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LATTICE PACKINGS OF MIRROR SYMMETRIC OR
CENTRALLY SYMMETRIC THREE-DIMENSIONAL
CONVEX BODIES

V. V. Makeev∗ UDC 514.172

We prove a number of statements concerning lattice packings of mirror symmetric or centrally
symmetric convex bodies. This enables one to establish the existence of sufficiently dense lattice
packings of any three-dimensional convex body of such type.

The main result states that each three-dimensional, mirror symmetric, convex body admits a
lattice packing with density at least 8/27. Furthermore, two basis vectors of the lattice generating
the packing can be chosen parallel to the plane of symmetry of the body.

The best result for centrally symmetric bodies was obtained by Edwin Smith (2005): Each three-
dimensional, centrally symmetric, convex body admits a lattice packing with density greater than
0.53835. In the present paper, it is only proved that each such body admits a lattice packing with
density (

√
3 + 4

√
3/4 + 1/2)/6 > 0.527. Bibliography: 5 titles.

1. On lattice packings of mirror symmetric, three-dimensional, convex bodies

By a convex body K in R
n we mean a compact convex subset with nonempty interior, and

V (K) denotes the volume of K (S(K) is the area for n = 2).
A lattice arrangement of a subset A in R

n is defined as the union of images of A under shifts
through the vectors of a certain lattice. The vectors are integer linear combinations of linearly
independent vectors a1, . . . , ak. A lattice arrangement of a subset A is called a packing if the
images of A have no common interior points.

Theorem 1. Each mirror symmetric, three-dimensional, convex body K admits a lattice pack-
ing of density at least 8/27. Furthermore, the two basis vectors of the vector lattice generating
the packing can be chosen to be parallel to the plane of symmetry of K.

The proof involves several auxiliary assertions, which are also useful in the case of a centrally
symmetric convex body.

Lemma 1. Let A and B be two subsets in R
n, and let R1 and R2 be two lattice arrangements

of A and B in R
n constructed with the help of one and the same vector lattice. Assume that

the difference set A−B = {x− y | x ∈ A, y ∈ B} is measurable and the volume of A−B does
not exceed the volume of the fundamental domain of the lattice. Then we can shift, say, the
arrangement R1 to an arrangement R′

1 so that sets from the arrangements R′
1 and R2 have

no common interior points.

Proof. Consider all possible difference sets of the form Ai−Bj , where Ai and Bj are taken
from the lattice arrangements R1 and R2, respectively. They constitute a lattice arrangement
of the difference set A − B constructed with the help of the same lattice. In view of our
assumption about the volume of the difference set, the interiors of their images cannot cover
the entire space, and the required shift can be performed through the position vector of a
point not covered by the interiors of the difference sets. Lemma 1 is proved. �
Lemma 2. Let R be a lattice arrangement of a convex body K in R

n and let the volume of
the fundamental domain of the lattice be at least Cn

2nV (K). Then the arrangement R can be
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shifted to an arrangement R′ so that the bodies of the arrangements R and R′ have no common
interior points.

To prove this, it suffices to apply Lemma 1 and take into account the Rogers–Shephard
inequality V (K − K) ≤ Cn

2nV (K) (see [1, Chap. 2]).

Lemma 3. Let K be a convex body in R
n, and let −K be the body symmetric to K with respect

to the origin. Consider two lattice arrangements of K and −K in R
n constructed with the

help of one and the same lattice such that the volume of the fundamental domain of the lattice
is at least 2nV (K). Then one of the two lattice arrangements can be shifted so that the bodies
from different lattice arrangements have no common interior points.

To prove this, it suffices to apply Lemma 1 and take into account that V (K − (−K)) =
V (2K) = 2nV (K).

Consider a lattice packing of a mirror symmetric convex body K in R
n, where the lattice L

is generated by n−1 linearly independent vectors a1, . . . , an−1 parallel to a hyperplane Q. We
denote by V the (n − 1)-volume of the fundamental domain of L (in its hyperplane parallel
to Q). Let P1 and P2 be common hyperplanes of support of all bodies of the packing parallel
to Q. Let Q1 be a hyperplane parallel to the hyperplanes P1 and Q and lying between them
and such that the section by Q1 of the body of the initial packing has the (n− 1)-dimensional
volume not greater than V/Cn−1

2n−2.

Lemma 4. Under the above assumptions, there exists a lattice packing of the body K in R
n

such that the lattice is generated by the vectors a1, . . . , an, and the projection of the vector an
to a line perpendicular to all the hyperplanes indicated above has length 2d−d1, where d is the
distance between Q and P1 and d1 is the distance between Q1 and P1.

Proof. We denote by Q2 the hyperplane symmetric to Q1 with respect to Q. We shift the
initial lattice packing so that the hyperplane Q2 coincides with the hyperplane P1. Below we
denote the initial lattice packing by R1, and the shifted one is denoted by R2. We must prove
that the second packing can be shifted in parallel to all the hyperplanes under consideration
so that bodies of the second packing have no common interior points with bodies of the first
packing.

In each hyperplane parallel to Q1 and lying between Q1 and P1, we consider two lattice
packings of (n−1)-dimensional convex bodies consisting of the intersections of the hyperplane
with bodies from the first and second lattice packing, respectively. These lattice packings are
also generated by the vectors a1, . . . , an−1. Since the body K is mirror symmetric, all the
orthogonal projections of the sections of K by the hyperplanes from the considered family to
Q1 are contained in the section K ∩Q1. Applying Lemmas 1 and 2 to two copies of the lattice
of the sections of K by the hyperplane Q1, we obtain the assertion of Lemma 4. �

Proof of Theorem 1. Let Q be the plane of symmetry of the three-dimensional body K. For
the sake of convenience, below we assume that the maximum distance from points of K to the
plane Q is equal to 1. Let p be the maximum density of a lattice packing R of the section
K1 = K ∩ Q in the plane Q. (We have p ≥ 2/3; see [2].) We also assume that the area
of the fundamental domain of the densest lattice packing R of the figure K1 is equal to 1
(consequently, S(K1) = p). We denote by t the distance from the plane of symmetry Q to
the plane of the section of the body K parallel to Q and having area 1/6. (If there is no such
section, we put t = 1.) We observe that t ≥ 1/2 because we have p ≥ 2/3, and the area of the
section passing at a distance 1/2 from the plane Q is at least p/4 ≥ 1/6.

Let P1 and P2 be the planes of support of the body K parallel to the plane Q, and let
U be the layer of unit thickness between the planes Q and P1. Consider the lattice packing
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of the layer U by the intersections of U with right cylinders having figures from the packing
R as bases. These cylinders yield a packing of U with density p. We perform the Schwarz
symmetrization of the body K with respect to a line perpendicular to the bases of the cylinder
(see [3, p. 224]). Since the result of the symmetrization is a convex body, it follows that the
half of its volume is not less than the volume of the frustum of a right circular cone with height
t, with lower base of area p, and with top base of area 1/6, plus the volume of a right circular
cone with height 1− t and with base of area 1/6. Simple computations show that the volume
of the indicated body is equal to ((6p +

√
p)t + 1)/18. Applying Lemma 4, we can consider

two layers between two parallel planes lying at distance 2 from each other. The layers contain
lattice packings consisting of cylinders found above, and we can push them into each other
through 1 − t. This yields a lattice packing of the body K of density not less than

(6p +
√

6p)t + 1
9(1 + t)

=
1
9

(
6p +

√
6p − 6p +

√
6p − 1

1 + t

)
.

In view of the above restrictions, the latter expression attains the minimum for p = 2/3 and
t = 1/2, which coincides with the bound stated in the theorem. �

Remarks. 1. It is proved in [2, Chap. 6] that the density of the packing in R
n of the simplices

obtained by shifts from a certain simplex (not necessarily a lattice packing) does not exceed
2n(n!)2/(2n)!. For n = 3, this yields the upper bound 2/5.

2. It is proved in [4, Sec. 10] that each three-dimensional convex body admits a lattice
packing of density at least 1/4.

2. On lattice packings of a centrally symmetric, three-dimensional, convex
body

The following lemma about lattice packings of centrally symmetric convex bodies is an
analog of Lemma 4 for the mirror symmetric case.

Consider a lattice packing of a centrally symmetric convex body K in R
n, where the lattice

L is generated by n−1 linearly independent vectors a1, . . . , an−1. We denote by V the (n−1)-
volume of the fundamental domain of L (in its hyperplane H). Let P1 and P2 be two common
hyperplanes of support of all the bodies of the packing (they are parallel to the hyperplane
H). Let Q be the hyperplane parallel to H and containing the centers of all the bodies of the
packing. Let Q1 be the hyperplane parallel to H and lying between P1 and Q such that the
(n − 1)-dimensional volume of the intersection K1 = K ∩ Q1 is not greater than (1/2)n−1V .

Lemma 5. Under the assumptions indicated above, there exists a lattice packing of the body K
in R

n such that the lattice is generated by the vectors a1, . . . , an, and the projection of the vector
an to a line perpendicular to all the hyperplanes described above has length 2(d− d1), where d
is the distance between Q and P1 and d1 is the distance between Q1 and P1. (We assume that
d1 ≤ d/2.)

Proof. We denote by Q2 the hyperplane symmetric to Q1 with respect to Q. We shift the initial
lattice packing R1 to a packing R2 so that the hyperplane Q2 coincides with the hyperplane Q1.
We must prove that the packing R2 can be shifted in parallel to all the considered hyperplanes
into a packing R′

2 so that the shifted bodies have no common interior points with bodies of
the packing R1.

We choose a Cartesian coordinate system such that the last axis is perpendicular to the
considered hyperplanes. Rotating the packing R2 at 180◦ around the last coordinate axis, we
obtain the third lattice packing R3. It is clear that the lattice packings of (n− 1)-dimensional
bodies obtained as intersections of the bodies from the packings R1 and R3 with Q1 differ by
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a shift. Performing this shift, below we assume that the bodies from R1 and R3 have the same
intersections with Q1.

In each hyperplane Q′ parallel to Q1 and passing at a distance of ≤ d1 to Q1, we consider
two lattice packings of (n − 1)-dimensional convex bodies formed by the sections by Q′ of the
bodies from R1 and R2, respectively. These lattice packings are also generated by the vectors
a1, . . . , an−1. We consider the pairwise differences of bodies from different lattice packings
(the first body is taken from the first packing) and take their orthogonal projections to the
hyperplane Q1. We show that all the projections are contained in the difference sets which
were initially obtained in Q1.

It is clear that the considered difference sets are congruent to the sums of the corresponding
sections by the hyperplane Q1 of the bodies from the packings R1 and R3 and differ from them
by a shift through one and the same vector. Let us prove that the orthogonal projection to
Q1 of the sum of sections of any two bodies from R1 and R3, respectively, by any hyperplane
from the family described above is contained in the sum of the sections obtained in Q1.

In view of periodicity, it suffices to verify this for arbitrary two bodies from R1 and R3. We
verify this for a pair of bodies that have the same intersection with the hyperplane Q1. These
bodies are mirror symmetric with respect to Q1. The orthogonal projection to Q1 of the sum
of sections of two bodies symmetric with respect to Q1 by a hyperplane H from the family
described above is congruent to the sum of the section of one of these bodies by H with the
section of the body by the hyperplane symmetric to H with respect to Q1. Since the body
K is convex, the half-sum of sections of K by parallel hyperplanes symmetric with respect
to Q1 is contained in the section K1 = K ∩ Q1. Consequently, the sum of sections of K by
hyperplanes symmetric with respect to Q1 is contained in the sum of K1 with the same K1.
The sum is homothetic to K1 with coefficient 2 and has volume 2n−1V (K1). In view of the
assumption about the volume of K1 (made before the formulation of Lemma 5), the interiors
of the bodies 2K1 arranged in a lattice do not cover Q1, which allows us to find a vector v such
that after shift through v, the interiors of the bodies from the packing R2 do not intersect the
interiors of the bodies from the packing R1. Lemma 5 is proved. �

Lemma 6. Let K be a centrally symmetric convex figure K and let A be an affine-regular
hexagon inscribed in K. Consider two centrally symmetric hexagons B and C circumscribed
about K. The hexagon B is bounded by lines of support of K passing through the vertices of
A. The hexagon C is bounded by lines of support of K parallel to sides of A. Then one of the
quotients of the areas

p = S(K)/S(B) and q = S(K)/S(C)

is at least
√

3/2.

Proof. Consider the quotient r = S(A)/S(B). The easy inequality r ≥ 3/4 is well known.
Since the assertion of the lemma is affine, we can assume (after an affine transformation) that
the hexagon A is regular and circumscribed about a circle of unit radius.

Let x be the arithmetic mean of the distances from the common center of symmetry of the
figures K, A, B, and C to the sides of the hexagon C. The figure K contains a centrally
symmetric dodecagon D which is the convex hull of the vertices of the hexagon A and the
points where the sides of C touch the figure K. It is obvious that S(K) ≥ S(D) = x ∗ S(A),
whence p ≥ 3x/4.

For a fixed x, the hexagon C has the maximum area only if C is regular. Otherwise, we
subject the pair of the symmetric shortest sides of C to a small parallel shift inwards through
equal distances, and subject the pair of the symmetric longest sides of C to a small parallel
shift outwards through the same equal distances. This does not change x, and the area of C
increases. Thus, we have q ≥ 1/x.
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In view of the estimates p ≥ 3x/4 and q ≥ 1/x established above, we have max(p, q) ≥
max(3x/4, 1/x), x > 1. The expression on the right-hand side of the inequality attains the
minimum for x =

√
4/3, and the minimum is equal to

√
3/2. �

Theorem 2. Let K be a centrally symmetric three-dimensional body. Then K is contained in
a centrally symmetric prism Π with the same center of symmetry such that the base of Π is a
polygon with at most 6 sides, and the area of the central section of K parallel to the base of Π
is not less than

√
3/2 of the area of the base of Π.

Proof. It suffices to prove the theorem for a smooth strictly convex body K. In the general
case, the result is obtained by passage to the limit.

The central section K1 of K by an oriented plane is a centrally symmetric strictly convex
figure. For this reason, each boundary point A1 of K1 is a vertex of a unique affine-regular
hexagon A inscribed in K1 and continuously depending on A1. Let A1, . . . , A6 be the vertices
of A indexed counter-clockwise. The foregoing implies that the configuration space M of the
hexagons considered is homeomorphic to the orthogonal group SO(3).

Let A be an affine-regular hexagon inscribed in the oriented central section K1. Consider
the two centrally symmetric hexagons B and C circumscribed about K1 that are described in
the formulation of Lemma 6. Let a1, a2, and a3 be the external unit normals of the body K
at the points A1, A2, and A3, respectively, and let c1, c2, and c3 be the external unit normals
of K at the points of tangency of adjacent sides of the hexagon C with the section K1. The
normals are also indexed counter-clockwise.

We prove that for a certain central section and an affine-regular hexagon A inscribed in
the section, the vectors in each of the indicated triples are coplanar. In this case, Lemma 6
implies that the requirements of Theorem 2 are satisfied by one of the two centrally symmetric
hexagonal prisms circumscribed about K, the bases of which are parallel to the above section
and touch the body K, while the planes of the lateral faces of the prisms are orthogonal to
the vectors ai and to the vectors ci, respectively.

Consider the continuous mapping f : M → R
2 taking a hexagon A to the pair ((a1, a2, a3),

(c1, c2, c3)) of mixed products. We show that f(M) contains the point (0, 0).
If this is not so, then we consider the mapping g = f/‖f‖ : M → S1 to the standard unit

circle S1. The cyclic group Z2 freely acts on the configuration space M of hexagons by taking
a hexagon into the centrally symmetric hexagon. Also, Z2 acts on the circle S1 by symmetries
with respect to the center. By construction, the mapping g is Z2-equivariant. Consider a path
γ in M joining two points of an orbit of the group Z2. Then the path g ◦ γ also joins two
points of an orbit of Z2. The projections of these paths to the quotient spaces by the action
of Z2 are non-null-homotopic loops because their covering paths are not closed. The quotient
mapping g takes the first loop to the second one and induces a nontrivial homomorphism of
fundamental groups of the quotient spaces. However, the fundamental group of the first space
M/Z2 has order 4, while the fundamental group of the second space S1/Z2 is isomorphic to Z.
This contradiction completes the proof of Theorem 2.

The assertions proved above allow us to prove that there exist sufficiently dense lattice pack-
ings of a centrally symmetric, three-dimensional, convex body. The best result in this direction
is presented in [5], where it is proved that each centrally symmetric, three-dimensional, convex
body admits a lattice packing of density greater than 0.53835. �

Proposition. Each centrally symmetric, three-dimensional, convex body K admits a lattice
packing of density (

√
3 + 4

√
3/4 + 1/2)/6 > 0.527.

Proof. For the sake of convenience, below we assume that the prism existing in view of The-
orem 2 has height 2 and the area of the base of the prism is equal to 1. We denote by p the
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area of of the central section K0 of the body K parallel to the base (we have p ≥ √
3/2), and

we denote by t the distance from the plane of K0 to the plane of the section of K parallel to
K0 and having area 1/4. (If there is no such section, then we put t = 1.)

We perform the Schwarz symmetrization of the body K with respect to a line perpendicular
to the bases of the prism. Since the result of the symmetrization is a convex body, it follows
that the quantity V (K)/2 is not less than the sum of the volume of a frustum of a right circular
cone with height t, with lower base of area p, and with top base of area 1/4, and the volume
of the right circular cone with height (1 − t) and with base of area 1/4.

Applying Lemma 6, we can consider two layers between two parallel planes lying at distance
2 from each other. The layers contain lattice packings consisting of the prisms found above,
which cover the layers, and we can push the packings into each other through 2(1 − t). This
yields a lattice packing of the body K of density not less than ((2p +

√
p)t + 1/2)/(6t) =

((2p +
√

p) + 1/(2t))/6. In view of the restrictions indicated above, the latter expression
attains the minimum for p =

√
3/2 and t = 1, which coincides with the declared bound. �

Translated by V. V. Makeev.
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