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EXPONENTIAL DICHOTOMY AND EXISTENCE OF ALMOST PERIODIC SOLUTIONS
OF IMPULSIVE DIFFERENTIAL EQUATIONS

V. I. Tkachenko UDC 517.9

We establish conditions for the existence of piecewise continuous almost periodic solutions of a system of
impulsive differential equations with exponentially dichotomous linear part. The robustness of exponen-
tial dichotomy and exponential contraction are investigated for linear systems with small perturbations of
the right-hand sides and the points of impulsive action.

1. Introduction

We investigate the problem of existence of a piecewise continuous almost periodic solution for the semilinear
impulsive differential equation

du

dt
D A.t/uC f .t; u/; t 6D �j ; (1)

�ujtD�j D u.�j C 0/ � u.�j / D Bju.�j /C gj .u.tj //; j 2 Z; (2)

where u W R ! Rn
: We use the concept of discontinuous almost periodic functions in a sense of [1, 2]. There

are numerous works (see, e.g., [3–6] and the references therein) devoted to the investigation of almost periodic
solutions of impulsive systems.

We assume that the corresponding linear homogeneous equation (with f � 0 and gj � 0) has exponential
dichotomy. The matrices .I CBj /may be degenerated, i.e., det .I CBj / D 0; for some (or all) j 2 Z: Therefore,
the solutions of the system are not extendable to the negative semiaxis or are ambiguously extendable. To define
exponential dichotomy, we require that only solutions of the linear system from the unstable manifold can be
unambiguously extended to the negative semiaxis. This corresponds to the definition of exponential dichotomy for
the evolution equations in infinite-dimensional Banach spaces [7–9].

Robustness is an important property of exponential dichotomy [8–10]. We mention papers [11–14], where
the robustness of exponential dichotomy is proved for impulsive systems by small perturbations on the right-hand
sides. In the present paper, we prove the robustness of exponential dichotomy also by small perturbations of points
of the impulsive action. We use the change of time in the system. Then the approximation of the impulsive system
by difference systems (see [7]) can be used.

2. Preliminaries and Main Results

Let X be an abstract Banach space and let R and Z be the sets of real and integer numbers, respectively.
We consider the space PC.J;X/; J � R; of all piecewise continuous functions x W J ! X such that

(i) T D f�j 2 J W �jC1 > �j ; j 2 Zg is the set of discontinuities of x;
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(ii) x.t/ is left-continuous, x.tj � 0/ D x.tj /; and the following limit exists:

lim
t!tjC0

x.t/ D x.tj C 0/ <1:

Definition 1. A strictly increasing sequence f�kg of real numbers has uniformly almost periodic sequences of
differences if, for any " > 0; there exists a relatively dense set of "-almost periods common for all sequences f�j

k
g;

where �j
k
D �kCj � �k; j 2 Z:

Recall that an integer p is called an "-almost period of a sequence fxkg if kxkCp � xkk < " for any k 2 Z:
A sequence fxkg is almost periodic if, for any " > 0; there exists a relatively dense set of its "-almost periods.

Definition 2. A function '.t/ 2 PC.R; X/ is called W -almost periodic if

(i) the sequence f�kg of discontinuities of '.t/ has uniformly almost periodic sequences of differences;

(ii) for any " > 0; there exists a positive number ı D ı."/ such that if the points t 0 and t 00 belong to the same
interval of continuity and jt 0 � t 00j < ı; then

k'.t 0/ � '.t 00/k < "I

(iii) for any " > 0; there exists a relatively dense set � of "-almost periods such that if � 2 �; then

k'.t C �/ � '.t/k < "

for all t 2 R satisfying the condition jt � �kj � "; k 2 Z:

We consider the impulsive equation (1), (2) under the following assumptions:

(H1) the matrix-valued function A.t/ is Bohr almost periodic,

(H2) the sequence of real numbers �k has uniformly almost periodic sequences of differences and there exists
� > 0 such that infk �1k D � > 0;

(H3) the sequence fBj g of .n � n/-matrices is almost periodic,

(H4) denote

U� D fx 2 Rn W kxk � �gI

the function f .t; u/ W R � Rn ! Rn is continuous in u and W -almost periodic in t uniformly with respect to
u 2 U� for some � > 0;

(H5) the sequence fgj .u/g of continuous functions U� ! Rn is almost periodic uniformly with respect to
u 2 U�:

By Lemma 22 [9, p. 192], for a sequence f�j g with uniformly almost periodic sequences of differences, the
limit

lim
T!1

i.t; t C T /

T
D p

exists uniformly with respect to t 2 R; where i.s; t/ is the number of points �k lying in the interval .s; t/:

The following lemma is proved in [9]:
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Lemma 1. Assume that the sequence of real numbers f�j g has uniformly almost periodic sequences of differ-
ences, the sequence fBj g is almost periodic, and the function f .t/ W R ! Rn isW -almost periodic. Then, for any
" > 0; there exist a real number �; 0 < � < "; and relatively dense sets of real numbers � and integers Q such
that the following relations are true:

kf .t C r/ � f .t/k < "; t 2 R; jt � �j j > "; j 2 Z;

kBkCq � Bkk < "; k�q
k
� rk < �;

for k 2 Z; r 2 �; and q 2 Q:

Definition 3. A function x.t/ W Œt0; t1�! Rn is called a solution of the initial problem u.t0/ D u0 2 Rn for
equation (1), (2) on Œt0; t1� if

(i) it is continuous in Œt0; �k�; .�k; �kC1�; : : : ; .tkCs; t1� with discontinuities of the first kind at the times t D
�j I

(ii) x.t/ is continuously differentiable in each interval .t0; �k/; .�k; �kC1/; : : : ; .tkCs; t1/ and satisfies the
equations (1) and (2) if t 2 .t0; t1/; t 6D �j ; and t D �j ; respectively,

(iii) the initial condition u.t0/ D u0 is satisfied.

Together with equation (1), (2), we consider the following linear homogeneous equation;

du

dt
D A.t/u; t 6D �j ; (3)

�ujtD�j D u.�j C 0/ � u.�j / D Bju.�j /; j 2 Z: (4)

By X.t; s/; we denote the evolution operator of the linear equation without pulses (3). It satisfies the equalities
X.�; �/ D I and X.t; s/X.s; �/ D X.t; �/; t; s; � 2 R:

We define the evolution operator for equation (3), (4) as follows:

U.t; s/ D X.t; s/ if �k < s � t � �kC1

and

U.t; s/ D X.t; �k/.I C Bk/X.�k; �k�1/ : : : .I C Bm/X.�m; s/; (5)

if �m�1 < s � �m < �mC1 < : : : < �k < t � �kC1:

Definition 4. We say that system (3), (4) has an exponential dichotomy on R with exponent ˇ > 0 and bound
M � 1 if there exist projections P.t/; t 2 R; such that

(i) U.t; s/P.s/ D P.t/U.t; s/; t � sI

(ii) U.t; s/jIm .P.s// for t � s is an isomorphism on Im .P.s//I then U.s; t/ is defined as an inverse map from
Im .P.t// to Im .P.s//I
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(iii) kU.t; s/.1 � P.s//k �Me
�ˇ.t�s/

; t � sI

(iv) kU.t; s/P.s/k �Me
ˇ.t�s/

; t � s:

We now formulate our main result:

Theorem 1. Suppose that system (1), (2) satisfies the assumptions (H1)–(H5) and the linear system (3), (4)
is exponentially dichotomous with constants ˇ andM � 1:

Assume that the functions f .t; u/ and gj .u/ satisfy the Lipschitz condition

kf .t; u1/ � f .t; u2/k � Lku1 � u2k; kgj .u1/ � gj .u2/k � Lku1 � u2k; j 2 Z;

with a positive constant L and that they are uniformly bounded in the region t 2 R; u 2 U� W

sup
.t;u/

kf .t; u/k � H <1; sup
u

kgj .u/k � H <1; j 2 Z:

Then, for a sufficiently smallL; system (1), (2) has a unique piecewise continuousW -almost periodic solution.

3. Robustness of Exponential Dichotomy

If system (3), (4) possesses an exponential dichotomy on R; then the inhomogeneous equation

du

dt
D A.t/uC f .t/; t 6D �j ; (6)

�ujtD�j D u.�j C 0/ � u.�j / D Bju.�j /C gj ; j 2 Z; (7)

has a unique solution bounded on R W

u0.t/ D
1Z

�1
G.t; s/f .s/.x/ds C

X

j2Z
G.t; �j /gj ; (8)

where

G.t; s/ D
¼
U.t; s/.I � P.s//; t � s;

�U.t; s/P.s/; t < s;

is a Green function such that

kG.t; s/k �Me
�ˇ jt�sj

; t; s 2 R: (9)

By analogy with [7, p. 250], it can be shown that a function u.t/ is a bounded solution on the semiaxis
Œt0;C1/ if and only if

u.t/ D U.t; t0/.I � P.t0//u.t0/C
C1Z

t0

G.t; s/f .s/ds C
X

t0��j

G.t; �j /gj ; t � t0: (10)
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A function u.t/ is a bounded solution on the semiaxis .�1; t0� if and only if

u.t/ D U.t; t0/P.t0/u.t0/C
t0Z

�1
G.t; s/f .s/ds C

X

t0>�j

G.t; �j /gj ; t � t0: (11)

Lemma 2. Let the impulsive system (3), (4) be exponentially dichotomous with positive constants ˇ andM:
Then there exists ı0 > 0 such that the perturbed systems

du

dt
D QA.t/u; t 6D Q�j ; (12)

�ujtDQ�j D u. Q�j C 0/ � u. Q�j / D QBju. Q�j /; j 2 Z; (13)

with

sup
j

j�j � Q�j j � ı0; sup
j

kBj � QBj k � ı0; and sup
t

kA.t/ � QA.t/k � ı0;

are also exponentially dichotomous with some constants ˇ1 � ˇ andM1 �M:

Proof. In system (3), (4), we introduce the change of time t D ˛.t
0
/ such that �j D ˛. Q�j /; j 2 Z; and the

function ˛ is continuously differentiable and monotone in each interval . Q�j ; Q�jC1/:

The function ˛ can be chosen in a piecewise linear form,

t D aj t
0 C bj ; aj D �jC1 � �j

Q�jC1 � Q�j
; bj D �jC1 Q�j � �j Q�jC1

Q�jC1 � Q�j
if t

0 2 . Q�j ; Q�jC1/:

The function ˛.t 0/ satisfies the conditions

j˛.t 0/ � t 0j � ı0;

ˇ̌
ˇ̌d˛.t

0
/

dt 0
� 1

ˇ̌
ˇ̌ � aı0

with a positive constant a independent of j and ı0:

In the new coordinates v.t 0/ D u.˛.t
0
//; system (3), (4) takes the form

dv

dt 0
D A1.t

0
/v; t 6D Q�j ; (14)

�vjt 0DQ�j D v. Q�j C 0/ � v. Q�j / D Bj v. Q�j /; j 2 Z; (15)

where

A1.t
0
/D d˛.t

0
/

dt 0
A.˛.t

0
//:

System (14), (15) has the evolution operator

U1.t
0
; s

0
/ D U.˛.t

0
/; ˛.s

0
//:
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If system (3), (4) has exponential dichotomy with a projection P.t/ at the point t; then system (14), (15) has
exponential dichotomy with the projection P1.t

0
/ D P.˛.t

0
// at the point t 0: Indeed,

kU1.t
0
; s

0
/.1 � P1.s

0
//k D kU.˛.t 0/; ˛.s0//.1 � P.˛.s0//k

�Me
�ˇ.˛.t 0/�˛.s0// �M1e

�ˇ.t 0�s0/
; t

0 � s
0
;

whereM1 DMe
2ı0 : The inequality for an unstable manifold is proved similarly.

The linear systems (14), (15) and (12), (13) have the same points of impulsive actions Q�j ; j 2 Z; and

kA1.t
0
/ � QA.t 0/k �

����
d˛.t

0
/

dt 0
A.˛.t

0
// � A.˛.t 0//

����C kA.˛.t 0// � A.t 0/k

C kA.t 0/ � QA.t 0/k � ı0

�
a sup

t
kAk C sup

t

����
dA

dt

����C 1

�
:

Let QU.t 0; s0/ be an evolution operator for system (12), (13). To show that system (12), (13) is exponentially
dichotomous for sufficiently small ı0; we use the following version of Theorem 7.6.10 [7]:

Assume that the evolution operator U1.t
0
; s

0
/ has an exponential dichotomy on R and satisfies the inequality

sup
0�t 0�s0�d

kU1.t
0
; s

0
/k <1 (16)

for some positive d: Then there exists � > 0 such that

k QU.t 0; s0/ � U1.t
0
; s

0
/k < �; whenever t � s � d;

and the evolution operator QU.t 0; s0/ has an exponential dichotomy on R:
To prove this statement, we set

tn D s
0 C dn; Tn D U1.s

0 C d.nC 1/; s
0 C dn/; QTn D QU.s0 C d.nC 1/; s

0 C dn/ for n 2 Z:

If the evolution operator U1.t; s/ has an exponential dichotomy, then fTng has a discrete dichotomy in a sense
of [7] (Definition 7.6.4).

By [7] (Theorem 7.6.7), there exists � > 0 such that f QTng with supn kTn � QTnk � � has a discrete dichotomy.

We are now in the conditions of Exercise 10 from [7, p. 229, 230] (see also a more general statement [8,
Theorem 4.1]). This completes the proof.

The exponentially dichotomous system (12), (13) possesses the Green function

QG.t; s/ D
¼ QU.t; s/.I � QP .s//; t � s;

� QU.t; s/ QP .s/; t < s;

such that

k QG.t; s/k �M1e
�ˇ1jt�sj

; t; s 2 R:
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Lemma 3. The difference between the Green functions of the exponentially dichotomous linear systems (12),
(13) and (14), (15) satisfies the relation

QG.t; �/ �G1.t; �/ D
1Z

�1
G1.t; s/.

QA.s/ � A1.s//
QG.s; �/ds

C
X

j

G1.t; Q�j /. QBj � Bj /
QG. Q�j ; �/; t; � 2 R; (17)

where G1.t; �/ D G.˛.t/; ˛.�//:

Proof. QG.t; �/ satisfies the equation

du

dt
D A1.t/uC . QA.t/ � A1.t//

QG.t; �/;

�ujtDQ�j D BjuC . QBj � Bj /
QG. Q�j ; �/:

By virtue of (10), we conclude that, for t � �;

QG.t; �/ D U1.t; �/.I � P1.�//
QG.�; �/C

C1Z

�

G1.t; s/.
QA.s/ � A1.s//

QG.s; �/ds

C
X

��Q�j
G1.t; Q�j /. QBj � Bj /

QG. Q�j ; �/: (18)

Similarly, by (11), we get

QG.t; �/ D U1.t; �/P1.�/
QG.� � 0; �/C

�Z

�1
G1.t; s/.

QA.s/ � A1.s//
QG.s; �/ds

C
X

�>Q�j
G1.t; Q�j /. QBj � Bj /

QG. Q�j ; �/ (19)

for t < �:

Setting t D � in (18), we find

P1.�/
QG.�; �/D

C1Z

�

G1.�; s/.
QA.s/ � A1.s//

QG.s; �/ds C
X

��Q�j
G1.�; Q�j /. QBj � Bj /

QG. Q�j ; �/:

Since

QG.�; �/ � QG.� � 0; �/ D I;
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by (19), we conclude that, for t < �;

QG.t; �/ D U1.t; �/

 C1Z

�

G1.�; s/.
QA.s/ � A1.s//

QG.s; �/ds

C
X

��Q�j
G1.�; Q�j /. QBj � Bj /

QG. Q�j ; �/
!
� U1.t; �/P1.�/

C
�Z

�1
G1.t; s/.

QA.s/ � A1.s//
QG.s; �/ds C

X

�>Q�j
G1.t; Q�j /. QBj � Bj /

QG. Q�j ; �/

D G1.t; �/C
1Z

�1
G1.t; s/.

QA.s/ � A1.s//
QG.s; �/ds C

X

j

G1.t; Q�j /. QBj � Bj /
QG. Q�j ; �/:

The case t � � is analyzed similarly.
Lemma 3 is proved.

By virtue of (17), we arrive at the estimate

k QG.t; �/ �G1.t; �/k � ı0M2e
�ˇ2jt�� j

; t; � 2 R; (20)

with some ˇ2 � ˇ1 andM2 � 1:

Lemma 4. Assume that systems (3), (4) and (12), (13) satisfy the assumptions of Lemma 2 with sufficiently
small ı0 > 0: Then the corresponding Green functions of these systems satisfy the inequality

k QG.t; �/ �G.t; �/k � ı0
QM2e

�ˇ2jt�sj
; (21)

for all t and s such that jt � �j j > ı0 and js � �j j > ı0 for all j 2 Z:

Proof. We have

kG.t; �/ � QG.t; �/k � kG.t; �/ �G.˛.t/; ˛.�//k C kG.˛.t/; ˛.�// � QG.t; �/k:

Let t > s (the case t < s is studied similarly). Then

kG.t; s/ �G.˛.t/; ˛.s//k D kU.t; s/P.s/ � U.˛.t/; ˛.s//P.˛.s//k

� kU.t; s/P.s/ � U.˛.t/; s/P.s/k

C kU.˛.t/; s/P.s/ � U.˛.t/; ˛.s//P.˛.s//k

� kU.t; s/P.s/ � U.˛.t/; t/U.t; s/P.s/kC
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C kU.˛.t/; s/P.s/ � U.˛.t/; s/U.s; ˛.s//P.˛.s//k

� kI � U.˛.t/; t/kkU.t; s/P.s/k

C kU.˛.t/; s/P.s/kkI � U.s; ˛.s//k

�Me
��.t�s/kI � U.˛.t/; t/k CMe

��.˛.t/�s/kI � U.s; ˛.s/k:

Here, for the sake of definiteness, s � ˛.s/ and t � ˛.t/: If t 2 .�j C ı0; �jC1 � ı0/; then ˛.t/ 2 .�j ; �jC1/:

Therefore, by continuity, there exists a positive constant C1 independent of t such that

kI � U.˛.t/; t/k � C1ı0:

As a result, we obtain

kG.t; s/ �G.˛.t/; ˛.s//k � ı0M3e
�ˇ jt�sj

with a positive constantM3 independent of t; s 2 R and ı0: Further, in view of (20), we obtain (21).

Lemma 4 is proved.

Corollary 1. Assume that system (3), (4) satisfies the conditions (H1)–(H3) and is exponentially dichotomous
with constants ˇ andM: Then, for any " > 0; t; s 2 R; jt � �j j > "; js � �j j > "; j 2 Z; there exists a relatively
dense set of "-almost periods r such that

kG.t C r; s C r/ �G.t; s/k � "C1 exp
�
�ˇ
2
jt � sj

�
; (22)

where C1 is a positive constant independent of ":

Proof. If

u.t/ D U.t; s/u0; u.s/ D u0;

is a solution of the impulsive equation (3), (4), then

u1.t/ D U.t C r; s C r/u0

is a solution of the equation

du

dt
D A.t C r/u; t 6D �j ; (23)

�ujtD�jCq
D u.�jCq C 0/ � u.�jCq/ D BjCqu.�jCq/; j 2 Z: (24)

By Lemma 1, there exists a positive integer q such that �jCq 2 .s C r; t C r/ if �j 2 .s; t/: Finally, we apply
Lemma 4.
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4. Almost Periodic Solutions of Linear Inhomogeneous System

We prove the existence of almost periodic solutions of a linear inhomogeneous system.

Lemma 5. Assume that a linear homogeneous system satisfies the assumptions (H1)–(H3) and is exponen-
tially dichotomous on the axis. If the function f .t/ isW -almost periodic and the sequence fgj g is almost periodic,
then the linear inhomogeneous system (6), (7) has a unique solution bounded on R and W -almost periodic.

Proof. The unique solution of system (6), (7) bounded on R is given by relation (8). We show that it is
W -almost periodic.

We take an "-almost period r for the right-hand side of the equation. Then

u0.t C r/ � u0.t/D
C1Z

�1
G.t C r; s/f .s/ds C

X

j

G.t C r; �j /gj �
C1Z

�1
G.t; s/f .s/ds

�
X

j

G.t; �j /gj D
C1Z

�1
.G.t C r; s C r/ �G.t; s//f .s C h/ds

C
C1Z

�1
G.t; s/.f .s C r/ � f .s//ds C

X

j

.G.t C r; �jCq/ �G.t; �j //gjCq

C
X

j

G.t; �j /.gjCq � gj /:

We estimate the first integral,

1Z

�1
k.G.t C r; s C r/ �G.t; s//f .s C r/kds

�
X

k2Z

�kC1�"Z

�kC"

k.G.t C r; s C r/ �G.t; s//f .s C r/kds

C
X

k2Z

�kC"Z

�k�"

k.G.t C r; s C r/ �G.t; s//f .s C r/kds

�
1Z

�1
"C1e

�ˇ
2
jt�sjkf .s/kds C

X

k2Z

�kC"Z

�k�"

kG.t C r; s C r/f .s C r/kds
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C
X

k2Z

�kC"Z

�k�"

kG.t; s/f .s C r/kds:

By Lemma 1, j�jCq � �j � r j < ": Therefore, �j C r C " > �jCq (for definiteness, we assume that r > 0).
The difference G.t; �j / �G.t C r; �jCq/ can be estimated as follows:

Let t � �j � ": Then

kG.t; �j / �G.t C r; �jCq/k D kU.t; �j /.I � P.�j // � U.t C r; �jCq/.I � P.�jCq//k

� kU.t; �j /.I � P.�j // � U.t; �j C "/.I � P.�j C "//k

C kU.t; �j C "/.I � P.�j C "// � U.t C r; �j C "C r/.I � P.�j C "C r//k

C kU.t C r; �j C "C r/.I � P.�j C "C r// � U.t C r; �jCq/.I � P.�jCq//k: (25)

The first and the third differences are small in view of the continuity of the function U.t; s/ inside the intervals
between the points of pulses:

kU.t; �j /.I � P.�j // � U.t; �j C "/.I � P.�j C "//k

� kU.t; �j C "/.I � P.�j C "//.U.�j C "; �j / � I /k

� "C2e
�ˇ.t��j�"/

;

kU.t C r; �j C "C r/.I � P.�j C "C r// � U.t C r; �jCq/.I � P.�jCq//k

D kU.t C r; �j C "C r/.I � P.�j C "C r//.U.�j C "C r; �jCq/ � I /k

� "C2e
��.t��j�"/

:

The second difference in (25) is small in view of (22).

5. Proof of Theorem 1

Denote byM the space of allW -almost periodic functions with discontinuities at points of the same sequence
f�j g: The norm in the spaceM is introduced by the formula

k'k0 D sup
t2R

k'.t/k; ' 2 M:

We define an operator T onM as follows: If '.t/ 2 M; then

.T '/.t/ D
1Z

�1
G.t; s/f .s; '.s//ds C

X

j

G.t; �j /g.'.�j //:
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First, we prove that T .Dh/ � Dh for some h > 0; where

Dh D f' 2 M; k'k0 � hg:

Indeed, if k'k0 � h; then

kT 'k �
1Z

�1
kG.t; s/kkf .s; '.s//kds C

X

j

kG.t; �j /kkg.'.�j //k

�
1Z

�1
Me

�ˇ jt�sj
Hds C

X

j

Me
�ˇ jt��j jH

� 2MH

�
1

ˇ
C 1

1 � e�ˇ�

�
� h:

By Lemma 37 [2, p. 214], if '.t/ is an W -almost periodic function and infi �1i D � > 0; then f'.�i /g is an
almost periodic sequence. By using the method of finding common almost periods, it is possible to show that the
sequence fgi .'.�i //g is almost periodic.

Let r be an "-almost period of the function '.t/: By analogy with the proof of Lemma 5, we can show that,
for t 2 R; jt � �j j > "; j 2 Z; the following inequality holds:

k.T '/.t C r/ � .T '/.t/k D

������

C1Z

�1
G.t C r; s/f .s/ds C

X

j

G.t C r; �j /gj

�
C1Z

�1
G.t; s/f .s/ds �

X

j

G.t; �j /gj

������
� �."/";

where �."/ is a bounded function of ": Hence, we have proved that T .Dh/ � Dh:

If '; 2 Dh; then

k.T '/.t/ � .T  /.t/k �
1Z

�1
kG.t; s/kkf .s; '.s// � f .s; �.s//kds

C
X

k

kG.t; �k/kkgk.'.�k// � gk.�.�k//k

� 2MH

�
1

ˇ
C 1

1 � e�ˇ�

�
k' �  k0:

For sufficiently small N > 0; the operator T is a contraction in the domain Dh and, hence, there exists a
unique W -almost periodic solution of system (1), (2).
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