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We present an orthogonal basis for discrete wavelets in the case of comb structure of the

spline-wavelet decomposition and estimate the time of computation of this decomposition

by a concurrent computing system with computer communication surrounding taken into

account. Bibliography: 9 titles.

Wavelet decompositions are widely used, which strongly stimulates their further development.

Unlike classical wavelet decompositions [1, 2], the approach proposed in [3] does not require to

construct a wavelet basis. On the other hand, the approach of [3] provides asymptotically optimal

(with respect to an N -diameter of standard compact sets) spline-wavelet approximations [4]. In

the computer realization of decompositions, the knowledge of a basis allows us to diminish the

computation time essentially. We note that the wavelet bases have not been considered earlier for

the above-mentioned spline-wavelets. It turns out that, in this case, to diminish the computation

time, it suffices to know a basis of discrete wavelets.

In this paper, we obtain an orthogonal (in the Euclidean space) basis of discrete wavelets

in the case of a spline-wavelet decomposition of the comb structure [5]. We estimate the com-

putation time necessary to realize this decomposition by a concurrent computing system with

computer communication surrounding taken into account.

The paper consists of eight sections. In the first four sections, we construct the first order

spline-wavelet decomposition. In Section 5, we construct the orthogonal basis for the space of

discrete wavelets, whereas Section 6 deals with continuous basis wavelets. Section 7 is devoted

to the time of computation of the main flow by successive and concurrent computing systems

with computer communication surrounding taken into account. Section 8 contains a similar

study for numerical realization of the wavelet flow.

1 Preliminaries

1.1. The space of first order splines. For any natural m we introduce the notation:

Jm
def
= {0, 1, . . . ,m} and J ′

m
def
= {−1, 0, 1, . . . ,m}. Let N be a natural number. On [a, b], we

consider a grid

X : a = x0 < x1 < . . . < xN−2 < xN−1 < xN = b, (1.1)
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and denote Sj
def
= (xj , xj+1) ∪ (xj+1, xj+2), j ∈ J N−2,

G
def
=

⋃

i∈JN−1

(xi, xi+1), S−1
def
= (x0, x1), SN−1

def
= (xN−1, xN ).

Let A
def
= {ai}i∈J ′

N−1
be a complete chain of two-dimensional vectors, i.e., det (aj−1,aj) �= 0,

j ∈ JN−1 (cf. [5]).

We consider a two-component vector-valued function ϕ(t) with continuous components on

[a, b] which are linearly independent on any interval (a ′, b ′) ⊂ G.

We define the functions ωj(t), t ∈ G, j ∈ J ′
N−1, by the approximate relations

∑

j∈J ′
N−1

aj ωj(t) = ϕ(t) ∀t ∈ G, ωj(t) ≡ 0 ∀t ∈ G\Sj , j ∈ J ′
N−1.

Thus, the functions ωj(t), j ∈ J ′
N−1, are defined on the set G by

ω−1(t) =

⎧
⎪⎨

⎪⎩

det (ϕ(t),a0)

det (a−1,a0)
, t ∈ (x0, x1),

0, t ∈ G\S−1,

(1.2)

ωj(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

det (aj−1, ϕ(t))

det (aj−1,aj)
, t ∈ (xj , xj+1),

det (ϕ(t),aj+1)

det (aj ,aj+1)
, t ∈ (xj+1, xj+2),

0, t ∈ G\Sj ,

j ∈ JN−2, (1.3)

ωN−1(t) =

⎧
⎪⎨

⎪⎩

det (aN−2, ϕ(t))

det (aN−2,aN−1)
, t ∈ (xN−1, xN ),

0, t ∈ G\SN−1.

(1.4)

Below, we consider the space of first order splines SN = SN (X,A,ϕ)
def
= ClpL {ωj}j∈J ′

N−1
, where

L {. . .} is the span of the functions in the curly brackets and Clp is the closure in the topology

of pointwise convergence. By assumptions on ϕ(t), the functions ωj(t), j ∈ J ′
N−1, are linearly

independent on G and, consequently, form a basis for the space SN . Consequently, we have

dim SN = N + 1.

Remark 1.1. As is known [6], the functions ωj(t), j ∈ J ′
N−1, can be extended by continuity

to the points of X if and only if ai = ϕ(xi+1) for all i ∈ J ′
N−1.

1.2. Continuous first order splines. We consider the case

ϕ(t) =
(
1, t

)T
aj = a∗j

def
= ϕ(xj+1). (1.5)
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The functions obtained from (1.2)–(1.4) are denoted by ω∗
j (t) so that

ω∗
−1(t) =

⎧
⎨

⎩

x1 − t

x1 − x0
, t ∈ (x0, x1),

0, t ∈ G\S−1,

ω∗
j (t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t− xj
xj+1 − xj

, t ∈ (xj , xj+1),

xj+2 − t

xj+2 − xj+1
, t ∈ (xj+1, xj+2),

0, t ∈ G\Sj ,

j ∈ JN−2,

ω∗
N−1(t) =

⎧
⎨

⎩

t− xN−1

xN − xN−1
, t ∈ (xN−1, xN ),

0, t ∈ G\SN−1.

Sometimes, we need the uniform grid Xh
def
= {xj | xj = a + jh, j = 0, 1, 2, . . . , N}, where

N � 5 is a natural number. In the case of the uniform grid Xh, the objects under considerations

are marked with overline . For the uniform grid Xh we have ωj(t) = ω(t/h − j)χ[a,b], j =

−1, 0, 1, . . . , N − 1, where

ω(x)
def
=

⎧
⎪⎪⎨

⎪⎪⎩

x, x ∈ (0, 1),

2− x, x ∈ (1, 2),

0, x /∈ [0, 1],

and χ[a,b] is the characteristic function of [a, b].

2 Two-Interval Comb Structure

Let s and r be natural numbers, and let s < r < �N/2	. We remove the points

x2s+1, x2s+3, x2s+5, . . . , x2r−1 (2.1)

from the grid (1.1) and consider the enlarged grid

X̃ : a = x̃0 < x̃1 < x̃2 < . . . < x̃
˜N−1

< x̃
˜N
= b,

where Ñ = N − r + s,

x̃i = xi, 0 � i � 2s,

x̃i ′ = x2i ′−2s, 2s+ 1 � i ′ � s+ r,

x̃i ′′ = xr−s+i ′′ , s+ r + 1 � i ′′ � N − r + s.

We set

S̃j
def
= (x̃j , x̃j+1) ∪ (x̃j+1, x̃j+2), j ∈ J

˜N−2
,

G̃
def
=

⋃

i∈J
˜N−1

(x̃i, x̃i+1), S̃−1
def
= (x̃0, x̃1), S̃

˜N−1
def
= (x̃

˜N−1
, x̃

˜N
)
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and

I h
∗

def
= {−1, 0, . . . , 2s− 2},

I m
∗

def
= {2s− 1, . . . , s+ r − 1},

I t
∗

def
= {s+ r, s+ r + 1, . . . , Ñ − 1}.

It is obvious that I h∗ ∪Im∗ ∪I t∗ = J ′
˜N−1

. We consider the chain of vectors Ã
def
= {ã−1, ã0, . . . , ã ˜N−1

},
such that the following assumption holds.

(A) A chain vectors Ã
def
= {ãj} is complete, and

ãj = aj , j ∈ Ih∗ ,
ãj = a2j−2s+1, j ∈ Im∗ ,

ãj = aj+r−s, j ∈ It∗.

The set {X,A, X̃, Ã} is called the two-interval comb structure [5].

We consider the system of functions {ω̃j}j∈J ′
˜N−1

obtained from the relations

∑

j∈J ′
˜N−1

ãj ω̃j(t) = ϕ(t) ∀t ∈ G̃,

ω̃j(t) ≡ 0 ∀t ∈ G̃\S̃j , j ∈ J ′
˜N−1

,

so that

ω̃−1(t) =

⎧
⎪⎨

⎪⎩

det (ϕ(t), ã0)

det (ã−1, ã0)
, t ∈ (x̃0, x̃1),

0, t ∈ G̃\S̃−1,

ω̃j(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

det (ãj−1, ϕ(t))

det (ãj−1, ãj)
, t ∈ (x̃j , x̃j+1),

det (ϕ(t), ãj+1)

det (ãj , ãj+1)
, t ∈ (x̃j+1, x̃j+2),

0, t ∈ G̃\S̃j ,

j ∈ J
˜N−2

,

ω̃
˜N−1

(t) =

⎧
⎪⎨

⎪⎩

det (ã
˜N−2

, ϕ(t))

det (ã
˜N−2

, ã
˜N−1

)
, t ∈ (x̃

˜N−1
, x̃

˜N
),

0, t ∈ G̃\S̃
˜N−1

.

Remark 2.1. We assume that all functions under consideration are restricted to the set G.

We introduce the space S̃
def
= ClpL {ω̃j}j∈J ′

˜N−1
. It is obvious that dim S̃ = Ñ + 1.

We will need the following assertions (cf. Theorems 1 and 2 in [5]).

1. For t ∈ G

ω̃j(t) ≡ ωj(t), j ∈ Ih∗ ,

ω̃j(t) ≡ ωr−s+j(t), j ∈ It∗.
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2. If 0 � i � r − s− 1, then

ω̃2s+i(t) ≡ det (a2s+2i−1, ϕ(t))

det (a2s+2i−1,a2s+2i+1)
, t ∈ (x̃2s+i, x̃2s+i+1).

If −1 � i � r − s− 2, then

ω̃2s+i(t) ≡ det (ϕ(t),a2s+2i+3)

det (a2s+2i+1,a2s+2i+3)
, t ∈ (x̃2s+i+1, x̃2s+i+2).

3. Under Assumption (A), the inclusion S̃ ⊂ S holds.

3 The Embedding Matrix

3.1. The space CX and matrix of embedding. In what follows, we use the linear space

CX introduced earlier by the author (cf., for example, [3]).

Let (c, d) be an interval of the real axis. Denote by C〈c, d〉 the linear space of functions that

are continuous on (c, d) and have finite limits at the endpoints of (c, d). We introduce the linear

space of functions as the direct product of the spaces C〈xi, xi+1〉, i = 0, 1, . . . , N − 1, namely,

CX
def
=

N−1⊗

i=0

C〈xi, xi+1〉.

It is clear that ωj ∈ CX , j ∈ J ′
N−1, and S̃ ⊂ S ⊂ CX .

Let {gi}i∈J ′
N−1

be a realization of the system of linear functionals over CX , biorthogonal to

the system of functions {ωj}j∈J ′
N−1

, 〈gi, ωj〉 = δi,j , such that supp gj ⊂ [xj , xj + ε), j ∈ JN−1,

supp g−1 ⊂ [x0, x0 + ε), where ε > 0 is an arbitrary positive number (the existence of such

realizations was established in [3]). We consider the matrix P with entries

pi,j
def
= 〈gj , ω̃i〉, i ∈ J ′

˜N−1
, j ∈ J ′

N−1. (3.1)

We denote supp +ω̃i = [x̃i, x̃i+2) and consider three groups of the values of j:

IH
def
= {−1, 0, 1, . . . , 2s− 2},

IT
def
= {2r, 2r + 1, . . . , N − 1},

IM
def
= {2s− 1, 2s, . . . , 2r − 1}.

It is obvious that IH ∪ IM ∪ IT = J ′
N−1 and I h∗ = IH . We need the following formulas proved

in [5, Theorem 4]:

pij = δi,j ∀i ∈ J ′
˜N−1

, j ∈ {−1, 0, 1, . . . , 2s− 1}, (3.2)

pij = δj,i−s+r ∀i ∈ J ′
˜N−1

, j ∈ IT ; (3.3)

whereas the remaining elements are computed for q ∈ {s, s+ 1, . . . , r − 1} by the formulas

pi,2q = pi,2q+1 = 0 ∀i ∈ J ′
˜N−1

\{s+ q − 1, s+ q}, (3.4)

ps+q−1,2q+1 = 0, ps+q,2q+1 = 1, (3.5)

ps+q−1,2q =
det (a2q,a2q+1)

det (a2q−1,a2q+1)
, ps+q,2q =

det (a2q−1,a2q)

det (a2q−1,a2q+1)
. (3.6)
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According to formula (3.2), we have

pij = δi,j ∀ ∈ J ′
˜N−1

, j ∈ {−1, 0, . . . , 2s− 1}
=⇒ [PTa]j = aj ∀j ∈ {−1, 0, . . . , 2s− 1}. (3.7)

From (3.3) we find

pij = δj,i−s+r ∀i ∈ J ′
˜N−1

, j ∈ IT = {2r, 2r + 1, . . . , N − 1}
=⇒ [PTa]j = aj+s−r ∀j ∈ {2r, 2r + 1, . . . , N − 1}. (3.8)

By (3.4) and (3.5), for q ∈ {s, s+ 1, . . . , r − 1} we have

pi,2q+1 = 0 ∀i ∈ J ′
˜N−1

\{s+ q − 1, s+ q}, ps+q−1,2q+1 = 0, ps+q,2q+1 = 1

=⇒ [PTa]2q+1 = as+q ∀q ∈ {s, s+ 1, . . . , r − 1}. (3.9)

By (3.4) and (3.6), for q ∈ {s, s+ 1, . . . , r − 1} we have

pi,2q = 0 ∀i ∈ J ′
˜N−1

\{s+ q − 1, s+ q},

ps+q−1,2q =
det (a2q,a2q+1)

det (a2q−1,a2q+1)
,

ps+q,2q =
det (a2q−1,a2q)

det (a2q−1,a2q+1)

so that [PTa]2q = ps+q−1,2q as+q−1 + ps+q,2q as+q q ∈ {s, s+ 1, . . . , r − 1}. Consequently,

[PTa]2q =
det (a2q,a2q+1)

det (a2q−1,a2q+1)
as+q−1+

det (a2q−1,a2q)

det (a2q−1,a2q+1)
as+q ∀q ∈ {s, s+1, . . . , r−1}. (3.10)

3.2. The embedding matrix of first order splines. The matrix P and its entries are

marked with asterisk ∗ if we deal with first order splines considered in Subsection 1.2.

Theorem 3.1. The entries of P∗ are computed by the formulas

p∗ij = δi,j ∀i ∈ J ′
˜N−1

, j ∈ {−1, 0, 1, . . . , 2s− 1},

p∗ij = δj,i−s+r, ∀i ∈ J ′
˜N−1

, j ∈ IT ,

whereas the remaining entries are computed for q ∈ {s, . . . , r − 1} by the formulas

p∗i,2q = pi,2q+1 = 0 ∀i ∈ J ′
˜N−1

\{s+ q − 1, s+ q},

p∗s+q−1,2q+1 = 0, p∗s+q,2q+1 = 1,

p∗s+q−1,2q =
x2q+2 − x2q+1

x2q+2 − x2q
, p∗s+q,2q =

x2q+1 − x2q
x2q+2 − x2q

.

(3.11)

The proof is easily obtained from the relations (3.7)–(3.10) and (1.5).

In the case of a uniform grid Xh, formulas (3.11) become simpler: ps+q−1,2q = ps+q,2q = 1/2.
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4 The Extension Matrix

4.1. The extension matrix for the space of first order splines. We consider a system

of functionals {g̃i}i∈J ′
˜N−1

, biorthogonal to {ω̃j}j∈J ′
˜N−1

, i.e., 〈g̃i, ω̃j〉 = δi,j , and such that

supp g̃i ⊂ [x̃i, x̃i + ε) ∀ε > 0, i ∈ J
˜N−1

, supp g̃−1 ⊂ (x̃0, x̃0 + ε).

Using the relation 〈g̃i, ϕ〉 = ãi, we compute the Ñ+1×N+1-matrix Q with entries qi,j
def
= 〈g̃i, ωj〉,

i ∈ J ′
˜N−1

, j ∈ J ′
N−1. We use the following formulas proved in [5, Theorem 6].

1. For all i ∈ J ′
˜N−1

qi,j =

{
δi,j , j ∈ IH ,

δi,j+s−r, j ∈ IT .

2. In addition,

q2s−1,j = δ2s−1,j ∀j ∈ J ′
N−1,

qs+q,j = 0 ∀j ∈ J ′
N−1\{2q − 1, 2q}, s � q � r − 1.

(4.1)

3. Finally,

qs+q,2q =
det (a2q−1,a2q+1)

det (a2q−1,a2q)
�= 0, (4.2)

qs+q,2q−1 =
det (a2q+1,a2q)

det (a2q−1,a2q)
�= 0, s � q � r − 1. (4.3)

We note that the fact that the expressions (4.2) and (4.3) are different from zero follows

from Assumption (A).

4.2. The extension matrix for first order splines. In the case of first order splines,

the following assertion holds.

Theorem 4.1. The entries of the matrix Q∗ are computed by the following formulas.

1. For all i ∈ J ′
˜N−1

q∗i,j = δi,j , j ∈ IH , (4.4)

q∗i,j = δi,j+s−r, j ∈ IT . (4.5)

2. In addition,

q∗2s−1,j = δ2s−1,j ∀j ∈ J ′
N−1, (4.6)

q∗s+q,j = 0 ∀j ∈ J ′
N−1\{2q − 1, 2q}, s � q � r − 1. (4.7)

3. Finally,

q∗s+q,2q =
x2q+2 − x2q
x2q+1 − x2q

, (4.8)

q∗s+q,2q−1 =
x2q+1 − x2q+2

x2q+1 − x2q
, s � q � r − 1. (4.9)

536



Proof. Formulas (4.4)–(4.7) immediately follow from (4.1)–(4.3), whereas formulas (4.8)

and (4.9) are obtained from (4.2) and (4.3) with (1.5) taken into account.

In the case of a uniform grid Xh, formulas (4.8), (4.9) are simplified:

qs+q,2q = 2, qs+q,2q−1 = −1.

5 Decomposition of Wavelet Flows

5.1. Projection operator. We consider the projection operator P from the space S to the

subspace S̃ given by the formula

Pu
def
=

∑

j∈J ′
˜N−1

〈g̃j , u〉 ω̃j ∀ u ∈ S (5.1)

and introduce the operator Q = I − P , where I is the identity operator in S. As a result, we

obtain the direct decomposition [6]

S = S̃
.
+W, (5.2)

called the first order spline-wavelet decomposition of the space S, where S̃ is said to be the main

space and W
def
= QS is referred to as the wavelet space.

Let u ∈ S. Using (5.1) and (5.2), we find u = ũ+ w, where

u =
∑

j∈J ′
N−1

cjωj , ũ =
∑

i∈J ′
˜N−1

aiω̃i, w =
∑

j∈J ′
N−1

bjωj , (5.3)

ai
def
= 〈g̃i, u〉, bj , cj ∈ R

1. Introducing the main a, wavelet b, and original c flows by the formulas

a
def
= (a−1, . . . , a ˜N−1

)T , b
def
= (b−1, . . . , bN−1)

T , (5.4)

c
def
= (c−1, . . . , cN−1)

T , (5.5)

we write the decomposition formula [6]

b = c−PTQc, (5.6)

a = Qc. (5.7)

5.2. Orthogonal basis for the space of first order wavelet flows. We identify the

space C of flows with the Euclidean space R
N+1 equipped with the standard inner product

(x,y)
def
=

N+1∑

i=1

xiyi ∀ x,y ∈ R
N+1,

x = (x1, x2, . . . , xN+1), y = (y1, y2, . . . , yN+1). Let A be the Ñ + 1-dimensional space of the

main flows a, and let B be the space of all possible wavelet flows b. Each of the systems

{ωj}j∈J ′
N−1

and {ω̃j}j∈J ′
˜N−1

consists of linearly independent elements, whereas the flows c, a, b
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are connected with the representation (5.2) by formulas (5.3)–(5.5), we see that the spaces A ,

B, and C are linearly isomorphic to the spaces S̃, W, and S respectively:

A ∼ S̃, B ∼ W, C ∼ S, (5.8)

so that C = A
.
+B. It is easy to prove [7] that

B = ker Q. (5.9)

Theorem 5.1. For the spline-wavelet decomposition under consideration the space B of first

order wavelet flows can be represented as

B =
{
b
∣∣∣ b =

r∑

q=s+1

αqbq ∀αi ∈ R
1, i = s+ 1, s+ 2, . . . , r

}
, (5.10)

where for q = s+ 1, . . . , r − 1 the vector bq is defined by the symbolic determinant

bq
def
= det

(
e2q−1 e2q

det (a2q+1,a2q) det (a2q−1,a2q+1)

)
, (5.11)

and for q = r

br = e2r−1. (5.12)

Proof. Taking into account the structure of the matrix Q, we have

ker Q =
{
b
∣∣∣ b =

r−1∑

q=s+1

αq

(
qs+q,2qe2q−1 − qs+q,2q−1e2q

)
+αre2r−1

∀αq ∈ R
1, q = s+ 1, . . . , r − 1

}
.

Substituting the relations (4.2), (4.3) and taking into account the arbitrariness of αi (which

allows us to ignore the appearing denominators), we find

ker Q =
{
b
∣∣∣ b =

r−1∑

q=s+1

αq

(
det (a2q−1,a2q+1))e2q−1 − det (a2q+1,a2q)e2q

)
+αre2r−1

∀αq ∈ R
1, q = s+ 1, . . . , r

}
.

Taking into account (5.11), we obtain the relation (5.10). Formula (5.12) is obvious.

Definition 5.1. A system of vectors {vi}i=1,2,...,M of the space RK is called a system of zero

multiplicity if

[vi]s[vj ]s = 0 ∀s ∈ {1, 2, . . . ,K} ∀i, j ∈ {1, 2, . . . ,M}, i �= j.

It is easy to see that a system of vectors of zero multiplicity in R
K consists of mutually

orthogonal vectors.

Theorem 5.2. The system {bl}l=s+1...,r is a system of zero multiplicity. This system is an

orthogonal basis for the space B of wavelet flows.
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Theorem 5.2 follows from Theorem 5.1.

We consider a system of vectors {b̃l}l=s+1...,r of the form

b̃q
def
= e2q−1 +

det (a2q,a2q+1)

det (a2q−1,a2q+1)
e2q q ∈ {s+ 1, . . . , r − 1},

b̃r = e2r−1.

(5.13)

Corollary 5.1. The system {b̃l}l=s+1...,r is a system of zero multiplicity and is an orthogonal

basis for the space B of wavelet flows.

5.3. Orthogonal basis in the case of first order wavelet flows. In the condition (1.5),

the objects under consideration are marked with asterisk ∗; the corresponding flows are referred

to as first order flows.

Theorem 5.3. Under the condition (1.5), the space B∗ of wavelet flows has the form

B∗ =
{
b
∣∣∣ b =

r∑

q=s+1

αqb
∗
q ∀αi ∈ R

1, i = s+ 1, s+ 2, . . . , r
}
, (5.14)

where the vectors b∗
q are defined by

b∗
q
def
= (x2q+2 − x2q)e2q−1 + (x2q+2 − x2q+1)e2q, q = s+ 1, . . . , r − 1, (5.15)

b∗
r = e2r−1, q = r. (5.16)

Proof. Formulas (5.14)–(5.16) are obtained by inserting (1.5) into (5.11).

From (5.13), (5.15), and (5.16) it follows that the system {b̃∗
q} of vectors

b̃∗
q
def
= e2q−1 +

x2q+2 − x2q+1

x2q+2 − x2q
e2q ∀q ∈ {s+ 1 . . . , r − 1},

b̃∗
r
def
= e2r−1

is also an orthonormal basis for the first order wavelet flows. In the case of a uniform grid Xh,

for a basis for the space of wavelet flows one can take the vectors

bq
def
= e2q−1 + e2q/2, q ∈ {s+ 1 . . . , r − 1},

br = e2r−1.

6 Basis Wavelets

6.1. Representations of basis wavelets. By the linear isomorphism (5.8), the image of

a basis for the space B is a basis for the space W. We denote by ψ the bijection generating this

isomorphism B �→ W and find the basis wavelets wq
def
= ψ(bq).

Theorem 6.1. The basis wavelets wq(t) have the form

wq(t) = det (a2q−1,a2q+1)ω2q−1(t) + det (a2q,a2q+1)ω2q(t), q = s+ 1, . . . , r − 1, (6.1)

wr(t) = ω2r−1(t). (6.2)
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Proof. Using the third equality in (5.3), we find

wq(t) =
∑

j∈J ′
N−1

[bq]jωj(t). (6.3)

By (5.11) with q = s+1, . . . , r−1, only two components of the vector bq are different from zero:

[bq]2q−1 = det (a2q−1,a2q+1),

[bq]2q = − det (a2q+1,a2q).
(6.4)

Substituting (6.4) into (6.3), we find (6.1). In the case q = r, we obtain (6.2) from (5.12).

Theorem 6.2. The basis wavelets wq(t), q = s+ 1, . . . , r − 1, can be written as

wq(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

det (a2q−1,a2q+1)
det (a2q−2, ϕ(t))

det (a2q−2,a2q−1)
, t ∈ (x2q−1, x2q),

det (ϕ(t),a2q+1), t ∈ (x2q, x2q+2),

0, t /∈ (x2q−1, x2q+2).

(6.5)

Proof. By (1.3),

ω2q−1(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

det (a2q−2, ϕ(t))

det (a2q−2,a2q−1)
, t ∈ (x2q−1, x2q),

det (ϕ(t),a2q)

det (a2q−1,a2q)
, t ∈ (x2q, x2q+1),

0, t /∈ (x2q−1, x2q+1),

(6.6)

ω2q(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

det (a2q−1, ϕ(t))

det (a2q−1,a2q)
, t ∈ (x2q, x2q+1),

det (ϕ(t),a2q+1)

det (a2q,a2q+1)
, t ∈ (x2q+1, x2q+2),

0, t /∈ (x2q, x2q+2),

(6.7)

We consider the relation (6.1) with q = s + 1, . . . , r − 1 for each of the intervals (x2q−1, x2q),

(x2q, x2q+1), and (x2q+1, x2q+2).

1. Let t ∈ (x2q−1, x2q). Then (6.1), (6.6), and (6.7) imply

wq(t) = det (a2q−1,a2q+1)
det (a2q−2, ϕ(t))

det (a2q−2,a2q−1)
∀t ∈ (x2q−1, x2q). (6.8)

2. For t ∈ (x2q, x2q+1) from (6.1), (6.6), and (6.7) we find

wq(t) = [det (a2q−1,a2q)]
−1[det (a2q−1,a2q+1) det (ϕ(t),a2q)

+ det (a2q,a2q+1) det (a2q−1, ϕ(t))]. (6.9)

For two-dimensional vectors x, y, z, and u we have

det (x, z) det (u,y) + det (y, z) det (x,u) = det (u, z) det (x,y). (6.10)
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We use (6.10) in (6.9) by setting x = a2q−1, y = a2q, z = a2q+1, and u = ϕ(t). Then, in the

second square brackets in (6.9), we have the product det (a2q−1,a2q) det (ϕ(t),a2q+1) instead of

the sum. Therefore, (6.9) implies

wq(t) = det (ϕ(t),a2q+1) ∀t ∈ (x2q, x2q+1). (6.11)

3. Let t ∈ (x2q+1, x2q+2). Then (6.1), (6.6), and (6.7) imply

wq(t) = det (ϕ(t),a2q+1) ∀t ∈ (x2q+1, x2q+2). (6.12)

Taking into account (6.8), (6.11), and (6.12), we obtain (6.5).

Remark 6.1. It is easy to verify that if ai = ϕ(xi+1), i ∈ J ′
N−1, then the basis wavelets

wq(t) are continuous.

6.2. Basis wavelets of the first order. We consider continuous first order splines (cf.

Subsection 1.2) on a grid X. The objects under consideration are marked with asterisk ∗.

Theorem 6.3. The basis wavelets w∗
q(t) have the form

w∗
q(t) = (x2q+2 − x2q)ω

∗
2q−1(t)− (x2q+1 − x2q+2)ω

∗
2q(t), q = s+ 1, . . . , r − 1, (6.13)

w∗
r(t) = ω∗

2r−1(t). (6.14)

Indeed, substituting (1.5) into (6.1), we find (6.13). The relation (6.14) follows from (6.2).

In the case of a uniform grid Xh, the basis wavelets wq(t) can be represented as

wq(t) = 2ω2q−1(t) + ω2q(t), q = s+ 1, . . . , r − 1,

wr(t) = ω2r−1(t).

6.3. Connection with the notion of interference. The following relations were proved

in [8]: if q ∈ {s+ 1, s+ 2, . . . , r − 1}, then the components of the wavelet flow are expressed as

b2q = κqb2q−1, (6.15)

where the constant κq is independent of the original flow c and is defined by

κq
def
=

det (a2q,a2q+1)

det (a2q−1,a2q+1)
, q ∈ {s+ 1, s+ 2, . . . , r − 1}. (6.16)

The linear dependence between the components of the numerical flow is called an interference

and proportionalilty of neighboring components with coefficient independent of the original flow

is called a standing wave [8].

The relations (6.15) and (6.16) show that the generation of first order wavelets on the two-

interval comb structure {X,A, X̃, Ã} is accompanied with appearance of standing waves. Thus,

the dimension of the space of wavelet flows coincides with the number of removed grid points

(i.e., r − s, cf. (2.1)). This result completely agrees with the representation of basis wavelets

obtained in this paper (cf. Theorem 6.1).
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7 Computation of the Main Flow

7.1. Statement of the problem. Realization of the decomposition algorithm involves two

problems: find the main flow and find the wavelet flow. As a rule, the first problem is more

important than the second one since, in the majority of cases, it is the main flow that creates

an impression about the character of the original flow. We begin with the first problem.

We consider the numerical realization of the main flow a. By (4.1)–(4.3) and (5.7),

ai = c i, i ∈ {−1, 0, . . . , 2s− 1}, (7.1)

ai = qi,2i−2s−1c 2i−2s−1 + qi,2i−2sc 2i−2s, i ∈ {2s, 2s+ 1, . . . , s+ r − 1}, (7.2)

ai = c i+r−s, i ∈ {s+ r, s+ r + 1, . . . , Ñ − 1}. (7.3)

Computation by formulas (7.1) and (7.3) is accompanied with the assignment operations without

index shifting (2s + 1 operations for formula (7.1)) and the assignment operations with index

shifting by r − s (Ñ − (s+ r − 1) = N − 2r operations for formula (7.3)).

The situation is more complicated in the case (7.2). To compute the coefficients qi,2i−2s−1

and qi,2i−2s, it is required to compute det (a2q−1,a2q), det (a2q+1,a2q), and det (a2q−1,a2q+1).

By (4.2) and (4.3), formula (7.2) is written as

as+q =
det (a2q+1,a2q)c 2q−1 + det (a2q−1,a2q+1)c 2q

det (a2q−1,a2q)
, s � q � r − 1. (7.4)

Formula (7.4) consists of r−s equalities. Each equality contains 3 determinants of the second

order, and the computation of each determinant in the general case requires 2 multiplicative

and 1 additive operations. To gather equalities in (7.4), it is required 2 multiplicative and 1

additive operations. Thus, we need 8 multiplicative and 4 additive operations. We note that

computations in all equalities can be performed parallely (of course, parallelizing is possible

inside each equality, but this case will not be considered here).

We assume that a computing system works synchronously (by cycles). The measured time

is discrete, and for the time unit we take the time required for performing one cycle [9].

Assume that the flows under consideration consist of numbers of type real. The represen-

tation is denoted by f (we do not specify the structure of the representations).

7.2. Successive computations of the main flow in the first order spline-wavelet

decomposition. I Let a function td(f, p, q) provide the (natural) number of time units1) nec-

essary for performing p assignments with index shifting by an integer number of positions from

0 to q − 1. Sometimes, we use the following assumption.

(B) td(f, p, q) = pqtd, where td = td(f) is a natural number.

In the case of a single-processor computer system, we need to perform

(a) 2s+ 1 assignments without index shifting, which takes the time td(f, 2s+ 1, 1),

(b) 9(r− s) multiplicative operations, which takes the time 9(r− s)tm, where tm = tm(f) is

the time required for performing one mulitplicative operation by a computing system,

1) Depending on the realization, the function td(f, p, q) can be linear or not (for example, in the case of extracting

an information from the memory by using fragments of a certain length).
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(c) 4(r− s) additive operations, which takes the time 4(r− s)ta, where ta = ta(f) is the time

required for performing one additive operation by a computing system,

(d)N−2r assignments with index shifting by r−s, which takes the time td(f,N−2r, r−s+1).

In this variant, the total time ta⇐ c of computation of the main flow a from c is equal to

ta⇐ c = td(f, 2s+ 1, 1) + 9(r − s)tm + 4(r − s)ta + td(f,N − 2r, r − s+ 1). (7.5)

Theorem 7.1. If Assumption (B) is satisfied, then for computing the main flow a from the

decomposition of a flow c by a single-processor computer system, it is required ta⇐ c,(B) time

units, where

ta⇐ c,(B) = (2s+ 1 + (N − 2r)(r − s+ 1))td + 9(r − s)tm + 4(r − s)ta. (7.6)

7.3. Successive computations of the main flow in the first order spline-wavelet

decomposition. II Unlike Subsection 7.2, we deal with the differences of grid points:

as+q =
(x2q+1 − x2q+2)c 2q−1 + (x2q+2 − x2q)c 2q

x2q+1 − x2q
, s � q � r − 1. (7.7)

In this case, for each q there are 4 additive operations and 3 multiplicative operations. Therefore,

comparing with Subsection 7.2, the number of multiplicative operations changes. Thus, the total

time t∗a⇐ c of computation by a single-processor computer system is equal to

t∗a⇐ c = td(f, 2s+ 1, 1) + 3(r − s)tm + 4(r − s)ta + td(f,N − 2r, r − s+ 1). (7.8)

From (7.8) it is easy to obtain the following assertion.

Theorem 7.2. If Assumption (B) is satisfied, then to compute the main flow a in the

first order spline-wavelet decomposition of a flow c by a single-processor computer system, it is

required t∗a ⇐ c,(B) time units, where

t∗a⇐ c,(B) = (2s+ 1 + (N − 2r)(r − s+ 1))td + 3(r − s)tm + 4(r − s)ta. (7.9)

If the grid is uniform, then the relations (7.7) take the form

as+q = −c 2q−1 + 2c 2q, s � q � r − 1. (7.10)

Thus, 3 additive and 2 multiplicative operations are removed for each q. Therefore, the following

assertion holds.

Theorem 7.3. Let Assumption (B) be satisfied. If the grid is uniform, then to compute

the main flow a in the first order spline-wavelet decomposition of a flow c by a single-processor

computer system, it is required t
∗
a⇐ c,(B) time units, where

t
∗
a⇐ c,(B) = (2s+ 1 + (N − 2r)(r − s+ 1))td + (r − s)tm + (r − s)ta. (7.11)

7.4. Concurrent computations of the main flow in the first order spline-wavelet

decomposition. The parallelizing process is rather varied and depends on options and variants

of the usage of devices. In this paper, we deal with the simplest (in the opinion of the author)
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variant of parallelizing. However, based on this simple variant, it is easy to propose more efficient

(and more complicated) variants of parallelizing.

We consider a concurrent computing system with a sufficiently large number of concurrent

computing modules so that the realization of the algorithm is independent of the further increase

of the number of modules (we refer to [9] for the conception of unrestricted parallelism).

We assume that the distribution p q of the data of the same type real with representation

f between p concurrent computing modules (p and q are natural numbers) is performed in

accordance with the directive ALIGN 2) by distributing q data to each concurrent computing

module and this process takes TAL(f, p, q) time units.

Sometimes, we use the following assumption.

(C) TAL(f, p, q) = p q TAL, where TAL = TAL(f) is a natural number.

We assume that the operation of parallel assignments for simple variables (of type real) takes

Tb = Tb(f) time units. Let Ta = Ta(f) and Tm = Tm(f) denote the time required by a concurrent

computing system to perform 1 parallel additive operation and 1 parallel multiplicative operation

respectively.

Using such a concurrent computing system, we perform the following action.

(1) distribute the variables (of type real) between Ñ + 1 concurrent computing modules as

follows:

(1a) map the variables ai, c i to the concurrent computing module with the number i + 2,

i = −1, 0, . . . , s− 1 (cf. (7.1)), which takes TAL(f, s+ 1, 2) time units.

(1b) the variables as+q, c 2q−1, c 2q, [a2q+1]i, [a2q)]i, [a2q−1]i, i = 1, 2, are mapped to the

concurrent computing module with the number q+2 (in accordance with the directive ALIGN),

which takes TAL(f, r − s, 9) time units, s � q � r − 1,

(1c) map the variables ai, c i+r−s to the concurrent computing module with the number i+2,

i = r + s, r + s+ 1, . . . , Ñ − 1 (cf. (7.3)), which takes TAL(f,N − 2r, 2) time units,

(2) in formula (7.4), during one action of parallel multiplication, perform 6 multiplications for

computing three determinants; moreover, during this action, perform all these multiplications

for all s � q � r − 1, which takes Tm time units,

(3) in formula (7.4), during one action of parallel subtraction, compute the determinants

det (a2q+1,a2q), det (a2q+1,a2q−1), det (a2q−1,a2q), s � q � r − 1, which takes Ta time units,

(4) during one action of parallel multiplication, compute the product

det (a2q+1,a2q)c 2q−1, det (a2q+1,a2q−1)c 2q, s � q � r − 1;

which takes Tm time units,

(5) in formula (7.4), during one action of parallel addition, compute the value of the ex-

pression in brackets in the numerator of formula (7.4), s � q � r − 1, which takes Ta time

units,

2) Here, the process performed in accordance with the directive ALIGN (cf. also the interface DVM in [9])

is understood as a process of distribution of available p q variables (initialized or not) between p concurrent

computing modules, with q variables to each module, in order to perform actions with these variables on the

same concurrent computing module (without transferring between different modules). The method for defining

the above relation is involved in the process and is not specified here.
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(6) in formula (7.4), during one action of parallel division, compute the value of the right-

hand side for all s � q � r − 1, which takes Tm time units,

(7) perform the parallel assignments in (7.1)–(7.3), which takes Tb time units.

In this variant, the total time Ta⇐ c required for computation of the main flow a from the

decomposition of a flow c is found by the formula3)

Ta ⇐ c = TAL(f, s+ 1, 2) + TAL(f, r − s, 9) + TAL(f,N − 2r, 2) + 3Tm + 2Ta + Tb. (7.12)

The following assertion is obtained from formula (7.12).

Theorem 7.4. If Assumption (C) is satisfied, then for computation of the main flow a in

the first order spline-wavelet decomposition of a flow c by a concurrent computing system it is

required Ta ⇐ c, (C) time units, where

Ta⇐ c, (C) =
(
2N + 2 + 5r − 7s

)
TAL + 3Tm + 2Ta + Tb. (7.13)

Remark 7.1. In formulas (7.5) and (7.8)–(7.13), one can observe terms connected with the

processing of communication surrounding (cf. the terms td(f, 2s+1, 1), td(f,N − 2r, s− r+1),

TAL(f, s + 1, 2), TAL(f, r − s, 9), TAL(f,N − 2r, 2)). As is known, the productivity of a com-

puting system is mainly determined by the speed of processing of communication surrounding

(especially, in the case of a concurrent computing system).

Corollary 7.1. If the processing of communication surrounding is taken into account (i.e.,

tdTAL �= 0), then in Assumptions (B) and (C) in the case of unrestricted parallelism for compu-

tation of the main flow

lim
N→+∞

ta⇐ c, (B)

Ta ⇐ c, (C)
= (r − s+ 1) · td

2TAL
,

i.e., the asymptotics of acceleration of computations by a concurrent computing system (relative

to the computation speed of a single-processor computer system) is determined by the time of pro-

cessing of communication surrounding. If the time of processing of communication surrounding

is ignored (i.e., we assume that td = TAL = 0), then

ta⇐ c, (B)

Ta ⇐ c, (C)
=

(r − s)(9tm + 4ta)

3Tm + 2Ta + Tb
.

In both cases, the growth of acceleration is proportional to the growth of the number of removed

grid points.

7.5. Simplifications in the case of concurrent computation of the main flow in the

first order spline-wavelet decomposition. From (7.7) we see that, unlike the Subsection

7.4, it is not necessary to realize the operations in (2), whereas all the remaining operations

should be performed. Therefore, the total computation time T ∗
a ⇐ c is equal to

T ∗
a ⇐ c = TAL(f, s+ 1, 2) + TAL(f, r − s, 9) + TAL(f,N − 2r, 2) + 2Tm + 2Ta + Tb. (7.14)

As was already mentioned, if we can modify the algorithm in a certain way, then formula (7.14)

should be replaced with the formula

T ∗
a ⇐ c = TAL(f, r − s, 9) + 2Tm + 2Ta + Tb. (7.15)

3) If our device allows us to modify the algorithm in such a way that the actions (1a) and (1c) are performed

during the action (1(b), then (7.12) should be replaced with the formula Ta ⇐ c = TAL(f, r−s, 9)+3Tm+2Ta+Tb.
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Theorem 7.5. If Assumption (C) is satisfied, then for computing the main flow a from c

(of the first order) by a concurrent computing system it is required T ∗
a ⇐ c, (C) time units, where

T ∗
a ⇐ c, (C) = (2N + 2 + 5r − 7s)TAL + 2Tm + 2Ta + Tb. (7.16)

8 Computation of the Wavelet Flow

8.1. Formulas. By formula (5.6),

b2q−1 = c2q−1 − [Pa]2q−1 ∀q ∈ {s+ 1, s+ 2, . . . , r}. (8.1)

Taking into account (3.9), we have

b2q−1 = c2q−1 − as+q−1 ∀q ∈ {s+ 1, s+ 2, . . . , r}. (8.2)

Since the vector b is an element of the space B, we can decompose b relative to the basis

{b̃l}l=s+1...,r. Taking into account that this basis has zero multiplicity and the odd components

of basis elements are equal to 1 (cf. (5.13)), we find

b =
∑

l∈{s+1,s+2,...,r}
b2l−1b̃l. (8.3)

Thus, from (5.13) and (8.3) we obtain the following expressions for the even components of b:

b2q =
det (a2q,a2q+1)

det (a2q−1,a2q+1)
b2q−1 ∀q ∈ {s+ 1, s+ 2, . . . , r − 1}. (8.4)

For computations by formula (8.2) we need to perform r − s additive operations and the

same number of operations of assignment with index shifting, whereas for computations by

formula (8.4) we need to compute two second order determinants, divide them by each other,

and multiply the result by the number obtained from formula (8.2). Such computations take

r − s− 1 times.

In the case of the first order spline-wavelet decomposition, formula (8.2) is preserved, whereas

formula (8.4) is simplified:

b2q =
x2q+2 − x2q+1

x2q+2 − x2q
b2q−1 ∀q ∈ {s+ 1, s+ 2, . . . , r − 1}. (8.5)

Finally, if the grid is uniform, then formula (8.2) remains valid and is completed by the equalities

b2q =
b2q−1

2
∀q ∈ {s+ 1, s+ 2, . . . , r − 1}. (8.6)

8.2. Successive computations of the wavelet flow in the first order spline-wavelet

decomposition. We suppose that the assumptions on computing systems in Section 7 are

satisfied. To realize formula (8.2) by a single-processor computer system, we need to perform

(a) r − s additive operations, which takes (r − s)ta time units,

(b) r − s operations of assignment with shifting in the range from 1 to r − s, which takes

td(f, r − s, r − s) time units.
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For computations by formula (8.4) we need to repeat the computation of two second order

determinants r − s− 1 times, which requires

(c) 4(r − s − 1) multiplicative operations and 2(r − s − 1) additive operations, which takes

(r − s− 1)(4tm + 2ta) time units.

Finally, to complete computations by formula (8.4), it is required to divide the obtained

determinants and multiply the quotient by b2q−1, i.e., it is required to perform

(d) 2(r−s−1) multiplicative operations with the total time 2(r−s−1)tm for their realization,

(e) the assignment operations in the last computation (cf. (d)), which requires td(f, r − s−
1, r − s− 1) time units.

Thus, the total time for computation of the wavelet flow by a single-processor computer

system is equal to4)

tb⇐ c = (3r − 3s− 2)ta + 6(r − s− 1)tm + td(f, r − s, r − s)

+ td(f, r − s− 1, r − s− 1). (8.7)

In the case of the first order spline-wavelet decomposition, to find the wavelet flow it is not

required to perform multiplications in computations of the determinants, whereas the remaining

actions are preserved (cf. formula (8.5)). In this case,

t∗b⇐ c = (3r − 3s− 2)ta + 2(r − s− 1)tm + td(f, r − s, r − s)

+ td(f, r − s− 1, r − s− 1). (8.8)

Finally, in the case of a uniform grid (cf. formula (8.6)), 2(r − s − 1) additive operations

and r − s − 1 multiplicative operations are removed. Hence the time tb⇐ c for computing the

wavelet flow is equal to

tb⇐ c = (r − s)ta + (r − s− 1)tm + td(f, r − s, r − s)

+ td(f, r − s− 1, r − s− 1). (8.9)

From (8.7)–(8.9) we obtain the following assertion.

Theorem 8.1. Let Assumption (B) be satisfied. Then for computing the wavelet flow a from

the flow c by a single-processor computer system, it is required tb ⇐ c,(B) time units, where

tb ⇐ c,(B) = (3r − 3s− 2)ta + 6(r − s− 1)tm + [(r − s)2 + (r − s− 1)2] td.

Under the same assumptions, for the first order spline-wavelet decomposition we need t∗b ⇐ c,(B)

time units, where

t∗b ⇐ c,(B)
= (3r − 3s− 2)ta + 2(r − s− 1)tm + [(r − s)2 + (r − s− 1)2] td.

If, in addition, the original grid is uniform, then it is required tb ⇐ c,(B) time units, where

tb ⇐ c,(B) = (r − s)ta + (r − s− 1)tm + [(r − s)2 + (r − s− 1)2] td.

4) If the results of computations of determinants are preserved at the step of constructing the main flow, then

it is possible to diminish the number of operations since it is not necessary to perform the operation indicated in

(c). As a result, we have tb ⇐ c = (r − s− 1)ta + 4(r − s− 1)tm + td(f, r − s, r − s) + td(f, r − s− 1, r − s− 1).
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8.3. Concurrent computations of the wavelet flow. For concurrent computation of a

first order wavelet flow by a concurrent computing system, we perform the following actions:

(1) map the variables as+q−1, b2q−1, b2q, c2q−1 (of type real) to a concurrent computing

module with the number q ∈ {s+1, s+2, . . . , r}, which requires to use r−s computing modules

and takes TAL(f, r − s, 4) time units,

(2) perform the parallel additive operation in (8.2) by using the concurrent computing mod-

ules mentioned in (1), which takes Ta time units,

(3) perform the parallel assignment operation in (8.2) by using the same concurrent com-

puting modules as in (1), which takes Tb time units,

(4) map the components of the two-dimensional vectors a2q−1, a2q, a2q+1 (6 numbers of type

real) to the concurrent computing module with the number q ∈ {s + 1, s + 2, . . . , r} by using

the same r− s concurrent computing modules as above, which takes TAL(f, r− s, 6) time units,

(5) compute the determinants in (8.4) by performing 4 parallel multiplicative and 2 parallel

additive operations with the use of the same computing modules, which takes 4Tm + 2Ta time

units,

(6) complete the computations in (8.4) by performing 2 parallel multiplicative operations

and 1 parallel operation of assignment, which takes 2Tm + Tb time units.

Thus, the computation of the wavelet flow takes Tb ⇐ c time units5) , where

Tb ⇐ c = TAL(f, r − s, 4) + TAL(f, r − s, 6) + 3Ta + 6Tm + 2Tb.

In the case of the first order spline-wavelet decomposition, the actions (4) and (5) should be

replaced with the following.

(4*) map the numbers x2q, x2q+1, x2q+2 (3 numbers of type real) to the computing module

with the number q ∈ {s+ 1, s+ 2, . . . , r} by using the same r− s computing modules as above,

which takes TAL(f, r − s, 3) time units,

(5*) instead of computation of the determinants in (8.4), compute two differences in (8.5),

i.e., perform 2 parallel additive operations by using the same computing modules, which takes

2Ta time units.

Thus, to compute the wavelet flow in the first order spline-wavelet decomposition, we need

T ∗
b ⇐ c time units6) , where

T ∗
b ⇐ c = TAL(f, r − s, 4) + TAL(f, r − s, 3) + 3Ta + 2Tm + 2Tb.

Finally, computing the wavelet flow in the first order spline-wavelet decomposition on a

uniform grid, we can replace (8.5) with (8.6) so that it is not necessary to perform 2 parallel

additive operations and 1 parallel multiplicative operation. Hence it is required only Tb⇐ c

5) If the results of computation of determinants are preserved at the step of constructing the main flow, then it

is possible to diminish the number of operations since it is not necessary to perform the actions described in (4)

and (5). In this case, Tb ⇐ c = TAL(f, r − s, 4) + Ta + 2Tm + 2Tb.

6) If the results of computations of differences are preserved at the stage of constructing the main flow, then it

is possible to diminish the number of operations since it is not required to perform the actions described in (4*)

and (5*). In this case, T ∗
b ⇐ c = TAL(f, r − s, 4) + Ta + 2Tm + 2Tb.
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time units, where

Tb ⇐ c = TAL(f, r − s, 4) + TAL(f, r − s, 3) + Ta + Tm + 2Tb.

From the above consideration we obtain the following assertion.

Theorem 8.2. If Assumption (C) is satisfied, then to compute the wavelet flow a in the first

order spline-wavelet decomposition of a flow c by a concurrent computing system, it is required

Tb ⇐ c,(C) time units, where

Tb ⇐ c,(C) = 10(r − s)TAL + 3Ta + 6Tm + 2Tb.

Under the same assumptions, in the case of the first order spline-wavelet decomposition, it is

required T ∗
b ⇐ c,(C)

time units, where

T ∗
b ⇐ c,(C)

= 7(r − s)TAL + 3Ta + 2Tm + 2Tb.

Finally, if the grid is uniform, then it is required Tb ⇐ c,(C) time units, where

Tb ⇐ c,(C) = 7(r − s)TAL + Ta + Tm + 2Tb.

Corollary 8.1. Let the processing of communication surrounding be taken into account (i.e.,

we assume that tdTAL �= 0). In the case of unrestricted parallelism, if Assumptions (B) and (C)

are satisfied, then for computation of the wavelet flow we have the asymptotics

tb ⇐ c, (B)

Tb ⇐ c, (C)

= (r − s)
td

5TAL
+ o(r − s), r − s → +∞.

If the time of processing of communication surrounding is ignored (i.e., we assume that tdTAL =

0), then the asymptotics has the form

tb ⇐ c, (B)

Tb ⇐ c, (C)

= (r − s)
6tm + ta

6Tm + 3Ta + 2Tb
+ o(r − s), r − s → +∞,

i.e., the asymptotics of acceleration is proportional to the growth of the number of removed grid

points.
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