential operator applied to the vector (3.13).
In the asymptotic analysis, it is convenient to endow formally the rigidity matrix A with the

order h™!, which means that the elastic wall is thin, but hard. Certainly, this is true for both
arteries and veins.

3.3. The second correction term. As in Subsection 3.2, we conclude that the term u”
in (3.7) satisfies the same mixed boundary value problem for the system of ordinary differential
equations in ¢ but with new right-hand sides f” and g”:

— D(9¢,0,0)7A(C, 5,2)D(0¢,0,0)0u" (¢, 5, 2) = £7(C, 5, 2), ¢ € T(s),
D(1,0,0)"A(H(s),s,2)D(9,0,0)0u"(H(s), s, 2) = g"(s, 2), (3.20)
u”(0,s,2) = 0.

To find f” and g”, we take into account the lower-order terms in the strain columns €(u’) and
e(u’). First, we obtain

e(u’n,s, 2) =e%s,2) + he'((,s,2) + ..., (3.21)
where €° is given by (3.15). According to (2.3), we set
1 1
V2 V2

where the factor —(s(s) comes from the decomposition

T
el = —C%(O, (Osty — 22ug), Osty, Ostlg + 22Uy, 0,0) , (3.22)
J(n,s)"t = (1 4+ nx(s)) ™! =1 —h¢x(s) + O(h?).
For g(u’) we have

e(u'sn,s,2) = h'D(0:, 0,000 (¢, 5,2) +€((,8,2) + ... (3.23)
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where, as in (3.15),

1 1 1 T
g — (07 %(asu; — sul), ﬁﬁz% Osul + seul, 0,u, %(Gsu; - azuf,;)) : (3.24)

Formulas (3.21) and (3.23) allow us to compute the traction on I’

D(1,0,0) o (u";0,s,2) = h(D(1,0,0)" A(0, s, 2) D(¢, 0,0)u” (0, 5, 2)
+ D(1,0,0)7A(0, s, 2)(e1(0, s, 2) + €'(0, s, 2)) + ...
= h(D(1,0,0)"A(0, 5,2)D(9,0,0)u”(0,s,z) + D(1,0,0)"A(0, s, 2)€'(0,5,2)) +..., (3.25)

where we used that (¢, s, z) = 0 for ¢ = 0 due to the factor ¢ in (3.22). Solving (3.20), we get

H(s)
D(1,0,0)"A(0,s,2)D(d,0,0)u’ (0,5, 2) = / £(¢, 5, 2)d¢ + g" (s, 2).
0

Therefore, for calculating the next term for the traction on I' it suffices to determine the right-
hand sides f” and g”.

To compute £, we need the terms (3.22) and (3.24) and asymptotic expansion of the matrix
differential operator on the left-hand side of the equilibrium equations (2.4) which is

~h™tD(8;,0,0)" — h%(D(0,0s,0.)" + 3(s)K) + ... ,

where
1 0 0 -1 00
K=10 v2 0 0 00
0 0 1//2 0 00

Hence

(¢, 5,2) = D(9¢,0,0)TA(C, 5,2) (€' (¢, 8,2) +€'(¢,8,2)) + (D(0,05,8,)"
+ #(s)K)A(C, s, z)(so(s, z) + D(0, 0, 0)u'(¢,s,2)) + p(¢, s, z)@fuo(s, z), (3.26)

where the right-hand side of (2.4) was taken into account.
To calculate g”, we recall that D(n"(s,z)) = D(1,0,0) — hD(0,0sH(s),0) + ... in view of
(3.10). Therefore,

g"(s,2) = —D(1,0,0)T A(H(s),s,2)(e' (H(s),s,2)+€ (H(s),s,2))
+ D(0,0:H(s),0)" A(H(s), 5, 2)(€%(s,2) + D (¢, 0,0)u’ (H(s), s, 2)). (3.27)

From (3.26) and (3.27) it follows that

H(s) H(s)
/ £7(C, 5,2)d¢ +g"(s, 2) < / D(9¢,0,0)TA(C, 5,2)(e' (¢, 5,2) +€'(, 5,2))dC
0

— D(1,0,007A(H(s),s,2)(e (H(s),s,2) + &' (H(s), s, z)))
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H(s)

+ ( / (D(0, 0s, OZ)T + 2(s)K)A(C, s, z)(so(s, z) + D(9;,0,0)u'(¢, s,2))d¢
0

+ D(0,05H(s),0)" A(H(s),s,2)(€%(s,2) + D(9c,0,0)u' (H(s), s, z)))

T

()
- p(C, 8,2)dCOPu’(s, 2) =: I + I — I3.

[e=]

Integrating by parts, we find I; = —D(1,0,0)T A(0, s, 2)e'(0, s, z), which cancels the last term
in (3.25). Furthermore, one can directly check that

H(s)
I = (D(0,,,0.)T + 5(s)K) / A(C,5,2)(€%s, 2) + D(8;,0,0)u'(C, 5, 2))dC.
0

Using (3.19), we get
I, = (D(0,8s,0.)T + 5(s)K)M(s, 2)e’ (s, 2), (3.28)

where
H(s)
M(s, 2) = / (A(¢,s,2) — A((,5,2)D(1,0,0)a(¢, 5,2) " 'D(1,0,0)7A(¢,5,2))d¢ (3.29)
0

is a symmetric 6 X 6 matrix.
Lemma 3.1. The matriz M has the form

) )
M(s, z) = (@ @ﬁﬂ(s,z)> , (3.30)

where O is the null 3 x 3-matriz and @ﬁﬂ(s, z) is giwen by (3.3) and (3.5).

Proof. By (2.13), (3.12), and (3.32), the integrand in (3.29) is expressed as
ATt AT Aft ATH E ATt ATE E
oz s oam ) o) B O s 42 lo

ATt ATt Aft ATt ATT
_ _ TTy=1 (Aft T4
x(E 0) (Am Aﬂﬂ) = <AﬁT Aw) (Am> (AT)H (AT AT)
(o o (o o
O AM_ Aftath-14TE ) o Q)

where Q is defined by (3.5) and
0 00
E=[0 1 0. (3.31)
0 00
(

The above relation together with (3.3) yields (3.30). O

-1
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Let D*(5¢(s),0s,0.) be defined by (3.2). Lemma 3.1 together with (3.14) shows that (3.28)
can be written as

I = —D(e(s), s, —0.)TQ" (5, 2)* (U 5, 2), (3.32)
where €f is given by (2.11). Using the evident equality J(0, s) = 1, we get

¢ 1 T
e4(U) = (Bsus ¥ setun, Oyt —= (Dsty + azus)) — D%(¢,0s,8,)U.

V2
Finally, since I3 = p(s, 2)0?U(s, 2), where p is defined by (3.4), we arrive at the following
expression for the normal stress vector on I':

or = D(1,0,0)Ta(u”;0,s,2) = —hp(s, 2)02U(s, 2)
— WD (e(s), 8y, —0,)T Q™ (s, 2) D (5(s), B, 3,)U(s,2) + ..., (3.33)

which together with (3.14) leads to (3.1).

Remark 3.1. Writing the Hooke law (2.6) in the form e(u) = Bo(u), where B = A~ is
the compliance matrix, we observe that Q% = B#.

3.4. The model of the vessel wall. The flow in the cylindrical vessel € is described by
the Navier—Stokes equations (1.1), where v is the velocity vector, p is the pressure, and v is the
kinematic viscosity. On the vessel walls, it is assumed that the wall velocity coincides with the
fluid velocity described by the relation (1.5) and the hydrodynamic force is equal to the normal
stress vector on the boundary. By (3.33), the latter means

D (5¢(s), =5, —0.) T Q% (5, 2) D! (5¢(3), 05, ) U(s, 2) + p(s, 2)02U (s, 2) = —h " pyF(s,2) (3.34)

on 09, where ppF is the hydrodynamic force with components given by (1.7), pp is the blood
density, and Df is defined by (3.2).

4 Analysis of the Model

4.1. The additive property of the rigidity matrix. Let ¥, = ¢; X R be a laminated
wall consisting of K layers of thickness hj. In each layer, the rigidity matrix A, is assumed to
be constant. The relations (3.4) and (3.3) take the form

where hy/h is the normalized thickness of the kth layer and Q%i) is the block of the matrix Q)
constructed by using the matrix A according to (3.5).

4.2. The rigidity matrix for an arterial wall. The laminate structure of walls depends
on the type of blood vessels. The most studied vessels are arteries (cf. [1, 3, 4, 5, 22]) whose
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walls consist of three layers: intima, media, and adventitia. The internal layer, which is just a
very thin film, does not affect elastic properties of the wall. However, the media and adventitia
layers are composites formed by bundles of collagen fibers of a homogeneous material consisting
of muscle cells. In each layer, the bundles are usually modeled by two families of fibres that
are wound around the cylinder under the angles +¢,, and ¢, to the z-axis respectively. Here,
©m, pa € (0,7/2). As a result, we obtain composite materials reinforced by periodic families of
rigid rods.

There are several approaches for determining elastic properties of laminated composite walls
of arteries. For example, a nonlinear rheological stress/strain relation is proposed in [5] for
the entire arterial wall, as well as in the case of dissection of the media and adventitia. For
estimating elastic properties of vessels by solving inverse problems we refer to [23] and [24].
However, for these rheological relations no two-dimensional model still exists. In this paper, we
use a technique based on the linear homogenization theory, which allows us to compute explicitly
the matrix (3.3) with the boundary condition (3.1).

Applying the asymptotic homogenization procedure developed in [9, 25|, we obtain the fol-
lowing representation of the rigidity matrix:

@ﬂﬁ = Q%i) + Q%En) + Q?i)a (4-1)
where
Qfh) = Bn 3 O (o B )
@fy) = B 3 0¥ (on) O ()
Here,
20+ A A 0
Q(C) = A QM +XA 0
0 0 2

is the rigidity matrix of an isotropic filler with the Lamé constants A and p, which are small with
respect to the Young moduli E,, and E, of the collagen fibers from the media and adventitia
layers, i.e., i, A < E,,, E.. Furthermore, the matrix E is given by (3.31) and

cos? ¢ sin? ¢ —+v2sinpcos g

Of(p) = sin? ¢ cos? ¢ V2 sin ¢ cos ¢

V2sinpcosg —+v2singcosy  cos? p —sin? @

(cf. [16, Chapter 2] for details). In particular,

sin? ¢, sin? ¢, cos? @, 0
Q%i) =2E, | sin? ¢, cos® ¢, cos? @, 0 . (4.2)
0 0 2sin? ¢, cos? @,

A similar formula for Q%Bn) can be obtained from (4.2) with ¢, replaced by ¢,,. Thus, the
composite material of the artery wall after averaging is orthotropic with the main orthotropy
axes directed along the z- and s- axes.
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The matrices Q%&n) and Q%i) are not positive definite. For example, (cos? ., —sin? ¢, 0)T

belongs to the kernel of the matrix (4.2). However, Q%En) + Q%i) and, consequently, the matrix
(4.1) is positive definite provided that ¢, # ¢,. The last condition is satisfied by arteries (cf.
[1, 3, 4, 5, 22]). Thus, the main elastic cyclic load is taken by collagen fibers and their location
determines the orthotropic properties of the wall.

On the other hand, each layer is anisotropic and has different resistence properties in different
directions depending on the angles ¢, and ¢, respectively. Under separation of media and
adventitia layers, such loads, caused by blood pulsation, lead to oscillations of large amplitude,
which can be a reason of dissonance in media and adventitia layers. This observation can explain
the well-known fact in medical practice that the artery dissection (separation of layers) can lead
to aneurysm and even may stimulate crushing of vessel walls.

4.3. The stability estimate and Green formula for the limit problem. The goal of
this subsection is to present the Green formula and obtain a stability estimate for the problem
(1.1), (3.34), (1.5). For the sake of simplicity, we consider the Navier-Stokes system without
convective acceleration, i.e., instead of (1.1), we consider the Stokes system

Oyv —vAv =—Vp in Q.

We consider a pair (V, W), where V is a solenoidal vector-valued function on © x [0,7] and W
is a vector-valued function on I' x [0,7], T is a positive number. We assume that V|r = W
and note that the pair (v,U) in (1.1) and (3.34) also possesses these properties. Multiplying
the equation by a solenoidal vector field V = (Vi, Vs, V3) and using the Green formula for the
Stokes system (cf. [26, Chapter 3, Section 2]), we get

v ov, Ov;\ OV OV,
/(altV ~ VAV +Vp) - Vir = 2 / (83@ + 8xk> <8xi + 8ark>dx
Q Q
—/%k(V)mGdSp—i—/atv~Vdm, (4.3)
r Q

where summation over repeating indexes is assumed, the dot denotes the inner product of two
vectors, and

ov 0v;
- _ k k 7
Here, 6% is the Kronecker delta. By (1.6) and (3.34),
h . 2
Tik(v)VingdSr = o (a(U, V)+ | p(s,2)0;U - Vd:n)
b
r r

with

o(U, V) = / 0% (s, ) D (5¢(s), B, 0. YU(s, 2) - D (5¢(s), 0, 8. )VdSe.
T
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Using this identity, we write (4.3) in the form

ov,  Ov;\ 0V, OV
/(8tv vAv + Vp) - Vdz = /<89}Z + 8$k> <8xi + 6$k>daz
Q Q
+ pﬁ <a(U7 W) + /ﬁ(s, PASE &ngSp) + /&gv -Vdz. (4.4)
b
r Q

Setting (V, W) = (v, U) and integrating over [0,7], we find

8vk c%z v Ov; 1/ ) h
// Bz 8% (8@ + axk)d:v+ 2 |v|“dx|i=r + 30 a(U,U)|
Q

0
+/p(s 2)|0,U2dSr ‘ - l/!Vde\ o+ (au U)+/p(s 2)|0,U2dSr ‘
) t T 2 t=0 2pb ) ) t t:O’
I Q T

(4.5)

where we recalled that the right-hand side in (4.4) vanishes in view of (1.1). Since the problem
(1.1), (3.34), (1.5) is supplied with initial conditions for v and U, the equality (4.5) implies the
stability estimate for the norm of the solution in terms of the norms of the initial conditions.
The relation (4.4) can be used to define a weak solution to the problem (1.1), (3.34), (1.5).

4.4. On the shape of the vessel cross-section. The relations (3.1) and (3.3) allow
us to find the geometry of the wall, which is based on two observations. First, according to
[6, 22, 27, 28, 29], the vessel walls are mainly subject to homogeneous hydrostatical pressure at
low velocities, i.e., the leading term for F' in (1.6) and (3.34) is of the form

Fu(s,z,t) = =p°(z, ) + ...,
Fs(s,2,t) =0+ ...,
F.(s,z,t) =0+ ....
Let us assume that both derivatives of p°(z,t) with respect to z and t are small, i.e., the

hydrostatic pressure changes slowly in time and along the vessel. Then the system (3.34) takes

the form
2(QY (o} L (eud + Osul) + Q132 1294u0) = h=1p0,

— 8,(@% (e + 9,u0) + Q27 129,u0) = 0, (4.6)

—2120,(Qf (e + 05ud) + Q2 20.u0) = 0
Comparing the first and second equations, we see that s¢ is independent of s and, consequently,
» = 1 = const, which implies that the cross-section is a disc. From the first and third equations
in (4.6) we get
o 11 Geoud + 0,ud) + Q132 129400 = h~ Loy 1,
Q~ 1 (oul + 05ul) + Q332 12940 = ¢o.
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Therefore,

_é((@ %0+Q332 1/2) (Qn 0+Q132 1/2) )7

hay
L — —tt
85“2 = J( 11%#0C0 — Q31p0)7

where ¢f = Q11%0(Q %0+Q332 1/2) — Q31%0(Q %0+Q132 1/2).

4.5. The vessel cross-section revisited. It is reasonable to assume that the vessel wall
is subject to residual stresses, which can be explained as follows. The blood circulation system
is formed in the embryonic state of organism and then develops through the growth of collagen
fibres and muscle cells which is different for them. This fact may cause residual stresses in elastic
walls which can be described by the additional terms

Dﬁ<%(3)7 _887 _82)(98(5)7gz<3)7 O)T = (%(3)98(8> - 8ng(s)a 07 O)T (4'7)

on the right-hand side of (3.34), which do not destroy the structure of the system (4.6) and lead
to the same conclusion about the circular shape of the cross-section of vessel as in Subsection 4.2.

The situation is different if external forces are taken into account. These forces can be
caused, for example, by an asymmetric position of a surgical suture. In this case, the right-hand
side of (3.34) has the additional stress term 7(s) = (7,(s), 7s(s), 72(s)) and (4.6) takes the form

( tm(%u +8u)+Qw2 129.u9) = p° + 70,
— 0,(QF (3l + 0u0) + Q27 200) = 7, (4.8)
— 2125, (Q8 5ul + 9,u0) + Q2 Y20,u0) = 7.

Integrating the second equation, we get

Q" 1 Gl + 0,u2) + Q132 12909 = —/Ts(p)dp +c1. (4.9)
0

1
Let the right-hand side of (4.9) be a continuous 1-periodic function, i.e., / Ts(p)dp = 0. From
0

s

(4.8) and (4.9) it follows that %( - /Ts(p)dp + Cl> = p® 4+ 7,. Since ¢ is the curvature of a

0
closed curve with the unit length, we have

1
/% )ds = 2 (4.10)
0

provided that the origin is located inside the curve. Hence for C'; we obtain the equation

1

s -1
= /(po + 70(8)) ( - /Ts(p)dp + Cl> ds.
0

0
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Then we find the curve from the curvature.

Let s = »(s) be given. It is convenient to assume that s is given for all s and is periodic
with period 1. We assume that the relation (4.10) is valid and reconstruct the curve ((s). We
have the following explicit formulas for ¢ (cf., for example, [30, Chapter 3, Section 5]):

Gi(s) = /sina(p)dp+m0, Ca(s) = /sina(p)dp+yo, (4.11)
0 0

where a(s) = /%(p)dp and x, yo are constants. By the periodicity of s and (4.10), we get

0
a(s +1) = 2w + a(s). Hence the sufficient conditions for the curve (4.11) to be closed are as

follows:
1

1
/sma /cosa )dp = 0. (4.12)
0

0
If 5 is positive, then we change variable y = a(p), dy = »(p)dp, in (4.12), which yields

2 2
/ Slnydy / cosydy
(s
0 0

The violation of (4.12), which means that the wall shape is unstable and supports the same
artery pathologies as in the case of dissection described in Subsection 4.4. The deviation of the
cross-section shape from the circular one causes the deterioration of the blood permeability: it
is known that, among all cross-sections of the set perimeter, it is the circular cross section that
provides the largest stream of a fluid for the Poiseuille low. However, the local distortion of
the artery shape represents a risk of secondary significance for the vascular system because the
basic threat follows from a decrease in the cross-section area by means of the formation and
accumulation of atherosclerotic damages.
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